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Preface to Third Edition

Although this third edition of ‘Symmetry and Structure’ has much in common with previous
editions, there are major differences too. Most important is a new emphasis on the fact
that irreducible representations characterize particular nodal patterns (or vice versa!). It
is possible to draw pictures of these nodal patterns and so to give pictorial illustrations of
irreducible representations. This is particularly useful for the simpler groups, where much of
the group theory may be done pictorially. To obtain the maximum benefit from this approach,
Chapters 2–4 contain a basic but reasonably complete overview of the application of group
theory to chemistry (or, more accurately, the water molecule!). The major omission, of
course, is that of degeneracy. The nodal pattern approach applies not only to the simple
groups. Its use has enabled the inclusion of a chapter on electron spin, double groups and
spin-orbit coupling. The inclusion of these has been facilitated by the addition of a chapter
which includes the spherical group. Hopefully, the treatment of double groups is both
readable and accurate. In general, the mathematical content of the book has been reduced,
both in the text and in the Appendices. Although clearly there are limits, I have tried to
make each chapter as independent as possible. This has led to some duplication of material
– which may be no bad thing. By providing cross-references, the student can obtain a,
somewhat, different approach to a difficult point, should the need arise. Above all, I have
borne in mind the sub-title of the book, that the content should be readable, and with no
loss of accuracy. If at some points the reader finds it fun too, that would be a bonus.

I am particularly grateful to Professors K. Gatterer (Graz) and E. Diana (Turin) for
providing material which I have used and also for their comments on the text itself. All
deficiencies which remain are, of course, my responsibility.

Sidney F.A. Kettle
Tuttington
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1 Theories in conflict

1.1 Introduction

As its title says, this book is concerned with the symmetry and structure of molecules.
Of these, the latter – both in the sense of the geometric and of the electronic structure of
molecules – has long been of concern to chemists. We shall be interested in both these aspects
and will adopt the viewpoint that the geometric structure of a molecule tells us something
about its electronic structure. The connection between the two will be provided by the
molecular symmetry, or rather its expression in what is called group theory. Ultimately,
however, this book is concerned with the chemical consequences of molecular symmetry,
the application of group theory to molecules, and these extend far beyond the problems of
chemical bonding. Rather, the problem of chemical bonding will be used as a particularly
convenient – and important – way of introducing the concepts of symmetry. The concepts
revealed in this way can then be extended to other areas of chemistry. In an introductory
text such as this there will be no attempt to cover all of the uses of symmetry in chemistry –
an objective which it would be difficult to achieve in any text. Rather, the more important
aspects will be detailed, but sometimes with more than a hint of the advanced. The aim will
be to provide a cover of the basics of the subject sufficient to enable the reader to apply them
in other areas. Further, this will be done in a readable, almost entirely non-mathematical
manner. The take-home message is that the use of symmetry in chemistry is all about phase
patterns: that is, about nodal planes akin to those that distinguish different atomic orbitals.
But this is to come; in the present chapter we cover material that, hopefully, is familiar to the
reader – explanations of why molecules have the shapes that are observed. The examples
covered are chosen to be simple and mostly well known. But the final conclusions are
surprising and lead us to query the validity of the simple models that we discuss. Rather
than exploring these uncertainties, we will find more value in reversing the argument – and
this reversal will be a recurrent theme throughout the book. It has already been mentioned.
Start with the observed structure and use this to obtain information about the bonding. But
first, the more traditional approach.

1.2 The ammonia molecule

The ammonia molecule provides a convenient starting point for our study and it will be
used to see the problem of chemical bonding in a rather unusual perspective, one that leads
to the approach indicated above – the attempt to infer molecular bonding from molecular

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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2 THEORIES IN CONFLICT
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Figure 1.1 The ammonia molecule; the models in the text seek to explain the experimental bond

angle

geometry (in contrast to the more common procedure of explaining molecular geometry in
terms of chemical bonding). Several approaches to the bonding in the ammonia molecule
will first be reviewed, approaches which have been in the chemical literature for many
years. The reader may well not be familiar with all of them but he or she should not feel
that they have to spend much time trying to master any new ones – our concern is with
generalities, not details. However, references are given to enable the reader to explore any
of the approaches in more detail, if they so wish.

1.2.1 The atomic orbital model

This model has an historic importance – it is the only description to be found in many pre-
1955 texts.1 Before looking at it, the facts. The ammonia molecule is pyramidal in shape;
all three hydrogen atoms are equivalent, the HNH bond angle being 107◦ (Figure 1.1). Note
the restriction that has implicitly been made: we will not attempt to explain bond lengths,
only angles. The simplest, and oldest, explanation of the (angular) shape follows from the
recognition that the ground state electronic configuration of an isolated nitrogen atom is
(1s)2 (2s)2 (2p)3, each of the 2p electrons occupying a different p orbital. Each of these 2p
electrons may be paired with the electron present in the 1s orbital of a hydrogen atom by
placing one hydrogen atom at one end of each 2p orbital so that each nitrogen 2p orbital
overlaps with a hydrogen 1s orbital, giving a localized N H bond. The result is an ammonia
molecule which has the correct, pyramidal shape and which has all of three hydrogen atoms
equivalently bonded to the nitrogen (Figure 1.2). However, the angle between any pair
of 2p orbitals is 90◦ so that a bond angle of 90◦ is predicted by this model. Agreement
with an experimental value of 107◦ is obtained by postulating the existence of electrostatic
repulsion forces between the hydrogen atoms, each of which, it is assumed, carries a small
residual charge. These repulsions cause the H atoms to move further apart – and so the
bond angles increase. If, as seems probable, each N H bond is slightly polar with each
hydrogen carrying a small positive charge, this repulsion is nuclear–nuclear in origin. The
consequent modification of the original bonding scheme as a result of this distortion of the
bond angle from 90◦ is not usually considered.2

1 See, for example, p. 65 of Inorganic Chemistry, by E. de Barry-Barnett and C.L. Wilson, Longman Green, London, 1953.
2 The reader who wishes to perform this correction should make a note to do it after they have read Chapter 7, when they will

be adequately equipped.
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Figure 1.2 N H bonding in NH3 envisaged as resulting from the overlap of 2p orbitals of the

nitrogen with 1s orbitals of the hydrogens. Because the three nitrogen 2p orbitals have their

maximum amplitudes at 90◦ to each other, bond angles of this value are predicted. The overlap

regions are shown shaded

1.2.2 The hybrid orbital model

This is detailed in many post-1955 texts.3 In this model an alternative description of the
bonding in the ammonia molecule is obtained by hybridizing the valence shell orbitals of
an isolated nitrogen atom, 2s, 2px , 2py and 2pz , to give four, equivalent, sp3 hybrid orbitals
pointing towards the corners of a regular tetrahedron. Because there are five electrons in
the valence shell of the nitrogen atom, three of these hybrid orbitals may be regarded as
containing one electron whilst the fourth is occupied by two electrons. As in the previous
model, 1s electrons from three hydrogen atoms pair with the unpaired electrons on the
nitrogen, now in hybrid orbitals, to give three localized bonds and a pyramidal ammonia
molecule (Figure 1.3). Again, the three hydrogen atoms are equivalent but the bond angle is
predicted to be 109.5◦, the angle between the axes of a pair of sp3 hybrid orbitals. This value
is in closer agreement with experiment than that given by the previous model but again some
correction is needed if the experimental value is to be reproduced. This time, the predicted
bond angle is too big so a different source has to be found for the correction. It is usually made
by invoking the effects of electron–electron repulsion. It is this electron–electron repulsion
which forms the basis of a third model for ammonia and so the way that the ‘hybrid orbital’
model is modified to give agreement with experiment is contained in the description of

3 See, for example, p. 159 of Valency and Molecular Structure by E. Cartmell and G.W.A. Fowles, Butterworth, London,

1956.
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4 THEORIES IN CONFLICT

HH

H

Figure 1.3 N H bonding in NH3 envisaged as resulting from the overlap of sp3 hybrids of the

nitrogen with 1s orbitals of the hydrogens. Because sp3 hybrids (directed towards the corners of

the tetrahedron shown) have their maximum amplitudes at 109◦ to each other, bond angles of this

value are predicted. The overlap regions are shown shaded

the next model. The reader may well protest ‘what of the nuclear–nuclear repulsion of the
previous model and why has it been ignored?’. Indeed this is a good question, but, equally,
it is not to be overlooked that in the previous model we ignored electron–electron repulsion.
We already detect an element of mutual inconsistency!

1.2.3 The electron-repulsion model

This is the model described in many current texts. The first two models considered above
seek to explain the structure of the ammonia molecule in terms of the bonding interactions
between the constituent atoms. The atoms adopt that arrangement which makes bonding a
maximum. Repulsive forces, of one sort or another, were invoked only to get the predicted
angles to agree with experiment.

In contrast, the present and the next model to be discussed explain the structure not in
terms of bonding interactions (although these must exist to hold the atoms together) but by
electron–electron repulsion. They recognize that electrons repel each other and regard the
structure as being determined by the requirement that the inter-electron repulsion energies
are minimized. The first of these models is originally due to Sidgwick and Powell, but has
been subject to subsequent extensive elaboration and refinement, particularly by Nyholm
and Gillespie. Over the years it has been the subject of both debate and further refinement.4

In the ammonia molecule there are four electron pairs involving the valence shell of the
nitrogen atom. These are the three N H bonding electron pairs and a non-bonding pair (in
the first of the models discussed above these non-bonding electrons were placed in the 2s

4 For a recent and readable review see ‘Models of molecular geometry’ by R.J. Gillespie and E.A. Robinson, Chem. Soc. Rev.
(London) 34 (2005) 396. An idea of the development of the model over a decade can be gained by comparison with an earlier

article by the same authors, ‘Electron domains and the VSEPR model of molecular geometry’, Angew. Chem. Int. Ed. 35 (1996)

495.
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orbital of the nitrogen; in the second they were placed in an sp3 hybrid orbital). Because
electrons repel each other these four electron pairs would be expected to be as far apart as
possible, consistent with still being bound to the nitrogen atom (three of the pairs are also
individually bound to a hydrogen atom). It follows that the preferred orientation of these
four electron pairs is that in which they point towards the corners of a regular tetrahedron.
Remembering that three of the electron pairs are N H bonding and that their orientation
determines the positions of the hydrogen atoms, a HNH bond angle of 109.5◦ is predicted,
the tetrahedral angle, the same as that given by the second model. Figure 1.3 also describes
this model; the apical electron pair drawn there is expected to be a bit closer to the nitrogen
nucleus than are the other three. It is thought-provoking to recognize that the same bond
angle can be predicted either by including bonding interactions (the second model) or by
ignoring them (this model)! Equally, by including electron–electron repulsion (this model)
or by ignoring it (the second model)!

The refinement of the electron-repulsion model requires the recognition that there are two
sorts of electron pairs, the three pairs involved in N H bonding and a second sort, that which
is non-bonding and located on the nitrogen atom. The electron pairs which comprise the
N H bonds are each subject to strong electrostatic attractions from two nuclei, the nitrogen
nucleus and that of one of the hydrogen atoms. In contrast, the non-bonding electrons are
strongly attracted by one nucleus only, that of nitrogen. It therefore seems reasonable to
expect that the centre of gravity of the electron density in the N H bonds will be located
at a distance further away from the nitrogen nucleus than that of the lone pair electron
density. The recognition of this difference at once leads to a refinement of the model. The
accurate tetrahedral arrangement of four electron pairs resulted from the fact that, at that
stage, all the electron pairs were precisely equivalent. In the absence of such equivalence a
regular tetrahedral arrangement cannot be expected. It seems reasonable that the repulsive
forces occurring between electron densities located in two N H bonds will be less than
the electrostatic repulsions between the non-bonding pair of electrons and a N H bonding
pair, simply because the distance between the centres of gravity of electron density will be
greater in the former case. It would be expected that this difference in repulsion will lead
the molecule to distort accordingly. The conclusion is that the HNH bond angle will be less
than 109.5◦. Although no quantitative prediction is possible with this simple model, the
qualitative prediction is in accord with experiment – the bond angle is 107◦. These same
arguments, applied to the ‘hybrid orbital’ model (Section 1.2.2), also lead to qualitative
agreement with experiment.

In more recent years, this, the Valence Shell Electron Repulsion (often abbreviated VSER)
model, has become blended with another closely related model – the Ligand Close Packing
(often abbreviated LCP) model. The word ‘ligand’ originates in transition metal chemistry,
where it is used as the general name for groups attached to a (central, for simple molecules)
metal atom. More loosely, it is used as a name for atoms or groups attached to a central one.
The VSER model focuses attention on the central atom and the electron pair arrangement
associated with it; almost as a book-keeping exercise, atoms or groups are attached to some
of the electron pairs. The LCP model focuses attention on the ligands and explains geometry
in terms of repulsions between them (any non-bonding electron pairs on the central atom
are treated as if they were ligands). This approach clearly makes sense in those cases where
a ligand is really bulky, tert-butyl for instance. An increased interest in bulky ligands (they
change not only geometries but also reactivities) in recent years has no doubt encouraged
interest in the LCP model. One aspect of the LCP model which is perhaps unexpected is
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that it does not assume a fixed size for any ligand; the size of the ligand depends to some
extent on the atom to which it is bonded. Apart from these remarks, we shall not develop
the LCP model further; our interest is with the central atom and (ultimately) the symmetry
of its surroundings, not repulsion between its components.5

1.2.4 The electron-spin-repulsion model

This is a little-used model,6 although it seems to be undergoing a minor resurgence.7 It
differs from the preceding model principally in its recognition that electrons behave as
individuals – and so repel each other as individuals – rather than as pairs. It is therefore
more appropriate to consider eight electrons associated with the nitrogen atom, four with
spin ‘up’ and four with spin ‘down’, than to think of there being four electron pairs (with no
explicit mention of spin). In the case of eight individual electrons the preferred orientation
(in which the electrons are as well separated spatially as possible) would be expected to
be one in which the electrons are located at the corners of a cube. A result of detailed
quantum mechanics is the recognition that an additional repulsion exists between electrons
of like spin, compared with the repulsion between electrons of unlike spin. So, it would
be anticipated that an electron of given spin would have as its nearest neighbours at the
corners of the cube electrons of the opposite spin (the reader who would like the relationship
between a cube and a tetrahedron described in more detail than given below should take a
glance at Chapter 8 and, in particular, Figure 8.1). This means that in the cubic arrangement
of electrons there would be four electrons with spin ‘up’ defining one tetrahedron and four
with spin ‘down’ defining another. If lines are drawn from one corner of a cube across the
face diagonals to other corners and this procedure continued, just four corners are reached.
These four corners define a regular tetrahedron. Another regular tetrahedron is defined by
the four corners which remain – see Figure 1.4. So far in this model all of the electrons have
been associated with the nitrogen atom and we have really been thinking of N3−, with eight
valence shell electrons. It follows that when the hydrogen atoms are introduced they must be
introduced as bare protons – so that an electrically neutral molecule results. These protons
attract the eight electrons. The attraction between a proton and an electron does not depend
upon whether the electron has its spin ‘up’ or ‘down’, although, of course, the extra repulsion
between electrons of the same spin persists. The net result is that each proton attracts to its
locality just one electron with spin ‘up’ and one with spin ‘down’. This attraction brings
the two distinct tetrahedral arrangements of electrons into coincidence to give a single
tetrahedral arrangement. The conclusion is that two electrons will be associated with each
N H bond and the remaining two will be non-bonding, just the same as for the previous
model. Clearly, this model also predicts a bond angle of 109.5◦, the tetrahedral value. It
may be corrected in a manner similar to that described above for the electron pair model to
give qualitative agreement with experiment. A word of caution. Although in this description
there have been phrases such as ‘in the cubic arrangement of electrons’ this should not be
thought of (for the isolated atom) as static; the atom is basically spherical, the electron

5 Those interested in exploring the LCP model and its relationship with the VSER will find a readable review by R.J. Gillespie

and E.A. Robinson, Chem. Soc. Rev. (London) 34 (2005) 396.
6 It is described by J.W. Linnett in The Electronic Structure of Molecules, Methuen, London, 1964.
7 As part of a resurgence of valence bond theory.
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Figure 1.4 The two tetrahedra associated with a cube. Note the association that occurs in Linnett’s

model between these tetrahedra and the relative spins of the eight electrons placed at the corners

of the cube. The thicker tetrahedron has spin ‘down’ at its corners; the thinner has spin ‘up’

distribution smeared out. Rather it should be thought of as a slightly preferred arrangement,
with the orientation of the cube totally undefined (and so totally free of constraints).

Although there is considerable overlap between the different models considered above, a
survey of them does not lead to any definite conclusion regarding the relationship between
the structure of and the bonding in the ammonia molecule. First, they are largely concerned
with what is a relatively fine point – bond angles. They say nothing about the more important
point (in terms of energy) of bond lengths. Second, all start with the supposition that
only valence shell electrons need be considered but then diverge in their explanations.
These explanations are not totally distinct but what one model regards as the dominant
factor another assumes to be relatively small. The first two models, effectively, say that the
geometry is determined by the requirement that bonding interactions be maximized whilst
the last two say that it is the consequence of the requirement that non-bonding repulsive
forces be minimized. One point that they have in common, however, is the fact that none
of them leads to a prediction that the ammonia molecule should be planar.

1.2.5 Accurate calculations

In 1970 Clementi and his co-workers published the results of some very accurate calculations
on the ammonia molecule.8 This is an old paper but the results remain valid – and it has the
advantage of presenting the results in a way which provides insights relevant to the present
chapter. Clementi and his colleagues were particularly interested in a study of the vibrational
motion of the ammonia molecule in which it turns itself inside-out, like an umbrella in a
high wind (Figure 1.5). Halfway between the two extremes of this umbrella motion the

8 A. Rauk, L.C. Allen and E. Clementi, J. Chem. Phys. 52 (1970) 4133.
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Figure 1.5 The ‘umbrella’ motion of the ammonia molecule. As the hydrogens move up and down

together, so the nitrogen moves down and up, so that the centre of gravity of the molecule remains

in the same place

ammonia molecule is planar. The energy barrier for the inversion is equal to the difference
in total energy between the ammonia molecule in its normal, pyramidal, shape and the
planar configuration. In order to obtain a theoretical value for this barrier, Clementi carried
out rather detailed calculations for each geometry. The results obtained by Clementi were
very surprising. They showed that the N H bonding is greater in the planar molecule –
there is a loss of N H bonding energy of approximately 7.0 × 102 kJ mol−1 (167 kcal
mol−1) in going from the planar to the pyramidal geometry; this loss is accompanied by
a slight lengthening of the N H bond. Bonding favours a planar ammonia molecule. A
comparison of the most stable pyramidal and most stable planar geometries shows that the
electron–electron and nuclear–nuclear repulsion energies favour the pyramidal molecule
over the planar by about 7.2 × 102 kJ mol−1 (172 kcal mol−1). Repulsive forces favour a
pyramidal molecule. Note the way that the bonding and repulsive energy changes between
the two shapes almost exactly cancel each other. It is the slight dominance of the repulsive
forces by 20 kJ mol−1 (5 kcal mol−1) which leads to the equilibrium geometry of the
ammonia molecule in its electronic ground state being pyramidal.

We are left with a most disturbing situation. There is no doubt that the strongest N H
bonding in the ammonia molecule is to be found when it is planar yet two of the simple
models considered earlier in this chapter explained its geometry by the assumption that this
bonding is a maximum in the pyramidal molecule! Similarly, the models based on electron–
electron repulsion ignored both the fact that nuclear–nuclear repulsion is of comparable
importance and the fact that their sum is almost exactly cancelled by changes in the bonding
energy. This would not matter so much if there were some assurance that repulsive energies
would outweigh the bonding in all molecules (molecular geometries could then reliably be
explained using a repulsion-based argument). Unfortunately, no such general assurance can
be given. This can be seen if the discussion of the ammonia molecule is extended to include
some related species.

The molecules NH3, PH3, NH2F, PH2F NHF2, PHF2, NF3 and PF3 all have similar,
pyramidal, structures and would be treated similarly in all simple models. But calculations
by Schmiedekamp and co-workers 9 have shown that the first four owe their pyramidal

9 A. Schmiedekamp, S. Skaarup, P. Pulay and J.E. Boggs, J. Chem. Phys. 66 (1977) 5769.
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geometry to the dominance of repulsive forces (bonding is stronger when they are planar)
but the last four are pyramidal because the bonding is greatest in this configuration and
dominates the repulsive forces (which now favour a planar arrangement)! Although this
last sentence is marginally stronger than strictly permitted by the calculations, there is no
doubt about the general conclusion. Although these eight compounds all have the same
geometrical structure they do not all have it for the same reason, because of the close
competition between repulsive and bonding forces. At present there are no rules to enable
the prediction of which will win the competition in a particular case. Indeed, a detailed
study of the literature leads to this conclusion, or at least forces a person to throw up their
hands! So, consider three scandium compounds, all ScX3 (the electronic structure of Sc is
not of immediate relevance). Predict the order of increasing X Sc X bond angle for the
three compounds: ScH3, ScF3, Sc(CH3)3. The answers (all calculated in a similar way, but
reasonably reliable) are: ScF3, 120◦; ScH3, 140◦; Sc(CH3)3, 60◦. The explanation for this
sequence is not immediately obvious. 10

Although simple explanations of molecular shape such as those described earlier in this
chapter are very useful to the chemist – and are widely and fruitfully used – they can be
considered only as guides because they are not infallible. They are more aides-mémoire
than correct explanations. It is for this reason, and because it happens to be particularly
convenient for our purpose, that in this book the opposite strategy of using the experimentally
determined shape of a molecule to infer details of the electronic structure of the molecule
in that shape will be adopted. Few attempts will be made to explain why a molecule has
a particular shape, although there will be many points at which the consequences of a
particular geometry and its changes will become the focus of attention.

Problem 1.1 Consider each of the models for the structure of the bonding in the
ammonia molecule detailed above and for each indicate the importance (if any) that it
places on (a) electron–nuclear bonding forces, (b) electron–electron repulsion forces
and (c) nuclear–nuclear repulsion forces.

Problem 1.2 Factors which might influence molecular geometry but which have
not been included in the present chapter are atom size and bond polarity, although
some relevant data have been included. Comment on the possible importance of these
additional factors in the light of these data and those in the table below:

Table 1.1

Molecule N/P C bond length C N/P C bond angle

N(CH3)3 1.47 109
N(CF3)3 1.43 114
N(CH3)3 1.84 99
P(CF3)3 1.94 100

10 For an explanation see the original paper: R.J. Gillespie, S. Noury, J. Pilmé and S. Silvi, Inorg. Chem. 43 (2004) 3248. The

reader who does not wish to return to the original may note that there is also an unexpected pattern of calculated bond lengths:

ScF3, 1. 84; ScH3, 2. 02; Sc(CH3)3, 1.52 Å.
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Problem 1.3 Show that each of the models described in Sections 1.2.1 and 1.2.4
predicts that the water molecule is non-linear (the bond angle is actually 104.5◦). Extend
the discussion to include the species (bond angles in brackets) Hg(CH3)2 (180), O(CH3)2

(111) and S(CH3)3 (105).

Problem 1.4 Hazard a guess at whether it is bonding or non-bonding forces which
lead to NCl3 having a pyramidal shape.11

11 An answer will be found in a paper by K. Faegri and W. Kosmus, J. Chem. Soc. 73 (1977) 1602 (be prepared for a surprise).
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2 The symmetry of the
water molecule

This chapter begins the work towards the objective of the book, a study into the consequences
of molecular symmetry. It, and the following two chapters, will be concerned solely with the
water molecule. Although simple, the water molecule – and its symmetry – enables almost
all of the important aspects of the subject to be introduced. The way that symmetry simplifies
discussions of the chemical bond and of many forms of spectroscopy are two topics that
will be covered – but no less important is the introduction to the way that symmetry itself
is handled. However, the approach is not without disadvantages. In particular, it is not until
Chapter 9 (Section 9.1) that there is a general discussion of the symmetry of molecules, of
the allocation of the correct point group to a molecule. This is because it is not until then
that the reader will have met enough examples to make the task an understandable one.
Hopefully, in this book no new concepts or ideas are introduced without using them – and
this includes specific types of symmetry operations. It is not until Chapter 8 that all of these
types will have been both introduced and used.

2.1 Symmetry operations and symmetry elements

A good starting point for our discussion is that of the meaning of the word ‘symmetry’,
as applied to molecules. When we say that a molecule has high symmetry we usually
mean that within the molecule there are several atoms which have equivalent positions
in space. Thus, the tetrahedral symmetry of the methane molecule is evident in the fact
that the four hydrogen atoms are equivalent (Figure 2.1). Suppose that you have in front
of you a model of the methane molecule so well constructed that no minor blemishes
serve to distinguish one hydrogen atom from another. If you were to briefly close and
then open your eyes you would have no means of telling whether someone had rotated
the model so that, although each hydrogen atom had been moved, the final position of
the model was indistinguishable from its starting position. Asking such questions about
indistinguishability provides a convenient approach to symmetry and is the one which will
be followed in this book. The symmetry of a molecule is characterized by the fact that
it is possible, hypothetically at least, to carry out operations which, whilst interchanging
the positions of some (or all) of the atoms in the molecule, lead to arrangements of atoms
which are indistinguishable from the initial arrangement. Note the phrase ‘hypothetically

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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H
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H

H

Figure 2.1 The methane molecule, shown in perspective. The important point is that all the hydro-

gens are equivalent

at least’. There is no requirement that all symmetry operations be physically possible in the
way that a rotation is. As will be seen shortly, reflection in a mirror plane is an important
symmetry operation. But if an atom lies in such a mirror plane then, presumably, a physical
reflection in the mirror plane would mean one side of the atomic nucleus interchanging with
the other and this is scarcely physically possible. 1 Of the operations that will be met in the
following chapters only the rotation operations are physically possible. The others – such as
the operation of reflection in a mirror plane or inversion in a centre of symmetry – are not.
Those operations which cannot physically be carried out are called ‘improper rotations’ in
contrast to the ‘proper rotations’ which are physically possible. A more precise definition of
improper rotations will be given at several points in this book; the most detailed discussion
is towards the end of Section 8.1. Although the distinction between physically possible and
impossible operations is key in such topics as optical activity, the distinction is not one of
great fundamental importance. This is because hidden behind everything that we cover in
this book there is a mathematics, the mathematics of group theory. What is permissable
in this mathematics is what is important; what is possible with ball-and-stick models is of
much less significance.

It is helpful to consider a particular example and, as we have said, in this chapter, the
symmetry of the water molecule will be the subject of study. This molecule and symmetry
have the advantage of simplicity, both geometrically and mathematically. But first a word
of caution. We will be working with two closely related concepts. Symmetry elements and
symmetry operations. Examples of symmetry elements are rotation axes, mirror planes and
centres of symmetry. Examples of symmetry operations are those of rotation about an axis,
reflection in a mirror plane and inversion in a centre of symmetry. Care has to be taken

1 The operation of time reversal – scarcely physically possible – is important in some aspects of theoretical chemistry, although

it is not one which will be considered in this book. It has the effect (mathematically!) of converting an electron with α spin into

one with β.
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because in the next few pages, and elsewhere in other chapters, the discussion will flow
forth between symmetry elements and symmetry operations. Symmetry elements perhaps
seem the more real, in that one can (and we will) draw a line to represent a rotation axis, draw
a surface to represent a mirror plane and indicate a centre of symmetry with a point. But this
is deceptive. All points in a molecule can be rotated about a symmetry axis, and this means
that the axis itself must be of zero thickness. Similarly, a mirror plane must be infinitely thin
and a centre of symmetry infinitesimally small. The diagrams used in this and other books
must not be taken for reality! In this book it is the symmetry operations which are important
– something which we have already signalled, in that we talked about them earlier in this
chapter. Our first task, then, is that of obtaining a list of those symmetry operations which
turn the water molecule into a configuration indistinguishable from the initial one.

The most evident symmetry operation which turns the water molecule into itself is the
act of rotation by 180◦ about an axis which bisects the HOH angle and lies in the molecular
plane. Figure 2.2 shows the water molecule before, in the middle of, and after completion
of this operation. Apart from the arrows, which have been added for clarity, the first and
third diagrams are indistinguishable. The effect of the operation is to interchange the two
hydrogen atoms. We say that ‘the two hydrogen atoms are symmetry-related’ or ‘they are
symmetrically equivalent’. A rotation operation such as this is denoted by the letter C
(which may be conveniently thought of as derived from the symbol �). Because it takes
two successive rotations to return each atom to its original position, the rotation operation
is called a twofold rotation operation and is denoted C2, pronounced ‘see two’. The same
symbol, C2, is used to denote both the rotation operation and the axis about which the rotation
occurs – although, as we have seen, the distinction between the two is very important. Some
authors distinguish between an axis and the corresponding operation by writing the latter in
bold type, thus C2. The use of bold type is very helpful if one is developing the mathematics
of symmetry theory, group theory. In the present book, however, it will always be clear
from the context whether an axis or operation is being discussed and bold type will not be
used (because its use tends to make the subject look more daunting than need be the case).
Twofold rotation operations are not the only ones which can exist, threefold (C3), fourfold
(C4), fivefold (C5) and sixfold (C6) rotation operations are quite common in chemistry;
there are examples later in this book. Such operations have a complication, however, in that
there is not a 1:1 correspondence between symmetry axis and symmetry operation. So, for
a threefold axis the acts of rotating in clockwise and anticlockwise directions are different;
they lead to different atomic interchanges. The absence of such complications for the water
molecule is one of the reasons that it is chosen as the first to study. Some molecules have a
symmetry such that there is more than one sort of rotation axis (methane, with both twofold
and threefold axes, is one example). If a general rotation axis is denoted Cn (where n = 2,
3, 4 . . .) then the axis of highest symmetry in a molecule is that with the largest value of n.
Whenever possible (and methane is a counter-example, one to which we will return later in
the book, in Chapter 10), the axis of highest symmetry is chosen as the z axis.

The twofold rotation operation is not the only manifestation of symmetry in the water
molecule. If the plane defining the water molecule were to be replaced by an infinitely thin
mirror, as shown in Figure 2.3, then reflection in this mirror plane would have the effect
of turning the water molecule into a configuration indistinguishable from the original one.
This operation has the effect of turning the ‘front’ of the two hydrogen atoms and of the
oxygen atom into the ‘back’ and vice versa. Mirror planes and the operation of reflection
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Figure 2.2 The conversion of the H2O molecule into an arrangement which is indistinguishable from

the original by a rotation of 180◦ (360/2 ≡ C 2). In general, it is not possible to give symmetry

operations the sort of physical reality which is attempted here
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C2 
(vertical)

Mirror plane (σv)

Figure 2.3 The mirror plane of symmetry in the molecular plane of the H2O molecule. The plane

should be thought of as infinitely thin and serving to reflect one ‘side’ of the molecule into the

other. It is not possible to attempt to picture the operation in a way akin to that in Figure 2.2. This

points to a fundamental difference in the operations, which will be explored in later chapters

in them are both denoted by sigma – σ – (the operation sometimes being distinguished by
bold type) and, just as for rotation axes, various subscripts are used. In the present case the
subscript v is added, to give the symbol σv. This subscript arises because when, as is the
convention, the axis of highest symmetry (C2 in the present case) is arranged so as to be
vertical, as in Figure 2.3, then the mirror plane is also vertical. The subscript v on σv is
the initial letter of vertical. Thus, more jargon: a σv mirror plane is vertical with respect to
the axis of highest symmetry (this axis always lies in the σv mirror plane). Other subscripts
on σ which will be met are h (for horizontal) and d (for dihedral). They will be discussed
in detail later in the book (Chapter 8). The symbol σ is derived from the initial letter of the
German for mirror, ‘spiegel’, translated into Greek. Strange, but it seems to have been so
since the beginning of the subject.

The C2 and σv symmetry operations do not exhaust the symmetry possessed by the water
molecule. Another feature of this symmetry is the existence of a second mirror plane. This
mirror plane, which lies perpendicular to the molecular plane, is shown in Figure 2.4. Like
the first, the second mirror plane contains the twofold axis (indeed, the line of intersection
between the two mirror planes defines the twofold axis). It follows that, like the first mirror
plane, the second is denoted σv. However, its effect on the molecule is quite different to
that of the first – reflection in it has the effect of interchanging the two hydrogen atoms, for
instance – and so it is necessary to distinguish between them. This is done by adding a prime
to the symbol for the second mirror plane, thus: σ ′

v. Had the water molecule possessed a
third type of vertical mirror plane (which it does not!) then this would have been denoted
σ ′′

v and so on. Note that a σv is an improper symmetry operation – although its effect can
be seen, it cannot physically be carried out.

As can be shown by an abortive search, no other rotation axes or mirror planes exist in
the water molecule, so it would seem that the three symmetry operations which we have
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σv

C2

Mirror plane (σ 'v)

Figure 2.4 A second mirror plane of symmetry, perpendicular to the first, in the H2O molecule. The

line of intersection of the two mirror planes is the twofold rotation axis. The molecule is shown from

a different viewpoint

recognized serve to define the symmetry of the water molecule. This, however, is not so.
We have already seen that the application of the C2 operation twice over regenerates the
original molecule, with each atom restored to precisely its original position. It is easy to
see that the same is true of the σv and σ ′

v operations. That is, the end result of carrying out
any of these symmetry operations twice is the same as that of leaving the molecule alone.
The implication of this is that we should formally recognize the possibility that one way of
turning a molecule into a configuration indistinguishable from the original is simply to leave
the molecule alone. This, so called, identity operation will be denoted by the letter E (some
books use I). No matter how much or how little symmetry a molecule possesses the identity
operation always exists for it. 2 It is the set of four symmetry operations E, C2, σv and
σ ′

v which completely defines the symmetry of the water molecule. So, one way of talking
about the symmetry of the water molecule would be to give this list. However, rather than
give a complete listing of symmetry operations (which for some high symmetry molecules
could be rather tedious) this information is compressed into a shorthand symbol which for
the set of operations of the water molecule is C2v (pronounced ‘see two vee’). One talks
of the water molecule as ‘having C2v symmetry’ or we talk of ‘the symmetry operations of
the C2v point group’ (by which is meant E, C2, σv and σ ′

v). As for C2v, most, but not all, of

2 It is sometimes convenient to regard the identity operation as a C1 rotation, i.e. a rotation of 360◦. This interpretation

highlights the fact that although there is an infinite number of choices of C1 axis there is only one distinct C1(E) operation.
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the labels conventionally used for groups are a sort of summary of some of their operations.
Problems arise when there are lots of operations; again, methane is an example – its group
of twenty-four operations is denoted Td , where the T is the initial letter of tetrahedral.

The last paragraph contained two new words, ‘point’ and ‘group’. The word ‘group’
arises from the fact that the set of operations satisfy all of the requirements of mathematical
group theory. It is helpful to see an example of these requirements. Apply any two of
the symmetry operations to the water molecule one after the other. The result is always
equivalent to the effect of applying just one of the operations of the group (which may be
different from the two that were used). Thus, and this is something that we will explore in
detail later, for the case of the water molecule, following the σv operation by C2 gives the
same result as the application of the σ ′

v. Indeed, this combination method is sometimes a
useful method of making sure that all of the symmetry operations of a particular molecule
have been found – the ‘look and see’ method that has just been used for the water molecule
becomes increasingly fallible as the number of symmetry operations increases. 3 There is a
limit to the process, however. Eventually all of the symmetry operations that turn a particular
molecule into itself will have been obtained. 4 The successive application of two members
of the set of operations will always produce a result which is equivalent to the application
of a member of the same set. Sets which are closed in this fashion are called groups. Our
interest is in groups of symmetry operations (although there are many other types of group).
For any group there has to be a specified method of combining the group elements – for
symmetry operations it is that of applying them one after another. Other types of groups
may have very different methods of combination. The complete, formal, definition of a
‘group’ requires some mathematics but it may help to give two more examples.

Consider the three numbers 1, 0, −1. Do these form a group under the operations of
addition and subtraction of the number 1? Whilst it is clear that all three numbers can be
interrelated by these operations, it is equally clear that when the operation (+1) is applied
to the number 1 the number 2 is generated. Similarly, (−1) applied to the number −1 gives
the number −2. Clearly, 1, 0, −1 do not comprise the entire group because 2 and −2 have
to be included. In similar fashion it can be seen that 3, −3 and, indeed, all integers between
∞ and −∞ (plus and minus infinity) have to be included. This is an example of an infinite
group, the group of all integers. Groups such as this are of importance in the description
of the translational symmetry found in crystal lattices, a topic which will be dealt with in
Chapter 13, although the detailed group theory is not included in that chapter. As a second
example consider the rectangular table shown in Figure 2.5. The top of the table has been
divided into quarters and two of these are coloured black and two white. Were there no
such colouration, the table would have the same symmetry as the water molecule, as shown
in Figure 2.6. However, the presence of the coloured sections means that the σv and σ ′

v

operations are no longer symmetry operations unless they are each combined with quite a
new type of symmetry operation, that of changing colour, black into white and white into

3 In practice, the combination method usually serves to highlight two points in space connected by an overlooked operation

without giving the operation explicitly. But, even so, this is a great help in finding the single operation connecting the two points.
4 This statement is not quite true. There are infinite groups. So, rotation by any angle about the molecular axis of the linear

molecule CO2 is a symmetry operation. The choice of rotation angle is infinite and so too, therefore, is the number of symmetry

operations. Such cases are best discussed individually, although commonly one can work with some sort of basic, primitive,

operation. So, for CO2, rotation by an infinitesimally small angle is important. This topic is covered in Chapter 10. The following

text gives another example.
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Figure 2.5 A table showing back and white colour-change symmetry. The legs of the table reduce

the symmetry so that it is not necessary to compare the top surface of the table with the bottom

C2

σv

σ 'v

Figure 2.6 The C2v symmetry of the table of Figure 2.5 when uncoloured
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black. If these (reflection and colour change) operations are labelled (σv) and (σ ′
v), then

the operations E, C2, (σv) and (σ ′
v) form a group. 5 There is a more detailed, and general,

discussion of groups in Appendix 1.
As has been mentioned, a geometrical feature corresponding to a symmetry operation is

called a symmetry element. Thus, corresponding to a rotation operation is a rotation axis;
corresponding to a reflection operation is a mirror plane. Rotation axes and mirror planes
(and also other similar things, such as a centre of symmetry) are examples of symmetry
elements. For all molecules it is true that all the symmetry elements which they possess
pass through a common point in the molecule (in the case of the C2v point group, perhaps
confusingly, they pass through an infinite number of common points along the C2 axis).
This is the reason that all such groups (of operations) are called point groups. Put another
way, there is always at least one point which is left invariant (unchanged) by all of the
operations of a point group. This point does not have to be a point at which an atom is
located, although it may well be.

Problem 2.1 Give one-sentence definitions of each of the following in the context of
the present chapter (for some there may be more than one acceptable answer): σ , point
group; C2, E, σv.

Problem 2.2 How do the terms ‘symmetry element’ and ‘symmetry operation’ differ
when applied to C3, C4 and C5 rotations?

Problem 2.3 Explain to someone new to the subject the meaning of the phrase ‘the
symmetry operations of the C2v group’.

2.2 Multipliers associated with symmetry operations

From the way that they have been defined above, it is evident that the effect of each of the
symmetry operations of the C2v point group when applied to the water molecule, considered
as a whole, is to turn the molecule into itself. An alternative way of putting this is to say that
the effect of each of the symmetry operations on the molecule is equivalent to multiplication
by the number 1. That is, the effect of each of the operations can be represented as shown
in the following table:

Symmetry Effect of the operation on the water
operation molecule (considered as a whole)

E 1
C2 1
σv 1
σ ′

v 1

5 This may seem a contrived example and perhaps it is. However, it is not too far from real applications in chemistry. Suppose

we have a molecule which contains an unpaired electron. What is the symmetry relationship between a molecule with spin ‘up’

and one with spin ‘down’? One has to introduce an operation of ‘spin change’, analogous to that of ‘colour change’.
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Figure 2.7 The 2py orbital of the oxygen atom in H2O. By convention, the y axis is taken to lie

in the plane of a planar molecule. Notice that the positive lobe of the orbital coincides with the

positive y direction

The apparently pointless exercise of representing by the number 1 the effects of the
behaviour of the water molecule under the symmetry operations begins to acquire some
significance when we ask whether all quantities associated with the water molecule are,
like the water molecule itself, turned into themselves by the operations of the C2v point
group? It will be seen that they are not. Consider, for example, the oxygen 2py or-
bital shown in Figure 2.7. In Figure 2.8 are pictured the effects of the symmetry op-
erations of the C2v point group on this orbital. The identity operation, E, of course,
leaves the orbital unchanged, giving a multiplier of 1. The σv operation also leaves the
phases unchanged (although the ‘front’ and ‘back’ of each lobe are interchanged), again
a multiplier of 1. In contrast, the C2 and σ ′

v operations have the effect of reversing the
phases of the lobes, although they do so in different ways, each giving a multiplier of
−1. In summary, the association between symmetry operations and multiplicative factors
is:

Symmetry
operation Effect on the oxygen 2py orbital

E 1
C2 −1
σv 1
σ ′

v −1

Having obtained two such sets of numbers the question at once arises of how many such
sets can be found? Would any combination of 1 and −1 be acceptable? The answer is ‘no’.
To explore this further, consider the effect of the symmetry operations of the C2v point
group on the 2px and 2pz orbitals of the oxygen. The 2px orbital is shown in Figure 2.9,
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Figure 2.8 The effects of the symmetry operations of the C2v point group on the oxygen 2py orbital

in the water molecule. The point of importance is the relative phases of the orbital ‘before’ (left)

and ‘after’ (right). On the left, each symmetry operation is diagrammatically represented

where the fact that the positive lobe is located above the plane of the page and the negative
lobe beneath this plane is indicated by the perspective of the diagram. In order to avoid
completely obscuring the negative lobe behind the positive, the water molecule is viewed
from a slightly skew position. In Figure 2.10 are shown the effects of the four symmetry
operations of the C2v point group on the oxygen 2px orbital. It is evident that, whilst the
application of the E and σv operations result in the phases of the lobes of the orbital being
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+
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x

Figure 2.9 The 2px orbital of the oxygen atom in H2O. By convention, the x axis is taken to be

perpendicular to the plane of a planar molecule. The positive lobe of the orbital is in the positive x

direction

unchanged, the application of the C2 and σ ′
v operations leads to a reversal of these the phases.

In this case the numbers, multipliers, representing the effects of the symmetry operations
are:

Symmetry Effect on the oxygen
operation 2px orbital

E 1
C2 −1
σv −1
σ ′

v 1

A third set! Before proceeding, a note of warning is necessary. As has already been men-
tioned, it is a generally accepted convention that the axis of highest rotational symmetry in
a molecule (C2 in the case of the water molecule) is called the z axis. Although the direction
of the z axis is therefore uniquely specified for most molecules by this convention it is
seldom true that the same can be said for the x and y axes. In this book we are following
a convention which has been suggested by Mulliken but is not always followed – that of
requiring that a planar molecule lies in the yz plane. So, the reader may find that, in the case
of the water molecule, what we have called the x axis some authors will call the y (so that the
zx plane, rather than the yz, is the molecular plane). Had the x and y axes been interchanged
then, of course, the sets of numbers to which they give rise in the above discussion would
also be interchanged. This would lead to similar interchanges throughout the remainder of
this and the next two chapters.

We now return to the problem of the symmetry properties of the orbitals of the oxygen
atom and consider the 2pz orbital. This orbital is shown in Figure 2.11 and its behaviour
under the symmetry operations of the group in Figure 2.12. It is evident from this latter
figure that, although the symmetry operations may have the effect of turning one side of
the orbital into the other, this change is always accompanied by the retention of the phase
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Figure 2.10 The effects of the symmetry operations of the C2v point group on the oxygen 2px orbital

in the water molecule. The point of importance is the relative phases of the orbital ‘before’ (left)

and ‘after’ (right)
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of the lobes of the orbital so that the number representing the effect of each operation is 1,
thus:

Symmetry Effect on the oxygen
operation 2pz orbital

E 1
C2 1
σv 1
σ ′

v 1

This set of numbers is the same as that obtained earlier as a description of the symmetry
properties of the whole molecule. The conclusion is that although it is possible for quantities
associated with the water molecule to give rise to the same set of numbers as the molecule
itself, other alternatives are possible (such as those found for the 2py and 2px oxygen
orbitals). All this may seem a bit haphazard; is there some underlying pattern? Of course,
the answer is ‘yes’ and it is to this that we now turn.

Long before the contents of the present book were recognized as having any relevance
to chemistry, there were, nonetheless, discussions of symmetry in chemical texts. These
discussions stemmed from crystallography, where the variety of symmetries which could
be found in crystals was of interest. Of course, it was helpful to be able to represent the
various possibilities in pictures and so the idea of projections was introduced. They showed

+

−

z

Figure 2.11 The 2pz orbital of oxygen in H2. By convention, the z axis is taken to lie along the axis

of highest rotational symmetry of a molecule (there are departures from this rule for molecules of

very high symmetry, discussed in Chapter 10). The positive lobe of the orbital lies in the positive z

direction



JWBK182-02 JWBK182/Kettle August 13, 2007 20:1

MULTIPLIERS ASSOCIATED WITH SYMMETRY OPERATIONS 25

+

−

+

−

+

−

+

−

+

−

+

−

+

−

C2

+

−

E

C2

σv

σ 'v

Figure 2.12 The effects of the symmetry operations of the C2v point group on the oxygen 2pz orbital

in the water molecule. The point of importance is the relative phases of the orbital ‘before’ (left)

and ‘after’ (right)
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X X

X X

C2

σv'

σv

Figure 2.13 A modified version of the traditional projection of the C2v group. Symmetry elements

are shown, the C2 axis as an ellipse and mirror planes as lines. The four interrelated points are shown

as x’s. Any one of these can be regarded as the ‘start’ point. In the text, in related diagrams, the

‘start’ position will always be taken as that in the bottom right quadrant

the three-dimensional relationship between things such as the symmetry axes and symmetry
planes in a crystal in much the same sort of way that a map of the world shows its three-
dimensional surface. Distortions may be introduced, but they can be handled. Fortunately,
no distortion is evident in the traditional projection of the C2v group, shown in Figure 2.13.
This diagram can conveniently be thought of as representing the water molecule viewed
down the twofold, C2, z, axis. The twofold rotation axis is represented by the central ()2 and
the mirror planes by the two perpendicular straight lines. The outer broken circle indicates
that the plane of the paper is NOT a mirror plane (such a mirror plane would have been
shown by an unbroken circle). The four x’s, one in each quadrant, are four (typical, general)
points, said to be interconnected by the four symmetry elements. At the time, no significance
was placed on any difference between ‘symmetry element’ and ‘symmetry operation’, so
the phrase ‘symmetry element’ was used when today, as here, we would prefer ‘symmetry
operation’. Let us re-draw the projection in a way which reflects modern usage. This is

E
σv

C2

σv'

σv'

σv

Figure 2.14 An updated version of Figure 2.13. The effects of symmetry operations are shown and

symmetry elements not indicated (although here the mirror planes are drawn as an aid). Each point

is labelled by the operation which generates it, starting from the E point
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done in Figure 2.14, in which we are unambiguously talking of symmetry operations. We
have to nominate a point to represent a starting point, but, like the x’s before it, placed in a
general position. This is the small circle labelled E, indicating that when operated on by the
identity, leave alone, operation, this point remains unmoved. Diametrically opposite in the
diagram is the point which is reached by the C2 operation acting on the E point. Because
this point is labelled, there is no need to include a ()3 at the centre of the diagram. Similarly,
there is no need to represent the σv and σ ′

v mirror planes; we are concerned with operations
not axes – and the points resulting from the application of each of these operations on E are
marked. Nonetheless, we show these mirror planes because they acquire a new significance
as phase boundaries, as we shall soon see (and the labels on them will also be dropped).
Finally, it makes for a tidier diagram if it is enclosed by a complete circle. Such a circle
has no symmetry-element implication; if there were a mirror plane in the paper, we would
demonstrate it by showing the points reached, making representation of the plane itself
redundant (although we might want to use it to show phase relationships). Such a mirror
plane will be met in Chapter 5.

The next step is to take the three oxygen 2p orbitals which we have studied earlier and to
superimpose each of them on the diagram of Figure 2.14. This is done in Figure 2.15, where
it must be remembered that we are viewing everything down the z axis (so that we lose sight
of the nodal plane of the 2pz orbital). Because they have been given in Figure 2.14, there
is no need to label the effects of the symmetry operations on the E point. Even so, these
labels are given in the hope that they will clarify the discussion. They will be retained for
a few more diagrams but soon they will be omitted. Of course, for present purposes, the p
orbitals are no more than convenient vehicles. We have seen that the symmetry properties

σv'

σv

E

C2 σvσv

E

C2

C2

σv' σv'E

(a) (b)

(c)

_ +
_

+

+

Figure 2.15 The oxygen 2py (a), 2px (b) and 2pz (c) orbitals superimposed on Figure 2.14. Each

lobe of the orbital will determine the phase of the quadrants with which it overlaps
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+
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σv'
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σvC2

σv' E

(a) (b)

(c)

Figure 2.16 Figures 2.15a–c repeated, but with the phases becoming more important than the

orbital which led to them

of the entire water molecule and of the 2pz orbital gave the same set of multipliers and so
it is only because it is pictorially more convenient that the latter is chosen to be shown in
Figure 2.15. Similarly, there will be other quantities which behave like 2px and 2py (indeed
there are, we will meet many) and which could have appeared in Figure 2.15. What then
are the fundamental connections between quantities which behave similarly in this way? To
answer this question, we will re-draw Figure 2.15, changing it in two ways. First, as befits
vehicles, we shall move on from the 2p orbitals, representing them as dotted lines in Figure
2.16 and omitting them subsequently. Second, in Figure 2.16 we will insert a phase symbol
into each lobe of the 2p orbitals, trying to make the + and − signs overlap with as many
quadrants in the diagrams as easily possible. Figure 2.17 shows the result; no 2p orbitals
but a phase in every lobe of the circle. There are three quite different phase patterns: that
derived from 2pz is nodeless; those from 2px and 2py each have a single node (across a node
there is a change in phase from + to − or vice versa) but the nodal planes are differently
orientated.

Problem 2.4 Into a circle divided into quadrants such as those in Figure 2.17 add a
number of evenly separated straight lines, all passing through the centre point. Treat
these lines as phase boundaries and add phase labels (+ or −) as appropriate. Does
every number of lines give an acceptable pattern? For those that do, keep your answers –
they will be needed in Problem 2.5.
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Figure 2.17 Figures 2.16a–c repeated, but with only the phases shown

Does Figure 2.17 exhaust the list of possible nodal patterns? Probably not. What about
that shown in Figure 2.18? Can we find an orbital of the oxygen atom that leads to this
pattern when it is transformed under the operations of the C2v point group? Yes! Consider
the symmetry properties of the 3dxy orbital of the oxygen atom. Although this orbital is
not commonly included in elementary discussions of the electronic structure of oxygen-
containing compounds (because it is not a valence shell orbital) it does nonetheless exist
and would be included in most sophisticated electronic structure calculations. It is shown in

C2 σv

E

+

+−

−

σv'

Figure 2.18 A possible nodal pattern, but not included in Figure 2.17
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x

+ −

− +
y

Figure 2.19 The 3dx y orbital of oxygen in H2O. Note that the phases of the lobes of the orbital are

those of the product xy

Figure 2.19. Note that where the product of coordinate axes xy is positive, the phase of the
3dxy orbital is also positive (this matching of phases is implicit in the use of the xy subscript;
we know the directions of x and y from the orientation of the px and py orbitals – and they
are shown in Figure 2.7). The effects of the symmetry operations of the C2v point group on
this orbital are shown in Figure 2.20. This figure shows that the effect of the identity (E) and
of the C2 operation is to regenerate the original orbital with unchanged phases. In the case
of the σv and σ ′

v operations, however, the phase of each lobe of the orbital is reversed. For
the record, the appropriate multiplicative factors representing the effects of the operations
are therefore:

Symmetry Effect on the oxygen
operation 3dx y orbital

E 1
C2 1
σv −1
σ ′

v −1

The four nodal patterns we have found associated with the C2v point group are brought
together in Figure 2.21. For convenience, the relationship between quadrants and the effects
of symmetry operations is given in a diagram at the top of Figure 2.21. Is Figure 2.21
exhaustive? Can we think of any more nodal patterns? Of course we can. What about that
shown in Figure 2.22? But perhaps we should be cautious. Although all of the nodal planes
shown in Figure 2.22 look pretty much the same, this is deceptive. One pair of nodal planes
coincide with mirror planes in the water molecule, but the other pair coincide with nothing
similar. So, there is nothing to require that this second pair be straight lines: they could be
curved for instance. Let us take advantage of this freedom and reduce the second pair of
lines to short pieces. It will also help if, for clarity, we envelop the phase patterns within
rabbit-ear-like shells. This is done in Figure 2.23. The advantage of Figure 2.23 is that,
although we are studying a single nodal pattern, that of Figure 2.22, we can break this
pattern into bits (one in each quadrant) and see how these behave under the operations
of the C2v point group. This will lead us to recognize how the whole pattern behaves.



JWBK182-02 JWBK182/Kettle August 13, 2007 20:1

MULTIPLIERS ASSOCIATED WITH SYMMETRY OPERATIONS 31

− +
+ −

− +
+ −

− +
+ −

− +
+ −

+ −
− +

− +
+ −

C2

−

−+

+ +

−
+

−

E

C2

σv

σ 'v

Figure 2.20 The effects of the symmetry operations of the C2v point group on the oxygen 3dx y

orbital in the water molecule. The point of importance is the relative phases of the orbital ‘before’

(left) and ‘after’ (right)
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Figure 2.21 The four phase patterns of Figures 2.19 and 2.20; as an aid, a simplified version of

Figure 2.14 is repeated at the top
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Figure 2.22 A possible phase pattern – but not included in Figure 2.21
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Figure 2.23 The phase pattern of Figure 2.22 repeated in ‘rabbit ear’ fashion and with lines of no

real significance reduced in size. If each rabbit ear pattern is regarded as a single entity, then it can

be seen that a C2 rotation gives the same pattern but the mirror plane reflections gives the negative

of the original pattern. An alternative approach is to regard the set of four rabbit ears as a single

entity and to transform this set under the symmetry operations. The same result is obtained
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Figure 2.23 shows that the rabbit ear bits interrelated by σv and σ ′
v reflections have opposite

phases but the bits related by the C2 rotation have the same phase. That is, we get the
multipliers:

Symmetry Effect on the nodal pattern
operation of Figure 2.22

E 1
C2 1
σv −1
σ ′

v −1

This is NOT new. It is the same result as we obtained for the oxygen dxy orbital – it is the
fourth nodal pattern of Figure 2.21. It is not difficult to see what has happened. We obtained
Figure 2.21 by considering orbitals chosen so that in each quadrant of Figure 2.14 there was
a unique phase, either + or −. Essentially, we looked at four points and considered their
possible relative phases. But in Figure 2.22 we moved away from considering points; we
replaced them with (local) nodal (rabbit ear) patterns – and there is no limit to the number
of choices that we can make for such multi-nodal patterns. Figures 2.22 and 2.23 suggest
that perhaps the diagrams of Figure 2.21 are the only independent ones that exist for the
C2v group, that all others we might invent are all built on these four. Indeed, this is so – and
this simplicity indicates the value of symmetry concepts. But it would be helpful to have
some independent confirmation that just four, and only four, basic phase pattern diagrams
exist. The next two sections each provide such a confirmation.

Problem 2.5 Take the patterns left after Problem 2.4 and assess each in the light of
the contention that all must be, or be based on, one of the four acceptable patterns.

The first confirmation comes from something of a buckshot approach; the abortive study
of the symmetry properties of quantities, orbitals, which might be expected to lead to new
symmetry patterns if any exist. The twin facts that the number of orbitals to be studied is
limited and that the search will prove abortive might well indicate that the task is pointless.
This is not so; the search will also provide the reader with invaluable experience in the
transformation of complicated-looking (but actually simple) objects. Specifically, we will
consider the transformation of the remaining four 3d orbitals of the oxygen (3dz2 , 3dx2−y2 ,
3dzx and 3dyz). The case of the 3dxy orbital was considered above.

There are two ways of tackling this problem. The first, more tedious but more valuable,
is to follow the pattern adopted for the oxygen 2p orbitals (Figures 2.8, 2.10 and 2.12) and
the 3dxy orbital (Figure 2.20). To encourage the reader to undertake this task the hard way,
in Figure 2.24 are shown each of the above orbitals in the coordinate system of Figure
2.7. For those looking for an easier life or a different insight, in Figure 2.25 are shown
the same orbitals in projections similar to those of Figure 2.16. The phase patterns follow.
The 3dx2−y2 case in Figure 2.25b may pose a problem, one which is interesting to resolve.
It might seem to contain a new pattern of nodes. We can emphasize the new nodes by
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Figure 2.24 The oxygen 3dz2 (a), 3dx 2−y2 (b), 3dzx (c) and 3dyz (d) orbitals
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Figure 2.25 The oxygen 3dz2 (a), 3dx 2−y2 (b), 3dzx (c) and 3dyx (d) orbitals shown superimposed

on Figure 2.14 (simplified). Only the ‘top’ lobes are shown for (c) and (d). The ‘bottom’ lobes would

give the same pattern, but as its negative
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Figure 2.26 The oxygen 3dx 2−y2 orbital of Figure 2.25b drawn as a ‘rabbit ear’ pattern. All of the

symmetry operations of the group regenerate the pattern unchanged

redrawing the pattern in a manner akin to that of Figure 2.23. This is done in Figure 2.26.
We know from the discussion connected with Figure 2.23 that we have to consider the rabbit
ears as single objects. When we do this, perhaps to our surprise, we find that the rabbit ears
are turned into themselves by all of the operations of the group. So, the fundamental phase
pattern of Figure 2.25b is just that of Figure 2.17c; the apparent simplicity of the latter is a
bit deceptive! Both of the approaches of Figures 2.24 and 2.25 (should!) lead to the same
set of answers. These are given below in the form of multipliers:

Symmetry Effect on the oxygen Effect on the oxygen Effect on the oxygen Effect on the oxygen
Operation 3dz2 orbital 3dx 2−y2 orbital 3dzx orbital 3dyz orbital

E 1 1 1 1
C2 1 1 −1 −1
σv 1 1 −1 1
σ ′

v 1 1 1 −1

Of the two approaches to these problems, that which the reader was urged to follow
will have shown that not all of the nodal patterns inherent in an individual orbital may be
relevant to the solution of problems associated with it. In the projection approach, these
irrelevant phases were sometimes discarded without comment (usually those in the xy plane).
Of course, the fact that they were irrelevant here does not mean that they will always be
irrelevant (just as our discussion of Figures 2.22 and 2.23 – and 2.26 – depended on the
non-existence of two mirror planes; had these mirror planes existed then we could not have
treated the phase patterns in the way that we did).

Problem 2.6 If it has not already been done, generate the multipliers obtained from the
transformations of the oxygen 3dz2 , 3dx2−y2 , 3dzx and 3dyz orbitals under the operations
of the C2v point group.
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Figure 2.27 The ethylene oxide molecule C2H4O. The objects of interest are the labels on the H

atoms

2.3 Group multiplication tables

The second way of showing that the set of diagrams in Figure 2.21 is complete, that none can
be added, is sufficiently important to be given a section of its own. Earlier in this chapter it
was asserted that the effect of the successive application of symmetry operations of a group
was always equivalent to the effect of some single operation of the group. This will now be
investigated in detail for the C2v point group by considering, in turn, each operation and the
effect of following it with all four symmetry operations of the group, each considered in
turn. It will be helpful to focus attention on a particular molecule. The water molecule, on its
own, is inconvenient for this particular purpose (because of the apparent equivalence of the
effects of applying different symmetry operations, a phenomenon encountered several times
already in this chapter). To overcome this problem we will consider, instead, four points in
space, symmetrically related to the water molecule. This pattern is shown in Figure 2.27,
where, to make the problem more understandable, the four points are each associated with
one of the four hydrogen atoms of the ethylene oxide molecule. In this figure the four points
in space (hydrogen atoms) have been labelled with the suffixes a, b, c or d – so that in order
to study the effects of the symmetry operations all that has to be done is to see how these
labels are rearranged. The effects of the operations of the C2v point group on these labels
are shown in Figure 2.28, a figure that should be studied carefully until the reader is fully
conversant with it, feels comfortable with it. It will be noted that each symmetry operation
gives rise to a different final arrangement of labels, a feature which would not have been
found with the simple H2O molecule and the reason for the present choice of example.

Because the identity operation does not change the distribution of the labels at all, it is
evident that any operation preceded or followed by the identity operation gives rise to the
same final arrangement as that operation on its own. It can immediately be concluded that

E followed by E ≡ E

E followed by C2 ≡ C2

E followed by σv ≡ σv

E followed by σ ′
v ≡ σ ′

v

C2 followed by E ≡ C2
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Figure 2.28 The effects of the symmetry operations of the C2v point group on the four hydrogen

atoms of ethylene oxide. The point of importance is the relative pattern of the hydrogen atoms

‘before’ (left) and ‘after’ (right)

σv followed by E ≡ σv

σ ′
v followed by E ≡ σ ′

v

Slightly less trivial is the result of the successive application of pairs of operations from
the set C2, σv and σ ′

v. It has been pointed out earlier in this chapter that any one of these
operations followed by itself gives rise to the initial arrangement and so the sequence is
equivalent to the identity operation. That is,

C2 followed by C2 ≡ E

σv followed by σv ≡ E

σ ′
v followed by σ ′

v ≡ E

In Figure 2.29 are illustrated the remaining combinations of operations and the reader may,
by comparison with Figure 2.28, determine which single operation is equivalent to each
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Figure 2.29 The effects of two successive operations of the C2v point group on the four hydrogen

atoms of ethylene oxide. The single operation which corresponds to each combination of operations

shown here may be determined by comparison with the patterns shown on the right-hand side of

Figure 2.28

combination. The starting point is always the arrangement at the centre of the top line in
the diagram – this is just that of Figure 2.27. Leading from it are the three possible choices
of first operation and the result of applying each: a repeat of Figure 2.28. Each of these
three intermediate arrangements can be subjected to either of the two remaining operations
(the one already used cannot be used again because that case has already been considered)
leading to six possible final arrangements. As already said, the single operation which is
equivalent to each combination of operations is found by comparing each final arrangement
with those in Figure 2.28. The conclusion is that

C2 followed by σv ≡ σ ′
v

C2 followed by σ ′
v ≡ σv

σv followed by C2 ≡ σ ′
v

σv followed by σ ′
v ≡ C2

σ ′
v followed by C2 ≡ σv

σ ′
v followed by σv ≡ C2

These results are collected together in Table 2.1.

Problem 2.7 Use Figures 2.28 and 2.29 to check that Table 2.1 is correct.

It is usual in the mathematical theory of groups to refer to the law of combination of group
elements as ‘multiplication’ (although only rarely does the operation have anything to do
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Table 2.1

First operation

C2v E C2 σv σ ′
v

Second operation
E E C2 σv σ ′

v

C2 C2 E σ ′
v σv

σv σv σ ′
v E C2

σ ′
v σ ′

v σv C2 E

with ordinary arithmetical or algebraic multiplication). So, in the present case, where two
symmetry operations combine by being applied in succession, they are said to ‘multiply’.
Thus we say ‘C2 multiplied by σv is equal to σ ′

v’. Table 2.1 is therefore referred to as the
multiplication table for the operations of the C2v point group. 6

This is another point at which the reader is offered a choice of ways forward. The first
involves a game, which she or he is encouraged to play. The game consists of taking Table
2.1 above and making substitutions in it. Everywhere that a chosen symbol (and there are
only four to chose from) appears in the table it is replaced by a number, to be chosen by
the reader. When all four symbols have been replaced the table will contain nothing but
numbers. The problem is to find a set of substitutions which lead to a final table which is
arithmetically correct. So, if the following substitutions were made:

E C2 σv σ ′
v

50 −0.3 4.3 −7.8

the final table would contain not a single correct entry (and if the author can be this bad,
the reader must surely be able to do better!).

Problem 2.8 Play the game described in the text; systematically substitute numbers
for the entries in Table 2.1 and attempt to find a set that give arithmetically correct
tables. Four such sets exist.

This sentence is separated as a paragraph to inhibit the reader from reading it by accident.
It contains a hint to help with the above problem and is designed to help narrow down the
search. The fact that E followed by E equals E – to be replaced by (E) × (E) = (E), where
the symbol (E) stands for the number replacing E – shows that the only number that can
be used to substitute for E is 1 (divide each side of the equation by (E)). Rather similar
arguments can be used for some of the other entries in the table.

The alternative way forward is similar to that of playing a game, but without the effort. It
is convenient to collect together all of the sets of multipliers that have been generated in this
chapter. They are listed in Table 2.2, although the order in which they are presented is not
that in which they were obtained. Against each set of multipliers is/are shown the oxygen

6 In Table 2.1 the results of the multiplication are independent of the order in which the operations are applied – the table is

symmetric about its leading diagonal. This is not a general property of multiplication tables but it is one that makes that in Table

2.1 a particularly simple case to start with.



JWBK182-02 JWBK182/Kettle August 13, 2007 20:1

40 THE SYMMETRY OF THE WATER MOLECULE

Table 2.2

E C2 σv σ ′
v

1 1 1 1 2pz, 3dz2 , 3dx 2−y2

1 1 −1 −1 3dx y

1 −1 1 −1 2py , 3dyz

1 −1 −1 1 2px , 3dzx

atom orbital(s) which lead to its generation. The next step is to play the game above, with
knowledge of the answers. Choose any row of Table 2.2, say, the second. Abstracting this
row from the table, the association between symmetry operations and multipliers is that
shown below

E C2 σv σ ′
v

1 1 −1 −1

Turning now to Table 2.1, everywhere in this table that the operation E is listed, replace it
by the number with which it is associated in the chosen row of Table 2.2. That is, in our case
it is replaced by the number 1. Similarly, wherever C2 appears in Table 2.1 it is replaced
by 1, whilst both σv and σ ′

v are replaced by −1. When these replacements have been made,
Table 2.3 is obtained. The interesting – and important – thing about this table is that, if it is
looked upon simply as a table in which numbers multiply each other, arithmetically, then
the products are all correct. It is left to the reader to demonstrate that this statement is true
no matter which row of numbers is selected from Table 2.2. Only those sets of numbers
contained in Table 2.2 will be found to substitute correctly (hopefully, the reader will have
discovered this by playing the game, Problem 2.8). This is a result that could not have been
anticipated from the way that the sets of multipliers were obtained. This is the first hint of
the fundamental nature of the set of numbers of Table 2.2; more will be met in the next
chapter. 7 But this is an unexpected result. It happened very much earlier in the chapter, but
the reader may recall that the above discussion was provoked by a desire to show that the
set of four diagrams in Figure 2.21 was complete; that no more can be added. Instead, we
have found four sets of numbers to which no more sets can be added. Of course, the answer
is simple – the diagrams and sets of numbers are equivalent. Replace the + and − phases
in Figure 2.21 by the numbers 1 and −1, respectively. Next, pair each number with the
symmetry operation associated with the quadrant in which the number falls. One obtains
the four sets of Table 2.2 (but without the association with oxygen orbitals!).

2.4 Character tables

We now come to a key point in the argument which is being developed. This is that the
differing symmetry properties of, for example, the 2py , 2px and 2pz orbitals of the oxygen
atom in the water molecule (i.e. the fact that their behaviour under the various symmetry op-
erations differs) may be represented by the different sets of multipliers which were obtained

7 This discussion explains why only the numbers 1 and −1 appear in Table 2.2. Had the number 2 been associated with the E
operation, for instance, then the product of multiplying E with E, in the group theoretical sense, to give the answer E – and so 2

by substitution – would not be arithmetically correct (arithmetic would call for the number 4).
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Table 2.3

1 1 −1 −1

1 1 1 −1 −1
1 1 1 −1 −1

−1 −1 −1 1 1
−1 −1 −1 1 1

for them. Quantities which have different symmetry properties give rise to different sets of
numbers. Because of the close relationship between the multiplication of the operations of
the C2v point group (given in Table 2.1) and the multiplication of the numbers in the rows
of Table 2.2, each set of numbers may be regarded as representing (i.e. behaving in an anal-
ogous way to) the set of symmetry operations. 8 We shall speak of each row of Table 2.2 as
being a representation of the symmetry operations. Further, we shall call them ‘irreducible
representations’ (the significance of the word ‘irreducible’ will not become evident until
the next chapter, when the concept of a reducible representation will be introduced). In the
discussion that follows it will often be necessary to refer to the individual rows in Table 2.2
and it is convenient to circumvent the need to write each one out in full by giving each a
label. The labels commonly used are those shown in Table 2.4.

Thus, the set of numbers given at the beginning of this section (1 1 −1 −1) would be
referred to as ‘the A2 irreducible representation of the C2v point group’. This sounds a bit of a
mouthful when first encountered but it is the sort of phrase which occurs over and over again
in the subject. Because the association between the symmetry operations and irreducible
representations given in Table 2.4 is unique to the C2v point group, this is indicated by
including the group label in the top left-hand corner of the table.

There is some system about the choice of the labels A1, A2, B1 and B2 in Table 2.4. The A’s
are distinguished from the B’s by the fact that they have numbers of +l for the C2 operation
whereas the B’s have −1 (in the general case, A’s have numbers of +1 for rotation about
the axis of highest symmetry whilst B’s have a number of −1). A1, by convention, is the
so-called ‘totally symmetric’ irreducible representation and has +l for all of its numbers.
It is called totally symmetric because all the operations of the group turn something of
A1 symmetry into itself. Every group has a totally symmetric irreducible representation.
Although it may not be labelled A1 it is always the first A listed (it could be something like
Ag or A′ for instance).

The system distinguishes A’s from B’s and A1 from A2. This is really the end, although
the distinction can be extended to the B’s by noting that irreducible representations with the
suffix 1 are symmetric (numbers +1) under the σv operation whereas those with suffix 2 are
antisymmetric (numbers −1). However, in the case of the B’s this distinction is marred by
the fact that the distinction between σv and σ ′

v is somewhat arbitrary – interchange the use
of these labels and the labels B1 and B2 would have to change too. In practice this means
that it is advisable to check the notation used by each author – one worker’s notation may
not be the same as the next. As long as one is consistent in the notation used for a particular
problem there is no ambiguity about the final answer obtained. In fact, this is just the same

8 Note that the word ‘multiplication’ in this sentence does not have quite the same meaning when applied to symmetry

operations as it does when it refers to numbers.
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Table 2.4

C2v E C2 σv σ ′
v

A1 1 1 1 1 2pz(O)
A2 1 1 −1 −1 3dx y(O)
B1 1 −1 1 −1 2py(O)
B2 1 −1 −1 1 2px (O)

problem as one discussed above, that of the choice of x and y axes for the water molecule;
interchange the choice of x and y and B1 and B2 also interchange.

Just as the set of operations (E, C2, σv, σ ′
v) may be represented by any of the irreducible

representations A1, A2, B1, B2, so, too, individual symmetry operations, such as C2, are
characterized, in each irreducible representation, by a particular number (which, in general,
varies from one irreducible representation to the next). These individual numbers are termed
characters and tables such as Table 2.4 are called character tables. As has already been
indicated, character tables are of prime importance for the topics discussed in this book. The
unexpected properties of the sets of numbers in Table 2.2 become the unexpected properties
of character tables. It is these ‘unexpected properties’ (which are actually fundamental and
far from accidental) which are at the heart of their value in chemistry. In the next chapter,
when the bonding in the water molecule is discussed, the existence, and to some extent
the origin, of these properties will become clear. Because of their importance, this chapter
concludes with some further comments on character tables in general and that of the C2v

point group in particular.
On the right-hand side of Table 2.4 is indicated the oxygen orbital which was used

to generate a particular irreducible representation. Functions which have the property of
generating an irreducible representation are commonly listed alongside character tables in
this way. Such functions are called basis functions. It has been seen that the transformations
of the oxygen 2py orbital under the operations of the C2v point group lead to the B1 set of
characters – the oxygen 2py orbital is a basis function for the generation of the B1 characters.
This would normally be said a bit more formally:- ‘the oxygen 2py orbital is a basis for the
B1 irreducible representation of the C2v point group’. Alternatively, and more simply, ‘the
oxygen 2py orbital has B1 symmetry in the C2v point group’. 9

Finally, back to the diagrams of Figure 2.21. We can now see them for what they are.
Essentially, they are pictures of the four irreducible representations of the C2v point group.
Put another way, the application of group theory to chemical problems is a way of exploiting
the differing nodal patterns associated with different phenomena (if this sounds a bit obtuse,
there will be plenty of examples in the following chapters). It would be nice if all of this
could be done using pictures akin to, or derived from, those of Figure 2.21 – and, indeed,
we will do this as far as possible. However, the road may not always be easy. Consider
a molecule as simple as methane. Ten diagrams would be needed. That may not be too
bad – but they could not have the simple two-dimensional form of those we have met in
this chapter and so some form of distortion would have to be introduced to show what are
three-dimensional patterns. It gets worse. SF6 (an octahedral molecule) would need twenty

9 There is a subtle point here. When the symmetry is the focus of attention, an upper case (capital) letter is used. However,

when the orbital is the focus of attention it is denoted by a lower case symbol: thus, ‘the b1 orbital’. In this book the use of lower

case symbols will largely be confined to diagrams.
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three-dimensional pictures. C60 (an icosahedral molecule) would need thirty-two. It is not
surprising that character tables, which have no similar problems, dominate the subject.
Further, there are many applications which demand the use of character tables; diagrams
will not do – although in such cases it may well be that diagrams may help in understanding
the outcome. In this book, diagrams will be used wherever possible and helpful.

One final word, one which is not important at a first reading but which is included to
help the reader understand the logic behind the sequence of the chapters in this book and to
explain a word that will be used from time to time. The C2v point group is an Abelian point
group. Abelian groups have multiplication tables which are symmetric about their leading
diagonal (top left to bottom right) – inspection of Table 2.1 shows that this is true for the C2v

group. That is, the result of multiplying two operations is independent of the order in which
they are multiplied – of which operation comes first and which comes second. It is this fact,
together with the fact that each operation multiplied by itself gives the identity, that makes the
C2v group a particularly simple one to work with. An alternative (but equivalent) definition
of an Abelian point group is to regard such point groups as those for which the character
tables contain only numbers like 1 and −1. 10 The character tables of Abelian groups never
contain numbers such as 3, −3, 2, −2 and 0. The reason why at the beginning of this chapter
consideration of the ammonia molecule was deferred is that the character table of its point
group contains the numbers 2 and 0 as well as 1 and −1. It is shown in Appendix 1 (Table
A1.1) that this originates in the fact that the result of multiplying some of the elements of
its group does depend on the order in which they are taken; its group is non-Abelian.

2.5 Summary11

In a molecule the axis of highest symmetry is conventionally chosen to be the z axis;
recommendations for the choice of x and y exist (p. 000). The concern of this book is with
point group symmetry operations (p. 000), which are named according to a conventional
nomenclature (p. 000). These operations form a group (p. 000). In the present (and the
next two) chapters the discussion is restricted to Abelian point groups (p. 000). In such
groups, individual quantities – such as atomic orbitals on a central atom (p. 000) – that
are transformed into themselves under the operations of the point group may have these
transformations described by characters (p. 000). (An example of an Abelian group which
shows a more complicated behaviour will be met in Chapter 11). A complete collection of
characters is called a character table (p. 000). Each row of characters is called an irreducible
representation (p. 000); each of the individual quantities used to generate them are said to
be the basis for the irreducible representation that it generates (p. 000). Characters multiply
together in a way that is isomorphous (p. 000) to the way that the operations of the point
group multiply (p. 000). Irreducible representations are given labels in a systematic, but not
always unambiguous, way (p. 000). Diagrams may be drawn of irreducible representations
and help to demonstrate that irreducible representations differ in their nodal characteristics
(p. 000). Each irreducible representation is associated with a unique nodal pattern.

10 In Chapter 11 it will be seen that they can also contain complex numbers, such as i and −i, which are such that some power

of them equals 1 (thus i4 = 1, for instance).
11 Page numbers refer to the page in the chapter on which a full discussion commences. Sometimes in the summaries words

are used in a way that should be evident from the context but which will be discussed in detail in later chapters, e.g. ‘isomorphism’.
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3 The electronic structure of the
water molecule

In Chapter 2 we found that it is possible to obtain sets of four numbers (characters) from the
way that the atomic orbitals of the oxygen atom of the water molecule behaved under the
symmetry operations of the water molecule. Each set of numbers is called an ‘irreducible
representation’ and one says that ‘the atomic orbitals served as bases for the generation
of the irreducible representations’. Fortunately, this is not as difficult as it may seem; we
were able to draw pictures of each irreducible representation and these showed that the
irreducible representations are nothing more than a listing of different nodal patterns. The
nodal patterns are a complete set of those which are symmetry-distinct in the point group.
Atomic orbitals are not the only things which may serve as bases. Almost anything can;
one’s imagination is the limiting factor. So, in the following chapters a variety of bases will
be met; for instance, when studying the vibrations of a molecule the small displacements
of individual atoms will be used as bases. Sometimes, the set of numbers obtained – the
representation generated by the transformation properties of a basis set – appear in the
character table. This is when an irreducible representation is generated. More commonly,
however, the representation generated does not appear in the character table. For the water
molecule we can guarantee this when we look at more than one thing simultaneously (for
example, the two O H bond stretch vibrations); all of the examples met so far considered
single things. In cases where many things are considered, the representation obtained is
often a reducible one. One of the representations encountered in the present chapter is a
reducible representation; by studying it, a method of breaking up a reducible representation
into a sum of irreducible representations will be obtained. However, to be able to do this it
is necessary to recognize more of the special properties of the irreducible representations
than those met in Chapter 2. Again, these will be developed with reference to the character
table of the C2v point group.

3.1 The orthonormal properties of irreducible representations

As indicated in Chapter 2, the sets of characters in the C2v character table have properties
beyond those which might reasonably be expected from the way that they were derived.
There we found that they could be substituted into the group multiplication table to give
an arithmetically correct outcome. But there is more, much more. One set of the properties

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Table 3.1

C2v E C2 σ v σ v
′

A1 1 1 1 1 2s(O), 2pz(O), ψ(A1)
A2 1 1 −1 −1
B1 1 −1 1 −1 2py(O), ψ(B1)
B2 1 −1 −1 1 2px (O)

of irreducible representations proves to be of great importance. Consider any irreducible
representation of the C2v point group (Table 3.1) and multiply its individual characters by the
corresponding characters of any other irreducible representation. Then sum the products of
characters which have been obtained. So, consider as an example the A2 and B1 irreducible
representations. Giving at the head the operation associated with the characters, the sum of
the products of characters is easily obtained:

E C2 σv σ ′
v

(1 × 1) + (1 × −1) + (−1 × 1) + (−1 × −1) = 0

In this case, and for all others in which the characters of two different irreducible represen-
tations of the C2v point group are multiplied together, the sum is zero. If, however, instead
of multiplying the characters of two different irreducible representations, the characters of
an irreducible representation were squared and the answers summed, then a different result
is obtained. For the B2 irreducible representation:

E C2 σv σ ′
v

(1 × 1) + (−1 × −1) + (−1 × −1) + (1 × 1) = 4

The sum of products is equal to four. The same answer would have been obtained no matter
which of the irreducible reducible representations had been chosen. Four is also the number
of operations in the C2v point group. This is no accidental coincidence. So, as we mentioned
in Chapter 2, every character table contains as its first row a series of 1’s, the characters
of the so-called ‘totally symmetric irreducible representation’. It is obvious that for the
C2v group if these 1’s are squared and added then the result simply counts the number of
operations in the group.1 Because the number of operations in a group turns out to be an
important quantity, it is given a name – it is called the order of the group. Thus, ‘the C2v

point group is of order four’.
If, instead of choosing a row of the character table for the calculations of the above

paragraph the columns had been selected, a similar result would have been obtained. The
sum of the products of the characters in two columns is equal to zero when the characters
come from two different columns. If the same column is chosen, i.e. the characters squared,
then the sum of squares is equal to the order of the group.

These patterns of multiplication between rows and between columns of the character
table are known as the character table orthonormality relationships; a more general form of
them will be discussed in Chapter 6, where it will be shown that they may be used to derive

1 No matter what the group, as long as it is finite, if the character of each individual operation of the totally symmetric

irreducible representation (always 1) is squared and the results added, you just count the number of operations in the group.
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character tables as an alternative to the procedure used in Chapter 2. It is in large measure
the existence of these relationships which enables symmetry considerations to simplify
many problems in the physical sciences. They will be used frequently in this book. The
word ‘orthonormal’ is a composite of the words ‘orthogonal’ and ‘normal’ and embodies
both. ‘Orthogonal’ here means ‘independent’. When two things are orthogonal it means
that one behaves – and can be discussed – without automatically requiring a change to the
other. Thus, all the wavefunctions associated with an atom are orthogonal to each other. In
the present case, we can talk of different irreducible representations quite independently of
each other. If we were talking of atomic orbitals and found that they had an overlap of zero
we would say that they are independent, orthogonal. Here, we get the same number, 0, in
a different way – but the outcome is the same. ‘Normal’ or ‘normalized’ means ‘weighted
equally’ – and equal weighting usually means being given unit weight. This concept is
most easily seen for two one-electron wavefunctions of an atom. Each wavefunction is
normalized if, when we (mathematically) ask the question ‘How many electrons does each
wavefunction describe?’ we obtain (mathematically) the answer ‘1’. If we obtained the
answer ‘1’ for the first wavefunction but some different answer, say ‘1.83’, for the second
we would say that the second was not normalized and we would have to modify it with a
multiplicative scale factor so that we did, indeed, get the answer ‘1’ to our question. This
scaled wavefunction would also then be said to be normalized. Later in this chapter we
shall be effectively normalizing irreducible representations when we divide the number 4
(obtained by simple arithmetic, as shown above) by the order of the C2v point group (the
total number of operations in the group), which is also 4, to give the number 1.

Problem 3.1 Check that each of the irreducible representations of Table 3.1 is or-
thonormal.

3.2 The transformation properties of atomic orbitals in the
water molecule

In the present chapter it will be shown that the C2v character table may be used to greatly
simplify a discussion of the bonding in the water molecule. As usual, this bonding will be
treated as arising from the interaction of orbitals located on the oxygen atom with those on
the two hydrogen atoms. For simplicity, the discussion will largely be confined to the valence
shell atomic orbitals of these atoms. That is, we shall consider the oxygen 2s, 2pz , 2px and
2py orbitals together with the two hydrogen 1s orbitals. The transformation properties of
the oxygen orbitals have already been discussed (Section 2.2) and symmetry labels placed
on them. The results are summarized on the right-hand side of Table 3.1; the hydrogen 1s
orbitals will be discussed shortly. It will prove convenient to use phrases like ‘orbitals of
A1 symmetry’, by which, in the present example, is meant the 2s and 2pz orbitals of the
oxygen together with any orbitals of this symmetry which may subsequently be discovered
(one arises from the hydrogen 1s orbitals). In a similar way, the 2py orbital of the oxygen
as will be referred to as ‘an orbital of B1 symmetry’, by which is meant that the characters
of the B1 irreducible representation describe its transformations under the operations of the
C2v point group. All of this sounds more difficult than it really is; remember that labels
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Figure 3.1 Figure 2.21 repeated, but with the addition of labels taken from Table 3.1 (or Table 2.4)

added to the phase patterns

like A1 and B1 can be regarded as shorthands for the nodal patterns shown in Figure 2.21
as well as for the sets of characters in Table 3.1. To emphasize this point, in Figure 3.1
the irreducible representation labels of Table 3.1 are combined with the nodal patterns of
Figure 2.21. In the top line of Figure 3.1 are the definitions of the symmetry relationships
of the quadrants (we have just seen how important it is to be aware of these). But these
symmetry relationships are not drawn in quite the same way as in Figure 2.21. The marked
points are gone. This is because we can chose any point in the E quadrant and it will have its
symmetry-related equivalents in the other three quadrants. Marked points are helpful when
first talking about these diagrams, but if they are kept they tend to obscure the generality of
the diagrams.

So far in this book only the transformational properties of individual orbitals have been
considered. However, it could happen that it becomes necessary to consider all three 2p
orbitals of the oxygen atom together, as a set. What if the z axis had been chosen to lie
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in some arbitrary direction in the water molecule rather than along the twofold axis (and,
similarly, no symmetry constraints placed on the x and y axes – other than that all axes be
mutually perpendicular)? It is only convention (and that is motivated by a desire for simple
mathematics, as immediately becomes evident) that leads to the choice of C2 as z axis. A
2pz orbital pointing in an arbitrary direction would not be turned neatly into itself by all of
the symmetry operations of the group. The behaviour of the 2px and 2py would similarly
be complicated. In fact, any one of them, after being rotated or reflected, would have to be
described as a linear combination of all three of the starting orbitals. We would have had
to treat the orbitals as a set. Evidently, a careful choice of direction for coordinate axes can
simplify symmetry discussions!2 Had we persisted in choosing arbitrary (but, of course,
mutually perpendicular) directions for our axes the final result would have been the same –
we would have ended up with 2p orbitals transforming as A1, B1 and B2. However, the work
involved would have been more difficult, although it could be simplified a bit by the use of
matrix algebra (there is more on this in Appendix 2).

When we turn to the two hydrogen 1s orbitals in the water molecule and attempt to
place symmetry labels on them we are confronted with a similar problem. Should they be
considered as individuals or as a pair? The answer to this question is simple (and covers the
case of oxygen 2p orbitals oriented along arbitrary axes). Whenever one (or more) operation
of the point group has the effect of interchanging or mixing orbitals (or, as sometimes
happens, a bit of both) then all of the orbitals which are scrambled must be considered
together, as a set. This statement applies not just to atomic orbitals; it also holds for other
quantities. For instance, in Chapter 4 it will be seen that the small atomic displacements used
in the study of molecular vibrations are often scrambled by symmetry operations and these
have to be treated as a set. We return now to the specific problem of the transformation of
the two hydrogen 1s orbitals in the water molecule. In Figure 3.2 the behaviour of these two
orbitals (which will be denoted h1 and h2) under the symmetry operations of the C2v point
group is shown. For the C2 and σ ′

v operations the two hydrogen 1s orbitals interchange, but
under E and σ v each remains itself. Something which remains unchanged under an operation
gives rise to a character of 1 (the numbers which were introduced as multiplicative factors
in Chapter 2 will now be referred to as ‘characters’, a name first introduced in that chapter).
So, when two things remain unchanged it is both reasonable and correct to conclude that
each makes a contribution of 1 to the character. An aggregate character of 2 is obtained.
This can be generalized:

When the transformation of several things is being considered together the character
which they together generate under a symmetry operation is the sum of the characters
which they generate as individuals.

It follows that for the σ v symmetry operation, like the E, the character is 2, because under
both operations the two orbitals remain themselves. However, for the C2 and σ v

′ operations
a situation is encountered which has not previously been met, because the orbitals h1 and

2 Throughout this book the author will be making educated choices of coordinate axes which simplify the subsequent discus-

sion. The reader may find it amusing to try to catch him making these simplifications. It is also a helpful exercise.
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Figure 3.2 The behaviour of the two hydrogen 1s orbitals of H2O under the symmetry operations of

the C2v point group. The point of interest is the permutation of the labels h1 and h2

h2 interchange under these operations. The fact that h1, for instance, disappears from its
original position has to be described. The only evident way of doing this is by using a
multiplicative factor (character) of zero. The same is true for h2. We can generalize this
result:

Symmetry operations which lead to all of the members of a set interchanging with each
other give rise to a resultant character of zero. If a symmetry operation results in some
members interchanging whilst others remain in the same position, it is only the latter
which make non-zero contributions to the character.
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This discussion contains no explicit recognition of the fact that h1 and h2 interchange
under the C2 and σ ′

v operations – only of their disappearance from their original posi-
tions. The correct, and full, way of describing the situation is by matrix algebra. The
present discussion is one that avoids the use of matrix algebra and so it is not able to
provide a description of the fact that h1 and h2 interchange, only that each moves away
somewhere. A more detailed treatment, using matrix algebra, is given in Appendix 2; it
contains a proof of the two important rules given in boxes above and shows that the trans-
formation of h1 and h2 under C2 and σ v leads to each contributing zero to the aggregate
character.3

The set of characters which has just been obtained is:

E C2 σv σ ′
v

2 0 2 0

This set has properties which are rather different to those of corresponding sets which
we obtained in Chapter 2 (and which we called irreducible representations). For instance,
when these characters are substituted for the corresponding symmetry operations in the
group multiplication table (Table 2.1), the multiplication table obtained is not arithmetically
correct.4

Problem 3.2 Substitute characters for the corresponding operations in Table 2.1 using
the correspondence

E C2 σv σ ′
v

2 0 2 0

and check that the table obtained is not arithmetically correct.

Problem 3.3 Show that the 1s orbitals of the four hydrogen atoms of the ethylene
oxide molecule discussed in Section 2.3 and, in particular, Figures 2.26, 2.27 and 2.28
form a basis for the following representation of the C2v point group

E C2 σv σ ′
v

4 0 0 0

3.3 A reducible representation

Although the set of characters generated at the end of the previous section is not identical to
any of the irreducible representations of the C2v point group, it is equal to a sum of two of
them. If the corresponding characters of the A1 and B1 irreducible representations are added

3 The zeros encountered in the text are shown to be the diagonal elements of the appropriate transformation matrix.
4 It is very significant that when the transformation matrices of Appendix 2 are substituted, rather than characters, then the

multiplication table obtained is correct provided that the rules of matrix multiplication are applied to the matrices.
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together, there the same set of characters is generated as those obtained using h1 and h2 as
a basis:

E C2 σv σ ′
v

A1 1 1 1 1
B1 1 −1 1 −1

A1 + B1 2 0 2 0

That is, the representation which was generated by the transformations of h1 and h2 can
be decomposed into a sum of irreducible representations. A representation which can be
reduced to a sum of other representations is, reasonably enough, called a reducible repre-
sentation. The use of the name ‘irreducible representation’ for the representations appearing
in the character table should now be clear. These representations cannot be reduced further,
they are irreducible. There are similarities between reducible representations and irreducible
representations, but there are also important differences.5 A most important connection be-
tween reducible and irreducible representations is found in the orthonormality relationships
(Section 3.1). These relationships provide a systematic way of reducing a reducible repre-
sentation into its irreducible components. The relationships were introduced by multiplying
the characters of two different irreducible representations together. What if, instead, one
of the selected representations was reducible and only one was irreducible? That is, if one
was a selected irreducible representation and the other was a reducible representation? We
will see that this provides us with a way of finding out whether the selected irreducible
representation is contained within the reducible. By selecting each and every irreducible
representation in turn we can discover the breakdown of the reducible representation. This
is important. Let us do it carefully for the example of the two hydrogen 1s orbitals in water.

Multiply the individual characters of the reducible representation generated by the trans-
formation of h1 and h2 by the corresponding characters of one of the irreducible repre-
sentations of the C2v character table and sum the products. Choose, for example, the A2

irreducible representation:

E C2 σv σ ′
v

2 0 2 0
A2 1 1 −1 −1

multiply: 2 0 −2 0 add; the sum = 0

We get an answer of zero, which tells us that the A2 irreducible representation is not
contained within our reducible representation (something that we already know, because
we have already seen that it is the sum of A1 and B2).

For the B2 irreducible representations the answer zero would also have been obtained;
no surprise here! For the A1 and B1 irreducible representations, however, non-zero answers

5 One of these has already been seen – for the C2v group the characters of a reducible representation do not multiply

arithmetically to give a multiplication table in which there is a consistent correspondence between the numbers it contains and the

operations in the corresponding group multiplication table.
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result. For example, for the B1:

E C2 σv σ ′
v

2 0 2 0
B1 1 −1 1 −1

multiply: 2 0 2 0 add; the sum = 4

It is not difficult to understand in more detail why A2 and B1 give different results. We
know that the reducible representation is a sum of the A1 and B1 irreducible representations.
So, in the above procedure we were forming products of A2 (and, as the second worked
example, of B1) with (A1 + B1). That is, in the latter, the B1 case, we were forming products
between B1 and A1 and between B1 and B1 simultaneously. But the first of these gives a
sum which is equal to zero, whilst the second gives a sum of 4 – as was seen in Section 3.1.
That is, non-zero answers are obtained by the above procedure when from the character
table there is selected an irreducible representation which is contained in the reducible.
It is not surprising that an answer of zero was obtained in the A2 case, because A2 is not
contained in the reducible representation. This recognition leads to a general method for
reducing reducible representations into their irreducible components. This method is that
which has just been used for the B1 reducible representation but, because it is so important,
it is worthwhile repeating it in detail, applied to the A1 case:

The steps involved are:
Write down the reducible representation

E C2 σv σ ′
v

2 0 2 0

Write down the characters of the selected (here, A1) irreducible representation

1 1 1 1

Multiply the characters in the same column

2 0 2 0

Add these products together and then divide the sum by the order of the group

4/4 = 1

We conclude that our reducible representation contains the A1 irreducible representation
once. Had it contained A1 twice (a possible situation) the final answer would have been 2 –
and so on.

Problem 3.4 Use the method described above to reduce the following reducible rep-
resentations of the C2v point group.

E C2 σv σ ′
v

(a) 2 2 0 0
(b) 2 −2 0 0
(c) 2 0 0 −2
(d) 3 1 1 −1
(e) 3 −1 1 1
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Problem 3.5 Reduce the following reducible representations of the C2v point group
and for each check your answer by adding together the characters of the irreducible
representations to regenerate those given below (there is an aspect of the irreducible
representations in this problem which distinguishes them from those in Problem 3.4
and which makes this check worthwhile).

E C2 σv σ ′
v

(a) 3 −1 −3 1
(b) 4 −4 0 0
(c) 4 0 −2 −2
(d) 6 −4 −2 0
(e) 9 1 1 1
(f) 10 −4 −2 0

3.4 Symmetry-adapted combinations

What is the significance of the fact that the reducible representation generated by the
transformation of the two hydrogen 1s orbitals h1 and h2 may be reduced into a sum of
A1 and B1 irreducible representations? As has been seen, an irreducible representation
such as A1 describes the transformation properties of a single orbital, as too does the B1

irreducible representation.6 The significance therefore has to be that it is possible to derive
from the orbitals h1 and h2 one orbital, the transformations of which are described by
the A1 irreducible representation and a second orbital which transforms as B1. Evidently,
the next step is to investigate the form of these orbitals – to find out what they look like.
There is a systematic method of carrying out this task but it will not be introduced until
Chapter 5 (when it can be given a wider applicability than is possible here). For the present
example two rather simpler arguments will suffice.

The reader will recall that in a discussion of the electronic structure of the hydrogen
molecule, H2, two hydrogen 1s orbitals combine to give bonding and antibonding combi-
nations. If, hypothetically, the oxygen atom is removed from a water molecule a hydrogen
molecule is left, albeit with a rather stretched H H bond. It would be reasonable to expect
that the combinations of hydrogen 1s orbitals in this stretched H2 molecule would be related
to the correct combinations of hydrogen 1s orbitals in the water molecule. With neglect of
overlap between the two atomic orbitals, the bonding and antibonding combinations of
hydrogen 1s orbitals in the H2 molecule have the form

ψ(bonding) = 1√
2

(h1 + h2)

ψ(antibonding) = 1√
2

(h1 − h2)

6 This is perhaps best seen in the context of the contents of the first box in Section 3.2, applied to the identity operation, E.

The character under E simply counts the number of objects under consideration.
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Figure 3.3 The transformations of the H H bonding orbital of H2 under the symmetry operations

of the C2v point group

where the same labels for the hydrogen atomic orbitals have been used as in the water
molecule (1/

√
2 is a normalizing factor – recall the discussion of normality earlier in the

chapter; here, without the normalizing factor, we would have squared to get the answer
2). Consider the transformation of these bonding and antibonding combinations under
the operations of the C2v point group. The transformations of the bonding combination
are shown in Figure 3.3 where, to emphasize the fact that it is a single orbital which is
drawn, the component hydrogen 1s orbitals have been joined together. Clearly, under all
of the operations of the C2v point group this orbital is transformed into itself. That is, the
combination (1/

√
2)(h1 + h2) is of A1 symmetry in the C2v point group. An even simpler

way of showing this is to place the picture of the hydrogen 1s bonding combination into
the nodal patterns of Figure 3.1. Clearly, and evident in Figure 3.4, the orbital in Figure 3.3
has the nodality of the A1 irreducible representation.

In Figure 3.5 are shown the transformation properties of the antibonding combination of
hydrogen 1s orbitals in the hydrogen molecule. In this figure, again to emphasize the fact
that it shows the transformations of a single orbital, the two parts of the orbital are linked.
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Figure 3.4 The H–H bonding orbital of H2 has a phase pattern which matches that of the A1 pattern

of Figure 3.1 and no other
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Figure 3.5 The transformations of the H H antibonding orbital of H2 under the symmetry operations

of the C2v point group. The point of interest is a comparison of the phases of this orbital ‘before’

(left) and ‘after’
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Figure 3.6 The H H antibonding orbital of H2 has a phase pattern which matches that of the B1

pattern of Figure 3.1 and no other. The phase pattern of the orbital is the negative of that of Figure

3.1 but this in no way invalidates the match

The characters generated by the action of the operations of the C2v point group on this
orbital are:

E C2 σv σ ′
v

1 −1 1 −1

so that, as expected, it is of B1 symmetry. Simpler, of course, is to offer the orbital of Figure
3.5 up into the patterns of Figure 3.1. Provided we do not change our labels in any way,
it is for the B1 pattern that a match is obtained, albeit with the phases all changed
(Figure 3.6). Had we been sloppy and placed the nodal plane of Figure 3.5 in a hori-
zontal (in the page) position, instead we would have obtained the B2. This wrong result
appears because we have ignored the underlined instruction in the previous sentence. Ef-
fectively, we have changed our definitions of σ v and σ ′

v, making the latter, not the former,
the molecular plane. Not for the first time, a warning: take care to work within a single axis
system and not to change it inadvertently.

We have found that the bonding and antibonding 1s molecular orbitals of the hydrogen
molecule have the symmetries A1 and B1, respectively, in the C2v point group. From this
we conclude that the two hydrogen 1s orbitals in H2O also combine to give A1 and B1

combinations. This argument depended on the exploitation of the relationship between
H2O and H2. Is there another way? Fortunately, the answer is ‘yes’, and we have half used
it above. The alternative approach is to use a nodal pattern method. We have already used
Figure 3.1, which repeats the nodal patterns drawn in Figure 2.21 and which are equivalent
to the irreducible representations of the C2v group. Now we use the entire figure, not bits.
It is repeated in Figure 3.7 but in the bottom row of this figure are drawn the two hydrogen
1s orbitals, h1 and h2, in the same projection as the rest of the figure. We now ask the
simple question: which of the diagrams in the upper two rows are compatible with that in
the lower? The two hydrogen is orbitals in the bottom row must have the same phase across
the σ v mirror plane (although the diagram in the bottom row does not detail phases, it is
clear that the unspecified phases must have this property). The only diagrams in the upper
part of Figure 3.4 which share this property are the A1 and B1. We conclude that h1 and
h2, together, somehow participate in combinations of A1 and B1 symmetry. It follows that
we have also answered the question of what these combinations look like; one is a zero
node combination and the other has a single node. We have not generated a normalizing
factor, but in truth we did not when working with H2; we imported it. But clearly, we have
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Figure 3.7 Part of Figure 3.1 repeated, along with the two hydrogen 1s orbitals of H2 drawn super-

imposed on the phase lines of the diagrams above. The bottom diagram has to be offered up to each

of the upper four in turn. There is no specification of phase in the H orbitals; one has to ask whether

it is possible to add then in such a way that they match those of the upper pattern being tested

moved on from the point where, at the beginning of this section, it was shown that there
are A1 and B1 combinations of hydrogen 1s orbitals in the water molecule but it was not
possible to say what they looked like. Evidently, in the water molecule, rather than treating
the two hydrogen 1s orbitals separately, it is both necessary and possible to work with two
combinations, one of A1 symmetry and one of B1. The A1 combination is:

ψ(A1) = 1√
2

(h1 + h2)

and the B1 combination is:

ψ(B1) = 1√
2

(h1 − h2)

The arguments used to obtain the mathematical forms of ψ(A1) and ψ(B1) were based as
much on plausibility as mathematics. As indicated above, a more rigorous method will be
developed in Chapter 5.
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3.5 The bonding interactions in H2O and their angular dependence

The two linear combinations of hydrogen 1s orbitals in the water molecule which trans-
form as the A1 and B1 irreducible representations have now been obtained. Although the
mathematical form of these orbitals is one which neglects overlap between h1 and h2, this
neglect in no way affects their symmetry species.

We now come to a vital point in our argument. It involves as the key step an assertion
which, for the moment, the reader is asked to take to some extent on trust. A proof will be
given in Chapter 4 although a partial justification is included here. The assertion is that:

Interactions between orbitals transforming as different irreducible representations are
always zero.7

That is, in a discussion of the bonding in a molecule the argument can be broken up into
smaller, separate, discussions, one for each irreducible representation. This is an enormous
simplification; the more the molecular symmetry, the greater its value – the more it breaks
the discussion up into bits, bits which of course get smaller and simpler the more there are
of them. In the case of the water molecule, for example, the only orbital of B2 symmetry is
the 2px orbital of the oxygen. There is no hydrogen 1s combination of this symmetry and
so the assertion in the box above leads us to conclude that the oxygen 2px orbital does not
interact with any other orbital in the molecule. That is, it is a non-bonding orbital located
on the oxygen atom. This conclusion required virtually no work to obtain, yet it gives us
chemically useful information on one of the orbitals of the water molecule.8 Symmetry
arguments are useful! Incidentally, as a little thought about their transformation properties
should confirm, when two (or more) orbitals of the same symmetry species interact, the
final molecular orbitals are all of the same symmetry species as the initial orbitals. For
the water molecule, for instance, they must have in common one of the nodal patterns in
Figure 3.1 (they can have additional nodal planes too, but these cannot include those in
Figure 3.1).

Figure 3.8 provides some justification for the assertion that consideration of bonding
interactions can be confined to those between orbitals of the same symmetry species. It
shows the overlap between the 2s orbital of the oxygen – of A1 symmetry – and the B1

combination of hydrogen 1s orbitals, ψ(B1). It is evident that, although these orbitals overlap
with one another, the overlap integral is zero since the regions of positive overlap are exactly
cancelled by the regions of negative overlap. The zero overlap integral between 2px and
the A1 or B1 combinations of hydrogen 1s orbitals ψ(A1) and ψ(B1) – very relevant to the
conclusion that 2px is a non-bonding orbital – can similarly be demonstrated. Of course, all
this is making a simple job look difficult. The results can all be seen as stemming from Figure
3.1. The overlap between any two different diagrams (of the lower four) is zero because
of their different nodalities. And this we have met before when, earlier in this chapter, we

7 This statement concerns one-electron terms in the Hamiltonian. An analogous statement may be made which covers the

two-electron terms. The general form of such statements will become evident in Chapter 4.
8 We have also found an orbital of A2 symmetry – the (empty) dxy orbital of Figure 2.20. It could be included in high quality

calculations on the water molecule and, almost certainly, in calculations on analogous molecules such as H2Se and H2Te.
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Figure 3.8 The zero overlap integral between an orbital of A1 symmetry (oxygen 2s) and an orbital

of B1 symmetry (a linear combination of hydrogen 1s orbitals)

talked of the orthonormality of the irreducible representations of the C2v point group. And
lest this repetition of the same thing from different angles is beginning to become wearing
to the reader, the author’s reason (or excuse, if the reader prefers) is that it is a topic of vital
importance; it underpins all that is to follow and the reader had better feel comfortable with
it.

We are now in a position to delve deeper into the bonding in the water molecule. The only
interactions which can be involved in the bonding are of A1 and B1 symmetries (since these
are the only symmetries associated with the two hydrogen 1s orbitals). The basis functions
associated with the C2v character table – Table 3.1 – provide a list of all the orbitals which
interact with one another. The orbitals of A1 symmetry which must be discussed are the 2s
and 2pz orbitals on the oxygen, each of which interacts with the hydrogen 1s combination
ψ(A1). There are no orbitals of A2 symmetry and only two of B1 symmetry – the 2py

orbital of oxygen and a hydrogen 1s combination ψ(B1). The oxygen 2px , B2, orbital is
non-bonding, of course. We shall first consider the B1 interactions qualitatively but in some
detail.

The interaction between the 2py orbital of the oxygen and the B1 combination of hy-
drogen 1s orbitals will lead to bonding and antibonding molecular orbitals. A schematic
representation of the overlap between 2py and ψ(B1), together with the form of the resultant
bonding and antibonding molecular orbitals, is shown in Figure 3.9. The bonding molecular
orbital is an out-of-phase combination of 2py and ψ(B1) whilst the antibonding molecular
orbital is an in-phase combination (if this pattern seems strange and the reader automati-
cally expects in-phase to be bonding, compare the relative phases of 2py and ψ(B1) with
Figure 3.6).

The B1 bonding orbital will surely be occupied by two electrons in the water molecule
and so contribute to the molecular stability. There is an important point which must be
made concerning this bonding molecular orbital. Consider, qualitatively, the dependence of
the molecular stabilization derived from this orbital upon the HOH bond angle, θ . For the
(hypothetical!) case of very small θ , shown in Figure 3.10, the lobes of ψ(B1) overlap with
2py in a way that leads to a relatively small value for the overlap integral between them;
the overlap integral decreases as the bond angle decreases. When θ is very small, then, the
interaction between the two orbitals of B1 symmetry, which varies roughly as the overlap
integral, will be small and the B1 bonding molecular orbital will make little contribution
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Figure 3.9 Interaction between orbitals of B1 symmetry, leading to bonding and antibonding com-

binations

to the molecular stability. As is qualitatively evident from Figure 3.10 (and is confirmed
by more detailed calculations), as θ increases (keeping the O H bond length constant) the
interaction between 2py(O) and ψ(B1) smoothly increases with θ and reaches a maximum
for a bond angle of 180◦. It is legitimate to conclude that, were this interaction the only thing
determining the geometry of the water molecule, then H2O would be a linear molecule. But
it is not! Clearly, there is more to come!

The interaction between the three orbitals of A1 symmetry is a more difficult problem
simply because there are three orbitals to consider, not two. In the case of the B1 interaction,
the final molecular orbitals were mixtures of the two starting orbitals. Similarly, we would
expect the final A1 molecular orbitals to be mixtures of 2s(O), 2pz(O) and ψ(A1). Although
2s(O) and 2pz(O) were introduced as separate functions they will be mixed (i.e. contribute
to the same molecular orbitals) by virtue of their mutual interaction with ψ(A1) (induced by

−

− +

+ θ small
θ large

−
−

+
+

Figure 3.10 Variation of overlap integral of the B1 orbitals with variation of the bond angle in H2O
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their mutual overlap with the hydrogen 1s orbitals). Because of their original separation, it
is unlikely that this mixing is very large. So, in the water molecule there will probably be an
oxygen 2s orbital mixed with a small amount of oxygen 2pz together with a second orbital
which is largely 2pz mixed with a little bit of 2s. Both interact with the same hydrogen 1s
orbital combination. The question immediately arises as to how many of the three resulting
molecular orbitals will be bonding and occupied. Answers of guaranteed accuracy to this
question will come either from experiment or from very accurate calculations. At a more
approximate level it is usually safe to assume that interactions between orbitals will change
orbital energies, but not dramatically. If, for the moment, H2O is regarded as a composite
of an oxygen atom and H2 then in the oxygen atom the 2s orbital, here of A1 symmetry, will
certainly be occupied. In H2, the bonding combination ψ(A1) will certainly be occupied. So,
it seems entirely probable that in H2O there will be two molecular orbitals of A1 symmetry
which are filled with electrons and contribute to the bonding. It turns out that this is a correct
description and that the composition of the orbitals is indeed that assumed; we shall briefly
return to this model later. First, however, it is helpful to explore an alternative, simpler but
less accurate, description of the A1 bonding molecular orbitals.

Consider the question ‘is it possible to obtain two combinations of the 2s(O) and 2pz(O)
orbitals such that one does, and the second does not, interact with ψ(A1)?’. If this is possible
then the problem has been reduced to the simplicity of the B1 case considered earlier; the
interaction between two orbitals, not three. The simplification is possible, and the general
way that it may be achieved is indicated in Figure 3.11. Figure 3.11 shows, schematically,
that if in-phase and out-of-phase combinations of 2s(O) and 2pz(O) are taken then one of the
resulting mixed (hybrid) orbitals is directed towards the hydrogen atoms whilst the second
combination is largely located in a region remote from them. This second combination would
be essentially non-bonding and we may, as a first approximation, ignore its interaction with
ψ(A1). It is convenient to choose 2s(O) and 2pz(O) combinations which simplify the pictorial
representation of the problem and, therefore, to assume that they are sp hybrids of the
form:

1√
2

[2s(O) + 2pz(O)] – non-bonding

1√
2

[2s(O) − 2pz(O)] – involved in bonding

and it is these which are shown, qualitatively, in Figure 3.11.

+ +
− +

−
−

+
± +

Figure 3.11 In-phase and out-of-phase combinations of oxygen 2s and 2pz orbitals give two (sp)

hybrid orbitals
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Figure 3.12 Interaction between orbitals of A1 symmetry, leading to bonding and antibonding

combinations

The problem has now been simplified so that it is analogous to that discussed earlier for
the case of the B1 interactions; we have only the interaction between two orbitals, ψ(A1)
and the second given above, to consider. These two orbitals will combine to give in-phase
and out-of-phase combinations which are, respectively, bonding and antibonding molecular
orbitals. These orbitals are shown schematically in Figure 3.12. Although excluded from
participation in the bonding, the non-bonding orbital given above will surely be occupied. It
may be identified with a lone-pair orbital in the water molecule, the second lone pair orbital
being 2px , which, as has been seen, is of B2 symmetry. Note two things about the way that
this argument was developed. First, it was only allowable for us to mix 2s and 2pz because
they are of the same symmetry. Secondly, although they are of the same symmetry, we were
not required to mix them. We only did so because of the pattern which emerged – one that
provided a basis for the idea that the water molecule contains two sterically active lone pairs.
In reality, any mixing would have to be caused by the presence of the two hydrogen atoms
and not separate from them (although in the last model discussed we mixed the oxygen
orbitals with the hydrogens appearing as little more than spectators!).

To complete the picture of the bonding in the water molecule, consider the relationship
between the stabilization resulting from the interactions between the various orbitals of A1

symmetry and the value of the HOH bond angle. For this discussion it proves convenient to
consider the interactions involving the 2s(O) and 2pz(O) orbitals separately. It is evident,
from Figure 3.13, that, if the O H distance is kept constant, the magnitude of the interaction
between 2s(O) and the hydrogen 1s combination ψ(A1) does not depend upon the HOH
bond angle. Because the oxygen orbital is spherically symmetrical the overlap integral is

+

+ +

θ

Figure 3.13 An (A1) overlap integral which does not depend on bond angle because all orbitals

concerned are spherical
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Figure 3.14 An (A1) overlap integral which varies with bond angle (cf. Figure 3.13) because one of

the orbitals involved is non-spherical. When θ is 180◦ the hydrogen orbitals overlap equally with

the two lobes of the p orbital, giving a zero overlap integral

independent of the bond angle. So, this interaction does not vary with bond angle – and this
is why it is convenient to consider the 2s(O) and 2pz(O) orbitals separately in this and the
next paragraph.

The 2pz(O)–ψ(A1) interaction is shown schematically in Figure 3.14. It is evident from
Figure 3.14 that when θ = 180◦ there is a zero overlap integral and so no interaction between
2pz and ψ(A1). This result has its origin in molecular symmetry. The symmetry of a linear
water molecule is no longer C2v but that of a different point group (called D∞h). In this
latter group the 2pz(O) orbital and ψ(A1) are of different symmetries; it follows that they
do not interact.9 Evidently, the interaction between 2pz(O) and ψ(A1) increases smoothly
as the H O H bond angle decreases from a value of 180◦ and reaches a maximum at
the physically unrealistic value of θ = 0◦. Because the interaction of ψ(A1) with 2s(O) is
independent of bond angle it is the interaction of ψ(A1) with 2pz(O) which determines the
angular variation of the interaction of ψ(A1) with mixtures of 2s(O) and 2pz(O) orbitals;
this interaction will tend towards a maximum at θ = 0◦. If the A1 interactions were solely
responsible for the bonding of the water molecule then the bond angle would be very small –
eventually, of course, repulsive interactions would prevent a total collapse of the bond angle.

In summary, of the bonding interactions in the water molecule, those of A1 symmetry
favour a bond angle θ → 0◦ and that of B1 symmetry leads to a stabilization which maximizes
as θ → 180◦. The two interactions are opposed and the observed bond angle represents a
compromise. It is easy to see that removal of an electron from the B1 bonding molecular
orbital would reduce the tendency towards a large bond angle; this theme is developed later
in this chapter. Incidentally, this example provides an illustration of an assertion made in
Chapter 1: that symmetry arguments enable us to understand molecular structure rather
than to predict it. Had the bond angle in water been 170◦ – or more – the discussion above
could have been suitably modified (an angle of 180◦ would only have presented problems
because the symmetry would no longer have been C2v). Our discussion has also enabled
us to conclude that there is only one unambiguously non-bonding orbital. This, a pure 2px

atomic orbital of the oxygen atom, is of B2 symmetry. A second entirely non-bonding lone

9 This is an example of a much-exploited trick in group theory. If a molecule almost has a higher symmetry (more symmetry

operations), then the symmetry-imposed requirements of this higher group almost hold. Many a weak spectral band (forbidden in

the higher symmetry) has been explained in this way.



JWBK182-03 JWBK182/Kettle September 5, 2007 10:37

THE MOLECULAR ORBITAL ENERGY LEVEL DIAGRAM FOR H2O 65

pair does not exist in the isolated water molecule (although most simple descriptions of the
bonding in the molecule include one). However, in a rather less accurate model, a second
non-bonding orbital of A1 symmetry can be introduced. The physical evidence for two
lone pairs, and it is this evidence which provides the motivation for the simple pictures of
bonding in the water molecule, comes largely from structural data. Thus, in ice each oxygen
is roughly tetrahedrally surrounded by four hydrogens, two close and two distant. It seems
reasonable that each of the distant hydrogens should be associated, by hydrogen bonding,
with a lone pair. However, it must not be forgotten that attaching two more protons to the
water molecule, even loosely, will modify its electronic structure. So, for instance, each of
the A1 molecular orbitals of an isolated water molecule will also be involved in the bonding
of these additional protons (just as is the case in methane). Further, the reader should be
able to show that the 1s orbitals of the distant hydrogens give rise to a combination of B2

symmetry, so that even the – genuinely on a symmetry model – non-bonding px orbital of
H2O may become weakly involved in bonding in ice.

Problem 3.6 The individual oxygen atoms in ice are surrounded by a distorted tetra-
hedron of hydrogen atoms. That is, they resemble the carbon atom of Figure 2.1 but
two of the oxygen–hydrogen bonds are longer than the other two. The closely bonded
pair are those discussed in Section 3.3. Show that the transformation of the 1s orbitals
of the more distant hydrogen atoms gives rise to a reducible representation with A1 +
B2 components.

Problem 3.7 In a discussion of the bonding in H2S (bond angle 93◦) the valence shell
orbitals on the sulphur are 3s, 3p and 3d. Inclusion of the 3d orbitals would increase
the number of possible interactions with ψ(A1) and ψ(B1) which would have to be
considered. List all of the sulphur valence shell orbitals which could interact with each
of them (use Table 2.4 and the results of Problem 2.3).

3.6 The molecular orbital energy level diagram for H2O

The discussion has now reached the point at which it is possible to obtain a schematic
molecular orbital energy level diagram for the water molecule. Rather than work with the
first model presented above, the more accurate, we shall consider the approximate. This is
because it is the model that is the more compatible with relatively simple ideas about the
bonding in H2O – it is the one most likely to be produced by simply following chemical
intuition. Notwithstanding its approximate nature, it gives a good prediction of the relative
ordering of molecular orbital energies and so gives hope that similar approximate models
will be of value for other molecules also. We proceed by presenting a schematic energy
level scheme in Figure 3.15 and then detail the arguments used in its derivation. Before
doing this note that, in contrast to the discussion in the text, lower case symbols have been
used in Figure 3.15. Strictly, as has been briefly mentioned earlier in a footnote, lower case
symbols are used to describe wavefunctions. Any wavefunctions – they could be vibrational
wavefunctions, for instance – and this usage will be met in Chapter 4. Thus, a one-electron
wavefunction, reasonably enough, characterizes a single electron. However, an orbital can
be occupied by two electrons, each with the same (three-dimensional, spacial) wavefunction.



JWBK182-03 JWBK182/Kettle September 5, 2007 10:37

66 THE ELECTRONIC STRUCTURE OF THE WATER MOLECULE

1b2

3a1

2b1

b1

b2
a1

a1

2a1

1b1

1a1

h1, h2

2py (O)

2px (O)

2pz (O)

2s (O)

ψ(B1)

ψ(A1)

Figure 3.15 A schematic molecular orbital energy level diagram for H2O

The distinction in usage is a rather fine one and many, but not all, authors use lower case
symbols for both orbitals and wavefunctions. The convention seems to be that in diagrams
such as Figure 3.15 lower case symbols are used but that in the associated text one is as
likely to meet either ‘the orbital of A1 symmetry’ as ‘the a1 orbital’. In this book, upper case
symbols will largely be used in the text and lower case symbols largely confined to diagrams
(the reader is invited to keep an eye open for the points in the coming chapters where the
author has deviated – and try to work out why). One important context in which lower
case symbols are (almost!) invariably used in the literature is when orbital occupancies are
specified. So, Figure 3.15 shows an orbital occupancy, starting with the lowest energy first
and labelling orbitals of the same symmetry sequentially (1a1, 2a1, 3a1 ..), which is written as

1a2
11b2

12a2
11b2

2

Here the superscripts indicate the number of electrons in each orbital, two in each case.
We now return to the details of Figure 3.15 and explain the arguments leading to the

orbital energy sequence shown there. Firstly, we have used a nodal plane criterion, which
experience shows to be reliable.10 In the simple model of the water molecule there are just
two bonding molecular orbitals, one of A1 and one of B1 symmetry. Figures 3.12 and 3.9
reveal that although for both A1 and B1 bonding molecular orbitals the oxygen–hydrogen
interactions are entirely bonding, in the B1 case the hydrogen–hydrogen interactions are
antibonding – ψ(B1) corresponds to the antibonding combination of 1s atomic orbitals in the
hydrogen molecule. The corresponding component in the A1 bonding molecular orbital is
bonding (Figure 3.12) and so it is reasonable to anticipate that this orbital will be more stable
than the B1. That is, the orbital with the smallest number of nodal planes is usually expected
to be the most stable. Secondly, to obtain the most probable order of the two non-bonding

10 E.B. Wilson, J. Chem. Phys. 63 (1975) 4870.
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molecular orbitals (of A1 and B2 symmetries) note that the 2s orbital of the isolated oxygen
atom is of a lower energy than the 2p’s. It seems reasonable, therefore, that ψ(A1), which
contains a 2s component, should be of lower energy than the B2 non-bonding orbital which
is pure 2px (the same argument is also relevant to the A1 and B1 bonding molecular orbitals
and reinforces the previous conclusions about their relative order). There is another point
which must be made in connection with Figure 3.15. In this figure the interaction between
the hydrogen 1s orbitals h1 and h2 is shown as removing the degeneracy of these two orbitals.
This splitting corresponds to the separation between the bonding and antibonding molecular
orbitals of H2 (much reduced in the present case because of the large separation between
the two hydrogen atoms). On the other hand, the mixing of the 2s and 2p orbitals of the
oxygen combination ψ(A1) is shown as bringing these two closer together in energy. This
is because if the combinations have the idealized sp hybrid forms which they were given
earlier then they would be precisely equivalent (although differently orientated in space).
It follows that if we were to work out energies associated with these two hybrids then we
would expect to obtain the same result for each. The conclusion is, therefore, that when
orbitals on the same atom are mixed to give general – not idealized, not like sp – hybrid
orbitals these hybrids should be regarded as having energies intermediate between those of
their components.

In the water molecule there are eight valence electrons available to be allocated to the four
lowest molecular orbitals shown in Figure 3.15 (the electron configuration of the oxygen
atom is 1s22s22p4 and contributes six valence electrons; each hydrogen is 1s1 and contributes
one). It follows that the lowest four orbitals, two non-bonding and two bonding molecular
orbitals, are occupied.

3.7 Comparison with experiment

Is there any experimental test of the model which has just been developed? The most
pertinent test would be the observation of individual orbital energy levels. Such data are
provided by photoelectron spectroscopic measurements, in which electrons are ejected
from individual molecules by high energy monochromatic radiation in a high vacuum. The
difference between the (measured) kinetic energy of an ejected electron and the energy of the
incident photons is the energy required to remove the electron from the molecule. A variety
of electron energies results, corresponding to a variety of molecular ionization energies.
These ionization energies correspond very closely to the usual definition of orbital energy.
An orbital energy is defined as the energy required to remove an electron from a molecule
subject to the restriction that the orbitals of the other electrons in the molecule are unchanged.
Evidently, this is a theoretical, rather than practical, definition – some readjustment of the
orbitals of the residual electrons would be expected. Fortunately, however, the effect of these
readjustments is usually rather small. It is therefore possible to use the ionization energies
given by photoelectron spectroscopy to test our model. For larger molecules the test is not
always so easy and sometimes there is a problem in that, strange as it seems, the highest
energy electron is not necessarily the easiest to remove.11

11 If there is a large electron distribution rearrangement when an electron is removed then this is an additional energy term

which has to be included in the balance sheet. For large molecules where some orbitals are very diffuse and others very localized,

it is the latter that have large rearrangement energies.
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The photoelectron spectrum of water shows four peaks (of energies 12.62 eV, 13.78 eV,
17.02 eV and 32.2 eV). Qualitatively, then, the photoelectron measurements support the
energy scheme given in Figure 3.15. There are four different ionization energies arising
from valence-shell electrons. A detailed analysis of the photoelectron spectrum can also
give some idea of the symmetry species of the molecular orbital from which a particular
electron is photo-ejected. In the case of the water molecule the 12.62 eV peak is probably
associated with ionization from a B2 orbital, the 13.78 and 32.2 eV peaks with ionization
from A1 orbitals and the 17.02 eV peak with ionization from a B1 orbital, all in agreement
with the qualitative predictions of Figure 3.15. Agreement with the more accurate model is
even better. The ionization from the most stable orbital (that at 32.2 eV) is from a largely
2s(O) orbital; ionizations from the other orbitals are from orbitals which have considerable
2p(O) contributions and so are relatively close together in energy.

With the present-day computers and programs it is possible to do accurate calculations on
rather large (perhaps with 100 electrons) molecules. The water molecule with a total of only
ten electrons should, therefore, be amenable to quite precise theoretical investigation. All of
the accurate calculations which have been performed on this molecule lead to roughly the
same orbital energies and demonstrate the presence of molecular orbitals of A1 symmetry
at ca. 14 and 30 eV, a B1 at ca. 17 eV and one of B2 symmetry at ca. 12.5 eV. The agreement
between these data and the photoelectron results is very good. That with Figure 3.15 is as
good as could be hoped for.

It is particularly encouraging to find that the qualitative symmetry-based arguments which
have been used to discuss the electronic structure of the water molecule should give results
which are in excellent qualitative agreement both with those obtained by experiment and
those obtained by detailed calculations. Hopefully, the same techniques may be applied
to other molecules and similar qualitatively accurate results obtained. It is obvious that as
molecular complexity increases, the difficulty in arriving at an unambiguous energy level
scheme will also increase. However, the symmetry of the water molecule is not particularly
high. It is not unreasonable to hope that for larger, but higher symmetry, molecules the
increase in molecular complexity will be compensated for by the increase in molecular
symmetry and so the methodology will remain applicable.

3.8 The Walsh diagram for triatomic dihydrides

We are now in a position to reconsider in more detail a problem which we first encountered
in Chapter 1 – that of the significance which can be placed upon the observation that the bond
angle in the electronic ground state of the water molecule is 104.5◦. As shown in Section 3.5,
the bonding interactions responsible for the stability of the water molecule are maximized
at quite different bond angles. The stabilization resulting from the B1 interaction maximizes
at a bond angle of 180◦ whereas that from the A1 interaction involving the oxygen 2s orbital
did not vary with angle. On the other hand, the 2pz A1 interaction maximizes at a small
bond angle. The observed bond angle represents a compromise, showing that interactions
involving both 2py(O) and 2pz(O) are of importance. However, the total bonding is unlikely
to show a strong dependence on bond angle because although a change in θ will reduce
the stabilization resulting from interactions involving orbitals of one symmetry species it
will increase the stabilization accruing from the other. Only if water had been found to be
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Figure 3.16 A Walsh diagram for H2O

linear could it have been concluded that the major contribution to the molecular bonding
resulted from interactions between those orbitals which we have identified as being of B1

symmetry. Conversely, only if the bond angle were very small, say 60◦, would it then have
been valid to conclude that most of the stabilization resulted from the A1 interaction. A
diagram showing this behaviour schematically is given in Figure 3.16 where, again, orbitals
have been denoted by lower case symbols. In this diagram there is also recognition of the
fact that at the θ = 180◦ limit the orbital which has, qualitatively, been called the A1 non-
bonding orbital loses its 2s component and becomes a pure 2p non-bonding orbital. This
latter orbital is therefore degenerate with (i.e. has the same energy as) the non-bonding
orbital which we have labelled B2.12 Conversely, the lower, bonding, A1 orbital loses its 2p
component and becomes a pure 2s orbital at 180◦ – and so is of lower energy in this limit.
The non-bonding B2 orbital remains unchanged in energy as the bond angle changes (actual
calculations show that it increases slightly in energy at the 180◦ limit but as this is caused
by the effects of electron repulsion we have not included it in Figure 3.16). Figure 3.16 is
specifically drawn for H2O – but its general form is applicable to all MH2 molecules for M

12 At this point, as has already been noted, the symmetry is different, that of a group called D∞h; in this group the oxygen 2px

and 2py orbitals are symmetry-required to have the same energy. The D∞h group is studied in Chapter 10.
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Table 3.2

Orbital occupancy

Molecule A1 B2 Bond angle

BH2 (excited) 0 1 180◦

BH2 1 0 131◦

CH2 (triplet excited) 1 1 136◦

CH2 (singlet excited) 1 1 140◦

NH2 (excited) 1 1 144◦

BH2
− 2 0 100◦

CH2 2 0 102◦

CH2
− 2 1 99◦

NH2 2 1 103◦

OH2
+ 2 1 107◦

OH2 2 2 105◦

NH2
− 2 2 104◦

Data from E. Wasserman, Chem. Phys. Lett. 24 (1974) 18, and Y. Takahata, Chem.
Phys. Lett. 59 (1978) 472 (note that in this latter paper B1 and B2 are interchanged

compared with the usage in this chapter)

atoms which have similar valence shell orbitals to oxygen. Diagrams of this type were first
introduced by Walsh13 and are therefore commonly known as Walsh diagrams.

It is possible to directly relate the observed geometries of first row MH2 molecules (in
electronic ground and excited states) to the occupancy of the highest B2 and A1 orbitals in
Figures 3.15 and 3.16. Occupancy of the former, which is non-bonding, would be expected
to have little effect on bond angle but the lower the occupancy of the latter the larger we
expect the bond angle to be (and vice versa). Table 3.2 details relevant data and shows that
when there are two electrons in the highest A1 orbital an angle of ca. 103◦ results; one
electron in this orbital leads to a bond angle of ca. 140◦. When this orbital is empty a linear
molecule results.

Problem 3.8 The following species have been the subject of theoretical investigations
but their bond angles have yet to be determined experimentally. Predict approximate
values for their bond angles:

FH2
3+, BeH2

3−, CH2
2−, BH2

3−, NH2
+

3.9 Simple models for the bonding in H2O

This chapter is concluded by investigating the relationship between the picture of the elec-
tronic structure of the water molecule developed in the chapter and that given by mod-
els such as those discussed for ammonia in Chapter 1. The first model is that in which
the oxygen atom in the water molecule is regarded as being tetrahedrally surrounded by

13 A.D. Walsh, J. Chem. Soc. (London) (1963) 2250.
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H
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l1 l2

β1 β2

Figure 3.17 The tetrahedral arrangement of bonding electron pairs (β) and lone pairs (l) in H2O

electron pairs, two bonding and two non-bonding. The concordance between this model
and the general pattern of energy levels shown in Figure 3.12 is easy to show. In Figure
3.17 are shown, schematically, the bonding electron pairs (which have been called β1 and
β2) and the lone pair electrons (labelled l1 and l2). It is easy to show that the transforma-
tions of the two bonding orbitals β1 and β2, considered as a pair, generate the reducible
representation:

E C2 σv σ ′
v

2 0 2 0

which has A1 and B1 components. These, of course, are precisely the same symmetries
as possessed by the bonding molecular orbitals shown in Figure 3.15. It is also easy to
show that the transformations of the lone pair orbitals, l1 and l2, generate the reducible
representation:

E C2 σv σ ′
v

2 0 0 2

which is also easily shown to be the sum of the A1 and B2 irreducible representations.
These, again, are the symmetries of what in Figure 3.15 have been identified as the lone
pair orbitals.

Problem 3.9 Generate the two reducible representations discussed above. Use
Figure 3.17.

It is interesting to consider the ‘tetrahedral oxygen’ model for H2O in more detail. Let
us start with the lone pair orbitals, which as we have just seen transform as A1 + B2. Since
they are localized on the oxygen atom we conclude that they must be derived from the
valence shell atomic orbitals of the oxygen atom. But the only B2 valence shell oxygen
atomic orbital is 2px (O), so the orbital of this symmetry which is a combination of lone
pair orbitals must be identical to that obtained from our symmetry-based discussion. Sim-
ilarly, the A1 combination must be some mixture of 2s(O) and 2pz(O), again in qualitative
agreement with our earlier result. Study of the O H bonding orbitals leads to a similar
agreement with the model we have developed in this chapter. Because β1 and β2 are bases
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Figure 3.18 Bonding in H2O with 2p as the only oxygen orbitals involved. Note that the axis

labels do not follow the convention adopted elsewhere in this book, although they remain mutually

perpendicular

for A1 and B1 irreducible representations we conclude that 2s(O), 2pz(O) and ψ(A1) may
contribute to the A1 combination. Similarly, 2py(O) and ψ(B1) contribute to the B1 com-
bination – conclusions identical to those reached earlier. Further, the statement that β1

and β2 are bonding means that the A1 and B2 combinations must be in-phase, bonding,
combinations of oxygen and hydrogen orbitals. We conclude that the simple two bond-
ing, two non-bonding orbital picture of the water molecule may readily be reinterpreted
in the language used in this chapter. Further, by using the energy-level criteria based on
the number of nodal planes and the relative energies of atomic orbitals, discussed in the
present chapter, the qualitative energy level diagram shown in Figure 3.15 can again be
derived.

The second simple model of the water molecule to be considered is one that is sometimes
quickly discarded, although of historic importance. This is the model in which only the
2p orbitals of the oxygen atom are considered as being involved in O H bonding, the 2s
orbital being, implicitly, regarded as non-bonding. In this model, the oxygen 2p orbitals
which lie in the plane of the water molecule overlap with the hydrogen 1s orbitals. The
relevant oxygen 2p orbitals, which because it is a choice in accord with that made in setting
up the group theoretical model will be taken to be 2pz(O) and 2py(O), are orientated so as
to point directly at the hydrogen atoms. This is shown in Figure 3.18; a bond angle of 90◦

is predicted. The oxygen 2px orbital, which is perpendicular to the plane of the molecule,
is non-bonding, precisely the role which we found it to play. The two non-bonding orbitals
are, therefore, 2s(O) and 2px (O), which are of A1 and B2 symmetries, just as found above
(their relative energies – one very stable A1 orbital and one high energy B2 orbital – also
agree with the symmetry-based model). It is easy to show that the two bonding orbitals
which result from the overlap of the 2pz(O) and 2py(O) orbitals (those in the plane of the
molecule) with the hydrogen 1s orbitals give rise to a reducible representation with A1 and B1

components. Arguments analogous to those developed above for β1 and β2 in the previous
model demonstrate that the qualitative forms of the corresponding A1 and B1 molecular
orbitals are those deduced earlier in this chapter. It is perhaps pertinent to comment that this
particular model gets closer to the results of accurate quantum mechanical calculations than
does any other. It predicts a low-lying non-bonding 2s orbital, one pure 2p non-bonding
oxygen orbital and two bonding molecular orbitals involving oxygen 2p orbitals. Yet this
is a model which fell into disuse in the 1950s!



JWBK182-03 JWBK182/Kettle September 5, 2007 10:37

A RAPPROCHEMENT BETWEEN SIMPLE AND SYMMETRY MODELS 73

Problem 3.10 Show that the 2pz(O) and 2py(O) orbitals shown in Figure 3.18 trans-
form together as A1 + B1.

Problem 3.11 In the text a variety of alternative arguments, all leading to the same
conclusion, have been used to arrive at the general form of Figure 3.15. Select and
rehearse a single set of arguments leading to this figure.

3.10 A rapprochement between simple and symmetry models

It is useful at this point to review the development of the arguments in this book. In Chap-
ter 1 it was concluded that simple models of molecular bonding cannot be expected to be
infallible predictors of molecular geometry. However, in the present chapter it has been
shown, at least for the case of the water molecule, that these simple models may usefully
be reinterpreted. It is possible to recast them and to show that the bonding descriptions they
present are equivalent, qualitatively, to a symmetry-based description. Symmetry-based de-
scriptions show that there can be different relationships between molecular geometry and
the contribution to the bonding from the various bonding molecular orbitals. The stabiliza-
tion resulting from one interaction may be independent of geometry; others may be very
sensitive to geometry. Different interactions may make a maximum contribution to molec-
ular stability at quite different patterns of bond angles. Although it is not required from the
discussion so far, it transpires that these conclusions have a general validity.

It is here that the circle opened in Chapter 1 closes. Simple pictures of molecular bonding
are perhaps more reliable predictors of relative energies of molecular orbitals than they are
of molecular geometries (although more used for the latter rather than the former). When
a simple picture fails to give a correct molecular orbital energy level pattern it is usually
because there are some interactions in the molecule involving orbitals other than those
considered in the simple model. In such cases the simple models are, nonetheless, usually
good starting points for a detailed discussion. Finally, we note that, despite their apparent
differences, when there is a variety of simple approaches to the bonding in a molecule they
commonly lead to the same qualitative energy level diagram. Again, the only exceptions
occur when different models include different interactions, but here the differences are
themselves illuminating.

What is the particular attraction of a symmetry-based approach which leads us to refer all
other models to it? A computational advantage has already been mentioned – interactions
are only non-zero between wavefunctions of the same symmetry species so that the size
of the problem, the number of interacting orbitals, is reduced. There is another important
reason. Whenever excited electronic states or ionized species are considered it becomes
essential to use a symmetry-based approach. This is because it is the only one which allows
a simple connection between the discussion of the ground and excited (or ionized) states of
a molecule. One illustration will make the point. Suppose an electron in the water molecule
is excited from a bonding orbital to some high-lying, non-bonding, orbital and suppose that
the excited electron comes from a single O H bond. According to all of the simple models
of the bonding in the water molecule those electrons associated with one bond are not
associated with the other and so such an ionization would seem entirely possible. In the
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excited state the two O H bonds would differ – one has only one bonding electron whilst
the other has two. This is in contradiction to the observation that in all stable excited
states of the water molecule the O H bonds are equivalent (excluding unstable states from
which dissociation into H + OH occurs). For a symmetry-based description, in which the
bonding electron comes from a molecular orbital spread equally over both hydrogen atoms,
the observed equivalence of the two hydrogen atoms in excited or ionized states follows
naturally. A symmetry-based description is thus to be preferred because it can be applied
to both ground and excited states.14

Problem 3.12 A student was heard to complain that ‘symmetry arguments make
difficult problems even harder by adding another complicating consideration’. Write a
one-page document assessing this point of view.

3.11 Summary

The irreducible representations which appear in character tables are expressions of nodal
patterns; these patterns/irreducible representations are orthonormal (p. 47) – each compo-
nent is independent of the others and carries equal weight. This property enables reducible
representations (p. 51) to be reduced systematically to their irreducible components (p. 52).
In the context of molecular bonding this enables the interactions between orbitals of each
symmetry type to be discussed separately (p. 55). Such discussions, together with simple
nodal-plane criteria (p. 66), enable qualitative molecular orbital energy level diagrams to be
constructed (p. 66) and the angular variation of each bonding interaction assessed (p. 66).
This latter information may be conveniently represented as a Walsh diagram (p. 69). A sym-
metry analysis of simple pictures of molecular bonding reveals that they have similarities
with each other and with the symmetry-based approach (p. 71).

14 A paper which makes a direct connection between the models considered above and the photoelectron spectrum of the

water molecule is: J. Simons, ‘Why equivalent bonds appear as distinct peaks in photoelectron spectra’. J. Chem. Educ. 69 (1992)

522.
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4 Vibrational spectra of the
water molecule

In this chapter we will develop in some detail a topic that was introduced as something of
an aside in the introduction to the previous chapter, the vibrations of the water molecule.
Having found these vibrations, their symmetries and forms, the next question that arises
is ‘how can these results be checked?’ or, in reality, ‘in which spectroscopies are these
vibrations to be seen?’. This will lead us to spectroscopic selection rules and all of the
development that goes before them. The reader will perhaps be delighted to learn that,
when the end of this chapter has been reached, all of the key aspects of the application of
group theory to chemistry will have been covered. Although, of course, there is more –
otherwise the remainder of the book would not have been written!

There is a problem with the water molecule. It is too simple. We met this problem in a
different form in the last chapter, where we introduced four general points in space around
the water molecule (in the guise of the ethylene oxide molecule) to overcome the difficulty.
This time is different. The answer to our question is too obvious. What are the vibrations
of the water molecule? Two bond stretches and a bond angle change. Simple, too simple.
If one is interested in a molecule of any size the answer is by no means so obvious. In
order to obtain the number of independent vibrations of a non-linear molecule one applies
the 3N − 6 rule (a rule that we shall be looking at in some detail later in this chapter).
Here, N is the number of atoms in the molecule and 3N − 6 is the number of vibrations.
Consider a triatomic molecule, N = 3; it follows that 3N − 6 is 3, just the number listed
for the water molecule above. But even the N = 3 case can pose problems. Suppose that
the three atoms are in a ring, that they lie at the corners of an equilateral triangle. There are
three bond stretching vibrations and three angle change vibrations, a total of 6. But N = 3
and so the answer should be 3, just as for water. Something is wrong. Here, the answer is
not difficult to see; each bond angle change does much the same thing as the bond stretch
opposite it, as shown in Figure 4.1. But the same problem arises whenever there is a ring
(which can be puckered) of atoms – and seldom is the explanation so obvious or so simple
as in the example of a triangle. In such cases one can use a different approach, a general
approach which is systematic – unlike the ‘look and see’ method that we used above for
water. Fortunately, the water molecule provides an excellent example for the systematic
method and it will be worked through in detail.

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Figure 4.1 A bond angle change (top) in an equilateral triangular arrangement of atoms leads to

atom motions which are very similar to those of the bond stretch opposite to it (lower)

4.1 Vibrations of the water molecule: Part 1 (easy)

Although the ‘look and see’ approach to the vibrations of the water molecule is simple, it
is not trite. The reason is that it is often of value to apply it to much larger molecules, or
rather to fragments of larger molecules. Consider a not-very-much-larger molecule: 1,1-
dichloroethylene, shown in Figure 4.2. It can be thought of as a composite of three ‘bits’, a
CH2 fragment, a CCl2 and a C=C bond. The first two bits can be treated in the same way as
the water molecule; each is expected to have two bond stretches and a bond angle change
vibration, a total of 6. Add the C=C bond stretch and we have a total of 7. This is not the
whole story (the 3N − 6 rule leads to a prediction of 12), but it is a good start. Further,
we have learnt something about the forms of the vibrations – something that the 3N − 6
rule gives no information on. It is when applied to really large molecules, when a small
fragment is – mentally – abstracted and considered, that the method becomes very valuable,
and far from trite. Quite often, several fragments can be treated in this way, simplifying an
otherwise difficult problem.

We now return to the water molecule and consider first the two O H stretch vibrations,
shown in Figure 4.3. This diagram is deceptively simple. What it really represents is the
oscillation of each H atom about its equilibrium position, the bond alternately lengthening
and contracting. Diagrams in which the bond is shown lengthening are favoured because
the arrows can often be drawn into empty space on the paper. A bond contraction would
mean the arrows would overlap with the line representing the bond. If the bond stretching is
a simple harmonic motion (something always assumed) then two arrows of the same length,
one a bond contraction and the other a bond lengthening, would be the opposites, negatives,
of each other. This relationship is something that we will be using shortly. Figure 4.3 seems

C
Cl

Cl

H

H
C

Figure 4.2 1,1-Dichlorethylene
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S1

H H

O

S2

Figure 4.3 The two O H stretch vibrations of the water molecule, labelled s1 and s2. These are two

independent motions, not an in-phase combination

to show the O H bonds stretching at the same time and to the same extent. As we will see,
it is convenient if this is so, but it is not required. Figure 4.3 shows two independent O H
bond stretches. They could be at quite different points in their own motions – but it is very
convenient to set things up so that the operations of the C2v group can be applied to them
without difficulty. One final defect in Figure 4.3: for clarity, the motions shown are far too
big. In reality, the hydrogens would move by a maximum of something like one-tenth of
the bond length.

Given that there are two independent motions shown in Figure 4.3, the next step is the
standard one: to determine how they transform under the operations of the group, the C2v

group in our case. These transformations are shown in Figure 4.4, where the stretches are

H H

O

H H

O

H H

O

H H

O

C2

E

σv

σv'

Figure 4.4 The transformation of s1 and s2 (Figure 4.3) under the operations of the C 2v point group;

they are drawn differently to enable the transformation of each to be more readily followed
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indicated differently, to enable each to be followed; the characters that result are:

E C2 σv σ ′
v

2 0 2 0

If the reader has problems understanding this result, they should look back at Section 3.3
(and the end of Section 3.2), where a similar exercise is detailed for the two 1s orbitals of
the hydrogen atoms in water. On the other hand, if he or she has a sense of déjà vu, they
are to be congratulated. The reducible representation we have just obtained is the same as
that generated by the transformations of the hydrogen 1s orbitals. Quite different things
can give the same result! Because it is the same reducible representation, its irreducible
components must be the same. That is, A1 + B1. And, even better, we already know the
form of these vibrations, vibrations in which the two H atoms move in concert. No longer
do they move independently, as in Figure 4.3. One talks of ‘group vibrations’, where by
‘group’ we mean the two O H stretch vibrations. It is potentially confusing to be talking
about two different groups (the other is C2v), but in practice no problems arise. The forms
of the group vibrations can be taken from the hydrogen 1s discussion of the last chapter and
are:

ψ(A1) = 1√
2

(s1 + s2)

ψ(B1) = 1√
2

(s1 − s2)

where, as in Figure 4.3, we have labelled the two O H stretching vibrations s1 and s2

(s for stretch). The two vibrations are shown in Figure 4.5. The A1 vibration in Figure 4.5a
looks much the same as in Figure 4.3 but there is a key difference. In Figure 4.3 the arrows
were similar because it was convenient to draw them this way; we had a choice. In Figure
4.5a there is no choice, the two O H bonds are required to stretch (and contract) together,
exactly in phase. This is usually referred to as the ‘symmetric stretch’ (of the two O H
bonds). Similarly, in Figure 4.5b the two O H bonds are exactly out-of-phase.

H H

O

A1

H H

O

B1

Figure 4.5 The A1 (a) and B1 (b) O H bond stretch motions of H2O
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H H

O

Figure 4.6 The H O H bond angle change vibration (bond deformation) of the water molecule

As the one stretches the other contracts (and the problem of an arrow overlapping with
the bond has been circumvented). It is usually called the ‘antisymmetric stretch’ vibration.
We will have more to say about Figure 4.5 shortly, but first we have to remember that
there is another vibration of the water molecule, the bond angle change vibration. To put a
symmetry label on it, we have to study its transformations under the operations of the C2v

point group. Hopefully, by now the reader will agree that this is a trivial problem. The bond
angle change vibration is shown in Figure 4.6, but the author refuses to waste space giving
pictures of its transformations under the operations of the C2v point group. They would all
look the same as in Figure 4.6. The vibration is turned into itself under all of the operations
of the group; it is a totally symmetric vibration, A1.

Problem 4.1 Check, by studying their transformations under the operations of the C2v

point group, that the vibrations in Figure 4.5 have the A1 and B1 symmetries indicated
and that the vibration of Figure 4.6 has A1.

The next step is to remind the reader that we are discussing vibrations. This is a less
trivial comment than it seems. The point is that we are NOT considering the translation
or rotation motions of the water molecule. They comprise a separate discussion, one that
we shall embrace shortly. Put another way, the motions shown in Figure 4.5 must contain
not the smallest trace of a translation or rotation of the water molecule. But they seem to.
If the motion shown in Figure 4.5a were correct, then the centre of gravity of the water
molecule would oscillate, translate, just a bit, up and down the C2 axis as the hydrogen
atoms moved up and down. Similarly, in Figure 4.5b the centre of gravity would oscillate
back and forth, sideways. The answer is simple. The problem arises from yet another defect
in Figure 4.3. The arrows in Figure 4.3 show O H bond stretches but we have pictured
these as motions of the H atoms. In reality, the O atom moves too, in such a way that the
centre of gravity of each O H bond does not move. Because the hydrogen atom is so much
lighter than the oxygen, the amplitudes of oscillation of the H atoms are much greater than
those of the O atom – so the diagrams are not too bad – but the O atom motion should
not be forgotten. Figure 4.7 shows the upper part of Figure 4.5 again but with the oxygen
atom motion included (as for the H atoms, the O atom motion is exaggerated for clarity).
One consequence of the neglect of O atom motion in the corresponding diagram in Figure
4.5 is the preservation of the HOH bond angle. It did not change. It follows that in Figure
4.7 the HOH bond angle is changing throughout the vibration. But the HOH bond angle
change vibration was considered separately above (Figure 4.6). Evidently, this separation
was not exact; the A1 bond stretching vibration contains a bit of the A1 bond angle change
vibration. Not surprisingly, the converse is also true. If the bond angle change vibration
shown in Figure 4.6 is to leave the centre of gravity of the molecule unmoved then the
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H H

O

Figure 4.7 The A1 vibration of Figure 4.5 but with the motion of the O atom included

oxygen atom has to oscillate, just a bit, along the twofold axis. But this motion means
that the O H bond lengths must oscillate, change, too – just a bit. Again, bending and
stretching motions are mixed, just a bit. What of the B1 combination shown in Figure 4.5?
When modified to include the oxygen atom motion, Figure 4.8 is obtained. There are two
comments to be made about this figure. The first is that it shows a motion in which the HOH
bond angle is rigorously preserved. The reason is that Figure 4.8 shows a motion of B1

symmetry whilst the HOH bond angle change is of A1 symmetry. The two symmetries are
different and so the two motions cannot be mixed. Second, it may seem strange – because
the individual H atoms in Figure 4.8 have motions such that each is oscillating, just a bit,
up and down the z axis – that the motion of the oxygen atom is rigorously perpendicular to
that axis. Again, the explanation has to do with symmetry – but it can only be given after
we have looked at things in more detail, as we do in the next section.

4.2 Vibrations of the water molecule: Part 2 (less easy!)

The discussion in the previous section depended on our use of chemical knowledge. We
knew that the water molecule has O H bonds and an HOH angle which are fairly fixed – and
we exploited this insight. But, earlier, we saw that when there is a ring of atoms problems
arise, and these problems are seldom as easily resolved as for the triangle-of-atoms case that
we discussed. Another problem arises with angle changes. Consider a planar AB3 molecule,
all the B atoms being equivalent, so that there are three B A B bond angles of 120◦. If
we were to do the group theory on this (it will not be until Chapter 7 that the reader will
be equipped for it) we would find a totally symmetric combination of these bond angles,
one that requires all three angles to increase simultaneously. But this is impossible – they
already have the maximum angle physically possible. We have to throw something away.
But we not only discard vibrations, we throw away the symmetry labels that are attached
to them. How can we be confident that we have chosen correctly and that we still have
the symmetries of the vibrations correctly listed? The present section provides the answer

H H

O

Figure 4.8 The B1 vibration of Figure 4.5 but with the motion of the O atom included
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to this question. It does so by ignoring any chemical knowledge of the problem. Instead,
it elaborates the 3N − 6 rule, first by looking at the 3N and then the 6. Once we have
determined the symmetry labels to be associated with the 3N , we simply subtract from
them those in the ‘6’ list. What is left is a complete list of the irreducible representations
spanned by the vibrations. Hopefully, we can then add a bit of chemical knowledge to get
some insight into what the vibrations look like.

First, the 3N – where N is the number of atoms in the molecule. Ignoring any bonding
constraints (remember, no chemical knowledge) each atom can move independently in three
mutually perpendicular directions, just like any other physical object. So, N atoms, together,
have 3N independent motions, or, as it is usually put, 3N degrees of motional freedom. The
next step is to determine the symmetry species, the irreducible representations, generated
by the transformation of these 3N motions under the operations of the appropriate group –
and for us that means the C2v group. Key to doing this correctly is a good diagram. In the
present case, we are lucky. We can draw three separate diagrams. This simplicity arises
because of the simplicity of the C2v group; generally, the three diagrams that we will draw
would have to be combined into one, and it is this that can make life difficult unless the
diagram is a good one.

The three diagrams that we will draw concern motion along three separate axes. When
talking about the bonding in the water molecule it was pointed out that the 2p orbitals
of the oxygen atom could be orientated in any direction, as long as they were mutually
perpendicular. The same is true of the directions of the tiny displacement vectors that we
will attach to each atom to indicate its movement in space. All choices are equal but some
are more equal than others. Since we are looking for an easy life, we will make an educated
choice. We will be asking how the vectors behave when rotated or reflected, under the
operations of the C2v point group. The ideal would be to get simple answers like 1, −1 or
0, and to do this the vectors have to be orientated in a way which enables such answers,
one which recognizes the existence of the corresponding symmetry elements. So, if at all
possible, let them lie along, or parallel to, rotation axes; in, or parallel to, mirror planes;
perpendicular to mirror planes. If this sounds rather complicated, all the points are illustrated
in the three diagrams which follow. For the water molecule we attach three tiny arrows to
each atom, to indicate its three degrees of motional freedom. We will consider each set of
arrows in turn, one member of each set on each atom. First, one on each atom is chosen to
point either along or parallel to the C2, z, axis. These three are shown in Figure 4.9. The
other two arrows on each atom must be perpendicular to the first, and so perpendicular to
the C2, z, axis. For each atom, place one in the σ v mirror plane, the plane of the molecule.
They are shown in Figure 4.10. Finally, in Figure 4.11, the last arrow on each atom. To be
parallel to the first two on each atom, this one has no choice but to lie perpendicular to the
first two, for each atom. This third displacement vector either lies in or is parallel to the σ ′

v
mirror plane.

Now comes the key step, that of using the arrows in Figures 4.9–4.11 to generate reducible
representations of the group. The experienced worker will do this by simply looking at the
diagrams and writing down the answers, but this book is not written for experienced workers!
Instead we will proceed in two ways, in parallel. The left-hand frames in Figures 4.12–4.14
repeat Figures 4.9–4.11 but with labels attached to the vectors. Taking advantage of the fact
that we are ignoring chemistry, the atoms have been labelled as 1, 2 and 3. The displacement
vectors are labelled by the direction in which they point (remember, in the water molecule,
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H H

O

Figure 4.9 The movement of each atom parallel to the molecular z axis, a total of three independent

motions

H H

O

Figure 4.10 The movement of each atom parallel to the molecular y axis, a total of three independent

motions

H H

O

Figure 4.11 The movement of each atom parallel to the molecular x axis, a total of three independent

motions

H H

O

2z

3z1z

H H

O

2z

C2
1z3z

H H

O

2z

σv

σv'

3z1z

H H

O

2z

1z3z

3

1

1

Figure 4.12 The characters generated by the transformations of the arrows of Figure 4.9 under the

operations of the C 2v point group. Each character (right) is obtained from a comparison of the

diagram closest to it with the original (left)
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H H

O
2y

−2y

−3y

3y

−1y

1y

H H

O
2y

3y1y
H H

O

−2y

−3y −1y
H H

O

C2

σv

σv'

3

−1

−1

Figure 4.13 The characters generated by the transformations of the arrows of Figure 4.10 under

the operations of the C 2v point group. Each character (right) is obtained from a comparison of the

diagram closest to it with the original (left)

H H

O
−2x

−3x−1x

H H

O
−2x

−1x−3x

2x

3x 1xH H

O

2x

1x 3xH H

O C2

σv

σv'

−3

−1

1

Figure 4.14 The characters generated by the transformations of the arrows of Figure 4.11 under

the operations of the C 2v point group. Each character (right) is obtained from a comparison of the

diagram closest to it with the original (left)
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the C2 axis is taken as z and the molecular plane as yz) as well as by the label of the atom
with which they are associated. In the three frames in the middle of each figure are shown
the effect of the C2, σ v and σ ′

v operations on the displacement vectors. At the right-hand
side of each frame is given the resultant character (for all of Figures 4.12–4.14 the character
for the identity operation is 3; this operation simply counts the number of objects we are
studying).

We now hit a rather subtle point, but an important one because it can give rise to real
confusion. Just how do we describe the effects of a symmetry operation? We are looking at
the transformations of displacements, arrows. There are two possibilities. First, we can list
the arrow which replaces the one that we are looking at. Second, we can list the arrow that
our nominated arrow goes to. The first is that which tends to be preferred by physicists and
is called the ‘passive’ convention; the second tends to be preferred by chemists and is called
the ‘active’ convention. These alternatives give the same final answer, but can differ in the
detail of the working to get there. In general, mix them at your peril! In the present case the
working is the same, but the thinking differs. Consider Figure 4.12 and the transformation
of 1z under the C2 rotation. Under the passive convention, we simply compare the left-hand
(starting) diagram with that in the centre of the middle row (check with the diagram): 1z is
replaced by 3z ; that’s it. We stay where we started – but 1z doesn’t, a zero contribution. The
active convention is a bit longer. We note where the 1z entry appears in the middle centre and
refer back to the starting diagram (left) to confirm that this entry is at the point previously
occupied by 3z . We move with the object under study. The actual transformations of the
displacement vectors are given in Table 4.1; the resultant characters are not given (in the
hope of forcing the reader to work with Figures 4.12–4.14 and Table 4.1 together!) but all
entries which make a contribution to a character are indicated in bold type.

Problem 4.2 Determine the characters generated by the z displacement vectors on the
left-hand sides of Figures 4.12–4.14 under the operations of the C2v point group. If a
wrong answer is persistently obtained, help is available from Table 4.1 and the answers
given in Table 4.2.

In Table 4.2 are summarized the results that are obtained with reference to the figure from
which they are derived. The next step is to reduce each of these reducible representations

Table 4.1

E C 2 σv σ ′
v

1z 1z 3z 1z 3z

2z 2z 2z 2z 2z

3z 3z 1z 3z 1z

1y 1y −3y 1y −3y

2y 2y −2y 2y −2y

3y 3y −1y 3y −1y

1x 1x −3x −1x 3x

2x 2x −2x −2x 2x

3x 3x −1x −3x 1x
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Table 4.2

E C 2 σv σ ′
v

Figure 4.12 3 1 3 1
Figure 4.13 3 −1 3 −1
Figure 4.14 3 −1 −3 1

into its irreducible components. Because it is so important a technique, the results derived
from Figure 4.14 will be worked through in detail (for help, look back at Section 3.3) but
the answers for the results from Figures 4.12 and 4.13 are just given. As an aid, the C2v

character table is given again in Table 4.3.
Consider the reducible representation:

E C2 σ v σ ′
v

3 −1 −3 1
Test for A1 1 1 1 1
Multiply 3 −1 −3 1

Addition gives 0, so there is no A1 component in the reducible representation.

E C2 σ v σ ′
v

3 −1 −3 1
Test for A2 1 1 −1 −1
Multiply 3 −1 3 −1

Addition gives 4, so division by the order of the group, 4, shows that there is one A2 in the
reducible representation.

E C2 σ v σ ′
v

3 −1 −3 1
Test for B1 1 −1 1 −1
Multiply 3 1 −3 −1

Addition gives 0, so there is no B1 component in the reducible representation.

E C2 σ v σ ′
v

3 −1 −3 1
Test for B2 1 −1 −1 1
Multiply 3 1 3 1

Addition gives 8, and division by 4 shows that there are two B2 in the reducible represen-
tation.
We conclude that the reducible representation contains A2 + 2B2 components.

Table 4.3

C 2v E C 2 σv σ ′
v

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1
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The above paragraph detailed the reduction of the representation given in the last row of
Table 4.2 into its components. The next step is to do the same for the other two rows. We
only give the results and they are:

E C2 σ v σ ′
v

Figure 4.12 3 1 3 1
Irreducible components: 2A1 + B1

Figure 4.13 3 −1 3 −1
Irreducible components: A1 + 2B1

Problem 4.3 Check the results just obtained for the transformations shown in Figures
4.12 and 4.13.

Summing the results for all three diagrams (Figures 4.12–4.14), we get

3A1 + A2 + 3B1 + 2B2

Had we been brave enough to have combined Figures 4.9–4.11 into a single diagram and
worked with that, we would have obtained a reducible representation which would have
been the aggregate of our three:

E C2 σv σ ′
v

9 −1 3 1

It may look more daunting, but reducing it must give the sum of the irreducible representation
that we have obtained:

3A1 + A2 + 3B1 + 2B2

Problem 4.4 Reduce the representation just given and show that it has the components
listed immediately above.

Before we proceed, there is a relevant question. Suppose we had chosen, or been forced,
to do the job of generating a reducible representation the hard way, all vectors together, and
made a mistake? (it happens to the most experienced of workers). No problem. Invariably
(strictly, one should say ‘almost invariably’, but in practice the ‘almost’ can be omitted),
if a mistake is made, the reducible representation will fail to reduce. That is, the numbers
generated at the end of testing for one or more irreducible representation will not be exactly
divisible by the order of the group. Discovering that a mistake has been made is easy;
correcting it may be more difficult!

We have now dealt with the 3N part of the problem; we know the symmetries of all of the
collective motions of the atoms in the water molecule. They are of 3A1 + A2 + 3B1 + 2B2

symmetries. Notice the use of the word ‘collective’. The thing that distinguishes the motions
of this set and those with which we started (the sum of those contained in Figures 4.9–
4.11) is that the latter were quite individual: individual displacements of individual atoms.
The collective motions involve (in principle) all of the atoms of the molecule, even if
the motion associated with the individual symmetry species has a form which does not
require the participation of each and every one of the arrows in Figures 4.9–4.11. Buried
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H H

O

H H

O

H H

O

(a) (b)

(c)

Figure 4.15 The translation motions of the water molecule, the molecule being considered as a

solid, rigid, body: (a) along z, A1; (b) along y, B1; (c) along x , B2

in the 3A1 + A2 + 3B1 + 2B2 set, of course, are the vibrations of the water molecule. The
vibrations are those motions in which one part of the water molecule moves relative to
another part. All the other modes in the set must then be such that the three atoms are
in fixed positions: they do not move relative to each other. These motions are the three
translations and the three rotations of the water molecule. We have dealt with the 3N and
now it is time to consider the 6.

Just like any solid body, there are three independent axes along which translation of the
water molecule can occur, and about each of these axes the rotation of the entire molecule
can occur too. So there is a total of six things that we have to consider. Of these, the three
translations are simple, trivial almost. Normally, they would all be drawn together, but we
have taken advantage of the freedom offered by the water molecule to draw them separately
and do this in Figure 4.15. The next step is to study the transformations of each and to
determine the symmetry species that they generate. Since each is a single unit, reducible
representations cannot be generated and each transforms as an irreducible representation
of the C2v point group. This is a straightforward task and we do not detail it; the answers
are given in the caption to Figure 4.15. If the reader finds that this problem is difficult,
they should turn back and re-read Section 2.2. The explanation given there is exactly that
applicable to the translations if 2pz is replaced by Tz , 2px by Tx and 2py by Ty , where Tz ,
Tx and Ty represent translations along the z, x and y axes respectively.

Now we turn to the rotations of the water molecule. If the translations were easy, they
are well compensated for by the rotations, which are not – unless, that is, the reader prefers
an easy life, for there is an easy way but one that can only be appreciated after we have first
done the job the hard way. The first problem is that of how to draw a rotation. Translations
of the water molecule were easy; a magnified version of the tiny displacement vectors that
we placed on atoms was an obvious way of showing them. But with rotations we are looking
for something to represent a rotation of the entire water molecule. Some authors draw these
rotations by showing the motions of the individual atoms that comprise the rotation. But
this means using several arrows when talking about a single thing, and this risks confusion.
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H H

O

H H

O

(a) (b)

H H

O

(c)

Figure 4.16 The rotation motions of the water molecule, the molecule being considered as a solid,

rigid, body: (a) around z; (b) around y; (c) around x

The author’s preference is to use a single circular arrow , and this is how the rotations are
shown in Figure 4.16. 1 But this is only the first problem. The next problem is that of showing
the effect of the symmetry operations of the water molecule on the circular arrows. For this,
it may be helpful to become momentarily blind to the existence of the water molecule and to
think of the arrows themselves. This simplification has been adopted in Figure 4.17, where
the effect of the operations of the C2v point group on the arrows is shown (as a help, the
relevant symmetry element has also been shown). Even this is not the end of the difficulty.
The curved arrows sometimes move to positions in which, previously, there was no arrow.
When this happens, it is important to remember that the arrows represent rotations, and the
real question is whether the rotation is the same as before and, if not, how it is related to the
original. Here, the relative orientation of the arrows is vital. A turned-round arrow means
that a clockwise rotation has become an anticlockwise one, or vice versa – the negative of
a clockwise rotation is an anticlockwise rotation. With these comments, the reader should
be able to work through Figure 4.17 and check that they can obtain the characters given
there (of course, the character for the identity operation is always 1). If they can, they will
have demonstrated that Rz transforms as A2, Rx as B2 and Ry as B1, where Rz , Rx and Ry

represent rotations of the entire water molecule about the z, x and y axes, respectively.

Problem 4.5 Carefully study Figure 4.17a–c and generate the characters given there.
Show that they are those of the irreducible representations listed immediately above.

1 An incomplete circle is preferred to a complete circle because use of the latter means that the only thing that apparently
changes as a result of an operation is the arrow attached to the circle.
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−1
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(a)

σv
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−1

1

−1
H H

O

σv'

(b)

σv
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1
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−1
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(c)

Figure 4.17 The effect of the symmetry operations of the C 2v group on the rotations of the water

molecule. Each character at the right arises from a comparison of the nearest central arrow with

the original (left). As an aid, the symmetry operation is symbolically shown next to the symbol

representing it. Figure 4.17a shows rotation around z, 4.17b around y and 4.17c around x
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The study of the transformation of the rotations of the water molecule was not a simple
task; many have blanched at the thought of working in a group which contains many
more symmetry operations than does C2v. Fortunately, there is an easier way. One of the
earliest things mentioned in Chapter 2 was that there is a distinction between ‘proper’ and
‘improper’ rotation operations. We said ‘those operations which cannot physically be carried
out are called “improper rotations” in contrast to the “proper rotations” which are physically
possible’. In the context of the water molecule, the E and C2 operations of the C2v point group
are proper rotations whilst σ v and σ ′

v are improper rotations. Surprisingly, this distinction
between operations provides a way of using the transformations of the translations of a
molecule – which are usually very simple to determine – to obtain the transformations of
the rotations. The trick is this; write the irreducible representation spanned by the translation,
in full. So, for Tz , which in the C2v point group transforms as A1:

E C2 σv σ ′
v

Tz 1 1 1 1

Doing nothing to the operations associated with proper rotations, change the sign of those
associated with improper rotations:

E C2 σv σ ′
v

1 1 −1 −1

The result is the irreducible representation spanned by the rotation about the same axis,
which here is z, so we have generated the irreducible representation of Rz . The characters
are immediately identified as those of A2, just as we found above. Why does this method
work – and it always does? Unfortunately we are not yet in a position to fully answer this
question – but perhaps we can anticipate a bit, leaving the loose ends to be tied up later.
Surprising as it seems, an improper rotation can always be re-expressed as a combination of
two operations, one carried out after the other. One is a proper rotation, and the other is that
of inversion in a centre of symmetry (even if the point group does not contain one, which
C2v most certainly does not). So, in Figure 4.18, we show that the effect of a σ v reflection is
equivalent to rotation about a non-existent C2 axis followed by inversion in a non-existent
centre of symmetry. Of course, this appeal to non-existent symmetry elements appears both
highly artificial and arbitrary. It is in fact neither, although it will not be until Chapter 10,
where we return to the topic, that this will become clear (Figures 5.4 and 8.6, together
with the associated text, are also relevant). Inversion in a centre of symmetry always turns a
translation – or a straight arrow, such as we used to represent a translation – into its negative.
On the other hand, a rotation – or a circular arrow – is turned into a rotation in the same
direction (Figure 4.19). Worked through in detail, this is the basis of the method that we
have used. The inversion in the centre of symmetry introduces the factor of −1 that we
invoked.

Problem 4.6 Use the method just described and use the transformation properties of
Tx and Ty to show that Rx has B2 and that Ry has B1 symmetry in C2v.
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H
C2

i

H

O

Figure 4.18 Reflection in the mirror plane of the water molecule moves the dark circle into the

open circle of the same size (the two are joined with a dashed line). The same result can be obtained

by, first, a rotation about a C 2 axis, placed anywhere provided that it is perpendicular to the mirror

plane (the large open circle results; the action is indicated by an arrow). This is followed by inversion

in a centre of symmetry, placed at the point at which the C 2 axis intersects the mirror plane. The

centre of symmetry is indicated by a black star and the action by an arrow

We are now in a position to use the 3N − 6 rule to obtain the vibrations of the water
molecule. The 3N gave us:

3A1 + A2 + 3B1 + 2B2

We have not brought the symmetry species spanned by the three translations together, but
this is easy to do. The sum is:

A1 + B1 + B2

For the three rotations, the sum of their symmetry species is:

A2 + B1 + B2

To obtain the vibrations, we simply have to subtract the irreducible representations spanned
by the translations and the rotations from the first set listed. This is just applying the 3N − 6
rule in detail. The, unsurprising, result is:

2A1 + B1

exactly as we obtained before. It is in difficult cases that this method becomes essential,
and the final arbiter. But the simplicity of the method that was described in Section 4.1,
together with the fact that it rapidly gives the form of the actual vibrations, means that
it is always the first method to apply. Incidentally, we are now in a position to give the

Figure 4.19 Inversion in a centre of symmetry (symbolically represented by a star) converts a

rotation into a rotation in the same sense but converts a translation into a translation in the

opposite direction
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explanation promised at the end of Section 4.1. The problem left unanswered is that of
why, in the B1 (antisymmetric stretch, vibration of the water molecule), the oxygen atom
is rigorously confined to motion along the y axis, whereas the two hydrogen atoms have
motions which take them along the z axis. The answer is seen in the translation motions
discussed above. As for the entire molecule, the only translation of the oxygen atom which
is of B1 symmetry is that of motion along the y axis. Movements along z (A1) and x (B2)
are forbidden by symmetry in a B1 vibration. The reason why the two hydrogens can move
along z is that their motions along this axis exactly cancel each other. The resultant motion
of the two hydrogens is entirely along the y axis.

Problem 4.7 Explain the fact that the motion of the oxygen atom shown in Figure
4.7 is rigorously along the z axis.

The next problem is that of the spectral activity of the vibrations of the water molecule
that we have been exploring. Although there are other possibilities, by far the most im-
portant methods of studying molecular vibrations are infrared spectroscopy and Raman
spectroscopy. We shall confine our discussion to these. So, the question to be answered is
that of which of the vibrations of the water molecule are expected to be seen, to be active,
in the infrared spectrum and which in the Raman. But before we can answer this question
there is some serious foundation work to be done.

4.3 Product functions

It is clear that our discussion so far is inadequate if we wish to understand spectra. Spec-
troscopy involves three things. First, there is the starting point of a molecule. One normally
thinks and talks of its ground state, be it a vibrational ground state, electronic ground state,
or whatever. Then the spectroscopy involves an excited state, be it vibrational, electronic or
whatever – the state to which the molecule is promoted by the spectral technique being used.
And, finally, there is the technique itself, which provides some mechanism for interacting
with the molecule and exciting it from its ground to excited state. Three things – ground
state, excited state and spectroscopic mechanism – and any spectroscopy involves all three,
simultaneously. And there is our problem. So far in this book we have only spoken about
individual things and how they transform. We have been concerned with putting symmetry
labels on things like orbitals and vibrations. How do we put a symmetry label on three
things simultaneously? Although the answer to this question is our ultimate goal, prudence
suggests that we would be well advised to start with a simpler question: how do we put a
symmetry label on two things simultaneously?

In fact, this is an important question in its own right. Overlap integrals, for instance,
typically involve two orbitals simultaneously – and we talked about the overlap of orbitals
when we considered the bonding in the water molecule. So, let us talk about overlap; not
overlap integrals, although that will come. Here, ‘overlap’ means forming the product of two
quantities, normally orbitals (to get an overlap integral we have to carry out an additional
summation). Specifically, we form the product of the numerical values, magnitudes, of two
orbitals at a chosen point in space. For the present purpose, there is no need to specify much
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Figure 4.20 When the phases in the corresponding quadrants of the A2 and B1 nodal patterns of

Figure 3.1 are multiplied together they give the B2 nodal pattern. One says that ‘the direct product

of A2 and B1 is B2’ and a special multiplication symbol is used (bottom row)

further, although the reader may find it helpful to refer back to Figures 3.8 and 3.9, and the
associated text, where the discussion is about overlap and overlap integrals. In Figures 3.8
and 3.9 the symmetry species involved were A1 and B1 and it would make sense to use these
as an example as we proceed. Unfortunately, they are not sufficiently general and so instead
we will consider the pair A2 and B1; we continue working in the C2v point group. That is,
we consider a product of (unspecified) orbitals ϕ1ϕ2 where ϕ1 has symmetry A2; we write
this ϕ1(A2). Similarly, we take ϕ2 to be of B1 symmetry and write it ϕ2(B1). We have to
determine the symmetry of their product ψ ; that is, we have to fill the empty parentheses
in:

ψ( ) = ϕ1(A2) · ϕ2(B1)

where a dot has been placed between the two functions on the right to facilitate separate
consideration of these two functions. The simplest, and perhaps most fundamental, way
of tackling this problem is to apply the nodal pattern method used in the previous two
chapters. Figure 4.20 shows the nodal patterns of the A2 and B1 irreducible representations
together with their product (multiply the corresponding phases in the two left-hand figures
to obtain that in the right-hand figure). The product is the pattern of the B2 irreducible
representation. We have our answer! Unfortunately, for large groups the nodal patterns can
be rather convoluted and so the method that we have just used is difficult to apply. A non-
pictorial method has to be used, so it is sensible to work it through for the present case too.
In principle, the method is simple – it is the one used many times before in this book when
working with single objects. We describe it as if we did not already know the answer, for
this will help in the application of the method to more complicated examples.

In the equation ψ() = ϕ1(A2) · ϕ2(B1) we subject ψ to all of the operations of the group
and obtain a set of characters by relating the transformed function to the original. The
application of the C2 operation, for example, to ψ means that we are really applying it to
ϕ1(A2) and to ϕ2(B1), simultaneously. Using the C2v character table (Table 4.3), under this
operation ϕ1(A2) → ϕ1 A(2) because the A2 irreducible representation has a character of 1
for this operation. Similarly, ϕ2(B1) → −ϕ2(B1) and a character of −1. Putting these two
results together, we have that under the C2 rotation operation

ϕ1(A2) · ϕ2(B1) → −ϕ1(A2) · ϕ2(B1)
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That is, ψ( ) → −ψ( ), so the character generated by the transformation of ψ( ) under this
operation is −1. It is clear that this −1 really occurs because the product of the characters of
the A2 and B1 irreducible representations under the C2 operation is −1. Similarly, because
the A2 and B1 characters under the σ v operation are −1 and 1, respectively, their product,
−1, is the character of ψ( ) under this operation. Summarizing this, and extending it to
include the other operations, we have:

E C2 σ v σ ′
v

Characters generated by the
transformation of ϕ1(A2)
(i.e. the A2 irreducible representation) 1 1 −1 −1

Characters generated by the
transformation of ϕ2(B1)
(i.e. the B1 irreducible
representation) 1 −1 1 −1

Characters of the
transformation of
ψ( ), i.e. the products
of the two rows of characters above. 1 −1 −1 1

The representation generated is the B2 irreducible representation. That is, ψ() can now be
identified as ψ(B2), a result that we knew from the application of the nodal pattern method.

Problem 4.8 Using the procedure described above, fill in the empty parentheses in
the following product functions:

ψ( ) = ϕ1(B1) · ϕ2(B2)
ψ( ) = ϕ1(B2) · ϕ2(A2)
ψ( ) = ϕ1(A2) · ϕ2(A1)

It is now easy to see why the subject of Figure 3.8 was not a good example – it included
the A1 irreducible representation and so would have meant multiplying throughout by the
number 1, which is scarcely the best way of seeing what is happening!

In the example just worked through, the general method of determining the symmetries
of product functions was used: multiply together the characters of the irreducible represen-
tations which describe the transformation of the individual functions. The act of multiplying
two irreducible representations in this way is said to give rise to the direct product of the
two individual representations; if we multiply three irreducible representations we form a
triple direct product, and so on.

As will be seen in the remainder of this chapter, direct products are very important in the
application of symmetry to chemistry. For these applications, all that is needed is a list –
a table – of two-function direct products. Triple and higher direct products can readily be
deduced from such a table. The (two-function) direct product table for the C2v point group
is given in Table 4.4. In this table an obvious, and conventional, symbolism has been used.
The entry at a particular point in the table is the symmetry of the direct product of the
species which label the column and row in which the entry falls.
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Table 4.4 Direct products of the irreducible representations

of the C 2v group

C 2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

Problem 4.9 Check that Table 4.4 is correct – this will provide useful additional
practice in the formation of direct products if done numerically and additional insight
if done using nodal patterns.

Note that Table 4.4 is symmetric about the leading diagonal (top left to bottom right).
Thus, the result obtained for the example considered above is

A2 ⊗ B1 = B2

(where the symbol ⊗, which is that conventionally used to denote the direct product between
two irreducible representations, has been used in preference to the × which might have been
expected).

It is equally true that:

B1 ⊗ A2 = B2

This equivalence follows because sets of numbers are being multiplied together and the
result obtained is independent of the order in which they are multiplied – the origin of the
diagonal symmetry of Table 4.4 is at once evident. Further, it is evident that the process
of forming direct products is not limited to just two irreducible representations. We can
have as many as we like – or, in reality, as many as we need. And because we are simply
multiplying numbers, the order in which they appear is not important. So, in the C2v group

(B1 ⊗ A2) ⊗ B2 = (B2 ⊗ B2) = A1

or B1 ⊗ (A2 ⊗ B2) = (B1 ⊗ B1) = A1

or, rearranging, A2 ⊗ (B1 ⊗ B2) = (A2 ⊗ A2) = A1

and so on. This will become important in the section following the next, where this sort of
rearranging proves helpful.

Problem 4.10 Use Table 4.4 to obtain symmetry labels for the following product
functions:

ψ( ) = ϕ1 (A1) ϕ2(B1) ϕ3 (B2)
ψ( ) = ϕ1 (A2) ϕ2 (B1) ϕ (B2)

ψ( ) = ϕ1 (A2) ϕ2 (B2) ϕ (B1)

ψ( ) = ϕ1 (A2) ϕ2 (B1) ϕ (A1) ϕ (B1)

ψ( ) = ϕ1 (A2) ϕ2 (B1) ϕ (A2) ϕ (B1)

ψ( ) = ϕ1 (A2) ϕ2 (A2) ϕ (B1) ϕ (B1)
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4.4 Direct products and quantum mechanical integrals

Lest the title of this section appear too daunting, let the reader be assured that not a single
integral will be evaluated in it. Although, perhaps surprisingly, we will determine the value
of many! And further, the approach which will be developed will lead to a reduction in
the number of integrals that arise in quantum chemistry. This is not a topic that we will
pursue; rather we will use group theory to show which integrals are zero, without any need
to evaluate them! Such zero integrals reappear as spectroscopic selection rules, the topic of
the next section. It is all too easy for quantum mechanics to appear formidable because of the
large number of rather unpleasant looking integrals which it seems to involve. In practice,
these integrals are found to be rather less objectionable because if they cannot be evaluated
algebraically they can be evaluated numerically, invariably by a computer. Even so, a great
deal of work can be saved by the intelligent use of group theory. Let us first consider what
is meant by an integration over all space (which is the integration that is usually involved in
quantum mechanics). Integration may be pictorially regarded as the adding together of an
infinite number of infinitesimally small fragments. As a consequence of this it is sometimes
possible to see the result of an integration without actually carrying out the calculation.
Consider the pz orbital shown in Figure 4.21. What is the value of the integral over all space
of the pz orbital? That is, what is the value of ∫ pzδv where δv is an infinitesimally small
volume element? Treat this integral as �pzδv, where the summation is over an infinity of
minute volume elements. In order to perform this summation – this integration – one has to
collect into one box, as it were, all of the infinitesimally small fragments which comprise
this wavefunction. We must pay due regard to the signs of the fragments – some fragments
are from that part of space in which the wavefunction has a positive amplitude and others
are from that part in which it has a negative amplitude. From the shape of the orbital it is
evident that for every volume element that makes a positive contribution to the integral,
there is a corresponding volume element which makes a negative contribution. A pair of
such mutually cancelling volumes is shown in Figure 4.21, the positive contribution from
the top volume being cancelled by the negative contribution from the bottom. By adding

+

−

Figure 4.21 There is an exact cancellation of the contributions of the two boxes (at equivalent

positions in the lobes of the pz orbital shown) to an integral over all space of the pz orbital.

Summed over all space, the resultant is zero
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Figure 4.22 Nodal patterns of the irreducible representations of C 2v. Each circle is given the phase

of the quadrant in which it falls and then all four circles in a diagram are summed. Just as in Figure

4.21, the result is zero for all but the A1 pattern

together pairs of points in this way until the whole of space is included, it is seen that the
value of the integral ∫ pzδv is zero – even though it has not been explicitly evaluated. It is
the fact that arguments such as this can be cast, very simply, in the language of symmetry
that makes group theory so valuable. Thus, an alternative way of stating the above argument
is to recognize that the ‘top’ and ‘bottom’ of the pz orbital are:

(a) shape-wise, related by reflection in a mirror plane, and
(b) of opposite phase.

These two facts, taken together, establish that the integral must be zero. Can this procedure
be generalized? Is there a general rule to replace the two specific points made above, which
are relevant only to the pz orbital (and any other functions that behave similarly)? For
the C2v group the nodal patterns of the irreducible representations provide an immediate
answer. They are shown again in Figure 4.22, each with four symmetry-related points
indicated. Now, we have to sum over all four such points and then add all these individual
sums together. From this it is evident that summation over all space leads to a mutual
cancellation, an integral of zero, for all except the A1 irreducible representation. Is this an
indication of a general result? It is, but to see this it is helpful to look at another example
from the C2v group.

To establish the general rule it is helpful to qualitatively consider the integral over all
space of an s orbital:

∫ sδv
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+

Figure 4.23 Integration over all space of an s orbital-type quantity is non-zero

It is clear from Figure 4.23 that reflection in the mirror plane in Figure 4.21 (there shown but
not mentioned) now interrelates two volume elements which make identical contributions
to the integral. The character of the s orbital under the mirror plane reflection operation
is 1 and so the contribution to the integral coming from volume elements related by this
operation do not cancel. This is in contrast to the pz orbital, which has a character of −1
under reflection in the mirror plane. Because this mirror plane is not a symmetry operation
of the C2v group, its effects on the integral were not revealed. Nonetheless, it is clear that
the integral over all space of a function which transforms as an irreducible representation
that has all its characters equal to +1 will not be equal to zero by symmetry (although,
as pz shows, it may be zero for another reason – which can be a symmetry property not
revealed by the point group being used). Figure 4.22 of course demonstrates the converse,
that (for C2v, but the result is general) integrals over non-totally symmetric functions give
an answer of zero. We have actually already shown this in a different way. In Section 3.1 we
met the orthonormal properties of irreducible representations. Another way of stating this
property is to say that the overlap between functions transforming as different irreducible
representations is zero. The fact that only an integral over all space of a totally symmetric
function can be non-zero requires that the corresponding integral for all other irreducible
representations be zero. Orthonormality does the work for us!

The next step is to apply this pattern to direct products; these are composed of individual
symmetry species. So, one can, effectively, carry out an integration over a direct product.
This is a most important step, because all quantum mechanical integrals of importance
involve integration over more than one function. Can we say anything of importance about
the value of overlap integrals between two functions (and, by extension, more than two)?
Indeed we can. The point becomes rather clear for the C2v group if we combine the content
of Figure 4.22 with that of Table 4.4. Figure 4.22 shows that the only non-zero integrals
are those over the totally symmetric irreducible representation and Table 4.4 shows that for
two product functions the totally symmetric irreducible representation only occurs when
the two functions transform as the same irreducible representation. We have reached an
important and general conclusion:

The only non-zero integrals in quantum mechanics are those over totally symmetric
functions. An integral over a function which does not transform as the totally symmetric
irreducible representation is zero. If an integral can be cast in a form such that it is the
product of two quantities then, for the integral to be non-zero, these quantities must
transform as the same irreducible representation.
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Although the C2v example that we have used has A1 as its totally symmetric irreducible
representation, the label used may differ from this and so the conclusion in the box above
has been worded accordingly.

This and the previous section, on direct products, were not as new as it seems. In fact, both
were used, without real explanation, in Chapter 3. There, they were the basis for the method
presented for reducing a reducible representation into its irreducible components. There,
overlap integrals were evaluated between the reducible representation and each irreducible
representation in turn. Different irreducible representations gave an overlap integral of zero,
whilst when an irreducible representation overlapped with itself it gave an overlap of 1 (to
get this as the result we divided by the order of the group). Clearly, the results we have
obtained in this section are of value. This conclusion is reinforced in the next section, where
they are shown to give rise to the selection rules that are essential if spectroscopic data are
to be interpreted.

4.5 Spectroscopic selection rules

Earlier in this chapter it was recognized that in spectroscopy there are three things that
are relevant. The ground state, an excited state and some mechanism appropriate to the
spectroscopy. If we can place symmetry labels on all three then we can use the results of the
previous two sections and apply group theory, symmetry, to spectroscopy. None of these
tasks is trivial when explored in detail. Fortunately, we do not have to go to great depth in
the present discussion. Here, we are concerned with principles, not detail. Suffice to note
that the wavefunctions associated with ground and excited states will themselves usually
be product functions. After all, when we think of a molecule being in its ground state we
are thinking of a single thing, the ground state. This notwithstanding the fact that we will
be talking about a multi-electron molecule (if we are concerned with the electronic ground
state; analogous arguments would apply to the vibrational ground state, if vibrations were
our concern). The link between the two is that the ground state wavefunction will be a
product of the wavefunctions of the individual electrons. We know how to place symmetry
labels on the wavefunctions of individual electrons (they are basically the s, pz and so on,
with which we are familiar) and we know how to form products of these symmetry species
(Section 4.3). So, in principle, at least, we know how to obtain a symmetry label for the
ground state. The excited state symmetry is found in an analogous way, except that (for an
electronic excited state) at least one of the electron wavefunctions will be different from
one in the ground state. All we need is a symmetry label which, somehow, describes the
spectroscopic process (and it was to cover this that in the box above the word ‘quantities’
was used when ‘function’ might have been expected from the earlier discussion).

Fortunately, the task of working out the symmetry species of the mechanism (the word
‘operator’ is that commonly used, indicating that it will have some mathematical form)
appropriate to a particular form of spectroscopy is a very simple task compared with that of
determining the detailed form of the operators themselves. In most forms of spectroscopy
a beam of electromagnetic radiation is allowed to interact with the system under study
(the term ‘electromagnetic radiation’ rather than the word ‘light’ is used because the wave-
length of the radiation may be far from the visible region of the spectrum). In the sim-
plest (Maxwell) picture, electromagnetic radiation is regarded as being composed of two
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Figure 4.24 Passage of the electric field of a light wave (here shown moving from left to right)

induces alternating charges in a – stationary – molecule (here represented as a loop, so that both

poles of the field can be simultaneously sampled). One half-wavelength further on, the charges in

the molecule will be the opposite of those shown

mutually perpendicular oscillating fields, one an electric field and the other magnetic; both
fields are perpendicular to the direction of propagation of the radiation (we will shortly look
at this in more detail). The most evident way, then, in which such radiation can interact
with matter is by virtue of either or both of the electric and magnetic fields associated
with it, so that the most common spectroscopic observations are of transitions which are
either ‘electric dipole’ allowed or ‘magnetic dipole’ allowed. The oscillating electric field
associated with the light wave – think of it as an oscillating voltage between two parallel
metallic plates – induces an oscillating electric dipole [(+ −) which alternates with (− +)]
in atoms and molecules lying between the metallic plates. When this oscillation matches a
natural frequency of the atom or molecule, resonance occurs and energy is transferred from
the light wave to the atom or molecule (Figure 4.24). Similarly, the magnetic field – think
of some large electromagnet, energized by an oscillating current, with the atom or molecule
in the middle – induces an oscillating magnetic dipole [(N S) which alternates with (S
N)] which can also cause excitations by a resonance phenomenon (Figure 4.25). Magnetic
dipole allowed transitions are of particular importance in nuclear magnetic resonance and
paramagnetic resonance spectroscopies. To determine the symmetries that we need for spec-
troscopy, then, it is only necessary to determine the symmetry species associated with an
electric dipole or a magnetic dipole; we can forget the mathematical form of the operators.

In order to obtain an electric dipole it is necessary to separate charges of opposite sign
along an axis. In our three-dimensional world there are only three independent directions in
which one may bring about such a charge separation and so there are just three electric dipole
operators, one corresponding to the x , one to the y and one to the z axes. Further, because
the Cartesian axes are dipolar – they also have + and − regions – the transformations of
the electric dipole operators mimic – are isomorphous to – those of the Cartesian axes of a
molecule. Equally, they are isomorphous to the translations of the molecule along x , y or z
axes. Here, the normal presentation of character tables in compilations is of great help. It
is standard for the symmetries of x , y and z to be given in character tables, in an additional
column to the right of the character table itself. Each one is listed against the irreducible
representation under which it transforms. The work is done for us!

Just as an electric dipole corresponds to a movement of electric charge along an axis,
so a magnetic dipole corresponds to a rotation of charge about an axis (as in a solenoid
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Figure 4.25 Passage of the magnetic field of a light wave (here shown moving from left to right)

induces alternating poles in a – stationary – molecule (here represented as a loop, so that both poles

of the field can be simultaneously sampled). One half-wavelength further on, the poles induced in

the molecule will be the opposite of those shown. The electric and magnetic fields shown here and

in Figure 4.24 are mutually perpendicular, so this diagram would best be thought of as lying in a

plane perpendicular to the page

carrying a current). There are three magnetic dipole operators, one for each of the three
Cartesian axes. The symmetry species of the magnetic dipole operators will be the same as
those of the rotations about these axes. These rotations (usually denoted Rx , Ry and Rz in
a character table) were met and used in the discussion of molecular vibrations in Section
4.2. The subsequent discussion there – in which the transformation of the rotations was
derived from that of the corresponding translations – becomes relevant when only the latter
are shown (as x , y and z) in a character table, as happens. If one is lucky, the entries Rx ,
Ry and Rz are also included at the right-hand side of a character table and indicate how the
three magnetic dipole operators transform.

We are now in a position to make some general statements about whether or not an integral
related to the intensity of a transition is required to be zero. That is, to state general selection
rules for electric dipole and magnetic dipole allowed processes. This rule is derived from
the integral given towards the end of the previous section by replacing wavefunctions and
operator with the appropriate symmetry species.

A transition is electric dipole allowed if the triple direct product of the symmetry species
of the initial and final wavefunctions with that of the symmetry of a translation contains
the totally symmetric irreducible representation. Similarly, a transition is magnetic
dipole allowed if the triple direct product of a rotation with the symmetry species of the
initial and final wavefunctions contains the totally symmetric irreducible representation.

These rules are rather a mouthful and triple direct products can be rather tedious to
work out, so it is convenient to recast them into a simpler form by making use of the fact
that the totally symmetric irreducible representation only arises in the direct product of an
irreducible representation with itself. In compiling the triple direct product, first form the
direct product of the symmetry species of the initial and final wavefunctions. The transition
will only be allowed if this direct product contains within it the same symmetry species as
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that of the operator. This is a particularly useful way to state the selection rule because, as
has been seen, there are commonly several alternative operators – dipole moment operators
corresponding to Tx , Ty and Tz , for instance – and in this form a choice between the
alternatives does not have to be made until the last step. One simply looks for a matching
between the irreducible representation(s) arising from the direct product of wavefunction
symmetries with those of the appropriate operators. If a matching exists, the transition is
allowed.

Although we have only looked at two cases, electric and magnetic dipole transitions, in
detail we have seen enough to be able to give a general spectroscopic selection rule – of
which all others are particular cases. This is:

A transition is allowed only if the direct product symmetry species of the initial and
final wavefunctions contains the symmetry species of the operator appropriate to the
transition process.

All that is needed in order to make use of this rule is a list of those spectroscopic processes
which normally arise as a result of electric dipole transitions and those which normally
arise from magnetic dipole transitions. This we will do shortly, but there is one thing more.
What about Raman spectroscopy? After all, the present discussion has the aim of predicting
something about the vibrational spectra of the water molecule and one would hope that this
will include Raman predictions. Raman is a bit different. In a typical experimental set-up, a
laser beam is incident on a sample and the light emitted is collected. The collection can be
at any angle, and many have been used, although one of 90◦ between incident and scattered
light is perhaps that favoured (although the incident light is strictly uni-directional – it comes
from a laser – light is scattered at all angles). Related is the fact that the scattered light is
of a different wavelength from the incident light, not one but several different wavelengths.
Indeed, the quantities of interest are the differences in wavelength between incident and
emitted light, because these are the vibrational energies. So, we have two coupled processes,
each electric dipole in nature. If each is represented in the normal way by x , y or z, then
the coupling between them is well represented by taking a product, any simple product: x2,
xy, xz, y2, yx, yz, z2, zx, zy are all acceptable, although it is not surprising that xy and yx,
for instance, are normally equivalent. So the symmetry species appropriate to the Raman
process are those of these product functions in the character table. But a word of warning
to those who might now think that they are trained in the interpretation of Raman spectra
(and not just Raman, although the problem is more acute there). One has to be careful to
distinguish between laboratory axes and molecular axes. So, in laboratory axes it is easy
to have polarized light, but it is much more difficult in molecular axes. In this chapter we
have worked in molecular axes, but for Raman spectroscopy the symbols above may well
be used to denote laboratory axes (after all, laser light is polarized in laboratory axes). We
shall return to the distinction between molecular and laboratory axes, but for the moment
we revert to the former.

We are now in a position to summarize the above discussion and give a list of the
operators which are appropriate to the most common spectroscopies. This is done in
Table 4.5.
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Table 4.5

Symmetry properties
Form of operator of the operator are
and spectral region Form of operator the same as those of:

Electronic (visible Electric dipole T x , T y , Tz (or more
and ultraviolet) simply x , y, z)

Vibrational (infrared)
Rotational (microwave) Magnetic dipole R x , R y , R z

NMR (radiofrequency)
EPR (microwave)
Raman (visible) Polarizability (this resembles ‘electric x 2, y2, z2, x y, yz, zx

quadrupole’ but is a bit wider) (or combinations
of these)

Problem 4.11 (a) Confirm that the following transitions are electric dipole allowed:

Point group Ground term symmetry Excited term symmetry
C2v A1 B2

C2v B1 B1

C4v A2 E
C4v E E

(b) Confirm that the following electric dipole transitions are forbidden:

Point group Ground term symmetry Excited term symmetry
C2v B2 B1

C4v A1 B1

C4v B1 B2

C4v A2 A1

4.6 The vibrational spectroscopy of the water molecule

We now bring together two main themes of this chapter, the vibrations of the water molecule
and spectroscopic selection rules. First, the vibrations. It will be recalled that there are three
vibrations, or to give them their correct name, normal modes, of the water molecule. Two,
largely bond stretch vibrations, have A1 and B1 symmetries, whilst the – largely – angle
change (‘deformation’) vibration is A1. Our problem then is a simple one – are A1 vibrations
infrared active and are they Raman active? And we ask the analogous questions for the
B1 vibration. Next, the selection rule. In order to apply this, we need three things. The
symmetry of the ground state, the symmetry of the excited state and the symmetry of the
relevant operators. The last of these was the subject of discussion in the preceding section;
the answers have been summarized in Table 4.5. What of the ground state? Well, since we
are interested in vibrational spectra, we have to talk about the vibrational ground state. Here,
we follow what must now be recognized as a standard procedure. We apply the operations
of the C2v point group to the vibrational ground state and so determine its symmetry. Of
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course, in the ground state there are no vibrations excited; there is nothing to change the
size or shape of the molecule. So, the ground state is of A1 symmetry. Suppose we excite an
A1 vibration? Although the size and shape of the molecule will change (bond stretches do
the former and bond angle changes the latter), at every point in the vibration the symmetry
operations will turn the molecule into itself. Exactly. So, the symmetry of the excited state is
A1 when it is an A1 vibration which is excited. The B1 is different. The molecule is distorted
during a B1 vibration (indeed, it is only totally symmetric vibrations, here A1, that do not
distort the molecule in a way that temporarily destroys some of its symmetry). The relevant
vibration was shown in Figure 4.5b; the focus of our attention is the relationship between the
transient distortions of the molecule. We know the answer: the oscillating distortions of the
molecule have B1 symmetry, so the vibrational excited state when this vibration is excited
is of B1 symmetry. We have assembled all the information that we need in order to apply
the selection rule, but we will wait. The reason is that there is a simplification which we can
apply, one that has already been mentioned – but without the conclusion we shall reach. We
have to form a triple direct product and, since this involves multiplying numbers, we can
evaluate the triple product in any order. Choose to evaluate the direct product of the ground
and excited states first. Now, the argument used above shows that the vibrational ground
state of a non-vibrating molecule must always be totally symmetric. Its contribution to the
direct product will be to multiply by a series of 1’s. It changes nothing. The direct product
of ground and excited states will always be the symmetry of the excited state. Instead of a
triple direct product we now only have to evaluate a simple direct product, that between the
excited state and operator symmetries, and look for the cases that give the totally symmetric
irreducible representation.

But we know the answer. We will only get the totally symmetric irreducible representation
as the direct product when the two irreducible representations that we are multiplying are
the same. This means that all we have to do is to look at the character table, here C2v, and ask
‘does the vibration excited have a symmetry which is the same as that of an infrared/Raman
operator?’. If the answer is ‘yes’ the transition is allowed. Table 4.6 is the C2v character
table, yet again, but this time with the transformations of the relevant operators indicated.
Some of the latter seem to come from nowhere, but this is not so. We determined them
in Chapter 2 (Section 2.2). There, we looked at orbitals like the 2px orbital of the oxygen
atom in water – but the argument used there applies equally well to the axis, x , and those
for the other 2p orbitals to the y and z axes. Similarly, talk about a dxy orbital was really
about the product xy. Their symmetries are the same. And we can now make it even easier.
The symmetry of a product function like xy is given by the direct product of the symmetry
species of x and y. All we really need in a character table is the transformations of x , y and
z. As we have seen, from them, everything else, products, rotations, can be worked out quite

Table 4.6

C 2v E C 2 σv σ ′
v

A1 1 1 1 1 z, x 2, y2, z2, Tz

A2 1 1 −1 −1 x y, R z

B1 1 −1 1 −1 y, yz, T y , R x

B2 1 −1 −1 1 x , zx , T x , R y
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easily. Nonetheless, in Table 4.6 we give the C2v character table with everything explicitly
shown.

We now address the key question: what are the spectral activities of A1 and B1 vibrations?
If A1 is infrared active then a dipole, either an axis label or a translation, will be shown in
the right-hand box. Of course, they go together and we see both z and Tz ; the A1 vibrations
are infrared active. Similarly, the B1 vibration is infrared active because both y and Ty are
alongside it in the right-hand box. Specifically, if we were to be able to devise a method of
orienting water molecules (so that the molecular axes were fixed relative to the laboratory),
then using polarized infrared radiation we could decide whether or not to excite the A1 or
B1 vibrations. Infrared polarized along molecular y will excite B1 but not A1, for instance.
Much ingenuity has been exercised in trying to devise suitable experiments to exploit this:
for example, trapping molecules within a sheet of plastic which is then stretched to force
the trapped molecules into a common orientation. We return to this point below.

What of Raman activity? We repeat the process, but this time look for products of axes.
A1 has x2, y2 and z2 listed; it is a Raman active vibration, three times over! Similarly, the B1

vibration is Raman active because yz is given alongside it. Because all of the vibrations of
the water molecule are both infrared and Raman active, these techniques will not distinguish
between them. Indeed, Table 4.6 shows that the only sort of vibration of a C2v molecule
that the techniques could distinguish is an A2, which is Raman (xy) active but not infrared.
Even this is not 100 %. A vibration, whilst allowed in a particular spectroscopy, might
nonetheless give rise to a very weak band (non-zero can mean something very small),
possibly too weak to be detected – in which case you might reasonably but mistakenly
think that it is forbidden. In the past, when structural methods were less well developed,
vibrational spectroscopy was often used to attempt to determine the structure of a molecule.
Work through the predictions for all the likely symmetries and see which agree(s) with
experiment. It was often referred to as a ‘sporting’ method. You could win, be right, or lose,
be wrong: the latter when one or more vibrations gave rise to an allowed but invisibly weak
peak. In the case of the water molecule you would be right (the only alternative geometry
is that of a linear molecule, for which the predictions are different). The water molecule
has vibrations at about 3756, 3652 and 1595 cm−1. Bending vibrations occur at about half
of the frequency of the corresponding stretches, so the peak at 1595 cm−1 can immediately
be identified as the A1 angle change vibration. We cannot immediately distinguish between
the other two (although we will be able to by the end of this chapter). It turns out that the
3652 cm−1 peak is also of A1 symmetry and the 3756 the B1. We do not show the spectra
themselves because they do not show the simplicity that the above discussion leads us to
expect. We have ignored the possibility that the water molecule might change its rotation
as well as vibrate. In fact, the water molecule has low moments of inertia and its vibrational
spectra are complicated by rotational fine structure.

One last word. When we found that the A1 vibrations of the water molecule are allowed
because z and Tz are to be found in the right-hand box of Table 4.6, what did it mean? What
would have been different if, say, x and Tx had been there instead? Remember something
mentioned earlier: we have been talking about molecular axes, not laboratory axes (although
the latter have to be important because our spectrometers use them!). The fact that an A1

vibration is z active means that the dipole moment change associated with the mode has to
be along the z axis (here, of course, the C2 axis). Not x , not y, only z. So, if we were able
to hold the molecule fixed in space (so that its axes become laboratory axes and so under
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our control) and send a beam of polarized infrared light onto it, we would get important
results. The fact that the infrared beam is polarized means that the direction of the electric
vector is specified, and so therefore is the direction of the dipole moment change that it can
induce. If the beam were polarized in the z direction, the spectrum would show only the
A1 vibrations. If it were polarized in the y direction the spectrum would show only the B1

vibration. If it were polarized in the x direction, it would show no vibrations at all (we talk
of an ideal experiment; the real world is a bit less obliging). Such experiments would give
us real spectral information! Alas, they are seldom possible; is is not possible to hold all
the water molecules in a sample in parallel fixed positions in space. But all is not lost. We
still have to understand the selection rules of Raman spectroscopy.

Take an A1 vibration. It is Raman allowed because, for instance, zz appears in the right-
hand column of Table 4.6. What does this mean? It means that if a beam of polarized
radiation (really, a laser beam) is incident on the molecule which happens to be such that its
axis of polarization (which has to be in laboratory axes) coincides with the molecular z, then
there is a chance that an A1 mode will be excited and light of a longer wavelength emitted
which will also have its axis of polarization along the molecular z axis. ‘There is a chance’
because Raman scattering is not a very likely event. If the polarization of the light beam is
inclined to z then the chances of zz scattering decrease until they become zero in a plane
perpendicular to z. But what of xx and yy – they both appear alongside A1 in Table 4.6?
The answer is as for zz, but with the axis labels changed. We conclude that when A1 modes
scatter they will do so with the axis of polarization of the incident light maintained in the
scattered light. Is this true of the B1 mode? Against B1, we see ‘yz’ (or it could be ‘zy’, the
way that we formed direct products tells us this). Light incident and which happens to be
polarized along the molecular y axis may excite a B1 vibration and be re-emitted polarized
along the molecular z axis. Or, if it happens to be polarized along the molecular z axis,
it may excite a B1 vibration and be re-emitted polarized along the molecular y axis. The
light emitted associated with a B1 vibration does not retain the polarization of the incident
laser beam. We have cracked the problem! Only the light emitted after an A1 vibration has
been excited will retain the original polarization. So, if we put a sheet of polaroid film in
the scattered beam and arrange its polarization to be perpendicular to that of the incident
laser beam (which we can do because both are in laboratory axes), the A1 mode will largely
disappear from our spectrum. The B1 will remain, a bit weaker, but still there. We cannot
play this game in reverse and delete just the B1 mode, but no matter. We can identify the A1

mode. In general, this trick can be used to identify totally symmetric vibrational modes.2

We have now come to the end of our discussion of the water molecule and our use of
it to explore the application of group theory to chemistry. To move on we need molecules
of a higher symmetry and these will form the subjects of most of the following chapters
(in Chapter 12 we will return to the water molecule in a discussion of direct products that
follows on from that in the present chapter). So, this is a convenient point at which to explore

2 Inevitably, the discussion is simplified. In fact, the magnitude of the polarization effect depends on the differences between
x , y and z (and so, xx , yy and zz). It is greatest when these differences are zero – and so is most dramatic for cubic molecules,
such as those which are the subject of Chapters 8 and 10, where a mode can be completely eliminated from the spectrum. Then,
the Raman effect is greatest for molecules which have several centres of high electron density. So, water, which might be regarded
as basically a distorted oxygen atom, is a poor Raman scatterer – indeed, it is for this reason that water is often used as a solvent
for Raman studies of dissolved molecules. Finally, in that the discussion concerns isolated molecules, it deals with the Raman
scattering of gases, the worst phase for the study of a weak phenomenon.
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a topic for which the symmetry of the water molecule is too high, even though we shall
refer to it for one last time in this chapter!

4.7 Optical activity

Classically, the signature that a molecule is optically active is that it rotates the plane of
polarized light. Although this is a simple feature which can be experimentally tested, it is
a surprisingly unhelpful way to describe the phenomenon. It is much easier to talk of two
beams of circularly polarized light which combine to give plane polarized light. The reason
why it is easier is that circularly polarized light samples the whole 360◦ space, and so it is
easy to move from one angle to another, and that is the important feature of the phenomenon
that we want to describe. Figure 4.26a shows, schematically, the connection between plane
polarized and circularly polarized light. In order to rotate the plane of polarized light we
simply have to go further around one circularly polarized component than the other. The
general idea is shown in Figure 4.26b. Put another way, if a molecule is to be optically
active, then it must be meaningful to say that light going through the molecule traces out
something like the alternative corkscrew (helical) paths shown as the difference between

(a) (b)

Figure 4.26 (a) The helixes at top and bottom represent light which is circularly polarized in

opposite directions. Their sum is the plane polarized light (centre). This has been shown by joining

(vertical lines) the two at their extremities, which correspond to the maxima in the centre. (b) A

symbolic representation of the way that the plane of polarization of plane polarized light (centre)

is rotated passing through optically active material. At left and right are shown the two circularly

polarized beams that, at the bottom, combine in the way shown in Figure 4.26a to give the plane

polarized beam. The central rectangle represents optically active material. This means that it contains

an internal helical structure and so it reacts differently to the two incoming helical beams (one may

be thought of as being of the same sense as that of the material, the other as of the opposite sense).

The different interactions slow the two circularly polarized beams differently (centre) so that the

emerging beams give rise to a rotated plane polarized beam (top)
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Figure 4.26b left and right. How is such a corkscrew path to be defined? The corkscrew path,
at the same time, encompasses both a translation and a rotation about the same axis. Both,
at the same time. It cannot be a symmetry-forbidden process for the two to go together.
In the water molecule they do not go together: Tz has a different symmetry to Rz , Tx has
a different symmetry to Rx and Ty has a different symmetry to Ry . For a molecule to be
optically active we need Tz to have the same symmetry as Rz ; Tx as Rx and Ty as Ry . One
can think of the possibility that any one pair would do, of course, but it turns out that this
does not happen. It is all or none. Either a molecule is optically active or it is not. That is,

Molecules3 may be optically active when they have a symmetry such that Tα and Rα

(α = x , y or z) transform as the same irreducible representation.

Comparison of this rule with the data given on the right-hand side of the compilation of
character tables in Appendix 3 confirms the applicability of the commonly stated criteria
for optical activity; optically active molecules possess neither a centre of symmetry nor a
mirror plane. They do not have any improper rotation operations.4 Indeed, the result has
already been demonstrated in this chapter, when we derived the transformations of rotations
from those of the corresponding translations (Figure 4.19 and the associated discussion).
There we saw that if there are improper rotation operations in the point group then Ta must
be of a different symmetry to Ra (a = x , y or z).

4.8 Summary

In this chapter, the vibrations of the water molecule were considered from two points of
view. Firstly, using chemical knowledge (p. 76) and, secondly, as a mechanical system, one
in which the 3N − 6 rule was used to obtain the vibrations (p. 80). The transformations of the
rotations of the entire molecule may be simply obtained from the translations by exploiting
the difference between proper and improper rotations (p. 90). Important to both is the
ability to generate and reduce reducible representations (p. 85). The symmetry description
of product functions (p. 92) is needed before selection rules can be formalized (p. 99).
Key here is the fact that only integrals over totally symmetric irreducible representations
are non-zero (p. 97) and these only occur when a direct product is formed between an
irreducible representation and itself (p. 98). A general selection rule was obtained (p. 102)
and its application to infrared (p. 105) and Raman (p. 105) spectroscopies demonstrated. It
can also be used to explain molecular optical activity (p. 107).

3 Note the word ‘molecules’ in this statement. It does not apply to crystals which, under some circumstances, can contain
mirror planes of symmetry and yet be optically active.

4 As an alternative general statement, one can say that optically active molecules do not have any Sn axis, where n can assume
any value (n = 1 corresponds to a mirror plane and n = 2 to a centre of symmetry). Sn axes will be introduced in Chapter 8.
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5 The D2h character table and the
electronic structures of ethene
(ethylene) and diborane

The present chapter has several objectives, in addition to those indicated by its title. First,
to introduce a new symmetry group and its character table. The group has been chosen
because it is related to the C2v group with which the reader is now familiar. It is not the
simplest group that could have been used to discuss the bonding in ethene and diborane –
the simplest would be the group D2, a group which will be met shortly – but this discussion
itself is only part of the objective of the present chapter. Use of the more complicated,
D2h (pronounced ‘dee two aich’) group will enable a start to be made to an exploration
of the relationships between groups, the corresponding character tables and the pictorial
representation of these character tables in nodal diagrams. A second objective is to present
and to use the rather important technique of projection operators. Projection operators occur
throughout quantum chemistry and are quite important. Despite their somewhat offputting
name they provide a very simple method of obtaining the mathematical form of functions
transforming as a particular irreducible representation.

5.1 The symmetry of the ethene molecule

The effect of bringing two CH2 units, each of C2v symmetry, together to form an ethene
molecule has the effect of generating additional symmetry elements. All of the symmetry
elements of the ethene molecule are shown in Figure 5.1. As shown in this figure, each CH2

fragment is turned into itself by the operations that were met when discussing the C2v point
group – that is, there are two perpendicular mirror planes, the intersection between them
defining a twofold axis, common to the two CH2 units. As Figure 5.1 shows, the union of
the two CH2 units to form ethene has the effect of generating two new C2 rotation axes,
the three twofold axes being mutually perpendicular. This immediately suggests their use
as Cartesian coordinate axes, a suggestion which we shall follow. Note that each of the
three C2 axes is unique: no two are similar. This is rather important because later in this
book sets of twofold axes which are not unique will be met. In ethene, each twofold axis
is unique because there is no operation in the group which interchanges any pair of them.
This assertion can be checked after reading the next few paragraphs and a complete list

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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H

H

H

H
i

C

C

C2(y)

C2(x)

C2(z)

σ(yz)

σ(xy)

σ(zx)

Figure 5.1 The symmetry elements of the ethene molecule; the list is complete except for the

identity element, which has to be added. Here, the centre of symmetry, i, is shown as a furry circle.

All of the other symbols have already been met

of the ethene symmetry operations has been obtained. In high-symmetry molecules it is
quite common for there to be a set of rotation axes (or mirror planes or other symmetry
elements) which are interchanged by other operations of the group. In such cases there is a
corresponding complication in the character table and it is this complication which we seek
to avoid here – it will be met in the next chapter – by working with another example of an
Abelian1 point group (the C2v group of Chapters 2, 3 and 4 is Abelian, something which
makes it particularly easy to work with).

When, as in this case, there are several apparently equally good choices for the z axis,
it is usual to choose that axis which contains the largest number of atoms and so we shall
take as z that twofold axis which passes through the two carbon atoms. It follows that the
(local) z axis of each CH2 fragment (of C2v symmetry) is coincident with the molecular z
axis. A helpful accident. Just as in the C2v case, the labels of the other coordinate axes are
determined by the convention that the planar molecule lies in the yz plane.

As is evident from Figure 5.1 the mirror planes of each CH2 fragment persist as symmetry
elements in the complete molecule. A third mirror plane exists in the ethene molecule. This
passes through the mid-point of the carbon–carbon bond and is perpendicular to that bond.
Figure 5.1 shows that each of the mirror planes is perpendicular to one of the coordinate
axes; equally, it lies in the plane defined by the other two coordinate axes. Rather than use
a σ v notation for the mirror planes, each mirror plane is conventionally labelled by the

1 It is not essential that the meaning of ‘Abelian’ be fully comprehended but this meaning was outlined at the end of the

Chapter 2.
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molecular coordinate axes which it contains: thus σ (xy), σ (yz) and σ (zx). There will be
more to say about these labels shortly. One of the difficult – and irritating – things about
group theory to the newcomer is the way that the systems of notation that it defines are not
always followed. Mirror planes, and more importantly the operation of reflection in them,
are particularly prone to this. Eventually, one becomes hardened.

All of the symmetry elements listed so far are similar to those encountered in the C2v

group. Additionally, however, the ethene molecule contains a centre of symmetry, a point
such that inversion of the whole molecule through it gives a molecule which is indistin-
guishable from the starting one. This centre of symmetry is indicated by the star-like point
at the centre of Figure 5.1. More strictly, a centre of symmetry is such that inversion of
any point of the molecule in it gives an equivalent point. Pictorially, if a straight line is
drawn from any point (the starting point) in the molecule to the centre of symmetry and
then extended an equal length beyond the centre of symmetry, the terminal point of the line
is symmetry-equivalent to the starting point. This element and the corresponding operation
are conventionally denoted by the lower case symbol i. A centre of symmetry, if there is one,
is always at the centre of gravity of a molecule. A molecule may possess several rotation
axes and several mirror planes but it can never possess more than one centre of symmetry,
any more than it can have more than one centre of gravity.

The symmetry elements of the ethene molecule provide a better example of the use of the
word ‘point’ when talking about a point group than do the symmetry elements of the water
molecule. As is evident from Figure 5.1, all of the symmetry elements have one point in
common: all pass through a common point, located at the centre of gravity of the molecule
(in this context, the identity element is best thought of as corresponding to a C1 rotation
axis). Of course, in this example the point is also a centre of symmetry but this is not a
requirement.

In summary, then, and talking now in terms of symmetry operations rather than symmetry
elements, the symmetry operations which turn the ethene molecule into itself are:

E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)

This group of symmetry operations is commonly given the shorthand label D2h. A detailed
discussion of such shorthand labels will have to be deferred until Chapter 9 because it
will not be until then that all of the symmetry operations on which the classification is
based will have been met; up to that point they will have to be discussed individually.
However, it is clear that the label D2h requires some immediate explanation. Point groups
which contain a principal Cn axis and, perpendicular to this principal axis, n twofold axes
are called dihedral point groups and hence carry the label Dn (D for dihedral). If one
CH2 group of the ethene molecule were to be slightly rotated about the z axis (so that the
molecule becomes non-planar) then all of the mirror planes would be destroyed, as would
the centre of symmetry. The resulting molecule would be of D2 symmetry (Figure 5.2). If,
perpendicular to the principal rotation axis – that of highest n value in Cn – in a molecule
there is a mirror plane, that is, a plane horizontal with respect to the Cn axis, then this mirror
plane is denoted σ h (recall that in Chapter 2 a mirror plane which is vertical with respect to
the principal rotation axes was denoted σ v). If a Dn group also contains a σ h mirror plane
then the point group is labelled Dnh. The present point group falls into this category once
a difficulty has been overcome. This is that in the present group, D2h, no mirror plane has
been called σ h (or σ v, for that matter). The reason for this is that in D2h there are three
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C H

H
H

H

C z

Figure 5.2 If the two ends of the ethene molecule are twisted in opposite senses around the z

axis, the molecular mirror plane is destroyed and all other mirror planes too. Three C2 rotation axes

remain (one is shown here head-on)

C2 axes, any one of which might equally well be chosen as the principal axis (our choice
of z axis was determined by convention, nothing more fundamental). The mirror plane
which should be labelled σ h would depend upon which particular C2 axis is nominated
as principal axis. In this particular case, where all three mirror planes are equally good
candidates for being labelled σ h (or, indeed, σ v), the egalitarian solution is to give none
of them either label but, rather, designate them as has been done above. However, egality
cannot alter the claim of the group to be recognized as one of the Dnh type; accordingly it is
labelled D2h.

5.2 The character and multiplication tables of the D2h group

In order to proceed further we must obtain the character table of the D2h point group.
The procedure which was adopted for the C2v case – considering the transformations of a
variety of basis functions – could be used to generate the D2h character table; the procedure
is entirely analogous. For this reason, space will not be devoted to it. Rather, the reader is
invited to use this method himself or herself in a problem which follows. The D2h character
table is given in Table 5.1. Perhaps the first reaction is to be horrified by its size. Any such
horror is misplaced. The bigger the table the greater the number of distinctions that can be
made using group theory and the more useful the table is. So, the size should be welcomed.
Actually, it is not as bad as it first appears. Table 5.1 is divided into quadrants. Three of these

Table 5.1

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)

Ag 1 1 1 1 1 1 1 1 s, dz2 , dx 2−y2

B1g 1 1 −1 −1 1 1 −1 −1 dx y

B2g 1 −1 1 −1 1 −1 1 −1 dzx

B3g 1 −1 −1 1 1 −1 −1 1 dyz

Au 1 1 1 1 −1 −1 −1 −1 fx yz

B1u 1 1 −1 −1 −1 −1 1 1 pz

B2u 1 −1 1 −1 −1 1 −1 1 py

B3u 1 −1 −1 1 −1 1 1 −1 px
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Figure 5.3 The fx yz orbital of a hypothetical atom placed at the centre of gravity of the ethene

molecule. Note that the phase of the orbital is positive in those regions of space in which the

product xyz is positive

are familiar – they are just a repetition of the C2v character table, even if the surrounding
labels are different. The fourth is also the C2v character table, but this time with all signs
reversed. Not surprisingly, we shall have more to say about this.

In Chapter 2 the irreducible representations of the C2v character table were generated
by considering the transformations of the orbitals of a unique atom (the oxygen in H2O).
In order to use this technique in the present problem it is necessary to first have a unique
atom. This can be done by placing a hypothetical atom at the centre of gravity of the ethene
molecule. Using just the familiar s, p and d orbitals it is not possible to generate the Au

irreducible representation of the D2h point group. This irreducible representation can be
generated using one of the f orbitals, the fxyz orbital, a diagram of which is shown in Figure
5.3. The orbitals of the hypothetical atom which generates each irreducible representation
are shown at the right-hand side of Table 5.1. Care has to be taken to use the coordinate
axis system shown in Figure 5.1.

Problem 5.1 Derive as much as you can of the character table of the D2h point group
(Table 5.1). Place an atom at the centre of gravity of the molecule and consider the
transformations of the orbitals of this atom.

For every group there exists a group multiplication table; that for the D2h group is given
in Table 5.2. Its derivation is analogous to the derivation of the C2v group multiplication
table (Table 2.1), although more tedious and error-prone. Just as in the C2v case it will be
found that when the appropriate substitution of characters for the corresponding symmetry
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Table 5.2

First operation

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)

Se
co

n
d

o
p
er

at
io

n

E E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)
C2(z) C2(z) E C2(x) C2(y) σ (zx) i σ (yz) σ (zx)
C2(y) C2(y) C2(x) E C2(z) σ (zx) σ (yz) i σ (xy)
C2(x) C2(x) C2(y) C2(z) E σ (yz) σ (zx) σ (xy) i

i i σ (yz) σ (zx) σ (xy) E C2(x) C2(y) C2(z)
σ (xy) σ (xy) i σ (yz) σ (zx) C2(z) E C2(x) C2(y)
σ (zx) σ (zx) σ (yz) i σ (xy) C2(y) C2(x) E C2(z)
σ (yz) σ (yz) σ (zx) σ (xy) i C2(x) C2(y) C2(z) E

operation is made in Table 5.2, any row of characters appearing in the D2h character table
turns Table 5.2 into a multiplication table which is arithmetically correct.

Problem 5.2 By combining (multiplying) pairs of operations of the D2h character
table show that Table 5.2 is correct. Some help in this problem is provided by Section
2.3. A further tip on how to do this problem is provided by Figure 5.4. Take a general
point in space (indicated by the solid star). Perform the first operation (in Figure 5.4,
σ (zx)) to give the cross-hatched star, follow it with the second operation (in Figure 5.4,
i) to give the open star. Then ask ‘what single operation turns the solid star into the
open one’ (in Figure 5.4, C2(y)). One concludes that σ (zx) followed by i is equivalent
to C2(y).2 Of course, this is not new, it is just Figure 4.18 applied to a case where all of
the symmetry operations exist in their own right.

Problem 5.3 Take any four of the irreducible representations of Table 5.1 and by
substituting the appropriate character for each operation in Table 5.2 show that in each
case an arithmetically correct multiplication table is obtained. If needed, Section 2.4
will provide guidance on this problem.

5.3 Direct products of groups

There are several interesting features of Table 5.2; for example, it is symmetric about either
diagonal. Another is the way that it may be broken into four smaller blocks, pairs of which
are identical. Similarly, as has been seen, the D2h character table (Table 5.1) may also be
broken into four blocks but now three of the blocks are identical and in the fourth the same
set of characters appear, but with all signs reversed. There is a simple reason for these
patterns. As is evident from Table 5.2 (and Figure 5.4), the operation σ (xy) is equivalent
to C2(z) followed by the inversion i. Similarly, σ (yz) equals C2(x) followed by i and σ (zx)

2 The reader may have spotted a similarity between Figure 5.3 and Figure 4.18. Indeed, they are variants on a common theme.

There is one other variant – a reflection in a mirror plane followed by a rotation about an appropriately placed C2 axis is equivalent

to inversion in a centre of symmetry.
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H

H

i

iC

C

C2(y)

C2(y)

σ(zx)

σ(zx)

H

H

Figure 5.4 An illustration that σ (zx) followed by i is equivalent to C2(y). In a similar way a C2 can

always be treated as σ combined with i; i can always be represented as C2 combined with σ . Figure

4.18 is relevant

equals C2(y) followed by i. It follows that the operations of the D2h group may be rewritten
as follows:

E C2(z) C2(y) C2(x)
are equivalent to

i σ (xy) σ (zx) σ (yz)
are equivalent to

E C2(z) C2(y) C2(x)︸ ︷︷ ︸
followed by E

E C2(z) C2(y) C2(x)︸ ︷︷ ︸
followed by i

That is, the operations of the D2h group may be obtained by forming all possible products
of members of the set E, C2(z), C2(y), C2(x) which, as has already been seen, form the
D2 group – with members of the set E, i – two operations which together form a group
called the Ci group (pronounced ‘cee eye’), to which we shall return shortly. Technically,
one says that ‘the D2h group is the direct product of the D2 and Ci groups’ – where ‘direct
product’ means ‘form all possible products of one group of symmetry operators with all of
the symmetry operators of the other’.3 When the operations of a group may be expressed
as direct products in this way, so too, may the corresponding character tables. That is, the
character table of the D2h group is the direct product of those of the D2 and Ci groups (and
the phrase ‘direct product’ now refers to characters but its meaning is otherwise unaltered).

3 In this section an aufbau approach is used, a larger group being built up from subgroups. An important notation appears

if the inverse pattern is studied and the decomposition of a group into subgroups is considered. Because both Ci and D2 may be

obtained from D2h in one way, and only one way, they are both said to be invariant subgroups of D2h . In contrast, some other

subgroups of D2h – one is C2v ; another is C2 – are not invariant subgroups because there is more than one way that they can be

generated. This topic is dealt with more fully in Section 9.3; it is a topic which will become particularly important in Chapter 14.



JWBK182-05 JWBK182/Kettle September 7, 2007 13:17

116 D2H CHARACTER TABLE AND THE ELECTRONIC STRUCTURES OF ETHENE (ETHYLENE) AND DIBORANE

Table 5.3

D2 E C2(z) C2(y) C2(x)

A 1 1 1 1
B1 1 1 −1 −1
B2 1 −1 1 −1
B3 1 −1 −1 1

Table 5.4

Ci E i

Ag 1 1

Au 1 −1

The character table of the D2 group is given in Table 5.3 and that of the Ci group in Table
5.4. They should, together, be compared with Table 5.1. The four blocks in Table 5.1 are
just the characters given in Table 5.3 with signs determined by Table 5.4. Thus in three of
the blocks Table 5.3 reappears with unchanged sign and in the fourth all of the characters
are multiplied by −1.

Problem 5.4 Multiply the character Table 5.3 by the character Table 5.4 and thus
generate Table 5.1. Note that ‘multiply’ here means different things for operations and
characters. For the latter it means simple arithmetic multiplication but for the former it
means ‘carry out the operations one after the other’. The way that the relevant operations
multiply is indicated earlier in this section; in order to generate Table 5.1 it is necessary
to maintain the correct correspondence between products of characters and products of
operations.

As we have already noted, an interesting thing about Table 5.3 is that the sets of characters
that appear in it are the same as those of the C2v point group (Table 2.4), although the
operations and irreducible representation labels are not the same in the two groups. Groups
which have character tables containing identical corresponding sets of characters are said
to be isomorphous groups.4 Isomorphous groups need have no operation in common –
except, of course, the identity operation, which appears in all groups. However, isomorphism
between character tables means that there is a close connection between the groups. Thus,
something true in one group has a counterpart in an isomorphous group. An illustration of
this is given in Section 12.1.

In the Ci character table (Table 5.4) the only distinction between the irreducible repre-
sentations is the behaviour of the quantities they describe under the operation of inversion
in the centre of symmetry, i. Both irreducible representations are denoted by A but some-
thing which is transformed into itself (i.e. is symmetric) under the inversion operation is

4 Strictly, their multiplication tables must also show an analogous similarity but, in practise, the definition in the text is

adequate.
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distinguished from one which is turned into minus itself (i.e. is antisymmetric) by the
subscripts g (from gerade, German for ‘even’) and u (from ungerade, German for ‘odd’)
respectively; it is always true that a g suffix indicates an irreducible representation which
describes something which is symmetric with respect to inversion in a centre of symmetry,
whilst the suffix u describes something which is antisymmetric. The reader will find it help-
ful to compare the use of g and u suffixes in the irreducible representation labels of Table
5.1 with the corresponding characters under the i operation.

Problem 5.5 For each irreducible representation in Table 5.1 which carries a g suffix
(e.g. Ag) list the character under the i operation. Repeat this exercise for each irreducible
representation carrying a u suffix (e.g. Au). Compare your result with Table 5.4.

Two final points. Lines have been included in Tables 5.1, 5.2 and 5.4 to clarify the
discussion in the text. Normally they are omitted and, indeed, columns in these tables are
sometimes permuted, concealing the pattern which is apparent from the way that these
have been written here. In the compilation of character tables in Appendix 3 those that are
direct products involving Ci have lines included (and, just for good measure, a few which
are direct products involving a group which is isomorphous to Ci have lines included too).
Finally, the choice of labels for the irreducible representations in Table 5.1. For the C2v

point group, it will be recalled that the irreducible representations that were symmetric
with respect to rotation by C2 (a character of +1 under this operation) were labelled A and
those that were antisymmetric (a character of −1) were labelled B (Section 2.4). Exactly
the same convention is used in D2h. The difference, of course, is that there are three times as
many distinct C2 rotations in the latter, and so more B’s, than in C2v. In C2v, there are equal
numbers of irreducible representations labelled A and B; in D2h, there are three times as
many B’s as A’s. The suffixes 1, 2 and 3 on the B’s in D2h indicate under which C2 rotation
the character is +1 (there always is one). Commonly, 1 indicates z, 2 indicates y and 3
indicates x. There is the potential for confusion between different authors, and it happens.
Perhaps, in retrospect, labels such as Bz , By and Bx might make some sense, but the 1, 2, 3
convention is firmly established. The distinction between the g and u suffixes has already
been discussed.

5.4 Nodal patterns of the irreducible representations
of the D2h group

Although the reader may have been persuaded that the size of the character table of the D2h

group is helpful rather than forbidding, Table 5.1 probably remains somewhat overpower-
ing. It is the purpose of the present section to draw pictures of the irreducible representations
in Table 5.1 and so, hopefully, make them more familiar. A convenient starting point is
with Tables 5.3 and 5.4; we start by drawing their irreducible representations as nodal
patterns and then combine them, in the direct product fashion of the previous section, to
obtain those of Table 5.1. First we look at Table 5.3; its similarity to the C2v character table
means that the nodal patterns are also similar. They are given in Figure 5.5. The patterns
of + and − in the diagrams are the same as those of Figure 2.17, but the symmetry operations



JWBK182-05 JWBK182/Kettle September 7, 2007 13:17

118 D2H CHARACTER TABLE AND THE ELECTRONIC STRUCTURES OF ETHENE (ETHYLENE) AND DIBORANE

C2(y)C2(z)

C2(x) E

A1 B1

B2 B3

+ +

++

− +

+−

− −

++

+ −

+−

Figure 5.5 Nodal patterns of the irreducible representations of the D2 point group. The symmetry

relationships between the quadrants is shown at the top. Although the patterns are the same as

those of the C2v group (Figure 3.1) the symmetry labels differ. The significance differs too. In C2v it

was possible to carry out all operations of the group on a point and the z coordinate of the point

did not change. D2 is much more three-dimensional

to which they refer are different. These diagrams do not contain a centre of symmetry.
We must remember this after we have worked with Table 5.4 and, subsequently, turn to its
direct-product combination with Table 5.3. Now to Table 5.4. It is simple, and so too must
be the corresponding nodal diagrams of the irreducible representations. They are drawn in
Figure 5.6 (note that the horizontal line is a phase line, not an indication of a mirror plane
operation). The nodal patterns of the D2h group are combinations of those of Figures 5.5
and 5.6. Although the combinations are those of a direct product (i.e., every entry in Figure
5.5 is combined with every entry in Figure 5.6), care has to be taken. Consider Figures 5.7
and 5.8. Figure 5.7 shows the B2 pattern of Figure 5.5 combining with the Au pattern of
Figure 5.6, everything being placed in somewhat arbitrary positions and orientations. A
more sensible arrangement is that in Figure 5.8.5 The two separate layers shown at the top
are repeated at the bottom but in counter-perspective, so that the ‘bottom’ layer is bigger
than the ‘top’, so that it can be seen. But in Figure 5.7 the bottom part may not seem
consistent with the upper (the very bottom circle having the wrong phases). The reason is
that two of the C2 rotation operations of D2 appear on the ‘bottom’ layer of the diagrams
for D2h (Figure 5.9). So, nodal diagrams have to be combined with care.

Figure 5.9 gives real insight into the character table, Table 5.1. Apart from the first, all
of the irreducible representations of Table 5.1 contain the same number of +1 and −1’s.

5 Figure 5.7 was included in the hope that it would make Figures 5.8 and 5.9 more understandable.
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Ag

E

i

+

Au

−

++

Figure 5.6 Nodal patterns of the irreducible representations of the Ci point group. The effect of the

symmetry operations is shown at the top, where, for convenience, the centre of symmetry is shown

as a dark circle

One might reasonably think that they are therefore rather similar. Figure 5.9 shows that this
is not the case. The B1u, B2u and B3u irreducible representations describe objects, orbitals,
mathematical functions, whatever, which are inherently single-noded. The B1g, B2g and
B3g describe functions which are double-noded, whilst Au describes triple-noded functions
(which is why it had to be introduced using an f orbital) and Ag describes zero-noded
functions. We begin to see the pattern. The bigger the character table, the greater the range

+
++− −

−

++− −

+
+

−
−

x

i

B2u(D2h)

B2(D2)  Au(Ci)

Figure 5.7 The nodal pattern of the B2u irreducible representation of the D2h point group, obtained

as the direct product of the B2 of D2 with the Au of Ci. The B2 nodal pattern has been twisted relative

to that shown in Figure 5.5 and no attempt has been made to bring the Au into coincidence with it.

With this strange combination, the resulting B2u pattern is shown at the bottom, where the centre

of symmetry of Ci has been added, for convenience.
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−
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−
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+
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Figure 5.8 The B2u nodal pattern of Figure 5.7 in a more symmetrical arrangement (top), again

showing the centre of symmetry, and a more convenient way of representing this combination

(bottom). The latter is drawn in counter-perspective, so that the upper layer in the top diagram is

contained within the smaller circle of the bottom diagram. The lower layer in the top diagram is

represented by the areas between the two circles in the bottom diagram. There is a hidden subtlety

in this diagram, a hidden rearrangement. All of the C2 operations were contained in the very top

part of Figure 5.7, but in the bottom part of Figure 5.8 two of these C2 connect the inner circle with

the outer, only one connects points within the individual circles.

of nodalities which can be distinguished. So, the C2v character table of Chapters 2, 3 and 4
offered no sensitivity to triply-noded functions; one of the nodes had to be ignored. Other
nodes were sometimes ignored too – the oxygen 2pz orbital of Figure 2.15c has had a node
ignored. The key thing is whether there is a symmetry operation which interchanges the
lobes of an orbital such as 2pz . If there is an operation which interchanges them, there is
a mechanism by which their relative phases can be compared. The greater the number of
symmetry operations the less likely it is that nodes are ignored. The size of Table 5.1 is
potentially beneficial! Note that it is possible to play this game backwards. Hopefully, the
reader will have already studied the transformations of the orbitals of an atom placed at the
centre of gravity of the ethene molecule. We can now see, by inspection of Figure 5.9, that
a p orbital on such an atom can never have Au, B1g, B2g or B3g symmetries – it does not have
enough planar nodes. The game played backwards. Also, of course, it is inherently ‘u’, so
there is an associated reason for excluding the last three.

Problem 5.6 The nodal patterns in Figure 5.9 are really arranged in three-dimensional
space. Use Figure 5.1 – and the eight symmetry-related volumes between the mirror
planes shown there – to sketch diagrams of the three-dimensional patterns for which
Figure 5.9 is a shorthand.
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B3g

C2(y)

C2(z)

C2(x) σ(xy)

σ(yz)

σ(zx) E

i

x

yz

Figure 5.9 The nodal patterns of the irreducible representations of the D2h point group. The asso-

ciation with symmetry operations is given in the top diagram. The arrangement of the symmetry

operations is the ‘natural’ one; that is, it is one that displays the characteristics of the irreducible

representations. So, B1u, B2u and B3u are inherently dipolar and this is evident in the patterns

5.5 The symmetries of the carbon atomic orbitals in ethene

The character table of the D2h group given in Table 5.1 will now be used in a qualitative
discussion of the electronic structure of the ethene molecule. At first sight one might expect
that this discussion would be more complicated than that for the water molecule because
we now have six atoms to consider. On the other hand, instead of working with a group with
only four irreducible representations we now have eight, so, as the reader should already



JWBK182-05 JWBK182/Kettle September 7, 2007 13:17

122 D2H CHARACTER TABLE AND THE ELECTRONIC STRUCTURES OF ETHENE (ETHYLENE) AND DIBORANE

H

H2s (b)

C2(z)

2s (a)

H

H

+ +

σ(zx)

σ (yz)

Figure 5.10 Those symmetry operations under which (together with the identity operation) the two

carbon 2s orbitals of ethene are not interchanged

be suspecting, it might be hoped that the increase in symmetry will offset the greater
molecular complexity. The first step is, as always, an investigation of the transformation
properties of the various sets of atomic orbitals. Linear combinations of these orbitals will
then be formed which transform as irreducible representations of the D2h group. Finally, the
interaction between orbitals of the same symmetry species will be included and a qualitative
molecular orbital energy level diagram obtained.

The valence shell atomic orbitals that must be considered are the 2s and 2px , 2py and 2pz

orbitals of the two carbon atoms and the four 1s orbitals of the terminal hydrogen atoms. Not
one of these orbitals is unique – there is always at least one other, symmetry related, atom
in the molecule with a similar orbital. This means that, in a sense, the present discussion
must start at the point at which the corresponding discussion of the water molecule ended
in Chapter 3. Just as for the hydrogen 1s orbitals in the water molecule, the transformations
of corresponding orbitals of symmetry-related atoms must be considered together. As a
simple example, consider the 2s orbitals of the two carbon atoms (Figure 5.10). Each of these
orbitals remains itself under the C2(z) rotation, the σ (zx) and σ (yz) reflection operations and,
of course, under the identity operation. For all of the other symmetry operations of the group
the two orbitals are interchanged. Now, if an orbital is unchanged by a symmetry operation
it makes a contribution of unity to the resultant character, whilst if it goes into another
member of the same set it contributes zero, so the characters describing the transformation
of the carbon 2s orbitals are:

E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)
2 2 0 2 0 0 2 2

Either by trial and error, or by systematic use of the group orthonormal relationships which
were met in Chapter 3 (Section 3.1) and, briefly, given a more precise meaning in Chapter 4
(Section 4.4), it is concluded that this reducible representation has Ag + B1u components.6

The 2s orbitals of the two carbon atoms in the ethene molecule, considered in isolation,
resemble the two hydrogen 1s orbitals in the hydrogen molecule (or in the water molecule).
It is reasonable, therefore, to anticipate that the linear combinations of these orbitals which
transform as Ag and B1u will be similar to those which were obtained when discussing the

6 Note a useful trick here, one sometimes used by experienced workers to impress the inexperienced. The character under the

i operation is 0. This can only arise if the number of g irreducible representations spanned equals the number of u. So, if at any

point there is an imbalance, one immediately knows in which direction to move to redress the balance.
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water molecule (Figures 3.2, 4 and 6). That is, if we call the carbon 2s orbitals 2s(a) and
2s(b), as shown in Figure 5.10, then the correct linear combinations are of the form:

1√
2

(
2s (a) + 2s (b)

)
and

1√
2

(
2s (a) − 2s (b)

)
Later in this chapter a systematic way of deriving such linear combinations will be ob-
tained and these functions can then be checked. Actually, whenever there are just two
symmetry-related orbitals to be considered, the correct combinations are sum and differ-
ence combinations – like those above – irrespective of the details of the symmetry. Of the
two combinations given above it is easy to demonstrate that the first has Ag symmetry and
the second B1u. There is a rather subtle aspect of this. Suppose that instead of choosing in
Figure 5.10 to give the two carbon 2s orbitals the same phase they had been given opposite
phases. The first combination above would, in this case, be an out-of-phase combination of
the two orbitals, notwithstanding the + sign in the mathematical expression. The solution
to this paradox is that in this case the first combination would have had B1u symmetry and
not Ag whilst the second would be the Ag combination. The systematic method of obtaining
such functions takes account of our arbitrary choices of orbital phases and corrects for
them. It is important to note that one cannot work with combination functions like those
given above unless the phases chosen for the component atomic orbitals are known. One
might think that the simple way would be to choose all orbitals to be of the same phase.
Unfortunately such a simplification is not always possible. Thus, there are two alternative
ways of drawing the 2pz orbitals on the two carbon atoms; these are shown in Figure 5.11.
In Figure 5.11a the 2pz orbitals are chosen so that the phasing of the 2pz orbitals coincides
with that of the molecular coordinate axis system – the positive lobes point towards positive
z and the negative lobes towards negative z. In Figure 5.11b the phase on one centre is
reversed. This latter choice of phases has the advantage that under, say, the C2(x) rotation
operation the 2pz orbitals are simply interchanged. In the choice of Figure 5.11a they are

(a)

x

z

y

++ −−

(b)

+− −+

Figure 5.11 Alternative phase choices for the 2pz orbitals of the carbon atoms in ethene. See the

text for a discussion
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not only interchanged by this operation but the phases of their lobes are also reversed. Here
there is no simplification offered by convention; different people may, with equal validity,
choose the phases differently. It follows that care has to be taken to check the basic choice
of phases used by each person writing on the subject. If we choose the phases indicated in
Figure 5.11a then the sum and difference combinations

1√
2

(
2pz(a) + 2pz(b)

)
and

1√
2

(
2pz(a) − 2pz(b)

)
are, respectively, the B1u and Ag (C C σ antibonding and bonding respectively) combi-
nations of carbon 2pz orbitals. If were to choose the phases of Figure 5.11b then these
would, respectively, have been the Ag and B1u combinations. The simplest way of avoid-
ing the choice-of-phase problem is to state the symmetry of the combination, Ag or B1u.
These combinations of carbon 2pz orbitals are shown schematically in Figures 5.12a and
5.12b. Also shown are the Ag and B1u combinations of carbon 2s orbitals as Figures 5.12c
and 5.12d. In these diagrams the atomic orbitals on the two carbon atoms are shown as
overlapping each other, although this overlap has been neglected in the expressions given

(a)

(b)

(c)

(d)

+

+

+ −

+− −

+
− −

Figure 5.12 The B1u and Ag (bonding and antibonding) combinations of 2pz and 2s orbitals in

ethene: (a) B1u (bonding) combination of 2pz orbitals; (b) Ag (antibonding) combination of 2pz

orbitals; (c) Ag (bonding) combination of 2s orbitals; (d) B1u (antibonding) combination of 2s

orbitals
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above. This inconsistency is tolerated because it gives mathematical simplicity together
with diagrammatic clarity.

Although detailed calculations did not fully justify it, in our discussion of the water
molecule it was found to be convenient to mix together the oxygen 2s and 2pz orbitals.
Since they had the same symmetry this mixing is allowed and the resultant picture that
emerged was closely related to simple ideas on the bonding in the water molecule – and
was an advantage when later looking at the latter in more detail. For the same reason the
carbon 2s and 2p orbitals will be mixed in the present example forming, effectively, carbon
sp hybrids. If these hybrids had been formed as a first step, a simpler discussion would
have resulted. Unfortunately, this was not permissible because at that stage it had not been
established that the carbon 2pz and 2s orbitals transform in a similar way (one says ‘they
transform isomorphously’). Instead of going back to the start of the argument and working
with sp hybrids it is simplest to simply combine the Ag combinations of carbon 2s and 2pz

orbitals and similarly for the B1u – the end result is the same. The result of mixing together –
essentially, taking sum and difference combinations of – the two Ag orbitals of Figure 5.12
and (separately) the two B1u orbitals is shown schematically in Figure 5.13. In each case
both in-phase and out-of-phase combinations are shown. Two of these four orbitals will
carry through, unmodified, into the final description of the ethene molecule. These are an
Ag combination which is to be identified with the C C σ bonding orbital (Figure 5.13a)
and a B1u combination which is the corresponding C C σ antibonding orbital (Figure
5.13b). The other Ag and B1u combinations (Figures 5.13c and 5.13d, respectively), which
are largely directed away from the C C bond, are involved in interactions with the terminal
hydrogen atoms.

(a)

(c)

(b)

+
− −

−+
− +

++
− −

(d)

−+
− +

Figure 5.13 (a) The Ag C C σ bonding orbital in ethene (this is, essentially, Figure 5.12a +
Figure 5.12c). (b) The B1u C C σ antibonding orbital in ethene (this is, essentially, Figure 5.12b +
Figure 5.12d). (c) The Ag carbon-based orbital involved in C–H bonding in ethene (essentially,

Figure 5.12c–Figure 5.12a). (d) The B1u carbon-based orbital involved in C–H bonding in ethene

(essentially, Figure 5.12d − Figure 5.12b)
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++

−−

x

z

y

Figure 5.14 Carbon 2px orbitals in ethene. The phases of the orbitals have been chosen to be

identical to those of the x axis

The other 2p orbitals of the carbon atoms are readily dealt with. For the pairs of 2px and
2py orbitals a similar phase ambiguity exists as for the 2pz orbitals, although it is usually
found to be less troublesome. In this chapter the phases shown in Figures 5.14 and 5.15
have been chosen. These orbitals transform as follows:

2px : B2g + B3u

2py : B3g + B2u

Symmetry-correct linear combinations transforming as the above irreducible representa-
tions are sum and differences of the carbon 2px and 2py orbitals of Figures 5.14 and 5.15
and are shown in Figures 5.16 and 5.17. The B3u combination of carbon 2px orbitals shown
in Figure 5.16 is immediately identified as the carbon–carbon π bonding orbital and the
B2g combination as the carbon–carbon π antibonding orbital. Both of these will be carried
through to the final energy level diagram.

This is a suitable point at which to define the labels σ and π . It is convenient to think
of just two bonded atoms (which may be part of a larger molecule) and of a line which
connects their nuclei. If an orbital – be it bonding or antibonding, localized or delocalized –
has no nodal planes lying in the internuclear line then it involves a σ interaction between
the two nuclei. If there is a single nodal plane then the interaction is of π type; if two nodal

y

x

z

+

+
−

−

Figure 5.15 Carbon 2py orbitals in ethene. The phases of the orbitals have been chosen to be

identical to those of the y axis
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B3u

+

−

B2g

+

− +

−

Figure 5.16 The B3u (upper) and B2g (lower) combinations of carbon 2px orbitals in ethene, shown

in perspective

planes then it is δ. If a molecule is planar then the σ /π distinction extends over the entire
molecule and one can correctly distinguish σ molecular orbitals from π molecular orbitals
(the former are symmetric and the latter antisymmetric with respect to reflection in the
molecular plane).

There is an element of inconsistency in Figures 5.16 and 5.17. The only difference between
the 2p orbitals shown in Figures 5.14 and 5.15 is that the former are rotated through 90◦

relative to the latter. One would therefore expect to find that Figure 5.17 is identical to Figure
5.16 except for this same rotation. In anticipation that the primary interaction involving the

(b)

(a)

B3g

B2u

+

+

−
−

+

−

−
+

Figure 5.17 The B2u (upper) and B3g (lower) combinations of carbon 2py orbitals in ethene, shown

in perspective
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B2u orbitals of Figure 5.17 is with the terminal hydrogen atoms, whereas there is no such
interaction involving the orbitals of Figure 5.16, the carbon–carbon overlap has been ignored
in Figure 5.17.

5.6 The symmetries of the hydrogen 1s orbitals in ethene

We now turn our attention to the four hydrogen atoms of the ethene molecule and consider
the 1s orbital on each (which will be taken to each have the same phase). These orbitals
are all equivalent to one another – they may be interconverted by the symmetry operations
of the group – and so all four must be considered together. They are shown in Figure 5.18
together with the symmetry elements of the D2h group. Of the entire set of corresponding
symmetry operations only the identity operation and the C2(zx) operation leave any of the
hydrogen 1s orbitals in their original position and each of these operations leaves all four
orbitals unmoved; all other operations interchange all of them. The transformations of the
four hydrogen 1s orbitals therefore generate the reducible representation:

E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)
4 0 0 0 0 0 0 4

This representation provides a useful illustration of the use of the method described in
Section 3.3 – reducing it by trial and error could be a bit tedious. First select an irre-
ducible representation of the D2h group and multiply each character of the above reducible
representation by the corresponding character of our selected irreducible representation.
Add these products together and then divide by the order of the group (8 in the present

C2(y)

C2(x)

C2(z)

σ (zx)

σ (yz)

σ (xy)

D

C

B

A

i

Figure 5.18 The four hydrogen 1s orbitals in ethene together with the symmetry elements of the

D2h group (excluding the identity)
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case). The integer which results7 is the number of times the selected irreducible represen-
tation appears in the reducible representation. Thus, if the Ag irreducible representation is
selected the calculation proceeds as follows:

E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)
4 0 0 0 0 0 0 4

Ag 1 1 1 1 1 1 1 1
Products 4 0 0 0 0 0 0 4

so that the sum of products is 8. Division by the order of the group yields the result that the
Ag irreducible representation appears once. Proceeding in this way with each irreducible
representation selected in turn from the character table, it is concluded that the reducible
representation has components

Ag + B3g + B1u + B2u

That is, it is possible to form a linear combination of the hydrogen 1s orbitals which has Ag

symmetry, another which has B3g and so on. What are these combinations? This is the next
problem which we have to solve.

Problem 5.7 Show that the above reducible representation contains B3g + B1u + B2u

components in addition to the Ag deduced in the text.

5.7 The projection operator method

Although not essential to a qualitative discussion of the bonding in the ethene molecule, it
is very useful at this point to seek combinations of the four hydrogen 1s orbitals, which,
separately, transform as Ag, B3g, B1u and B2u (combinations such as these are often referred
to as ‘symmetry-adapted functions’). This will provide a relatively simple introduction to
the important projection operator method. As a bonus, some idea of the form of the C–H
bonding molecular orbitals will be obtained. It would perhaps help to make the task simpler if
we knew the answers in advance. The nodal patterns of Figure 5.9 provide a simple solution.
Because they lie in a plane which contains the centre of symmetry, the four hydrogen 1s
orbitals, effectively, lie in a plane half-way between the two shown in all of the diagrams in
Figure 5.9. It follows that only those diagrams with matching phases ‘top’ and ‘bottom’ are
acceptable. The hydrogen 1s orbitals must have the same phase in each. There are only four
diagrams which satisfy this requirement, the Ag, B3g, B1u and B2u – and these, of course,
are the same irreducible representations spanned by the four hydrogen 1s orbitals. So, the
linear combinations of hydrogen 1s orbitals which we will obtain by the projection operator
method must have the Ag, B3g, B1u and B2u phase patterns of Figure 5.9. This method is a bit
more powerful than it seems. Suppose we had not generated the reducible representation and
decomposed it into its irreducible components; we did not know that we were looking for
Ag, B3g, B1u and B2u patterns. The method still works! One simply asks the question ‘which

7 If a nonsense answer is obtained (for example, a fraction) then either an arithmetical mistake has been made or the reducible

representation has been wrongly generated – this is one way in which such mistakes are commonly discovered.



JWBK182-05 JWBK182/Kettle September 7, 2007 13:17

130 D2H CHARACTER TABLE AND THE ELECTRONIC STRUCTURES OF ETHENE (ETHYLENE) AND DIBORANE

Table 5.5

E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)

Under the operation
A becomes A D B C C B D A

projection patterns are compatible with the hydrogen 1s orbital set?’.8 By ‘compatible’ one
means that the pattern does not demand non-existent nodal characteristics inherent in the
basis set. So, as we have seen, the hydrogen 1s orbitals cannot be antisymmetric with respect
to reflection in the mirror plane containing the molecule. In the present case, just Ag, B3g,
B1u and B2u satisfy this criterion. We have obtained both the symmetries and the form of the
symmetry-adapted functions in one simple step! It is probably using a method such as this,
perhaps subconsciously, that the expert can impress the beginner by their ability to write
down symmetry-adapted functions without effort. But the beginner would probably be well
advised to check their own answers with the projection operator method; even experts can
make mistakes. And when a symmetry becomes complicated, that of a cube for instance,
suitable nodal patterns may not be readily available and the projection operator method
becomes that of choice. So, now, the projection operator solution to the problem!

We first consider the transformations of the individual hydrogen 1s orbitals in much
greater detail. Previously, we have only been concerned with whether or not a hydrogen
1s orbital was turned into itself under a particular symmetry operation. If it did not do
this the destiny of the hydrogen atom did not concern us. This is no longer the case. We
shall now look in detail at one of the four hydrogen 1s orbitals and determine the precise
effect of each symmetry operation on this chosen orbital. Label the hydrogen 1s orbitals
as shown in Figure 5.18 and consider the transformation of the orbital which is labelled A.
The following discussion will be made easier if an eye is kept on Figure 5.18 and another(!)
on Table 5.1 and the individual characters that it contains. Under the identity operation, A
remains itself; under the C2(z) rotation it becomes the orbital labelled D; under the C2(y)
rotation it becomes B and so on. A complete list of its transformations is given in Table 5.5;
it is important that the reader checks that this table is correct.

Problem 5.8 Use Figure 5.18 to check that Table 5.5 is correct.

We are now in a position to generate symmetry-correct linear combinations of the hy-
drogen orbitals. We know that the set A, B, C and D gives rise to a B1u combination and we
shall now generate this combination (we select it because its generation highlights all the
important points). Consider orbital A and the effect of the C2(y) operation. Table 5.1 shows
that under this operation a function transforming as B1u changes sign. It follows, therefore,
that orbitals A and B must appear in the B1u linear combination in the form (A−B) since
this expression changes sign under the C2(y) operation. Now consider the C2(x) and C2(z)

8 Here it is assumed that all of the orbitals in the set under consideration (which might be bigger than the four hydrogen 1s

orbitals in the text) are symmetry-related. If not all of them are, then they must be broken up into sets which are. The method then

has to be applied to each of these in turn.
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operations – under which A interchanges with C and D respectively. Because a B1u function
changes sign under C2(x) but retains its sign under C2(z) it is evident that C and D must
appear as −C and +D. It follows that the B1u combination is of the (normalized) form:

1
2
(A − B − C + D)

It is a simple matter to check that this combination does indeed transform correctly as B1u

under all of the operations of the group. The important thing to recognize is the way that the
sign with which an individual orbital appears in the result is determined by the appropriate
character of the irreducible representation (which, of course, is made explicit in Figure 5.9).

The general method is at once evident. In order to generate a required linear combination
we simply take the entries in Table 5.5 and multiply each entry by the corresponding
character. The sum of the answer so obtained is the desired linear combination (although
it will not be normalized). As an illustration of this method let us generate the B3g linear
combination of hydrogen 1s orbitals by this, the projection operator, method:

E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)

Under the operation
A becomes A D B C C B D A
B3g 1 −1 −1 1 1 −1 −1 1
Product A −D −B C C −B −D A

Sum: 2A − 2B + 2C − 2D

The linear combination generated by this procedure is 2A − 2B + 2C − 2D. This function is
not normalized since the sum of squares of coefficients appearing is 16, not 1; to normalize
we have to divide by

√
16 = 4 and so obtain the normalized B3g combination.

1
2
(A − B + C − D)

The Ag and B2u combinations are obtained in a precisely similar way. All four linear
combinations are given in Table 5.6, and shown in Figure 5.19. Such combinations are also
often referred to as ‘symmetry-adapted combinations’.

Problem 5.9 Use the projection operator method to obtain the (normalized) Ag and
B2u combinations of hydrogen 1s orbitals.

Table 5.6

Linear combination of 1s orbitals of hydrogen
Symmetry species atoms in ethene

Ag
1/2(A + B + C + D)

B3g
1/2(A − B + C − D)

B1u
1/2(A − B − C + D)

B2u
1/2(A + B − C − D)
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(a)

(c)

+ +

++
Ag

(b)

− +

−+
B3g

+ −

−+
B1u

(d)

− −

++
B2u

Figure 5.19 The symmetry-adapted combinations of hydrogen 1s orbitals in ethene. Note that the

relative phases chosen for the individual hydrogen 1s orbitals are evident in the Ag combination.

Here, all were chosen with identical phases but if one had been chosen with a phase opposite to

all of the others then this would appear as a − phase in the Ag combination above. The sequence

in which these combinations are shown is that in which they are listed in the text

It is to be emphasized that each of the four diagrams in Figure 5.20 pictures one orbital
and not four. An instructive exercise at this point is to attempt to generate from the data in
Table 5.5 a combination transforming as an irreducible representation which is absent (and
so is not listed in either Table 5.6 or Figure 5.20) – for example B1g. It will be found that the
projection operator method has the great advantage of being self-correcting! The reason is
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C−H antibonding 
(Figure 5.19c − 5.13d)

B3g 

C−H antibonding 
(Figure 5.19b − 5.17b)

B2u 

C−H antibonding 
(Figure 5.19d − 5.17a)

Ag 

C−H antibonding 
(Figure 5.19a − 5.13c)

Figure 5.20 Bonding and antibonding molecular orbitals in ethene. Each is related approximately

to those in earlier figures from which it is derived
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obvious (if not, look at Figure 5.9); anything transforming as B1g has to be antisymmetric
in the molecular plane – and the hydrogen 1s orbitals are symmetric, not antisymmetric,
something that we referred to earlier.

Problem 5.10 Attempt to generate a combination of 1s orbitals which does not, in
fact, exist. Any of the irreducible representations B1g, B2g, Au or B3u may be chosen for
this.

5.8 Bonding in the ethene molecule

The symmetry-adapted linear combinations of hydrogen 1s orbitals which have been ob-
tained are of the correct symmetries to interact with some of the carbon orbitals. Thus, the
Ag and B1u combinations interact with the carbon sp hybrids which were formed earlier
and which are shown in Figures 5.13c and 5.13d respectively. The B3g and B2u are of the
same symmetries as the carbon 2py combinations (Figures 5.17b and 5.17a respectively)
and also interact. The resultant combinations are shown in Figure 5.20 where it is indicated,
qualitatively, how they are derived from the earlier figures.

Problem 5.11 Check that the molecular orbitals shown in Figure 5.20 are correctly
described by combining, qualitatively, the diagrams indicated below each molecular
orbital.

There are just four primarily C H bonding molecular orbitals and four corresponding C H
antibonding orbitals (these orbitals are also either weakly C C bonding or weakly C C
antibonding). In order to obtain even a qualitative molecular orbital energy level diagram
some idea of the relative energies of the various C H and the C C σ and π bonding
molecular orbitals must be obtained. It is simplest first to look at those orbitals involved
in C H bonding; it will probably be found to be helpful to refer frequently to Figure 5.20
throughout the next few paragraphs.

There is no doubt about the most stable C H bonding molecular orbital. This is the Ag

orbital. It has two features which lead to its stability. First, just as the largely 2s(O)-containing
molecular orbital was the most stable in H2O, so too here is the orbital containing an
appreciable 2s(C) component expected to be very stable. Second, the important interactions
in which the Ag orbital is involved are bonding – it is both C H and C C σ bonding. Rather
similar arguments hold for the B1u largely C H bonding molecular orbital. It contains a
2s(C) contribution and is C H bonding but is C C σ antibonding. It is fair to conclude
that the B1u orbital is next in stability after the Ag. The B2u and B3g C H bonding molecular
orbitals contain only carbon 2p orbitals so they are expected to be at higher energy than the
Ag and B1u, which contain carbon 2s. Their relative energies can be related to the residual
C C bonding (which will be π in type) associated with each. The B2u C H bonding orbital
is also C C bonding but the B3g is C C antibonding. It seems clear that the B2u orbital
is the more stable. In summary, then, the C H bonding molecular orbitals are expected to
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decrease in stability in the order:

Ag > B1u > B2u > B3g

We now turn to the orbitals which are largely responsible for the carbon–carbon bonding.
They are shown in Figures 5.13a and 5.16a. There is no doubt that the Ag largely carbon–
carbon σ bonding molecular orbital will be more stable than the B3u carbon–carbon π

bonding molecular orbital because one contains 2s(C) whereas the other contains 2pz(C).
However, it is not easy to unambiguously relate their energies to those of the C H bonding
molecular orbitals. The following argument is indicative. The bond energy of a single C C
σ bond is ca. 360 kJ mol−1, although it is to be noted that this value is appropriate to a
bond length slightly longer than that found in ethene. In contrast, the energy of an average
C H bond is ca. 420 kJ mol−1. It seems reasonable, then, to anticipate that the stabilization
resulting from the C H bonding interactions should be somewhat greater than that of the
Ag C C σ interaction. This means that it would be reasonable to expect the C H bonding
molecular orbitals which have a carbon 2s component (those of Ag and B1u symmetries) to
be lower in energy than the carbon–carbon bonding orbital with a 2s component (that of Ag

symmetry). We have, then, the stability order:

Ag (C H bonding) > B1u (C H bonding) > Ag (C–C bonding)

The next lowest C H bonding orbital is B2u and the question is whether its stability is
sufficient to make it lower in energy than the Ag (C C bonding). If we interpret the bond
energy data given above as ‘the centre of gravity of the energies of the four C H bonding
interactions should be below the energy of the single C C bonding interaction’ then the
order

B2u (C H bonding) > Ag (C C bonding)

seems probable, although not certain. All that can be said is that it seems likely that the two
will be of similar energies with perhaps the B2u the more stable. In fact, this is the pattern
experimentally observed.

The carbon–carbon π bonding molecular orbital, of B3u symmetry, is also best placed
by appeal to experiment. A great deal of spectroscopic and other information on carbon–
carbon π -bonded systems can be rationalized on the assumption that it is a carbon–carbon π

orbital which is the highest occupied orbital. So, the B3u (C C bonding) is placed above the
B3g (C H bonding). Together with the other arguments above, this leads to the molecular
orbital energy level pattern shown in Figure 5.21. There are four valence electrons from each
carbon and one from each hydrogen to be placed in these orbitals, a total of twelve. They
occupy the six lowest orbitals in Figure 5.21; in this figure only one antibonding orbital,
the lowest, C C antibonding orbital of B2g symmetry, is included.

Figure 5.21 can be checked in two ways. First, appeal can be made to detailed accurate
calculations on this molecule. Second, the results of photoelectron spectroscopic measure-
ments can be used. This theoretical and experimental work agrees on the energy level
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Figure 5.21 Schematic molecular orbital energy level diagram for ethene showing all relevant oc-

cupied orbitals and the lowest unoccupied orbital

sequence of ethene. The results are given below, the calculated values9 being given in
parentheses.

1b3u (C C bonding) 10.51 (10.44) eV
1b3g (C H bonding) 12.85 (13.04) eV
2ag (C C bonding) 14.66 (14.70) eV
1b2u (C H bonding) 15.87 (16.07) eV
1blu (C H bonding) 19.1 (19.44) eV
1ag (C H bonding) 23.5 (26) eV

The agreement with the qualitative picture developed above is excellent, giving some
confidence in the arguments that have been used. In particular, the hope that increased
molecular symmetry would offset the greater molecular complexity compared with the
water molecule seems to have been justified.

5.9 Bonding in the diborane molecule

Our discussion of the ethene molecule can be extended to another molecule, diborane.
Diborane, B2H6, is of interest because it is the simplest of the boron hydrides (boranes).

9 W. Von Niessen, G.H.F. Diercksen, L.S. Cederbaum and W. Domcke, Chem. Phys. 18 (1976) 469.
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B B

H

H

H H

H

H

Figure 5.22 The structure of diborane, B2H6, shown in perspective

These, as a class, are often called ‘electron deficient’ because, whereas at least (n − 1)
electron pairs are regarded as necessary to bond n atoms, the boron hydrides all have fewer
than 2(n − 1) electrons. Thus, there are only twelve valence shell electrons available in
diborane to bond eight atoms. However, as will be seen, the term ‘electron deficient’ is a
misnomer because the molecular structure is such that all bonding molecular orbitals are
filled with electrons. Whereas diborane posed such a problem for simple bonding models
that it appeared necessary to give it a separate classification, a symmetry-based discussion
shows that there is no need to invoke new concepts.

The structure of diborane is shown in Figure 5.22, from which it can be seen that it has
four terminal hydrogen atoms and two borons which together have the same symmetry,
D2h, as ethene (although the bond lengths and angles are different, of course). In addition,
diborane has two hydrogen atoms out of, what is for ethene, the molecular plane. These two
hydrogens are usually called the ‘bridge’ hydrogen atoms. It is the presence of these bridge
hydrogen atoms in place of the C C π bond of ethene that plays a major part in leading
diborane to have a rather different chemistry to ethene.

Figure 5.22 does not show all of the symmetry elements of diborane. Comparison with
Figure 5.1 shows that the bridge hydrogens, located on the C2(x) axis of Figure 5.1, in no
way reduce the D2h symmetry of the ethene-like B2H4 unit. Diborane, like ethene, has D2h

symmetry. It follows that apart from that involving the bridge hydrogen atoms, the bonding
in the diborane molecule must, qualitatively, be similar to that given in the previous section
for ethene since boron, like carbon, has 2s and 2px , 2py and 2pz valence orbitals. It therefore
seems reasonable to expect the retention of the same energy level sequence:

Ag (B–Ht bonding) < B1u (B–Ht bonding) < B2u (B–Ht bonding) < B3g (B–Ht bonding)

where the suffix t has been added to distinguish terminally bonded hydrogens from the
bridge hydrogens. There is little doubt that there is a substantial difference between the
carbon–carbon bonding in ethene and the boron–boron bonding in diborane. This is shown
by even a cursory study of the experimental data – the carbon–carbon bond length in ethene
is 1.34

◦
A whilst the boron–boron bond length in diborane is 1.77

◦
A. The details of the B–B

bonding will also be different from the C C bonding in ethene because only the former has
bridge hydrogens. Clearly, our discussion of the B–B bonding must start with these bridge
hydrogens.
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E

F

Figure 5.23 The 1s orbitals of the two bridging hydrogen atoms of diborane. The labels E and F will

be used in the text

The transformations of the 1s orbitals of the two bridge hydrogen atoms in diborane
(Figure 5.23) generate the following reducible representation:

E C2(z) C2(y) C2(x) i σ (xy) σ (zx) σ (yz)
2 0 0 2 0 2 2 0

a representation which has Ag + B3u components. As usual, the functions transforming as
these irreducible representations are simply the sum and difference of the two 1s orbitals
(which are labelled E and F, as shown in Figure 5.23, and taken to have the same phase).
That is, they are:

Symmetry species Linear combination of bridge hydrogen orbitals

Ag
1√
2
(E + F)

B3u
1√
2
(E − F)

Problem 5.12 Check that the transformations of the two bridge hydrogen atoms in
diborane are as given above. It is of particular importance to show that the two linear
combinations of these orbitals transform as indicated.

The only orbitals shown in Figure 5.13 with which it is reasonable to expect any important
interaction involving these bridge hydrogen orbitals are the boron–boron σ bonding orbital
of Ag symmetry (which will be similar to that shown in Figure 5.13a but with boron atoms
in place of carbon) and the boron–boron π bonding orbital of B3u symmetry (which will
resemble that shown in Figure 5.16a). The interactions between the bridge hydrogen orbitals
and these boron–boron orbitals are shown qualitatively in Figures 5.24 and 5.25. Which
of the bonding interactions shown in Figures 5.24 and 5.25 is the more important? For
the B3u (boron–boron π bonding) orbital the B2H4 plane is a nodal plane; its maximum
amplitude must be out of this plane. In contrast, the maximum amplitude of the Ag (boron–
boron σ bonding) orbital is in the B2H4 plane. Because the bridge hydrogens are above
and below this plane it seems probable that the interaction will be greater with the B3u

boron combination than with the Ag. Whether this difference will lead to the orbital of
B3u symmetry being beneath that of Ag (in Figure 5.21 the B3u is above the Ag) cannot
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Figure 5.24 Schematic representation of the interactions of Ag symmetry involving the bridge hy-

drogens of diborane

be unambiguously predicted – in fact, it does. An additional reason for this pattern is the
greater B–B bond length in diborane compared to the C C bond in ethene. Because of
this difference, it is likely that the Ag B–B σ bonding interaction is less than the C C σ

interaction in ethene.
In Figure 5.26 a schematic molecular orbital energy level diagram for the diborane

molecule is given in which all of the above arguments are brought together. The left-
hand side of this diagram shows schematically the ethene molecular orbital energy level
pattern (Figure 5.21) which is then modified to take account of the bridge hydrogens.
Qualitatively, the problem of the relative order of the B2u (B–Ht bonding) and Ag (B–Hb

+

−

+

−

+−
+

++

−

−

−

+
−

B3u bonding and

B3u antibonding

Figure 5.25 Schematic representation of the interactions of B3u symmetry involving the bridge

hydrogens of diborane
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Ethene
molecular
orbital
energies

Diborane
molecular 
orbital
energies

Symmetry- 
adapted
combinations

Two (bridge)
hydrogen 1s
orbitals 

b2g

b2u

b1u

b3u

b3g

ag

ag

1b2g

1b2u

1b3u

1b1u

1b3g

2ag

1ag

b3u

ag

Figure 5.26 A qualitative molecular orbital energy level diagram for B2H6 and its relationship to

that for C2H6

bonding) orbitals, encountered for ethene, reappears here. The experimental and theoreti-
cal data10 (the latter in parentheses) are given below (where the suffix b indicates bridge
hydrogens):

1b3g (B Ht bonding) 11.81 (11.95) eV
2ag (B Hb B bonding) 13.3 (13.12) eV
1b2u (B Ht bonding) 13.9 (13.73) eV
1b3u (B Hb B bonding) 14.7 (14.04) eV
1b1u (B Ht bonding) 16.06 (16.34) eV
1ag (B Ht bonding) 21.4 (22.57) eV

Again, an excellent qualitative prediction of the orbital energies has been obtained using
our simple symmetry-based model. It is interesting to note that, with the sole exception of
that of B3u symmetry, every orbital in this list is at a higher energy than its counterpart in
ethene, in accord with the higher chemical reactivity of diborane.

10 D.R. Lloyd, N. Lynaugh, P.J. Roberts and M.F. Guest, J. Chem. Soc. Faraday Trans. 2 71 (1975) 1382.
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Problem 5.13 The molecule N2H4, unlike B2H6 and C2H4, does not have D2h sym-
metry (it has a low-symmetry structure which may be regarded as similar to ethane with
one hydrogen removed from each nitrogen atom). Use Figure 5.21 to explain why a
D2h structure is not stable for N2H4. The discussion in the text associated with Figure
5.21 hints at the answer to this problem.

5.10 Comparison with other models

Most discussions of the electronic structures of the ethene and diborane molecules concern
themselves almost exclusively with the carbon–carbon double bond and the bridge bonding
respectively. Some of these descriptions appear rather different to those which have been
given in the present chapter and it is the purpose of this section to discuss the relationship
between the various models.

Consider ethene. Two models are commonly presented for this molecule. In the first,
each carbon atom is sp2 hybridized, two of three sp2 hybrids being involved in bonding
with the terminal hydrogen atoms whilst the third is responsible for the carbon–carbon σ

bonding. A π bond is formed as a result of overlap between the 2p orbitals which were not
hybridized. This model is pictured in Figure 5.27. The sp2 hybrid orbitals on one carbon
atom have been labelled a, d and e and those on the second carbon atom, b, c and f. The
hybrids which are involved in carbon–hydrogen bonding are a, b, c and d. It is easy to
show that the transformations of these orbitals under the operations of the D2h point group
follow (or, more precisely, are isomorphous to) those of the hydrogen 1s orbitals A, B, C
and D which were considered earlier in this chapter (Section 5.5). It follows that this hybrid
orbital model identifies the C H bonding molecular orbitals as being of Ag, B3g, B1u and
B2u symmetries, a conclusion identical to that reached above. It is also straightforward to
show that the hybrid orbitals e and f formthe basis for a reducible representation with Ag and

b

f

c

a

d

e

Figure 5.27 The ‘sp2 + pπ ’ carbon atom model for the bonding in ethene. For simplicity the hydrogen

atoms are omitted. The sp2 hybrids carry the labels a–f
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B2u components, which must correspond to the C C σ bonding and antibonding orbitals.
Again, the qualitative description of the C C σ bonding is identical to that of the symmetry-
based model. The main differences can be seen when the two orbitals e and f in Figure 5.27
are compared with their counterparts in the model used above (Figure 5.13). These orbitals
were regarded as equal mixtures of the carbon 2s and 2pz orbitals whereas in the hybrid
orbital model the s-orbital contribution is only one-third. However, it will be recalled that
when the 2s and 2pz orbitals were mixed in equal amounts it was mentioned that this was
an arbitrary mixing, made on grounds of simplicity. The 1:1 ratio could, accidentally, have
been correct. Equally, the hybrid orbital model could be right in its ratio of 1:2. Detailed
calculations show that both are wrong – there are two Ag orbitals contributing to C C
bonding, one largely involving 2s(C) and the other 2pz(C). The aggregate 2s:2pz ratio is
1:1.3 so, from this viewpoint, the sp model adopted in the text is not too bad.

A point of apparent divergence between the two approaches is to be found in the carbon–
hydrogen bonding orbitals of B3g and B2u symmetries. In the symmetry-based description
these orbitals contain no contribution from the carbon 2s orbitals. In contrast, one might
expect there to be such a contribution in the hybrid orbital description since each hybrid
contains a 2s component. This is not the case. If the form of the hybrid orbitals is written out
explicitly and the appropriate linear combinations of them are obtained using the projection
operator method (these combinations are those given in Table 5.6 but with capital letters
replaced by lower case letters) then it will be found that the carbon 2s orbital contributions
also vanish in the hybrid orbital description.

Problem 5.14 The explicit forms of the relevant carbon sp2 hybrid orbitals are:

a = 1√
3

s(C1) + 1√
2

py(C1) − 1√
6

pz(C1)

d = 1√
3

s(C1) − 1√
2

py(C1) − 1√
6

pz(C1)

b = 1√
3

s(C2) + 1√
2

py(C2) + 1√
6

pz(C2)

c = 1√
3

s(C2) − 1√
2

py(C2) + 1√
6

pz(C2)

where C1 and C2 refer to the two carbon atoms. By substituting these in the explicit
expressions for the B3g and B2u linear combinations given in Table 5.6 (but substituting
the expression given above for a in place of A in Table 5.6 etc.) show that the carbon
2s orbital contributions vanish.

A model of the carbon–carbon double bond in ethene which is historically important
and which is still encountered is that in which the carbon atoms are sp3 hybridized and
each bond of the double bond is equivalent, as shown in Figure 5.28. It is a simple mat-
ter to show that the two carbon–carbon bonding orbitals labelled a and b in Figure 5.28
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a

b

Figure 5.28 The sp3 carbon atom model for the bonding in ethene. Hydrogens are omitted and the

sp3 hybrids to which they bond are represented by rods. Shown in the diagram are the bonding

orbitals formed by the overlap of sp3 hybrids on the carbon atoms

provide a basis for a reducible representation with Ag and B3u components. These are the
symmetries which have already been deduced as those of the carbon–carbon bonding or-
bitals. Indeed, if the projection operator method is used to obtain Ag and B3u combinations
of a and b (they are the sum and difference of the two) then orbitals are obtained which
are, essentially, identical to the carbon–carbon bonding orbitals shown in Figure 5.13 and
Figure 5.16. That is, the use of sp3 hybrids at each carbon atom is also consistent with
the model of C C bonding derived in this chapter, although such a description pictures
the orbital on each carbon atom which is involved in this bonding as being one-quarter
composed of the carbon 2s orbital – the third value we have met! The use of sp3 hybrids
to explain the C H bonding is also consistent with a symmetry-based discussion. Again
C H bonding molecular orbitals of Ag, B1u, B2u, and B3g symmetries are obtained when
the four C H bonding sp3 hybrids are used to generate a reducible representation of the
group.

Perhaps the simplest description of the bonding of the bridging hydrogen atoms in dibo-
rane is the so-called banana bond picture. These bonds are shown in Figure 5.29; the close
similarity with Figure 5.28 is immediately apparent. It is not at all difficult to show that
the bridge bonds a and b in Figure 5.29 form the basis for two linear combinations, one of
Ag symmetry and the other of B3u. These symmetries are the same as those of the orbitals
shown in Figure 5.25 as responsible for the bridge bonding. The similarity between the two
descriptions follows at once.

a

b

Figure 5.29 The ‘banana bond’ model for the bonding of the bridge hydrogens in diborane. The sp3

hybrids on the boron atoms overlap with the 1s orbitals of the bridge hydrogens
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When a chemist speaks of a quantity such as ‘the carbon–carbon bond’ or ‘the carbon–
hydrogen bond’ he or she is frequently referring to quantities which do not, themselves,
transform as an irreducible representation of the point group of a molecule. In such cases
several other symmetry-related bonds exist and these together provide a basis set from which
appropriate irreducible representations can be generated. Thus, in the present context one
can say that ‘the C H bonds in ethene (or B–H bonds in diborane) can be combined into
combinations which transform as irreducible representations of the D2h point group’. Lo-
calized orbitals constructed so that they are equivalent to one another in this way and which
can be used to derive symmetry-adapted combinations are often referred to as equivalent
orbitals. The C H bonding molecular orbitals shown in Figure 5.21 are all different; in
contrast most chemists prefer to think of equivalent orbitals, although he or she would
probably prefer to call them localized orbitals. As was recognized in the case of the water
molecule (Chapter 3), and again in the present chapter for ethene and diborane, these two
types of pictures are usually equivalent to each other. This is true for all of the simple models
which have been shown to lead to results akin to those obtained by the symmetry-based
approach. The orbitals which have been transformed to obtain reducible representations
are all equivalent orbitals. That is, the approach developed in this chapter to the electronic
structures of ethene and diborane is, fundamentally, no different from those with which
the chemist is more familiar (the same is true of the discussion at the end of Chapter 3).
On the other hand, the symmetry-based approach has considerable advantages. Thus, the
observation that the C H bonds in ethene are equivalent does not imply that the removal of
any one C H bonding electron requires the same energy as the removal of any other. The
fact that there are several ionization potentials – as shown by photoelectron spectroscopy –
only becomes clear in a symmetry-based description of the bonding. Despite this emphasis
on symmetry it must be recognized that symmetry arguments, by themselves, tell us nothing
about energy levels. It is only when these arguments are elaborated by including additional
concepts, such as nodality, orbital composition and relative magnitudes of interactions, that
relative energies begin to emerge.

5.11 Summary

In this chapter it has been seen that point groups may be related to each other. When a point
group is the direct product of two smaller groups (the jargon is to refer to such smaller
groups as ‘invariant subgroups’ (p. 115) of the larger group) then the multiplication tables
of the larger groups may be derived from those of the smaller groups (p. 115), as may its
symmetry operations (p. 115), character table (p. 116) and (usually) labels for its irreducible
representations (p. 117). The use of projections gives insights into the ideas involved here, as
they do also for projection operators. The technique of using projection operators to obtain
linear combinations of a particular symmetry is most important (p. 129). As in the previous
chapter, symmetry-based models led to qualitative predictions of electronic structure which
were in accord with the results of theoretical calculations, photoelectron spectroscopic data
(p. 136,140) and also consistent with more traditional bonding models (p. 141).
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6 The electronic structure of
bromine pentafluoride, BrF5

Although the object of this chapter is a discussion of the electronic structure of bromine
pentafluoride, this topic represents only about a third of its contents. The group theoretical
methods that have been developed in the previous chapters must be extended to enable a
discussion of almost any molecule, irrespective of its symmetry. This generalization is the
major purpose of this chapter and takes up most of it. The key point which has to be studied
is that of symmetry-enforced degeneracy. This is not as bad as it sounds. In a cube the
three coordinate axes have to be equivalent. If we want to make one axis unique we can
only do so by distorting the molecule so that this axis becomes distinct from the other two.
The cubic symmetry and the equivalence of the axes go together. This equivalence is often
expressed by using the word ‘degeneracy’, a word which makes obvious sense when we
are talking about orbital energies, as we often will be. Hence ‘symmetry-enforced degen-
eracy’. But, for the moment, the cube is too complicated, we need to start with something
simpler.

As in the previous chapters, it is simplest to work with an example in mind and bromine
pentafluoride is a very convenient one. The structure of the bromine pentafluoride molecule
is shown in Figure 6.1. The bromine is surrounded by four fluorines at the corners of a square
and by a fifth, unique, apical, fluorine situated so that the five fluorines form a square-based
pyramid around the bromine atom. Perhaps surprisingly, the bromine is slightly beneath
the plane defined by the four coplanar fluorines. A valence electron count shows that there
are two non-bonding electrons on the bromine atom. These are presumably in an orbital
directed towards the obvious ‘hole’ around the bromine, which if filled would mean that the
bromine is surrounded by six groups at the corners of an octahedron (octahedral molecules
will be the subject of Chapter 8 – and a cube has the same symmetry). The valence shell
electron repulsion (Sidgwick–Powell–Nyholm–Gillespie) model (Chapter 1) suggests that
lone-pair bond-pair repulsion will have a greater effect on the four co-planar fluorine atoms
than will the repulsion between these bromine–fluorine bonds and the apical one. The
consequence of this inequality will be that the co-planar B–F bonds will be bent towards
the apical fluorine atom, giving the observed geometry of the molecule. As a simplifying
assumption, however, in this chapter it will be assumed that the central bromine is coplanar
with the surrounding four fluorine atoms. As we shall see, the symmetry is C4v-basically, a
fourfold axis in which lie four mirror planes.

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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F

FF

F F
Br

Figure 6.1 The actual structure of the BrF5 molecule. For simplicity, in the text the bromine will be

taken as coplanar with the four surrounding fluorines

The chapter will start in the way that most group theory problems start in chemistry.
One looks up the relevant character table in a compilation of these (such as that given
in Appendix 3). This is basically what we did for the D2h character table of Chapter 5
(although we exploited its connection with the C2v of earlier chapters). So, the character
table for the C4v group would simply be presented – the bromine pentafluoride molecule has
this symmetry. Unfortunately it has no evident connection with any of the other character
tables that we have met. Hopefully, this will make the reader unhappy with the idea of simply
presenting the C4v table. The character table will, in fact, be derived later in the chapter,
using a method rather different to those used in earlier chapters for C2v and D2h. There are
many differences between the C4v character table and these two. Much of this chapter will
be occupied by an exploration of these differences – this study is important because it will
lead to the generalization of group theoretical concepts and techniques referred to above.
In the C4v group there may be more than one symmetry operation corresponding to a single
symmetry element and, correspondingly, the character table contains numbers other than
1 and −1. The most important generalization will be of the orthonormality theorems. It is
this generalization that will be used to generate the C4v character table. This table is given
in Table 6.1; it is helpful to see it at this point because the reader can then be made aware
of the problems (and of their solutions!) before they are encountered.

In the C4v character table, confusingly, E appears in the list of irreducible representa-
tion labels as well as in the list of operations. In this new usage it labels an irreducible
representation which describes the transformation of two things simultaneously (its char-
acter under the ‘leave alone’ operation is 2). Irreducible representations which describe the

Table 6.1

C 4v E 2C 4 C 2 2σ v 2σ ′
v

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B 2 1 −1 1 −1 1
E 2 0 −2 0 0
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properties of two things simultaneously are often called ‘doubly degenerate’ irreducible
representations. The reason for this will become evident later in this chapter. We will start
our discussion by looking in detail at the symmetry operations of the bromine pentafluoride
molecule – of the C4v group – and then return to the character table.

Problem 6.1 Both the D2h and C4v groups are of order eight – a total of eight operations
is listed at the top of each table (compare Tables 5.1 and 6.1). However, the structures
of the tables are rather different. Make a list of the qualitative differences between the
two tables.

6.1 Symmetry operations of the C4v group

The perspective shown in Figure 6.1 is not the best for seeing the symmetry of the BrF5

molecule. This symmetry is most readily recognized by viewing the molecule along the
bromine–axial fluorine bond as shown in Figure 6.2, from which it is clear that the four
fluorine atoms lie at the corners of a square. Evidently, the bromine–axial fluorine bond
coincides with a fourfold rotation axis (i.e. a C4) of the molecule. This brings with it
something new. In all of the symmetries previously considered there has always been a
single symmetry operation associated with each symmetry element of a molecule. As a
result, the same symbol has been used for operation and for element, leaving it to the
context to make clear which was the subject of discussion. Although we shall persist with
the latter convention it must now be recognized that there is not always a 1:1 correspondence
between symmetry elements and symmetry operations. In the present case, although there is
just one fourfold rotation axis in the BrF5 molecule there are two corresponding symmetry
operations. The molecule is turned into itself by a rotation of 90◦ in either a clockwise or
an anticlockwise direction about the fourfold axis. These two operations have the effect of
interchanging the fluorine atoms of BrF5 in different ways and so are distinct operations.
The clockwise and anticlockwise C4 rotation operations associated with the C4 axis are
inseparable – one cannot have one without the other. Usually such pairs of operations are
grouped together and written as 2C4, thus recognizing both their distinction and similarity.
It will be seen that they are written this way in the C4v character table (Table 6.1). Operations
paired and written in this way are said to be ‘members of the same class’. Although this
is an adequate definition of ‘class’ for most purposes, the concept of class is an important

F

F F

F

F

Br

Figure 6.2 A view of the BrF5 molecule looking down the apical (axial) F Br bond. All bonds have

been omitted but the square formed by the four equatorial fluorines is included in order to emphasize

the fact that this is a view down a fourfold rotation axis
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one in group theory and it is dealt with more formally and fully in Appendix 1. Because a
fourfold axis exists it follows that a rotation of 180◦ (two steps of C4 rotation) about this
axis also turns the molecule into itself. However, this operation is not a C4 rotation but a
C2, although, of course, you cannot have the former without also having the latter. Strictly,
one should think of there being a C2 axis coincident with the C4 axis. The generality is
clear – a high rotational symmetry may, automatically, imply the simultaneous existence of
coincident axes of lower symmetry.

It is not trivial that the C2 rotation operation may be regarded as a C4 rotation operation
carried out twice in succession (in the same clockwise or anticlockwise sense). Symbolically
one can write

C4 × C4 = C2
4 ≡ C2

where, following the discussion of Chapter 2, we have multiplied C4 by C4 to obtain C2. In
the same way it is easy to see that

C3
4 ≡ C−1

4

– carrying out three C4 rotations in one sense, clockwise or anticlockwise, is equivalent to
a single C4 rotation in the opposite sense – and that

C4
4 ≡ E

This is another point of difference with the groups met in previous chapters. For all of these
groups it was found that any of their operations carried out twice in succession gave the
identity, regenerated the original arrangement. For the C4 operation it takes four steps in
the same sense (clockwise or anticlockwise), and for a general Cn rotation it takes n.

The other symmetry elements (and associated operations) of the BrF5 are fairly evident.
In addition to the identity operation, the two C4 rotation operations and the associated C2

rotation operation (which, it should be noted, comprises a class of its own) there are four
mirror planes which are indicated in Figure 6.3. It can be seen from this figure that these
mirror planes are of two types. First, there are those which we have labelled σv(1) and σv(2),
in each of which lie the bromine and three fluorine atoms. It is impossible to have one of

σv' (2)

σv' (1)

σv (1)

σv (2)

Figure 6.3 The two distinct pairs of mirror planes implicit in Figure 6.2. The square of Figure 6.2 is

again shown
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these operations without the other because of the C4 axis. A C4 operation rotates one of
these σv mirror planes into the other. They are therefore inextricably paired together. These
operations therefore comprise a class which is written as 2σv and it appears in this form in
the character table. Second, there are those mirror planes which have been labelled σ ′

v(1)
and σ ′

v(2) in Figure 6.3. Each contains the bromine and the axial fluorine atom and again
are interrelated by the C4 axis. They comprise the class 2σ ′

v. Several comments are relevant
at this point. First, all four of the mirror planes contain the C4 axis and so are σv mirror
planes, as they have been labelled. Second, many authors prefer to give the mirror planes
which we have called σ ′

v(1) and σ ′
v(2) the labels σd(1) and σd(2), or, as a class, 2σd. This is

because in a closely related group – that of the symmetry operations of a square – they carry
this label. Strictly, however, the loss in symmetry in going from this group to C4v forbids
the use of the σd symbol (as will be seen in Section 8.1, this symbol has a rather precise
meaning which forbids its use here). Third, a comment on the fact that σv(1) and σv(2) are
interconverted by a C4 rotation, as also are σ ′

v(1) and σ ′
v(2). When symmetry elements are

interconverted by another operation of the group, it is a sure sign that the corresponding
operations fall into the same class. Finally, it is the presence of the C4 axis, together with
the vertical mirror planes, that gives rise to the shorthand symbol for the group, C4v.

Collecting together all of the symmetry operations of the C4v group gives:

E 2C4 C2 2σv 2σ ′
v

and it is these operations that head the character table (Table 6.1). This is a convenient
point at which to introduce the relationship between the operations of the C4v group. They
are given in Figure 6.4, which should be studied carefully since it will be used later to
give diagrams of the irreducible representations. Any problems encountered should find a
solution in the content of the previous paragraph. Note that the clockwise and anticlockwise
C4 rotations have been given a simpler notation than being denoted C4 and C3

4 . It is helpful
to use Figure 6.4 to show the class structure of the C4v group. This is done in Figure 6.5,
where the segments of the circle associated with members of the same class are similarly

C4
−

C4
+

C2

σv' (2)

σv' (1)

σv (1)

σv (2)

E

Figure 6.4 A projective view of the effects of the operations of the C4v group. The two sets of

mirror plane reflections are labelled σv and σ ′
v and the members of each set distinguished as (1)

and (2). Note that corresponding to the C4 rotation axis there are two C4 rotation operations and

also a C2 rotation operation. In this and similar diagrams the C4 rotations have been labelled C+
4

(clockwise rotation) and C−
4 (anticlockwise). Because it better fitted the arguments developed, they

have usually been called C4 and C3
4, respectively, in the text
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C4
−

C4
+

C2

σ'(2)

σ'(1)

Eσv (1)

σv (2)

Figure 6.5 The fact that members of the same class are grouped systematically in Figure 6.6 is made

evident if the quadrants corresponding to them are distinguished

marked. When we come to draw pictures of the irreducible representations, the + or −
signs in the similarly marked areas do not vary independently, but are inextricably linked
together in some way (often, but not always, they are identical). A point worth noting, but
which will not be explored, is that if one had to compile the multiplication table for the C4v

group, the job would be made much simpler if Figure 6.4 were consulted.
Although the next major task is to derive the character table of the C4v group, it is

convenient first to consider a problem which will be encountered when using it.

Problem 6.2 Either draw a diagram or (better) make a model of the BrF5 molecule
and, by a study of this, make a list of the symmetry elements that it contains. Compare
your list with that given above and explore the reason for any differences.

6.2 Problems in using the C4v group

When considering the transformation of something – an orbital or set of orbitals, perhaps –
what should be done when there are two operations in a class? How is a character generated
in such a case? Although the formal answer to this is unattractive, the practical answer is
simple. Formally, the correct procedure is to consider the transformation of each object
under each of the individual operations in the class and to take the average of characters
generated. Indeed, before the end of this chapter, we will do just this. But the need to take
an average is very rare. It is almost invariably the case that each of the symmetry operations
in a class gives the same character. This means that, in practice, all that has to be done is to:

Select a single symmetry operation from a class (and it quite often happens that it is
possible to set up the problem in such a way that there is one operation with which it
is particularly easy to work) and take the character generated by this operation.
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z

F

F F

FF

x

y

Br

(a) (b)

py

px

−
+−

+

Figure 6.6 One choice of direction for x and y axes in BrF5 (and consequent directions for the

bromine 4px and 4py orbitals; the 4px orbital is shown cross-hatched)

There is yet one more problem which it is as well to consider before turning to the C4v

character table. As has been seen, the axis of highest rotational symmetry is conventionally
chosen as the z axis so that the C4 axis of BrF5 is clearly to be taken as the z axis. However,
we are left with the problem of where to place the x and y axes. Perhaps the most evident
choice of directions is that shown in Figure 6.6, in which the positions of the four fluorines
are taken to define the x and y axes – but what is wrong with the alternative choice given in
Figure 6.7? The solution to this problem becomes clearer when it is noted that the x and y
axes, just like the σv mirror planes in which they lie, are interchanged by the C4 operations,
irrespective of whether the orientation of Figure 6.6 or of Figure 6.7 is chosen for them. The
orientations for x and y axes in these figures have an obvious attraction – they are choices
which place the axes in mirror planes. A less attractive choice (but perfectly admissible
one) such as that shown in Figure 6.8 still retains the property that x and y are interrelated
by a C4 rotation. Clearly, the x and y axes must be treated as a pair (if the choice for one
is changed, so too must that for the other), just as the two σv and the two σ ′

v mirror planes
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Figure 6.7 An alternative choice of direction for x and y axes in BrF5 (and consequent directions

for the bromine 4px and 4py orbitals)
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Figure 6.8 A third choice of direction for x and y axes in BrF5

have to be treated as a pair. This intimate pairing of x and y axes is basic to the difference
between the C4v character table and the Abelian character tables of earlier chapters in this
book.1 The x and y axes are said to ‘transform as a pair’, a statement which will later be
seen in the fact that these axes transform, together, as the E irreducible representation in
Table 6.1. The choice of x and y axis directions – Figures 6.6, 6.7 and 6.8 – is ultimately
unimportant; after all no physical property can in any way depend on the way we choose to
place axes. Although this is an almost trivial statement, it is not so easy to work with axes
placed in general positions. This elaboration is discussed in more detail in Appendix 2.

6.3 Orthonormality relationships

We now return to the problem of generating the character table of the C4v point group. In
principle, the procedure of Chapter 3 could be followed and the transformations of atomic
orbitals of the bromine atom used to generate the irreducible representations of this group.
Unfortunately, a complete set of irreducible representations could not be obtained even if f
orbitals on the bromine atom were included – although if g orbitals were also included they
would suffice! If this is the only method available for the compilation of a character table,
then for the more complicated groups one would be left wondering whether a study of yet
higher orbitals might uncover further, previously unrecognized, irreducible representations.
Fortunately there are systematic methods available for the generation of character tables.
One of these methods will now be described, one which relies on the existence of the
orthonormality theorems which have already been used in a simple form in earlier chapters.
The form in which they are used here is an extension of their earlier form, adapted to take
account of the fact that there can be more than one operation in a class (this was one of the
simplifications involved in using Abelian groups – they have one operation in each class,
never more).

1 The argument presented here is not quite complete, as will be seen in Chapter 11, where the C4 group will be explored. In

that group the x and y axes behave as described above and yet the C4 group is Abelian. As will be seen in Chapter 11, the dilemma

is resolved in that the group contains an E irreducible representation, in which the two components are said to be ‘separably

degenerate’
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Of the theorems that follow, numbers 2, 3, 4 and 5 are those that are commonly called
the orthonormality theorems.2

Theorem 1 In every character table there exists a totally symmetric irreducible repre-
sentation.

Comment: The totally symmetric irreducible representation is the first given in any character
table and has a character of 1 associated with each class of operation. It describes the
symmetry properties of something which is turned into itself under every operation of the
group. This really is a rather trivial theorem, introduced here for convenience. By definition,
a molecule is turned into itself by every operation of the point group used to describe it. A
totally symmetric irreducible representation must therefore exist for every point group.

Theorem 2 Take each element of any row of a character table (i.e. the characters of
any irreducible representation), square each and multiply by the number of operations
of the class to which the character belongs and add the answers together. The number
that results is an integer which is equal to the order of the group (i.e. equal to the total
number of symmetry operations in the group).

Comment: This theorem was first met in Chapter 3, when a systematic method of reducing a
reducible representation into its irreducible components was obtained. Because an Abelian
group was then involved, the number of operations in each class was one, so that there was
no need to include the step of multiplying by the number of operations in a class. For a
non-Abelian group, for which there is invariably at least one class containing more than one
operation, care must be taken to include this additional step, otherwise the number obtained
at the end of the summation will not be that of the order of the group.

Problem 6.3 Apply Theorem 2 to each of the irreducible representations of the C4v

point group (Table 6.1). The order of this group is eight.

Theorem 3 Take any two different rows of a character table (i.e. any two irreducible
representations) and multiply together the two characters associated with each class.
Then, in each case multiply the product by the number of operations in the class. Finally,
add the answers together. The result is always zero.

Comment: This theorem, again, is one already met when reducing reducible representations.
On that occasion, because there was only one operation in each class there was no need to

2 In this chapter and all others up to Chapter 10, all the characters that will be met are real. The theorems that follow apply

only to character tables with such real characters. When complex characters are encountered, changes to the theorems have to be

made to deal with this. The changes that are needed are covered in Chapter 11.
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explicitly include multiplication by the number of elements in the class. In general, however,
this step must be included.

Problem 6.4 Apply Theorem 3 to at least five pairs of irreducible representations of
the C4v point group (Table 6.1). The E irreducible representation should be included
in at least two cases.

As will be seen, Theorems 2 and 3 are at the heart of the method used to reduce reducible
representations into their irreducible components. They are sometimes referred to as if the
others did not exist and called ‘the orthonormality relationships’.

Problem 6.5 Look back at Section 3.1 and read the discussion on orthonormality
given there. Why are Theorems 2 and 3 referred to as ‘orthonormality relationships’?

The fourth and fifth theorems are similar to Theorems 2 and 3 but relate to the columns of a
character table instead of the rows. They are new to the reader but it can readily be checked
that they are correct when applied to all of the character tables met so far.

Theorem 4 Consider any class (column) of a character table and square each of the
elements in it; sum the squares and multiply the answer by the number of operations in
the class. The answer is always equal to the order of the group.

Problem 6.6 Apply Theorem 4 to the columns of the C4v character table.

Theorem 5 Consider any two different classes (columns) of the character table. This
selects two characters of each irreducible representation. Multiply these pairs of char-
acters of the same irreducible representation together, and sum the results. The answer
is always zero.

Comment: In this case no explicit allowance has been made for the number of elements in
a class. This is because multiplying by any factor which is common to all contributions to
the sum would not change the final answer – it would still be zero.

Problem 6.7 Apply Theorem 5 to at least five pairs of columns of the C4v character
table.

Theorem 6 This states that a character table is always square – it has the same number
of columns as it has rows; there are as many irreducible representations as there are
classes of symmetry operations.
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Comment: Yet again, it is easy to see that this theorem holds for all the character tables
that have been encountered so far in this book.

Problem 6.8 As was hinted (but not elaborated) at the end of Section 2.4, some
character tables contain complex numbers. Sometimes, authors of introductory texts
attempt to protect their readers from such horrors by manipulation of the character table.
The ‘character table’ for the group C4 (the correct form of which contains complex
numbers) taken from one such text is given below

C4 E 2C4 C2

A 1 1 1
B 1 −1 1
E 2 0 −2

Show that this ‘character table’ does not fully obey Theorems 2, 4 and 5. (The correct
character table will be discussed in detail in Chapter 11 and is given in Table 11.1.)

6.4 The derivation of the C4v character table using
the orthonormality theorems

In this section the C4v character table is derived systematically, in contrast to the hit-or-miss
method of previous chapters (where the examples were chosen to give hits, of course!).
There are several methods of deriving character tables; that in this section is the easiest
to understand, follow and use. The derivation of the C4v character table starts by using
Theorem 6. The total number of symmetry operations in the C4v group is eight and it has
already been seen that they fall into the five classes E, 2C4, C2, 2σv and 2σ ′

v. Because the
character table must be square (Theorem 6) it follows that there are just five irreducible
representations. Theorem 4 requires that the sum of squares of characters lying in the column
corresponding to the identity operation is eight (the order of the group). We therefore have
to find five integers, the squares of which total eight. Further, because of the nature of the
identity operation (it counts a number of objects), none of these integers can be negative
or zero. The only set of integers which satisfies these conditions is the set 1, 1, 1, 1 and 2
(12 + 12 + 12 + 12 + 22 = 8). Including the totally symmetric irreducible representation
(Theorem 1) we can write down the skeleton character table shown in Table 6.2, where the
quantities a→p have yet to be determined.

Because an irreducible representation which describes the behaviour of a single object
has characters which can only be 1 or −1 3 (the object always goes into itself or minus
itself, never into a different object under a symmetry operation), the entries a–l in Table 6.2
all have values of either 1 or −1.

Consider now the column corresponding to the C2 rotation operation. Again, by Theorem
4, the sum of characters in this column has to equal eight and since from the last paragraph
the squares of b, f and j are each +1 it follows that n2 must be 4 so that n is either +2 or −2.

3 More strictly, are always of modulus unity.



JWBK182-06 JWBK182/Kettle September 7, 2007 10:38

156 THE ELECTRONIC STRUCTURE OF BROMINE PENTAFLUORIDE, BrF5

Table 6.2

E 2C4 C2 2σv 2σ ′
v

1 1 1 1 1
1 a b c d
1 e f g h
1 i j k l
2 m n o p

From Theorem 4, and because each of the 2C4, 2σv and 2σ ′
v classes have two operations in

them, the elements m, o and p must each be equal to zero. If they had any other value, the
sum of squares of elements in each column when multiplied by two, the order of the class,
would give a number greater than eight. We are thus led to Table 6.3, in which all ± signs
are to be regarded as independent of each other.

Consider the identity column in Table 6.3 together with one of the columns corresponding
to any class of order two. For Theorem 5 to be satisfied (i.e. zero obtained when the
products of corresponding characters are summed), the three characters listed for each class
as ±1 must, in fact, contain one +1 and two −1’s. Since at this point in the argument
the middle three rows of Table 6.3 are identical, two −1’s may be arbitrarily selected for
any one class of order two. This we shall do for the 2C4 class. The new form of Table
6.3 could be written down but first it is convenient to apply Theorem 3 (the sum of the
products of characters multiplied by class orders must be zero) using the double degenerate
irreducible representation given in Table 6.3 together with the first (totally symmetric)
irreducible representation. Theorem 3 is only satisfied if the ±2 entry under the C2 class
of the doubly degenerate irreducible representation is actually −2. The characters of the
doubly degenerate irreducible representation have therefore all been obtained. These results
are brought together in Table 6.4.

There are many ways of completing the generation of the character table. For example,
apply Theorem 5 (the sum of products of elements of the two classes must be zero) to
the columns headed by the E and C2 operations (the E and C2 classes) in Table 6.4. The
theorem can only be satisfied if all of the characters in the C2 class are +1. Remembering this
result, consider the first two rows (irreducible representations) of Table 6.4 and apply
Theorem 3 (the sum of the products of characters multiplied by class orders must be zero).
The only way in which a sum of zero can be obtained is if the two ±1 characters in

Table 6.3

E 2C4 C2 2σv 2σ ′
v

1 1 1 1 1
1 ±1 ±1 ±1 ±1
1 ±1 ±1 ±1 ±1
1 ±1 ±1 ±1 ±1
2 0 ±2 0 0
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Table 6.4

E 2C4 C2 2σv 2σ ′
v

1 1 1 1 1
1 1 ±1 ±1 ±1
1 −1 ±1 ±1 ±1
1 −1 ±1 ±1 ±1
2 0 −2 0 0

the second irreducible representation are actually −1. These results are summarized in
Table 6.5.

Perhaps the most evident thing about the residual unknowns in Table 6.5 is that the
characters associated with the third and fourth irreducible representations are the same. The
application of either Theorem 3 or Theorem 5 readily shows that the four ±1 characters in
Table 6.5 must be either

1 −1 or −1 1
−1 1 1 −1

Substitution of these sets of numbers alternately into Table 6.5 shows that they generate the
same two irreducible representations; the alternatives merely differ in the order in which the
irreducible representations are listed. The generation of the C4v character table is complete!

Problem 6.9 The derivation of the C4v character table has been explained in some
detail. It is important that each step is followed closely because this will give valuable
practice in the use of the orthonormality theorems. If it has not already been done in
reading this section, carefully check each step in the derivation of the C4v character
table.

The final character table is given in Table 6.6 where the commonly adopted symbols
for the irreducible representations have also been included. Note the difference between
irreducible representations labelled B and those labelled A. Both are singly degenerate but
the B’s are antisymmetric with respect to a rotation about the axis of highest symmetry
(C4) whereas the A’s are symmetric. This particular distinction may be compared with that
discussed in Section 2.4, where the A’s and B’s in the C2v point group were distinguished

Table 6.5

E 2C4 C2 2σv 2σ ′
v

1 1 1 1 1
1 1 1 −1 −1
1 −1 1 ±1 ±1
1 −1 1 ±1 ±1
2 0 2 0 0
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Table 6.6

C4v E 2C4 C2 2σv 2σ ′
v

A1 1 1 1 1 1 z, z2, x 2 + y2

A2 1 1 1 −1 −1
B1 1 −1 1 1 −1 x 2 − y2

B 2 1 −1 1 −1 1 xy
E 2 0 −2 0 0 (x , y), (zx, yz)

by their behaviour under a C2 rotation operation. The generalization is clear – for a group
for which the highest rotational axis is Cn , A’s are symmetric with respect to this operation
whereas B’s are antisymmetric.

Problem 6.10 A fragment of the C8v character table is shown below. Complete this
fragment.

C8v E 2C8 2C4 2C8
3 C 2 . . .

A1 1 . . .
A2 1 . . .
B1 1 . . .
B2 1 . . .

Hint: Within this fragment there is no distinction apparent between A1 and A2 or be-
tween B1 and B2. Consider first behaviour under C8; the other entries follow because C4

and C3
8 are multiples of C8 and the characters under these operations must be consistent

with that for C8. This problem illustrates yet another approach to the compilation of
character tables and the sort of relationships that exist within them. A discussion which
parallels that required to answer this problem is to be found at the end of Section 10.5.

Problem 6.11 Use the second part of the hint in Problem 6.10 to explain why there
are no B irreducible representations in the character table of the C7v group (or, indeed,
any group containing a Cn axis when n is odd).

We are now in a better position to discuss Table 6.6 than when it was first met as Table
6.1. There are five aspects of it on which it is appropriate to comment, all associated with
the E irreducible representation. The first has already been mentioned, the label E itself.
This is identical to the label used to describe the identity operation. Although this appears
confusing, in practice it is not. This is because the contexts in which the two labels are used
are always quite different; the context tells which is intended. In some texts, however, the
ambiguity is avoided by a difference in typeface or, more simply but less frequently, by
the use of the label I for the Identity operation. Second, the occurrence of the characters
2 and 0 in this irreducible representation is something new and requires comment. The
appearance of the character 2 for the identity, leave alone, operation means that two things
are being left alone, that the E irreducible representation describes the behaviour of a pair
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of objects simultaneously. The x and y axes of BrF5, no matter which choice is made for
them, are such a pair. Another, closely related, example which will be considered in detail
shortly are the valence shell px and py orbitals of the bromine atom in BrF5. The character
2 here, then, means the same as when it was met in Chapter 3; that two objects remain
themselves. However, the way that the 0 appears is something new. Previously, in Chapter
3, this character was obtained because every object under consideration moved as a result
of a symmetry operation. There is another way in which 0 can appear. This is when each
object which remains unchanged is matched by one which changes its sign. The sum of 1
and −1 is, of course, 0. An example of this will be met when the px and py orbitals of the
bromine atom in BrF5 are considered.

Third, note the way in which the members of a basis set for the E representation are written
(in the extreme right-hand column of the character table). The x and y axes are such a pair and
are written (x , y) in contrast to the listing of functions which, separately and independently,
provide a basis for a representation. The functions z and z2 each, separately, forms a basis for
the A1 irreducible representation. The way that either can do this independently of the other
is indicated by the way they are written: z, z2. Fourth, this is a convenient point at which to
formally introduce a piece of useful jargon (which we have already used!). Irreducible rep-
resentations which describe the transformation of two objects simultaneously are said to be
doubly degenerate whereas those describing the transformation of one are said to be singly
degenerate. There are fundamental reasons for this usage but simplest is to note that if the
objects that the irreducible representations describe are orbitals, then for E irreducible rep-
resentations there must be two orbitals with exactly the same energy. Were they not the same,
the act of carrying out, for example, a C4 rotation would have the effect of changing energies
(because it interchanges the bromine orbitals, px and py , for instance). The energy of an or-
bital would depend on whether or not we chose to do a C4 operation and this clearly is ridicu-
lous. This dilemma is only avoided by the orbitals having the same energy, being degenerate.

Fifth, if we were to construct a group multiplication table for the C4v group we would
find that only the characters of the various A and B irreducible representations could be
substituted for their corresponding operations to give an arithmetically correct multiplica-
tion table. The substitution fails for the E irreducible representation. The reason is that we
should really use 2 × 2 matrices to describe the E irreducible representation, not a simple
number. When these matrices are substituted for the corresponding characters and multi-
plied by the laws of matrix multiplication then a correct multiplication table is obtained. This
is explained in more detail in Appendix 2. At this point it is appropriate only to comment
that ordinary numbers may be regarded as 1 × 1 matrices (whereupon the laws of matrix
multiplication reduce to the ordinary laws of numerical multiplication) so that those irre-
ducible representations containing only characters of value +l or −1 may also be regarded
as involving matrices. The connection between matrices and character tables is profound
and important. Indeed, the name ‘character’ is given to the sum of the elements along the
leading diagonal (top left to bottom right) of a matrix. This is no accident, as Appendix 2
makes clear. However, in almost all of the applications of group theory to chemistry there
is no need to make explicit use of matrix algebra. Hence this book, in which there is no use
of matrix algebra in the body of the text.

Two quite different methods of generating character tables have now been encountered,
that of using the transformations of suitable basis functions and that of the use of the character
table theorems. As has been indicated, there are yet other methods too but these will not be
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discussed. From this point on in the text, character tables will not be systematically derived.
The procedure will be the one almost invariably used – a character table is taken from a
compilation such as that in Appendix 3. When appropriate, however, comments on various
aspects of those that are met will be included in the text.

6.5 Nodal patterns of the irreducible representations of C4v

We are now in a position to draw the nodal patterns of the irreducible representations of
Table 6.6. These pictures will show how the irreducible representations differ fundamentally
from one another and, incidentally, show us why we would have needed to invoke g orbitals
before we could obtain a complete set of orbital basis functions for the group. The patterns
are shown in Figure 6.9, where, as an aid towards understanding, Figure 6.4 is included.
A1, as expected, is totally symmetric. A2 is interesting because of its high nodality. It has
four inherent nodal planes. One can immediately understand the need for a g orbital on the
central atom if we are to have an orbital basis for the A2 irreducible representation. The s
orbitals have zero inherent nodal planes (they may have spherical nodal surfaces – these
are what distinguish 1s from 2s from 3s etc.); p orbitals have one, d orbitals have two and f
orbitals have three. To obtain four inherent nodal planes one needs to invoke g orbitals. The
B1 and B2 patterns each have two nodal planes. The B1 pattern is symmetric with respect
to reflection in the σv mirror planes and antisymmetric with respect to reflection in the σ ′

v.
The B2 pattern is the converse, antisymmetric in the σv and symmetric in the σ ′

v. As we
have met more than once before, care is needed. Interchange the labels on the mirror planes
and you interchange the labels on B1 and B2. One author’s B1 may be someone else’s B2.
Unfortunately, it happens that the choice is sometimes unspecified and one has to resort
to some sort of working-backwards procedure in order to find out which choice has been
made.

Now to the really interesting and informative nodal patterns. We have met irreducible
representations with 0, 2 and 4 inherent planar nodes. What of the one-node case? These
are characteristic of the E irreducible representation – as evidenced by the x , y entry in
Table 6.6, and as shown in Figure 6.9. But in Table 6.6 the E irreducible representation has
three characters of 0. Where are these in Figure 6.9? The answer is intimately related to
the twin facts that in every case there are two operations in the class that has a 0 character
and that there are two components of the E irreducible representation. Two operations, two
components, a total of four combinations and all have to make an equal contribution to the
character. Remember what was said when we first met the problem of obtaining a character
when there is more than one operation in a class: ‘the correct procedure is to consider the
transformation of each object under each of the individual operations in the class and to take
the average of characters generated’. Consider the σv operations. In the first E diagram,
E(1), the starting point, denoted by the E operation, with + phase is converted into points
with + phase by σv(1) and − phase by σv(2); an average of 0. In the second diagram, E(2),
the same mirror plane reflections give the phases − and + respectively; again an answer of
0. For the σ ′

v mirror plane reflections the same answer is obtained, of course, but differently.
In this case the phases are + and − in both diagrams. There is one other case to consider,
that of the two C4 rotation operations, but this is left as a problem for the reader. Finally,
we again emphasize the fact that the irreducible representation labels in Table 6.6 are really
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Figure 6.9 Nodal patterns of the irreducible representations of the C4v group. The use of a ‘natural’

pattern in Figure 6.4 means that the inherent polarity of members of the E irreducible representation

is evident

labels for different nodal patterns. Figure 6.9 shows these nodal patterns; clearly, it is very
convenient to represent each by a simple label – but the labels should not be allowed to
obscure the reality.

Problem 6.12 Show that the diagrams given for E(1) and E(2) in Figure 6.9 are
consistent with a character of 0 for the 2C4 class.
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6.6 The bonding in the BrF5 molecule

We now return to the problem with which this chapter started, that of the bonding in the BrF5

molecule. The discussion will be simplified by considering only σ interactions between the
fluorine and bromine atoms. Further, the possibility that d orbitals on the bromine may be
involved in the bonding will be ignored. These are reasonable simplifications but it is as well
to anticipate their consequences. First, each fluorine atom will have six valence shell non-
bonding electrons, a total of thirty in the molecule. There will be peaks arising from these
electrons in the photoelectron spectrum of the molecule which may make it difficult to test
our final model, since that includes only the electrons involved in the bonding. Second, the
neglect of bromine d orbitals will mean that we will find, at most, three bonding molecular
orbitals responsible for the σ bonding of the four coplanar fluorines to the bromine atom.
Of the bromine’s four valence shell orbitals one, 4pz , has a node in the plane containing the
four fluorines and so cannot be involved in σ -bonding to them, leaving only three orbitals
potentially available to σ -bond to the four fluorines.

As usual, the first thing to do is to consider the transformation properties of the bromine
valence shell orbitals, 4s, 4px , 4py and 4pz (for simplicity, the prefix 4 will not be used in
the following discussion). It is a simple matter to show that the bromine s and pz orbitals
separately transform as A1. The only likely point of any difficulty arises from the fact that
there are three classes containing two operations. What has to be done? As indicated above,
the answer which is almost invariably correct is ‘consider either operation’ (or, in the more
general case in which there are more than two operations in the same class, often one will
be a particularly convenient and easy choice). Whichever of the alternative operations is
chosen, the same set of characters will result.

Problem 6.13 Show that the bromine s and pz orbitals do indeed transform as A1.

Hint: The z coordinate axis is shown in Figure 6.6 (it is along the C4 axis, of course).
Viewing the orbitals from the direction in Figure 6.2 should prove helpful.

Problem 6.14 Repeat Problem 6.13 but using the other choice of symmetry operation
for the 2C4, 2σv and 2σv

′ classes to that used in Problem 6.13.

As has been indicated earlier, px and py transform together as E . However, this has to
be shown, as does the fact that the result is independent of the choice of orientation of x
and y axes (although the demonstration of the latter point will be incomplete because only
the alternative axis sets of Figures 6.6 and 6.8 will be considered). The transformation of
the px and py orbitals of the bromine atom under the eight symmetry operations of the C4v

group are detailed in Table 6.7 for the two choices of x and y axes. It is most important
that this table should be worked through carefully. Note, in particular, that the detailed
behaviour of the two sets of p orbitals under the mirror plane reflections depends on the
choice of x and y axis directions. Despite these differences, the character resulting from the
transformations is the same for either choice, which is a most important result. Similarly,
the sum of characters generated by px and py is the same for all operations in any one class.
The – consensus – characters generated by the px and py orbitals under the operations of
the C4v point group are given at the bottom of Table 6.7. The choice of x and y axes of
Figure 6.8 (or any other arbitrary choice) would also lead to the same set of characters as
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Table 6.7 The transformations of the bromine px and py orbitals in BrF5. The table shows the orbital

obtained when each operation operates on px and py . Its contribution to the aggregate character is

given in parentheses after each orbital

E C 4 C 4
3 C 2 σ v(1) σv(2) σv

′(1) σ v
′(2)

px (Fig.6.6) becomes px (1) −py (0) py (0) −px (−1) −px (−1) px (1) py (0) −py (0)
py (Fig.6.6) becomes py (1) px (0) −px (0) −py (−1) py (1) −py (−1) px (0) −px (0)
px , py together 2 0 0 −2 0 0 0 0
px (Fig.6.7) becomes px (1) −py (0) py (0) −px (−1) −py (0) py (0) −px (−1) px (1)
py (Fig.6.7) becomes py (1) px (0) −px (0) −py (−1) −px (0) px (0) py (1) −py (−1)
px , py together 2 0 0 −2 0 0 0 0

C 4v E 2C4 C2 2σv 2σ ′
v

Representation 2 0 −2 0 0
generated by px

and py together

those given in Table 6.7, although the truth of this is not self-evident. For the proof of the
statement the use of matrix algebra is unavoidable. The reader who wishes to check out
this particular aspect will have to turn to Appendix 2, where the proof is given. Comparison
with Table 6.6 shows that the representation which has been generated using px and py

as bases is the E irreducible representation of the C4v group. Because the x and y axes
transform similarly to px and py (just drop the p’s in Table 6.7 to obtain the transformation
of the axes) it follows that these too transform as E , as asserted earlier in this chapter.

The next task is to determine the irreducible representations spanned by the fluorine σ

orbitals involved in bonding with the bromine. No attempt will be made to specify in detail
the composition of the fluorine σ orbitals. It will be a mixture of s and p orbitals but the
participation of each of these components is not symmetry determined and, in any case, the
choice does not affect the qualitative conclusions that will be reached. For simplicity, in
the diagrams in this chapter these hybrid orbitals will be drawn as spheres (in contrast, it is
more convenient that they be drawn as pure p orbitals in Appendix 4). The next step is the
usual one, a consideration of the transformation properties of these fluorine hybrid orbitals.
That of the axial fluorine lies on all of the symmetry elements of the C4v group. All of the
corresponding operations turn the orbital into itself. It therefore transforms as the totally
symmetric irreducible representation of the C4v point group (A1). The hybrid σ orbitals of
the four symmetry-related fluorine atoms transform as a set and form a basis for a reducible
representation which must be decomposed into its irreducible components. The generation
of the reducible representation is straightforward but two comments are relevant. First, care
has to be taken in the definition of σv and σv

′ mirror planes. In this chapter the choice shown
in Figure 6.3 will be followed. That is, the fluorine atoms lie in the σv mirror planes. This
choice is arbitrary but it is important to be consistent, otherwise meaningless results will
be obtained. Second, as before, for the classes containing two symmetry operations either
operation may be chosen to obtain the character. So, use that which is the easier (most
people find that C4 is easier than C4

3, for example). Following this procedure it should
readily be found that the reducible representation generated by the transformations of the
fluorine σ orbitals is:

E 2C4 C2 2σv 2σ ′
v

4 0 0 2 0
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Next, this reducible representation has to be reduced to its irreducible components. Again,
recognition has to be made of the fact that three classes contain two operations. The reduc-
tion of a reducible representation depends on the group theory orthogonality relationships
given earlier in this chapter. In particular, Theorems 2 and 3 are relevant. So, the above
representation has to be multiplied by the characters of each irreducible representation in
turn. These products are then multiplied by the number of operations in the class and the
results summed. If no mistake has been made, the sum is a multiple of 8 (the order of the
C4v group), the multiplication factor giving the number of times that the chosen irreducible
representation appears in the reducible representation. This is worked out for the case of
the B1 irreducible representation below:

E 2C 4 C 2 2σv 2σ ′
v

Reducible representation 4 0 0 2 0
B1 1 −1 1 1 −1
Multiply 4 0 0 2 0
Number of operations in class 1 2 1 2 2
Multiply last two rows 4 0 0 4 0

Add the entries in the last row; the sum = 8. We conclude that the B1 irreducible rep-
resentation occurs once in the reducible representation. Repetition of this process shows
that the reducible representation has A1 + B1 + E components. Alternatively, quicker but
less evidently rigorous, one could ask the question ‘which of the nodal patterns of Figure
6.9 are compatible with the four fluorine orbitals?’. The A2 has to be excluded because it
has four nodal planes and these are incompatible with the fluorine hybrids, each of which
has to lie on a mirror plane and is symmetric with respect to reflection in it. Similarly, one
of the B1 and B2 has to be excluded; interestingly, this approach bypasses the problem of
‘which set of mirror planes is which?’ (although there is a choice inherent in the answer
obtained). As a bonus, the nodal patterns indicate that the correct linear combinations of
fluorine orbitals transform as a particular irreducible representation (and, in the case of E ,
of the components). One simply adds the phase shown in Figure 6.9 to the corresponding
hybrid; the resulting combination is correct (unless a silly mistake has been made!). Or one
can get the same results the hard way, the way that we now outline.

Problem 6.15 Show that the reducible representation generated above has A1 + E
components in addition to the B1.

Labelling the fluorine orbitals as indicated in Figure 6.10, and proceeding as in Section 5.6,
the normalized form of the linear combinations of fluorine hybrid orbitals which transform
as the A1 and B1 irreducible representations – the symmetry-adapted combinations – are
readily obtained. The discussion in Section 5.6 is so close to that needed at this point that
it will not be repeated. The only thing new is to point out that each and every operation of
the group must be considered (so, both C4 and C4

3). The character that is used to generate
a particular symmetry-adapted combination is that in the character table(!), applied to each
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F

Br

c

d+

+ b

a

+

+

Figure 6.10 The labelling and phases of the σ hybrid orbitals of the four coplanar fluorines. For

simplicity these hybrid orbitals are drawn as circles; the square of Figure 6.2 is shown in perspective

in this and following diagrams in order to locate the fluorine atoms without including all of them

operation in a class. So, for the B1 irreducible representation, both C4 and C4
3 are associated

with a character of −1.

Symmetry species Symmetry-adapted combinations of fluorine orbitals

A1 1/2(a + b + c + d)
B1 1/2(a − b + c − d)

Problem 6.16 Working with the labels of Figure 6.10, use the projection operator
method to generate the A1 and B1 functions given above.

The generation of the two combinations which transform as E is a more difficult problem,
and it will be considered in some detail. Those who had difficulties with Problem 6.16
should find that the following discussion enables them to be overcome. As for the A1 and
B1 combinations the projection operator method described in the last chapter will be used.
Using the fluorine hybrid orbital labelled a in Figure 6.10 as generating element and the
mirror plane operations as labelled in Figure 6.3 the following transformations are found
(they were probably generated in tackling Problem 6.16):

Operation E C4 C3
4 C2 σv(1) σv(2) σ ′

v(1) σ ′
v(2)

Under the operation a d b c c a b d
orbital a becomes

The E irreducible 2 0 0 −2 0 0 0 0
representation

Multiply 2a 0 0 −2c 0 0 0 0

(C 4 and C 3
4 are clockwise and anticlockwise rotations of 90◦ respectively.)

The sum of products is 2a − 2c which gives, on normalization:

1√
2

(a − c)
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as one of the E functions. Note, as emphasized several times already, that in the above
derivation each operation of the group is listed separately. So, when there is a class com-
prising two symmetry operations, underneath each operation the corresponding character
of the E irreducible representation is given.

The wave function obtained, 1/
√

2(a − c), is one member of the pair of functions trans-
forming as E . How may we obtain its partner? In this function there is no contribution
from the orbitals b and d; we might reasonably expect them to contribute to the orbital
we are seeking. If we consider the transformations of either of these orbitals and follow
the projection operator technique used above it is a simple task to show that the function
1/

√
2(b − d) is generated. This is the second function for which we have been looking.

Problem 6.17 Generate the second E function, 1/
√

2(b − d).

The functions 1/
√

2(a − c) and 1/
√

2(b − d) transform as a pair under the E irreducible
representation of the C4v group and are shown in Figure 6.11. The method used to obtain the
second member of the degenerate pair was based on an enlightened guess. In the next chapter
a more systematic method of generating such functions will be presented. One final word
on these combinations. Whereas in the A1 combination adjacent fluorine σ orbitals have the
same phase – and so any interaction between them is bonding – in the B1 they are always of
opposite phase. Any interaction between them is antibonding. In each of the E combinations
there is no interaction between adjacent σ orbitals (only trans orbitals appear in any one
combination). This argument leads us to expect a relative energy order A1 < E < B1, a
sequence which will be reflected in the presentation of the molecular orbital energy level
diagram for BrF5 (Figure 6.15).

We are now almost ready to consider the interaction between bromine and fluorine σ

orbitals. First, however, recall that the s and pz bromine orbitals separately transform as
the A1 irreducible representation. Analogous situations have been encountered in earlier
chapters, when the corresponding orbitals were combined to obtain two mixed, hybrid,
orbitals of the form 1/

√
2(s ± pz). This simplifying procedure will also be followed in the

present case. One of the mixed orbitals is orientated in a way that should give good overlap
with the σ orbital of the apical fluorine atom, an orbital which, as has been seen, is also of

y

Positive
y

Negative
y (b − d)

x
Positive

x

Negative
x

1
2√

1
2√

(a − c)

−

+ −

+

Figure 6.11 The two fluorine σ hybrid orbital combinations which transform as E in the C4v point

group and which are derived in the text
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4pz−

+

and

+

+

+

Figure 6.12 Hybrid orbitals (right) derived from bromine atomic orbitals (left) of A1 symmetry in

BrF5

A1 symmetry; these steps are shown schematically in Figures 6.12 and 6.13. The remaining
s–pz mixed orbital on the bromine atom points in the direction indicated by dashed lines
in Figure 6.1 and therefore might be regarded as the orbital which (in the electron-pair
repulsion model) causes the distortion of the molecule that was noted at the beginning of
this chapter. Unfortunately, as will be seen, reality is perhaps more complicated than this.
The complication arises from the fact that there is also a combination of σ orbitals from
the planar fluorines which has A1 symmetry. Clearly, it can interact with A1 orbitals of the
bromine. However, one of these latter A1 orbitals is pz and this has a nodal plane in which
the fluorines lie (in our simplified geometry of coplanar bromine and fluorines). The basal
plane fluorine A1 combination interaction will therefore be almost entirely with the bromine
s orbital. Correspondingly, it seems probable that the bromine s orbital involvement with
the axial fluorine and in the basal lone pair will be rather less than assumed above.

The only other valence orbitals on the bromine atom are px and py which, together, are of
E symmetry. They are shown in Figure 6.7b. They interact with the two fluorine σ orbital
combinations of E symmetry which were generated earlier in this section and which are
shown in Figure 6.11. Provided the p orbitals and the fluorine orbital combinations are
properly chosen – and this means that the same set of coordinate axes is used for each –
then each p orbital only interacts with one σ orbital combination. The orbitals in Figures
6.7b and 6.11 are properly chosen and the results of their interactions to give what have
been represented as sum (bonding) and difference (antibonding) combinations are shown
in Figure 6.14.
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A1 Br–F (axial) bonding
and

A1 Br–F (axial) antibonding
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+

Figure 6.13 Bonding of the axial fluorine to the bromine atom in BrF5; some form of sp hybrid is

envisaged as involved on each atom

+
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E bonding orbitals

E antibonding orbitals

Figure 6.14 The two bonding orbitals and the two antibonding orbitals of E symmetry in BrF5

arising from interactions of the four coplanar fluorines with the central bromine atom
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Problem 6.18 Repeat the above discussion of the interactions of orbitals of E symme-
try using the choice of coordinate axes shown in Figure 6.8 (use the bromine p orbitals
shown in Figure 6.8b).

Hint: The projection operator method used in the text automatically selected the co-
ordinate axis choice shown in Figure 6.7 because of an (implicit) choice to consider
the transformation of an individual fluorine σ orbital (a). The method can be forced
to give combinations appropriate to the axes of Figure 6.8 by considering, instead, the
transformation of a pair of neighbouring σ orbitals. Thus, the pairs (a + b) and (a + d)
are suitable pairs to use in tackling this problem.

The above discussion is summarized in the energy level pattern given in Figure 6.15,
where, as has been recognized, there must be some uncertainty about the details of the
positions of the orbitals of A1 symmetry. Into the orbital pattern shown in this figure a total
of twelve electrons (seven from the bromine and one from each fluorine orbital) have to be
placed. It will be remembered that this diagram does not include the fluorine non-bonding
electrons.

There are some interesting consequences of Figure 6.15 and of our discussion of the
bonding of the BrF5 molecule. We have suggested that one molecular orbital (of A1 sym-
metry) is primarily involved in the bonding of the axial fluorine to the bromine. If this
view is correct then this bromine–fluorine bond involves two electrons. In contrast, in the
picture developed above, the strongly bonding molecular orbitals involving the planar flu-
orine atoms are of E symmetry (although there will be a smaller contribution from an A1

orbital). That is, the four coplanar fluorine atoms are bonded to the central bromine atom
by little more than two molecular orbitals. If this conclusion is correct, it suggests that the
bonding between the bromine and each of the four coplanar fluorines is rather weak, a view

px, py

a1

1b1 b1

3a1

2a1

1a1

a1

a1

a1

e

1e

pz'

s
e

Fluorine
σ orbitals

Symmetry-
adapted
combinations

BrF5 σ 
molecular
orbitals

Bromine
atomic
orbitals

s − pz
mixing

Figure 6.15 Schematic molecular orbital energy level diagram for BrF5. The a1 orbital shown in a

central trio above the heading ‘Symmetry-adapted combinations’ is the σ orbital of the axial fluorine
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supported by the fact that bromine pentafluoride is an extremely powerful fluorinating agent.
Some further support for this difference between axial and planar fluorines is to be found
in molecular structure determinations which show Br–F bond lengths of 1.68 Å (axial) and
1.78 Å (equatorial).

Both theoretical calculations and photoelectron spectroscopic data are available for BrF5.
For us they are complicated by the fact that in the above discussion all the electrons on
the bromine and on the fluorine atoms which are not involved in σ bonding have been
omitted. These electrons, then, have to be regarded as non-bonding and so are expected to
be relatively easy to ionize. Fortunately, some of the symmetries they span are not included
in the σ bonding set (A2, for example) and this helps to identify them. The highest lying,
most easily ionized, electrons (at 13.5 eV in the photoelectron spectrum)4 are believed to
be amongst those that we have omitted, a lone pair of electrons on the bromine atom. Then
come at least three peaks (between 15 and 17 eV) corresponding to ionization of the fluorine
2p non-bonding electrons, included amongst which are the 1b1, 2a1 and 3a1 electrons of
Figure 6.15. Between 18 and 22.5 eV are two peaks which are almost certainly composites
but which have been reported as including ionization from the 1e and 1a1 Br–F σ -bonding
molecular orbitals of Figure 6.15. Theoretical calculations are available for both ClF5

5

(which has a structure similar to that of BrF5) and BrF5
6 itself. The two sets of calculations,

which used somewhat different theoretical models, are in good qualitative agreement with
each other and with the experimental data, although they suggest that perhaps the 1a1 orbital
of Figure 6.15 is just a bit too low in energy to be seen in the photoelectron spectrum. For
us the most important general conclusion is the promising result that, once again, our
relatively simple symmetry-based arguments lead to an energy level pattern which is in
good qualitative agreement both with experiment and with detailed theoretical calculations.

In our discussion of the bonding in BrF5 we have ignored the presence of 4d orbitals on
the bromine. The justification for this is that the 4d orbitals of the isolated bromine atom are
so large and diffuse that they cannot overlap effectively with a valence shell atomic orbital
of any other atom unless there is something which causes them to contract. Something may
exist in BrF5 because the polarity of each of the Br F bonds will be such that there will
presumably be a significant build-up of positive charge on the bromine atom. One effect of
this would be to lower the energy and decrease the size of the bromine 4d orbitals and thus
perhaps make them available for chemical bonding. If this occurs we should have included
the d orbitals in our discussion. This is an attractive hypothesis but is one that is extremely
difficult to test, even by detailed calculations.

Problem 6.19 (a) Show that the bromine dz2 orbital has A1 symmetry and its dx2−y2

orbital has B1 symmetry. This latter orbital is shown (contracted!) in Figure 6.16 together
with the B1 combination of fluorine σ orbitals with which it potentially interacts. (b)
Show that both of the labels B1 and dx2−y2 would have to be changed if the coordinate
axis set of Figure 6.7 were used in the discussion.

4 R.L. De Kock, B.R. Higginson and D.R. Lloyd, Chem. Soc. Faraday Discuss. 54 (1972) 84.
5 M.B. Hall, Chem. Soc. Faraday Discuss. 54 (1972) 97.
6 G.L. Gutzev and A.E. Smolyar, Chem. Phys. Lett. 71 (1980) 296.
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Figure 6.16 (a) The B1 combination of fluorine σ orbitals. (b) The dx 2−y2 (B1) orbital of bromine

6.7 Summary

In this chapter it has been found that operations may be divided into classes (p. 147) and
that when some classes contain more than one operation the character table contains at least
one degenerate representation (p. 146). The presence of a degenerate representation in the
C4v group enabled the orthonormality relationships to be presented in a more general form
(p. 152). The procedures previously used to reduce a reducible representation have to be
modified in the more general case although the projection operator technique is basically
unchanged (p. 164). Application of these techniques to the problem of the bonding in BrF5

suggested both a reason for its existence – polar Br F bonds possibly enabling participation
of bromine d orbitals in the bonding (Problem 6.19) – and for its reactivity – the four coplanar
fluorines are not strongly bonded (p. 169).
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7 The electronic structure of the
ammonia molecule

As usual, the content of this chapter contains more than is evident from the title. It confronts
the problem of unpleasant-looking characters. What, for instance, is to be made of a character
of 0.6180? Of course, it is not as bad as at first appears. It is just 2cos 72◦ and it is likely
to arise whenever a fivefold rotation axis is contained in a problem (5 × 72 = 360). In fact
all odd-fold (3, 5, 7, 9. . .) rotation axes give rise to such apparently strange characters and
similar problems arise with all of them. It is the first, and simplest, of these, a threefold
rotation axis, which is covered in this chapter. Almost all of the problems associated with
odd-fold rotation axes will be encountered.1

In the first chapter of this book four different qualitative descriptions of the bonding in
the ammonia molecule were discussed in outline. The symmetry-based approach has now
been developed to a point at which this problem may be reconsidered in more detail. At the
same time a problem encountered in the last chapter will reappear – that of the choice of
directions of x and y axes. The form in which this problem appears is one which will lead to
a general solution, a solution which will enable molecules of high symmetry, such as those
which will be subject of Chapters 8 and 10, to be tackled.

7.1 The symmetry of the ammonia molecule

The structure of the ammonia molecule is given in Figure 7.1 which also shows the symmetry
elements possessed by this molecule. The axis of highest rotational symmetry (which will
therefore be taken as the z axis) is a C3 rotation axis and has associated with it clockwise and
anticlockwise rotation operations. To help the reader remember this distinction – because
we will be working with them quite a lot – they will be called C3

+ and C3
−. In a more general

notation they would be called C3 and C3
2, a type of notation which was actually that used in

the last chapter (in fact, both of the notations were used there). In addition to the threefold
rotation axis, there are three mirror planes each of which contains the threefold axis (and

1 One problem which will not be covered is that of multiples of the basic rotation. So, when there is a fivefold rotation axis
one is likely to encounter −1.6180, 2cos 144◦, in addition to 0.6180, 2cos 72◦. The extension of the content of the chapter to
cover such cases is straightforward, but is best done on a case-by-case basis. So, for a C5 axis it is possible to exploit some classic
relationships based on τ = 1.6180 (−τ and τ − 1 are the cos values above). τ is the so-called ‘golden section’ and satisfies the
equation τ 2 = τ − 1.

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Figure 7.1 The symmetry elements of the ammonia molecule. One hydrogen atom is located in each

mirror plane

are vertical with respect to it – that is, they are σ v mirror planes), with one hydrogen atom
lying in each mirror plane. The symmetry operations which turn the ammonia molecule
into itself are therefore

E C3
+ C3

− σv(1) σv(2) σv(3)

This group is called the C3v point group, the shorthand symbol C3v indicating the coexistence
of the C3 axis and the vertical mirror planes.

Problem 7.1 Show that this set of operations comprises a group.

Hint: It will be found helpful to refer back to Problem 5.2. The group multiplication
table for the C3v group is given in Table 9.2 (and Appendix 2).

The class structure of the symmetry operations of the C3v group is suggested from the
similarities between the various operations and is

E 2C3 3σv

Alternatively, the formal methods described in Appendix 2 may be used to deduce this
class structure (the 2C3 class is given as a worked example in Appendix 2). The character
table of the C3v point group is given in Table 7.1.
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Table 7.1

C3v E 2C3 3σ v

A1 1 1 1 z, z2, x 2 + y2

A2 1 1 −1
E 2 −1 0 (x , y), (zx , yz), (xy, x2 − y2)

In this table we have followed Table 6.6 and given the usual presentation of character
tables. On the right-hand side of the table are shown functions which are a basis for a
particular representation. Thus the z axis, chosen following the convention which locates
it along the C3 axis, transforms as A1 and the x and y axes, together, are a basis for the E
irreducible representation.

Problem 7.2 Use the theorems of Section 6.3 to derive Table 7.1.

Note: This is a relatively short problem but one that gives excellent practice in the use
of the orthonormality theorems.

There is one particular point about the C3v character table which has to be discussed in
detail. This concerns the axis pair (x, y) which, as shown in Table 7.1, transforms as the
doubly degenerate irreducible representation E. Because they must be perpendicular to the
z axis, the x and y axes lie in a plane perpendicular to the C3 axis. But where in this plane
do they lie? This problem is similar to one which was discussed in Chapter 6 where, in the
C4v point group, it was found that a variety of directions could be chosen for the x and y
axes. So too, in the present problem there is no unique choice for the x and y axis directions.
However, the present problem is more difficult than that encountered in the C4v case and so
it will be looked at in some detail. Suppose the x axis is chosen so that it lies in one of the σ v

mirror planes as is shown in Figure 7.2, which gives a view looking down the threefold axis.

x

y

H

N

HH

px

py

+
+−

−

Figure 7.2 The choice of direction of x and y axes discussed in the text and consequent orientation

of the px and py orbitals. The py orbital is shown dashed
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Figure 7.3 The x and y axes of Figure 7.2 together with an alternative set (x′ and y′) produced by

a C3 rotation of x and y. In both cases the corresponding p orbitals are also shown. The x′′ axis will

be referred to in the text

Two, related, problems at once arise. First, there is no evident reason why a particular mirror
plane should be selected rather than one of the others. Second, the choice which has been
made for the x axis means that the y axis is forced to be quite differently orientated in space.
However, having made a choice we will stay with it and move on to the next problem, that
of the effect of a C3

+ rotation operation on these x and y axes, shown in Figure 7.3. It is seen
from this figure that the x axis is rotated so that it lies along one of the directions which could
have originally have been taken as the x axis but was not. Similarly, the y axis is rotated into a
direction appropriate to this second choice of x axis. In Figure 7.3 the alternative x and y axes
are indicated by primes (so that x is rotated into x′ and y into y′). This is a quite new situation.
So far in this book symmetry operations have turned objects into themselves or interchanged
them. Here, a symmetry operation has generated something which did not previously exist,
or so it seems. Well, the truth is that the x′ and y′ axes did previously exist – it is just that
they were not revealed. However, a little work is involved in showing that this must be the
case.

As is clear from Table 7.1 the C3
+ rotation acting on the (x, y) axis pair which converts

them into the (x′, y′) axis pair is associated with a character of −1 (this is the character of
the E irreducible representation under C3 rotations). In some way or other the (x′, y′) set
is −1 times the (x, y) set. How? This problem is tackled by investigating the relationship
between two axis sets (x, y) and (x′, y′) related by a rotation by an angle α (later α will be
taken as equal to 120◦, as appropriate to the C3v point group). If an object were to start at
the origin of coordinates in Figure 7.4 and be displaced along the x′ axis it is evident that
this displacement could, alternatively, be represented as a sum of displacements along the
original x and y axes. As shown in this figure, for an angle α relating the x and x′ axes, a unit
displacement along the x′ axis is equivalent to a displacement of cos α along x combined
with a displacement of sin α along y. The rotated x axis, x′, is a mixture of the original x
and y, as too is the rotated y, y′.
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Figure 7.4 In this figure the circle is taken to be of unit radius. It follows that the unit displacement

AB is the sum of the displacements AC and CB which, respectively, have magnitudes of cos α and

sin α

When determining the contribution to a character made by the transformation of some-
thing such as an x axis, so far in this book we have asked the question ‘is the x axis turned
into itself, into minus itself or into something different’, and we have associated the char-
acters of 1, −1 and 0 with these three situations. We have now encountered a situation in
which the x axis is rotated into an axis which may be described as in part containing the
original x axis. Accordingly, our question must be modified to the simpler, but more general,
form, ‘to what extent is the old axis contained in the new?’. As is evident from Figure 7.4,
and the discussion above, the numerical answer to this question is cos α, where α is the
angle of rotation. An axis which is left unchanged by a rotation corresponds to α = 0, so
cos α = 1, the character that we have associated with this situation. Similarly, for a rotation
of 180◦, cos α = −1, which again is the character that the rotation of a coordinate axis by
180◦ gives. For α = 90◦ (when the x axis is rotated so that it becomes the y axis) cos α = 0,
again the expected answer. The general rule (which applies to all Cn rotations, both those
with n even and those with n odd) is clear:

When an axis is rotated by an angle α by a symmetry operation its contribution to the
character for that operation is cos α.

Comment: This statement holds for axes; for products of axes it has to be modified. Thus,
because x contributes cos α it follows that x2 contributes cos2α and that x3 contributes cos3α,
and so on. Note that this rule applies to products of axes which are perpendicular to the axis
of rotation. Thus, if the rotation axis is the z axis then the function xz will vary as cos α

because only the x axis is perpendicular to the rotation axis – the z axis is left unchanged.
However, the function xy will vary as cos2α because both x and y separately vary as cos α.
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Problem 7.3 Show that the transformation of x2 under a rotation of α about the z axis
is given by the factor cos2α.

Hint: It is sufficient to check that this relationship holds for particular values of α; α =
0◦, 90◦, 180◦, 270◦ and 360◦ are particularly convenient.

Problem 7.4 (a) In the C5v point group a pair of functions transforming as the doubly
degenerate irreducible representation E1 have a character of 2cos 72◦ under a C5 rotation.
Suggest a pair of functions which might form a basis for this irreducible representation.

(b) Repeat this problem for the E2 irreducible representation, for which the character
is 2 cos 144◦. Solution of this problem requires a small extension of the argument
developed above. (Solutions to both of these problems will be found in the character
table for the C5v group in Appendix 3)

Returning to the case of the C3v point group, it is concluded that the x and y axes each make
a contribution of cos 120◦ = −1/2 to the character under the C3, 120◦, rotation operations.
The sum of these two, −l, is indeed the character of the E irreducible representation under
this operation. It was in Section 3.2 that it was first mentioned that two quantities, such as
axes or orbitals, can be mixed by the operations of a group. We are now able to understand
just what this means. The effect of a C3 rotation on the original x and y axes is to rotate
them to give new axes, each of which is a mixture of the original axes. In such cases the
contribution that each axis makes to the character is always fractional. Everything that has
been said about the x and y axes also holds for the 2px and 2py orbitals of the nitrogen atom
in ammonia because the transformation of 2px (N) is isomorphous to that of x, as is that of
2py(N) to y (Figure 7.3). This parallel has already been anticipated by taking the molecular
x and y axes to pass through the nitrogen atom – although they could be chosen to pass
through any point along the C3 axis – so that the above argument could be used as a basis
for a discussion of the bonding in the ammonia molecule without the need to redefine axes.

7.2 Nodal patterns of the irreducible representations of C3v

In previous chapters of this book we have given pictures of the nodal pattern associated with
each irreducible representation. They seemed to be systematic. For the C2v group, a group
of order 4, there were patterns with 0, 1 or 2 nodes, a total of 4 different. For the D2h, a
group of order 8, patterns with 0, 1, 2 or 3 nodal planes were met, with a total of 8 different.
Finally, for C4v, also of order 8, the patterns had 0, 1, 2 or 4 nodal planes (none had 3), and
a total of 6. The lower total arose because the doubly degenerate irreducible representation
only gave two patterns (remember, in counting up to the order of the group the characters
in the identity column have to be squared, so that the contribution of a doubly degenerate
irreducible representation is 4). What of the C3v group? It is of order 6, with two singly
degenerate and one doubly degenerate irreducible representations. We expect one nodal
pattern for each of the former and two for the latter. The patterns are shown in Figure 7.5,
where the first diagram gives the interrelationship of the six symmetry operations viewed
down the threefold axis.
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Figure 7.5 Nodal patterns of the irreducible representations of the C3v group. Note the way that the

accommodation of a nodal plane in one component of the E irreducible representation is compensated

for by its partner

As we have come to expect, the pattern of the totally symmetric, A1, is nodeless. Those
of the E have one node each; we will look at these E pictures in more detail shortly. The
last pattern, the A2, has three nodes. There is a lesson to be learnt from the sequence C2v (2
nodes maximum), C3v (3 nodes maximum) and C4v (4 nodes maximum); compare the point
group symbol with the maximum number of nodes. But back to those E pictures. Take the
first, E(1). Here, the nodal plane cuts through one of the six segments into which the circle
is divided. There has to be a change of phase across the nodal plane, but each segment has
to have its own, unique, phase. The only way out of this dilemma is to give the segment no
phase at all. In contrast, the other E function, E(2), has a double amplitude in those segments
left blank in E(1). No doubt all this seems somewhat strange to the reader, but hopefully
not for long. In the next section we will use the projection operator method to obtain linear
combinations of the hydrogen 1s orbitals in ammonia. There we will obtain combinations
resembling those that we have just seen. Actually, the E combinations highlight an aspect
which can prove to be a help in difficult problems: that all equivalent objects make equivalent
contributions to all irreducible representations. In the present context, the objects can be
taken to be the segments. So, for the A1 and A2 nodal patterns in Figure 7.5 each quadrant
is represented with equal weight (although the sign may be either + or −). For the E’s
the same is true if they are treated as a pair; that which one lacks is compensated by the
other. Together, they have a weight of two. This points to a general property of reducible
representations: for a triply degenerate set (and we will meet them in the next chapter) they,
together, have a weight of three – but they can appear different, from one another. In fact,
triply degenerate sets tend to be well behaved, simply because we live in a three-dimensional
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world. It is the others that present problems. The reader will almost certainly have met this
with d orbitals; one, dz2 , is ‘different’, a topic to which we will return in Chapter 8.

7.3 The bonding in the ammonia molecule

We now complete this chapter by a discussion of the bonding in the ammonia molecule.
As is evident from the discussion above, the transformation properties of the nitrogen va-
lence shell 2p orbitals follow those of the coordinate axes given in Table 7.1. The nitrogen
2pz has A1 symmetry and 2px and 2py , as a pair, have E symmetry; it is a trivial exer-
cise to show that the nitrogen 2s orbital is totally symmetric (this orbital is spherical and
lies on all symmetry elements; it therefore transforms as A1). The transformation of the
three hydrogen 1s orbitals under the operations of the group gives rise to the reducible
representation

E 2C3 3σv

3 0 1

which is a linear sum of the irreducible representations A1 and E.

Problem 7.5 Reduce the above reducible representation into its irreducible compo-
nents.

Hint: An explicit solution to a similar problem has been given in the previous chapter.

Much of the discussion so far in this chapter has developed from the fact that the operation
of rotation by 120◦ has the effect of mixing functions which provide a basis for the E
irreducible representation. This same problem reappears again when we try to determine
the symmetry-adapted combinations of hydrogen 1s orbitals in the ammonia molecule which

σv(1)

σv(2)σv(3)

a

c b

C3
+C3

−

Figure 7.6 The labels used in the text for the hydrogen 1s orbitals of the ammonia molecule. For

convenience, the operations are also shown
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Table 7.2

Operation E C3
+ C3

− σ v(1) σ v(2) σ v(3)

a is turned into a b c a c b
Characters of the E irreducible

representation
2 −1 −1 0 0 0

Multiply 2a −b −c 0 0 0
Sum 2a − b − c
Normalize 1√

6
(2a − b − c)

transform as the E irreducible representation, a problem which will now be considered in
detail. Labelling the hydrogen 1s orbitals as indicated in Figure 7.6 and considering the
transformation of the orbital labelled a, the six symmetry operations of the group are found
to lead to the following transformations, where the σ v mirror planes are labelled as in
Figure 7.1:

E C+
3 C−

3 σv(1) σv(2) σv(3)
a b c a c b

Application of the projection operator technique described in Section 5.6 shows the A1

function to be:
1√
3

(a + b + c)

There is no difficulty in obtaining one of the E functions. The steps involved are shown in
Table 7.2 and lead to the function

1√
6

(2a − b − c)

A problem arises when we try to obtain the second E function. A similar problem was
met in Section 6.6 when discussing the four orbitals of the coplanar fluorine atoms in
BrF5. In that case the problem was relatively simple because the first E function contained
contributions from only two of the σ orbitals; the projection operator technique applied
to one of the other σ orbitals immediately gave the second E function. There is no such
simple solution to the present problem; all three hydrogen 1s orbitals appear in the E
function that has been generated, albeit with unequal weights. Following the procedure
described in Chapter 5 the transformations of either the hydrogen 1s orbital b or c could
be used as a basis for the projection operation method – but which? If b is used then the
combination

1√
6

(2b − c − a)

is obtained, whilst if c is used the function

1√
6

(2c − a − b)

is obtained.
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Problem 7.6 Show, by constructing tables analogous to Table 7.2, that the transfor-
mations of the hydrogen 1s orbitals b and c lead to the E functions

1√
6

(2b − c − a) and
1√
6

(2c − a − b) respectively

We have, apparently, obtained three quite different functions transforming as E – yet we
know that, for a doubly degenerate irreducible representation, there can only be two. As
indicated above, this problem is closely related to the three possible choices for the x axis
that were discussed earlier and the solution to the problem is also similar. What we have,
in fact, done in using a, b and c separately is to have generated E functions appropriate
to the x, x′ and x′′ axes, respectively, of Figure 7.3. They are shown in Figure 7.7a. The
functions corresponding to the x′ and x′′ axes, like these axes themselves, are mixtures of
the functions appropriate to the original x and y axes. It is the latter pair that we are seeking.
The first member of the pair we have pure, but the second we have only as part of a mixture
(or, rather, as part of two mixtures).

y

x'x"

x

1
6√

(2b − c − a)
1
6√

(2c − a − b)

1
6√

(2a − b − c)

(a)

1
6√

(2a − b − c)

(b)

x

x'x"
y

Figure 7.7 (a) Alternative symmetry-adapted combinations of hydrogen 1s orbitals in NH3 corre-

sponding to the axes x, x′ and x′′ of Figure 7.3. Just as one of these axes has to be selected so,

too, does one of the three symmetry-adapted combinations. (b) The (vector) sum of displacements

along −x′′ and x′ is a displacement along y
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There are many ways of obtaining the second E function from the mixtures. Perhaps
the simplest is to exploit the fact that if the first function we are seeking corresponds to
the x axis, then the second corresponds to the y axis. This vector (axis-like) property of
the functions is indicated by the arrows in Figure 7.7a. If, as shown in Figure 7.7b, the
direction of the vector pointing in the direction x′′ is reversed and added to that pointing in
the x′ direction a vector pointing in the y direction is obtained. These steps now have to be
repeated using functions rather than vectors.

The negative of the function associated with x′′ is

− 1√
6

(2c − a − b)

and adding it to the function associated with x′

1√
6

(2b − c − a)

gives

1√
6

(−2c + a + b + 2b − c − a) = 1√
6

(3b − 3c)

That is, the second E function is of the form

(b − c)

or, normalized,

1√
2

(b − c)

Problem 7.7 The sum of vectors pointing along x′ and x′′ of Figure 7.7a is the neg-
ative of a vector pointing along x. Show that an analogous statement is true for the
corresponding E functions.

Problem 7.8 The fact that the two E functions which have just been obtained have
quite different mathematical forms tends to be received with suspicion. Show that their
forms are such that the orbitals a, b and c make equal total contributions to the E
functions.

Hint: Sum the squares of coefficients in the normalized E functions.

Problem 7.9 Compare the two E functions just obtained with the E nodal patterns
of Figure 7.5. Since they describe the same irreducible representation, they should be
compatible. Are they? Could the nodal patterns of Figure 7.5 be used to generate the E
functions above? If so, how?

The symmetry-adapted combinations of hydrogen 1s orbitals which have just been gen-
erated are shown in Figure 7.8 together with the nitrogen orbitals of the same symmetry
with which they interact. Note that in this figure the unequal contribution of a, b and c
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Figure 7.8 Schematic pictures of the bonding and antibonding molecular orbitals of A1 and E

symmetry in NH3 and the way that they are derived from atomic and group orbitals

to each of the two symmetry adapted combinations of E symmetry is reflected in the dia-
grammatic representation of the orbitals. It will also be noted that in Figure 7.8 we have
followed the approximate procedure of taking a combination of nitrogen 2s and 2pz orbitals
as the nitrogen orbital which interacts with the A1 combination of hydrogen 1s orbitals. The
resulting schematic molecular energy level diagram of ammonia is shown in Figure 7.9.
There are eight valence electrons which have to be allocated to these orbitals (five from
the nitrogen and one from each of the three hydrogens) and they are accommodated in the
lowest molecular orbitals of A1 and E symmetry, all of which are M---H bonding, and in
the second A1 orbital, which is essentially the nitrogen lone-pair orbital. These qualitative
conclusions are to be compared with the results of detailed calculations and with the results
of photoelectron spectroscopy.

Calculations2 show that the A1 orbitals of the ammonia molecule have energies of ca.
−11.6 and ca. −31.3 eV and that of E symmetry ca. −17.1 eV. Of these, the more stable of
the A1 orbitals has, as experience leads us to expect, a major contribution from the nitrogen
2s atomic orbital. These data are in general agreement with the photoelectron spectroscopic
results3 which give energies of ca. 10.2 eV, 27.0 and 15.0 eV for these levels, respectively –

2 C.D. Ritchie and H.F. King, J. Chem. Phys. 47 (1967) 564.
3 A.W. Potts and W.C. Price, Proc. R. Soc. 326 (1972) 181.
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Figure 7.9 A schematic molecular orbital energy level diagram for NH3

again, an encouraging result that a symmetry-based model is in good qualitative agreement
both with detailed calculations and with experiment.

Ammonia is a molecule for which, like the water molecule, it is a simple matter to describe
the angles at which the various contributions to the molecular bonding maximize. Using
arguments entirely similar to those of Chapter 3 for the water molecule, it is concluded that
the bonding interactions of A1 symmetry involving the nitrogen 2pz orbital (Figure 7.10a)
maximize at small bond angles, whereas the interactions between orbitals of E symmetry
maximize for the planar molecule (Figure 7.10b). These angular variations are conveniently
summarized in a Walsh diagram, just as for the water molecule in Chapter 3. This diagram
is given, qualitatively, in Figure 7.11.

Problem 7.10 Check that Figure 7.11 does, indeed, summarize the discussion of the
above paragraph. What can be concluded about the non-bonding nature of the highest
A1 orbital from this diagram?

As indicated in Chapter 1, calculations show that the total bonding in the ammonia molecule
is a maximum when the molecule is planar so it can be concluded that the E interactions
dominate. However, this argument neglects the effects of repulsive forces on the molecular
geometry and, as stated in Chapter 1, the same calculations show that it is these that – just –
lead to the molecule adopting a pyramidal shape. At the observed bond angle there are both
A1 and E contributions to the bonding. Were we to remove an electron from the highest A1

molecular orbital, which contains a large nitrogen 2pz contribution, and which, despite our
simplified discussion, makes a contribution to the molecular bonding, it would be reasonable
to expect that a more nearly planar molecule would result. Experiment, indeed, indicates
that in its ground state NH3

+ is a planar molecule.
Although the bonding in planar NH3 or NH3

+ has not been discussed in this text,
it is, nonetheless, of interest to consider a related planar species. This is the molecule
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Figure 7.10 (a) The overlap between the A1 symmetry-adapted hydrogen 1s combination and the

nitrogen 2pz orbital decreases as the HNH bond angle increases (this decrease is related to the

fact that the hydrogen combination and the 2pz orbitals have different symmetries in the planar

molecule). (b) The overlap between an E symmetry-adapted hydrogen 1s combination and a nitrogen
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Figure 7.11 A Walsh diagram for NH3
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Figure 7.12 Postulated pπ/dπ bonding in the planar molecule trisilylamine, N(SiH3)3. In fact, the

silicon 3dπ orbitals are much larger and diffuse than pictured here

trisilylamine, (SiH3)3N. In this molecule the Si3–N framework is planar (unlike the C3–N,
skeleton in trimethylamine (CH3)3N, which is pyramidal like ammonia). The question of
why trisilylamine should be planar has been widely discussed in the past and sometimes
associated with Si–N π bonding involving the empty 3d orbitals of silicon accepting elec-
trons from the lone pair on nitrogen (which in this geometry occupy a pure 2p orbital,
Figure 7.12). Our discussion has indicated that the planarity of this molecule could arise if
the delicate balance between bonding and repulsive forces found for ammonia – and which
appears to occur for many such molecules – is such as to favour the planar form of trisily-
lamine. This argument, of course, does not require the existence of any Si–N π bonding. It
could be, of course, that the presence of a small amount of π bonding is decisive in tipping
a delicate balance. Equally, such an interaction might be important not for any – small – π

bonding stabilization which results but because the resulting more diffuse electron distribu-
tion leads to a reduction in the destabilization resulting from electron repulsion. However,
it is important to recognize that the observed planar geometry of trisilylamine does not of
itself prove the existence of significant d–p π bonding in this molecule. Indeed, there are
now (fairly complicated) organic species known which have a similar planar structure and
for which it would be difficult to advance a π bonding argument.

7.4 Summary

In this chapter the problem of the transformation of functions has been discussed which form
the basis for a degenerate reducible representation but which appear to be differently oriented
with respect to the symmetry elements and may, indeed, have different mathematical forms
(p. 183). Despite these superficial differences, the fact that they are mixed or interchanged by
some operations of the group is sufficient to ensure their ultimate equivalence (p. 176). The
differences are also found in the appropriate nodal patterns of the irreducible representations
of the C3v group (p. 179).
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8 The electronic structures of
some octahedral molecules

The methods developed so far in this book will be exploited to the full in the present chapter,
where the electronic structure of the octahedral molecule SF6 will be considered in detail
and the results then extended to transition metal complexes. SF6 is a quite large molecule
but its symmetry is also considerable; enough to enable us to consider not only the bonding
between sulphur and fluorine but also the non-bonding electrons on the fluorines. There are
short-cuts which can be used in symmetry discussions and the present approach is such as
to enable several of them to be introduced. Throughout this book new symmetry operations
have been met in each chapter. This is also true for the present chapter; the operations will
complete the types encountered in point groups and so a general review of point group
classifications follows as the next chapter. This will prepare the way for Chapter 10, in which
the relationships between point groups and spherical symmetry will be covered in some
detail.

In Figure 8.1 is shown a cube, an octahedron and a tetrahedron. An octahedron is closely
related to a cube. If the mid-points of faces of a cube are joined together the figure that is
generated is an octahedron. The octahedron has eight faces but what is of more importance
is the fact that it has six apices because when these apices are occupied by six atoms
around an atom at the centre of the figure an octahedral molecule results (Figure 8.2).
In the majority of octahedral ML6 compounds the central atom is a metal ion whilst the
surrounding atoms or ions are usually those of an electronegative element and are called
ligands. Such species are referred to as ‘octahedral complexes’. Although it is not convenient
to start the discussion with such molecules they will be looked at in more detail later in the
chapter.

A tetrahedron (Figure 8.1) is also derived from a cube, as was recognized in Chapter 1
(see Figure 1.4 and the discussion in Section 1.2.4). The fact that both the octahedron and
tetrahedron are related to the cube means that it is possible to give a common discussion
of the electronic structure of octahedral and tetrahedral transition metal complexes. In the
present book we shall not embark on this discussion although the starting point will be
indicated; the tetrahedral group will be considered in more detail in Chapter 10. First,
however, a look at the symmetry of the octahedron.

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.



JWBK182-08 JWBK182/Kettle September 7, 2007 10:43

190 THE ELECTRONIC STRUCTURES OF SOME OCTAHEDRAL MOLECULES

Cube Octahedron Tetrahedron

Figure 8.1

8.1 The symmetry operations of the octahedron

In Figure 8.3a are shown those pure rotational symmetry operations which turn an octahedral
ML6 molecule into itself (there are other operations, too, but it is convenient to start with
the rotations). The octahedron contains three fourfold rotation axes and, of necessity, three
coincident twofold rotation axes. There are also six twofold axes which are quite distinct
from those that are coincident with the fourfold axes. Finally, there are four threefold rotation
axes. Not surprisingly, Figure 8.3a shows a rather bewildering array of symmetry axes but
there is a simple way of reducing the complexity. This is by associating symmetry elements
with geometrical features. Thus, each C3 axis passes through the mid-points of a pair of
equilateral triangular faces on opposite sides of the octahedron. There are eight faces and
so four pairs of opposite faces. It follows that there are four different C3 axes. Similarly, the
C4 and coincident C2 axes pass through opposite pairs of apices; there are six apices and so
just three C4’s and C2’s. The other, C ′

2, axes pass through the mid-points of pairs of opposite
edges. Because the octahedron has twelve edges there are six C ′

2 axes. The fact that the
operations associated with each set of axes form separate classes is actually evident from
the way that rotation axes are interchanged by other operations of the group (for instance,
a C3 operation interchanges the C4 axes).

L

L

L

L

LM

L

Figure 8.2 An octahedral molecule ML6. The name derives from the fact that it has eight faces
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Figure 8.3 (a) The rotational symmetry elements of an octahedron, divided between three diagrams

for clarity. (b) The conventional choice of coordinate axes for an octahedron
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Problem 8.1 Use Figure 8.1 to obtain the rotational axes of an octahedron (i.e. work
through the above argument in detail). Your answers can be checked by reference to
Figure 8.3.

Problem 8.2 Use Figure 8.1 to obtain the rotational axes of a cube. You will probably
first need to associate each sort of rotational axis with some geometric feature of the
cube. Compare your answer with that found for an octahedron.

For each of the C3 and C4 rotation axes there are two distinct symmetry operations –
rotation clockwise and rotation anticlockwise. These axes and operations have already been
met in the previous two chapters. It follows that the rotational symmetry operations which
turn an ML6 molecule into itself are

E, 8C3, 6C4, 3C2 and 6C ′
2

where the identity operation has been included and the 6C ′
2 refers to those twofold axes

which pass through pairs of opposite edges of the octahedron. This group of twenty-four
operations comprises the point group O. The fact that it is a complete group may be shown
by constructing the group multiplication table.

Problem 8.3 Construct the multiplication table for the group O.

Note: This means constructing a 24 × 24 table and so will take some time. A good
model (perhaps made of cardboard) is almost essential. Follow the transformations of
a general point (i.e. one not lying on a symmetry axis).

Hint: As is invariably true, each operation appears once, and once only, in each row
and each column of the multiplication table. The fact that this is so demonstrates that
the set of twenty-four operations form a group.

The character table for the group O may be derived using the theorems met in Chapter 5
(although the task is not a trivial one) and is given in Table 8.1.

Problem 8.4 Derive the character table for the group O using the theorems of Section
6.3.

Hint: It may help to look again at the solution to Problem 7.2.

Table 8.1

O E 8C3 6C4 3C2 6C ′
2

A1 1 1 1 1 1 (x2 + y2 + z2)
A2 1 1 −1 1 −1

E 2 −1 0 2 0 [1/
√

3 (2z2 − x2 − y2), (x2 − y2)]
T1 3 0 1 −1 −1 (x, y, z)
T2 3 0 −1 −1 1 (xy, yz, zx)
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There are several aspects of Table 8.1 which call for comment. For the first time triply
degenerate irreducible representations are encountered; they are labelled T (with various
suffixes). Their existence was implied earlier in this chapter when it was commented that
‘octahedral molecules have x , y and z axes equivalent to each other’. Either these axes
provide the basis for a reducible or an irreducible representation. In the event, it is irreducible
and, as indicated by the basis functions given at the right-hand side of Table 8.1, they actually
form a basis for the T1 irreducible representation.

Problem 8.5 Show that the x, y and z axes, as a set, form a basis for the T1 irreducible
representation of the point group O.

Hint: Take the Cartesian axes to coincide with the C4 axes (Figure 8.3b). For each class
of operation select that individual operation which makes the transformation simplest
to follow. The answer to this problem will be detailed – in an equivalent form – at the
beginning of Section 8.2.

On the right-hand side of Table 8.1 are shown more basis functions than have previously
been met. The reason is that the discussion of transition metal complexes later in this chapter
will require a knowledge of how the d orbitals of the transition metal at the centre of the
octahedron transform. Table 8.1 shows that the d orbitals dxy , dyz and dzx are degenerate and
transform as T2 whilst dz2 (or, more accurately, d(1/

√
3)(2z2−x2−y2)) and d(x2−y2) are degenerate

and transform as E. The function x2 + y2 + z2 which, like an s orbital, has spherical sym-
metry transforms as A1.

It is evident from Figures 8.1 and 8.2 that both an octahedron and a cube contain symmetry
elements in addition to the rotations that have so far been listed. They possess a centre of
symmetry, i, σ h and σ d mirror planes, and some rotation–reflection axes which are denoted
Sn . They both contain S4 and S6 rotation axes. This type of element is not an easy one
to fully appreciate and they will be looked at in detail shortly. All are shown in Figure
8.4. Of these, the i and σ h (a mirror plane horizontal with respect to an axis of highest
symmetry, here C4) have been met in Chapter 5. The σ d mirror plane is something new.
Mirror planes that bisect the angle between a pair of twofold axes are called σ d mirror
planes, the suffix d being the first letter of the word dihedral (the same word which gives its
initial letter to groups such as D2, D2h and D3h, groups which have, respectively, two, two
and three twofold axes perpendicular to the axis of highest symmetry). In the octahedron
there are six σ d mirror planes. Although they, indeed, bisect the angles between the C2 axes
it is easier to count them by noting that each σ d mirror plane cuts opposite edges of the
octahedron, just like the C ′

2 axes. There are six such pairs of edges and so six σ d mirror
planes.

Problem 8.6 Start with the definition of σ d mirror planes as those that bisect the angle
between pairs of C2 axes and thus show that there are six σ d mirror planes.

Hint: How many pairs of C2 axes are there?
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One of four
S6 axes

One of three
S4 axes

i

One of three
σh mirror planes

One of six
σd mirror planes

Figure 8.4 Some of the symmetry elements associated with improper rotation operations of an

octahedron

Note that the mirror planes which have been labelled σ h bisect the angles between pairs of
C ′

2 axes. These mirror planes could have been labelled as σ ′
d. However, convention dictates

that the label σ h takes precedence over σ d whenever both are applicable.
Operations such as S6 and S4 are interesting because, as will be seen, they are two-part

operations, conventionally taken as a rotation part and a reflection part. Hence they are
called rotation–reflection operations. It has been seen that the cube and octahedron have
the same rotational symmetry (Problem 8.2) and they have the same additional operations
also. It follows that both have S6 and S4 axes. The S4 axes are easier to see for the cube and
are illustrated in Figure 8.5a. As this figure shows, the operation consists of a rotation by
90◦ (clockwise and anticlockwise rotations being associated with different S4 operations)
followed by reflection in a mirror plane perpendicular to the axis about which the 90◦

rotation was made. It is clear that this operation interconnects corners of the cube, but
what is not so clear is that it is necessary-because the pairs of corners connected by the
S4 operations in Figure 8.5a are also connected by C2 operations (the C2 axes emerging
through mid-points of the cube faces on the right- and left-hand sides of Figure 8.5a). The
difference between the S4 and C2 operations is shown by the stars in Figure 8.5a. The star
labelled 1 moves to the position occupied by star 2 under the S4

− operation but these two
points are not interconnected by a C2 rotation. The S6 operation (rotate by 60◦ and then
reflect in a perpendicular mirror plane) is most readily seen for an octahedron standing on
a face and is illustrated in detail in Figure 8.5b. In the case of the S4 operations both the 90◦

rotation and reflection have an independent existence as C4 and σ h operations respectively.
In the case of the S6 operations the rotation and reflection do not exist in their own right as
symmetry operations of the octahedron and cube.
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1∗
2∗

S4

S6

Rotate 90°

Reflect

S4
−

S6
−

S6
+

S4
+

(a)

(b)

Rotate 60°

Reflect

Figure 8.5 (a) An S4 symmetry operation. (b) An S6 symmetry operation

The Sn operations seem rather strange because each involves two operations, Cn and
σ h, which may or may not not have an independent existence. This apparently paradoxical
situation may be made more acceptable by returning for the moment to the C2v point group
discussed in Chapter 2 and to a comment made several times in the following chapters
(repeated because at first sight it can seem ridiculous). Figure 8.6 shows the water molecule
and the C2 operation which interrelates the two hydrogen atoms. Just like the σ v reflection
of Figure 4.18, the C2 rotation can be expressed as the combination of two non-existent

−

−

+

H H

O

Figure 8.6 The C 2 rotation operation of the H2O molecule (represented by a solid line connecting

two C2-related circles) is equivalent to an inversion at some point along this axis (indicated by

a star) followed by reflection in a σ h mirror plane containing this inversion centre (a sequence

represented by a dashed line). The + and − signs indicate position relative to the plane of the

paper.
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operations. Figure 8.6 shows that completely equivalent to this single C2 operation is the
combined operation of inversion through any point along the C2 axis followed by reflection
in a mirror plane perpendicular to the C2 axis and containing the inversion centre. Neither i
nor σ h (or the infinity of counterparts which arise from the freedom of the pair to be located
anywhere along the C2 axis) are operations of the C2v point group, yet their combination
is. In the C2v point group the combination of i and σ h is not used because there is a much
simpler alternative, the C2. In the case of S4 and S6 operations, no such simpler form exists
and there is no alternative but to use a composite.1

Problem 8.7 Although the S2 operation exists it is seldom mentioned as such. This
is because a simpler form – and different label – exists for it. What is its alternative
name? The answer can be found in Section 8.5.

It is necessary to count the S4 and S6 operations. The number of each follows from their
correspondence with C4 and C3 operations; there are six S4 and eight S6. A deeper reason
for this numerical connection will emerge shortly.

Problem 8.8 Show that the operation S4 carried out twice is equivalent to C2

S2
4 = C2

that S6 carried out twice is equivalent to C3

S2
6 = C3

and that S6 carried out thrice is equivalent to i

S3 = i

It is concluded that the complete list of symmetry operations of the octahedron (or cube)
is:

E 8C3 6C4 3C2 6C ′
2 i 8S6 6S4 3σh 6σd

The shorthand symbol for this set of operations is Oh (pronounced ‘oh aiche’). The character
table of the Oh group is given in Table 8.2. Although we will basically accept this character
table as correct, it is interesting to think about how one might derive it. First, one might
follow the procedure used in the early chapters of this book and attempt to derive it by a
study of the transformation properties of atomic orbitals on an atom at the centre of the
octahedron. Alas, this is not an easy option. To generate the A1u irreducible representation
we would need to invoke the m orbitals – and who knows what the m orbitals look like? 2

We will return to this question, and others like it – together with their answers – later, where
we will find that they are not as difficult as one might think. Alternatively, one could hope to
obtain the character table by generating a group multiplication table and, at least, substitute

1 In fact, C2, i and σ form a trio; any one can be expressed in terms of the other two, suitably positioned.
2 To complete the picture, should anyone really want to know, the complete set of 19 m orbitals transform as A1u + A2u +

Eu + 3T1u + 2T2u.
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Table 8.2

Oh E 8C3 6C4 3C2 6C ′
2 i 8S6 6S4 3σ h 6σ d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 −1 1 −1 1 1 −1 1 −1

Eg 2 −1 0 2 −1 2 −1 0 2 −1
[

1√
3
(2z2 − x 2 − y2),

(x 2 − y2)
]

T1g 3 0 1 −1 −1 3 0 1 −1 −1 (Rx , Ry , Rz)
T2g 3 0 −1 −1 1 3 0 −1 −1 1 (xy, yz, zx)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 −1 1 −1 −1 −1 1 −1 1
Eu 2 −1 0 2 −1 −2 1 0 −2 1
T1u 3 0 1 −1 −1 −3 0 −1 1 1 (Tx , Ty , Tz) (x, y, z)
T2u 3 0 −1 −1 1 −3 0 1 1 −1

−1’s to generate the singly degenerate irreducible representations (the others would require
the substitution of matrices and these, themselves, would need to be derived).

A group multiplication table for the Oh group may be constructed with some considerable
effort – and most will feel that the effort is not worth it (it is a 48 × 48 table). Finally, the
character table may be derived using the methods of Section 5.3 exploiting the orthonor-
mality theorems – but, fortunately, an easier method exists. This arises from the fact that the
Oh group is the direct product of the groups O and Ci (the group containing E and i). Even
this method means that we have to take the character table for O for granted. The concept
of a group being the direct product of two other groups was met in Chapter 4, where the D2h

character table was seen to be the direct product of those of C2v and Ci. In the same way, the
character table for Oh, Table 8.2, is the direct product of Table 8.1 (the character table for O)
and Table 5.4 (the character table for Ci). That this is so is evident from the way Table 8.2
is set out; it consists of four blocks containing the characters of Table 8.1 modulated by the
signs of the four characters of Table 5.4 (which, for convenience, is repeated again as Table
8.3). In particular, the g and u suffixes contained in Table 8.3 reappear on the irreducible
representation labels in Table 8.2.

Problem 8.9 Show that the labels used for the irreducible representations in
Table 8.2 may be derived immediately from those of the character tables Table 8.1
and Table 8.3.

Direct product relationships, of course, apply both to operations and to characters; we
met this for the D2h group in Chapter 5. That is, they apply to the operations listed at the
head of a character table as well as to the characters within the table itself. Because of the

Table 8.3

Ci E i

Ag 1 1
Au 1 −1
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x

y

z

C3

Figure 8.7 The choice of C3 rotation operation (and consequent axis permutation) that will be used

in this chapter

relationship between the groups O and Oh it is often possible to pretend that the symmetry
of an octahedral molecule is O and then determine the g or u nature of the irreducible
representations obtained by simply considering the effect of the inversion operation, i.
Thus, a p orbital is ungerade – undergoes a change of phase – under the i operation. This,
together with the knowledge that a set of p orbitals transform as T1 in the group O (Table
8.1), is sufficient to establish that they transform as T1u in Oh. Incidentally, but relevant to
the set of p orbitals, when in this chapter the effects of a C3 rotation operation are illustrated,
the particular C3 operation shown in Figure 8.7 will always be the one chosen. The effect
of this choice is that coordinate axes, and thus labels, always permute as follows:

y

x z

These permutations apply equally to products of axes. So, when Figure 8.31 is reached it will
be seen that this C3 operation turns dx2−y2 into dy2−z2 – which is just what the permutation
gives.

The relationship between the groups Oh, O and Ci means that those operations possessed
by Oh which are not present in O may be written in such a way that each is equivalent to
some operation of O together with the operation i. The operations of O are proper (or pure)
rotation operations, and the additional operations are improper rotations. As was seen at
the end of Chapter 4, this latter name is used to denote any point group operation which is
not a pure rotation. The precise correspondence between proper and improper rotations in
the Oh group is evident from the way that Table 8.2 is written and is

E combined with i gives i
C3 combined with i gives S6

C4 combined with i gives S4

C2 combined with i gives σ h

C2 combined with i gives σ d
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The existence of these relationships immediately explains why there is the same number of
S6 operations as C3 and the same number of S4 as C4 – and so on – in Oh.

The above discussion indicates a different definition of Sn operations to that used ear-
lier in this chapter. They may be defined as ‘rotation–inversion’ operations and, indeed,
this is the way that they are described by crystallographers. This definition is ‘Rotate by
(180 + θ◦), where θ = (360/n)◦, and follow by inversion in a centre of symmetry’. Cn

[rotate by (360/n)◦] and i may, or may not, exist in their own right as operations in a group
containing Sn . The two definitions of Sn operations, rotate–reflect and rotate–invert, are en-
tirely equivalent. A little thought will show that the duality exists because of the connection
between i, C2 and σ h, detailed above for the C2v point group; the connection is general.3

But a word of warning. When a given C3 (or C4) operation is combined with either a σ h

reflection or i to give an S6 (or S4) operation, the alternatives do not give the same result.
That is, the result of applying an S6 (or S4) operation depends on how the operation is
defined. This would only pose a problem if the S6 (or S4) existed in isolation – there were
no others. But it is one of a set and the complete set of operations always leads to the same
set of results, no matter the definition. The ‘complete set’ in this context, of course, means
all of the operations in a single class, which here is either 8S6 or 6S4.

Problem 8.10 Show that the operation S4
− (defined as a rotation–reflection operation)

is the same as the operation S4
+ (defined as a rotation–inversion operation). Here, the

superscripts denote the direction of 90◦ rotation (thus avoiding having to add on 180◦).

Hint: Use Figure 8.5a.

8.2 Nodal patterns of the irreducible representations
of the Oh group

This is the last time in this book that we will discuss in detail the nodal patterns which are
associated with the irreducible representations of point groups (although they will reappear
in Chapter 12, where some different groups are the subject). It is a section which is not
necessary for an adequate understanding of the rest of the chapter and the reader can skip
it if he or she wishes. However, it gives insights which are otherwise not available and so
a study is likely to be worthwhile. But the reader should not take it too seriously. It will
involve an appeal to orbitals they will never have heard of, and will probably never hear of
again. The m orbital mentioned earlier is only the start; there are more to come. A question
which the reader will ask of the author, regularly, is that of ‘how do you know that?’. To
which the answer is very simple – ‘it is much easier than appears; all will be explained in
Chapter 10’.

It is not surprising that the problem implicit in the heading to this section should be so
difficult. We are looking for twenty nodal patterns (sum the characters listed under the E
operation in Table 8.2), nodal patterns which are all different from each other and each of
which is compatible with the forty-eight symmetry operations of the Oh group. Here, some

3 So, the 180◦ in (180 + θ )◦ arises from the C2.
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Table 8.4

Orbital

s p d f g h i k l m

Value of l = number of planar nodes 0 1 2 3 4 5 6 7 8 9

strange orbitals will help. But first, something about orbitals in general. Consider s, p, d
and f orbitals; the first three, at least, should be reasonably familiar to the reader. They have
degeneracies of 1, 3, 5 and 7 respectively; degeneracies of (2 l + l), where l = 0, 1, 2 and 3
respectively. Here, l is a quantum number that may have been met with any one of several
labels – ‘orbital’ is perhaps the most popular and best. Here, we will view it differently; l
is the total number of planar nodes associated with each of the orbitals in the set to which
it refers.4 This pattern continues; so g orbitals have l = 4, are ninefold degenerate and have
four nodal planes; h are 11-fold degenerate and have five nodal planes (l = 5) – and so
on. All that could be of interest to us are listed in Table 8.4. The first four orbital labels
have been met; their use originates in the history of the subject. The others are given in
alphabetical order with some missing. Those missed have either already been used (like s
and p, although their absence is not evident in Table 8.4) or have a significance somewhere
else in quantum chemistry (like j).

In previous chapters we were able to give diagrammatic presentations of irreducible
representations. This was possible because, with one exception (the D2h group, Chapter 5),
a view down a unique axis allowed the points interrelated by the symmetry operations to be
pictured. The nodal patterns associated with each irreducible representation could then be
shown in the same perspective; even D2h was possible with a distorted perspective. Clearly,
for a group like Oh, in which there is a plethora of symmetry elements, many at oblique
angles to each other, such a simple presentation is not possible. Not that the problem is
insoluble. So, in Figure 8.8 is given a diagram traditionally used by crystallographers as a
solution. For us, it has several defects. Not least is that its use would force us to attempt to
visualize three-dimensional arrays of nodal planes from a two-dimensional diagram.

More three-dimensional – and certainly more useful – is the arrangement of Figure 8.9.
This figure shows a sphere with the corners of an octahedron as white balls on its surface. The
nine mirror planes of the octahedron (three σ h and six σ d) are shown as black circles which
project slightly from the surface of the sphere. The σ h mirror planes are seen as joining the
corners of the octahedron and the six σ d intersect to give six-cornered stars above the middle
of each face of the octahedron. This figure is useful because there is a total of forty-eight
of the equilateral triangle-like areas in-between the mirror planes, which is the same as the
number of operations in the Oh group. So, all of the complete nodal patterns associated with
the irreducible representations of the group will assign a phase to each of these triangles.
For the A2u irreducible representation, for instance, adjacent triangular areas always have
opposite phases. As met in the last chapter, some of the doubly degenerate irreducible
representations have some faces left blank but such blanks are always compensated by the

4 Sometimes, as with a dz2 orbital, two planar nodes combine to give a conical nodal surface.
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Figure 8.8 A traditional projection of symmetry elements of the Oh group. It is best thought of

as similar to Figure 8.9 but viewed down a C4 axis (white balls in Figure 8.9). The (curved) lines

are mirror planes (also shown in Figure 8.9) and they divide the surface of the octahedron into 48

triangles. Only 24 of these can be seen from one side and these 24 are shown here. If Figure 8.9 is

thought of as an orange, Figure 8.8 shows half the skin of the orange, flattened and stretched at

the circumference to give a complete circle. The black dots are symmetry-related points; the squares

represent fourfold axes. Twofold axes are shown as ellipses and threefold axes as six-cornered stars

other member of the pair, just as in Figure 7.5. Because in Figure 8.9 the interconnected
points are projected onto the surface of a sphere, only half of them can be shown. The sphere
could be made transparent but then it would be impossibly complicated. It is difficult to
avoid the conclusion that a basic diagram which is both simple and comprehensive is
somewhat elusive. This conclusion is reinforced by the recognition that there can be up to
nine planar nodes to be added (as we have seen, the A1u irreducible representation pattern
has this number, each one coincident with a mirror plane)! But all is not lost. The fact

Figure 8.9 Whereas Figure 8.8 represented a projection of the octahedron onto a circular surface,

Figure 8.9 represents a projection onto a spherical surface. The white balls are corners of the

octahedron and the black lines mirror planes. In picturing the nodal patterns of the irreducible

representations of Oh it is necessary to assign a phase to each triangular area shown in this figure.

Although it is not obvious from the perspective adopted for this diagram (made worse by the fact

that the mirror planes project from the surface), in principle 24 such triangles are visible
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Figure 8.10 Nodal patterns of representatives of the triply degenerate irreducible representations

of O h: (a) T1g; (b) T2g; (c) T1u; (d) T2u. The T2u may be seen most simply by adding an extra nodal

plane to the T2g

that the Oh group contains triply degenerate irreducible representations arises from the
fact that the coordinate axes x, y and z are equivalent. For the triply degenerate irreducible
representations there is always one function associated with x, an equivalent one with y
and a third, also equivalent, associated with z. Any one will act as a representative for all
three. In practice, this means that we can work with a single nodal pattern and this will be
associated with one axis (although this can mean that it is perpendicular to it).

Simple diagrams are possible, although it may sometimes be convenient to change the
viewpoint adopted. Such diagrams for the triply degenerate irreducible representations are
given in Figure 8.10. Some of these diagrams contain more than an echo of atomic orbitals
based on an atom at the centre of the octahedron. In terms of such orbitals which provide
a basis, the relationships are the following, the number of nodal planes being given in
parentheses: T1g, g orbitals (4); T2g, d orbitals (2); T1u, p orbitals (1); T2u, f orbitals (3).
These are not difficult. Plots of p, d and even f orbitals are easy to find. The g orbital appears
more of a problem but here life is made easy by the recognition that the three rotations of
the octahedron, Rx , Ry and Rz , transform as T1g. Picture a rotation and you have a picture
of a T1g nodal pattern. The T1g, T2g, T1u, and T2u nodal patterns reappear in Figures 8.22
to 8.26, and the reader may find it helpful to glance at these – they may seem different
from those in Figure 8.10. Either way, nodal patterns of the triply degenerate irreducible
representations are not too difficult to obtain. It is for the singly and doubly degenerate
irreducible representations that there may be problems.

Consider the singly degenerate first. The potential for problems can be seen from the
types of atomic orbital of the central atom which serve as bases for them. These are: A1g,
s(0); A2g, i(6); A1u, m(9); A2u, f(3) – the number of nodal planes are given in parentheses.
These are not as horrific as at first they might seem. Just as the total number of mirror planes
in Oh (3σ h + 6σ d) are the nodal planes of A1u, so the three nodal planes of A2u are the 3σ h.5

For the A2g the 6σ d are the nodal planes. All four are shown in Figure 8.11, which adopts
the perspective of Figure 8.9 but simplified as much as possible, with apologies for the A1u,
which really is difficult to draw! We are left with the two doubly degenerate irreducible
representations, Eg and Eu. Here, we might expect problems. The reader may recall that in
Chapter 7 the nodal patterns of the doubly degenerate irreducible representations of the C3v

5 In fact, this pattern has already been met in Figure 5.3, and repeated in Figure 8.11d in an octahedral environment.
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Figure 8.11 Nodal patterns of the singly degenerate irreducible representations of Oh: (a) A1g; (b)

A2g; (c) A1u; (d) A2u

point group contained blank entries. These were a consequence of the problems associated
with choice of the x and y axes when working with a C3 axis. These axis-choice problems
do not persist in Oh – but there are four C3 axes, and these were the real source of the
C3v problem. Indeed, there are corresponding problems in Oh – but for the Eg irreducible
representation there is a relatively simple solution, one that has something in common
with that for C3v. As for the other irreducible representations, we can find help in basis
functions. The basis functions for the Eg irreducible representation are two of the d orbitals
of the central atom, dx2−y2 and dz2 (but the latter is better written as d2z2−x2−y2 ); they are
shown in Figure 8.12; later in the chapter they will be considered in much more detail. The
reason is that these basis functions will play an important part in the crystal field theory
developed there. What of the Eu irreducible representation? It is probably the most difficult.
Easiest is to obtain it in stages. The functions of Figure 8.12 are centrosymmetric, g. We can
use them to obtain corresponding u functions by adding a mirror plane (horizontal, in the
xy plane), as shown in Figure 8.13. But these cannot be the final answers; in these diagrams
the x and y axes lie in a nodal plane, that which has just been added, whereas the z axis most
assuredly does not lie in a nodal plane. The molecule involved is not cubic! We can make it
cubic by adding two more nodal planes, in the yz and zx planes, so that all three σ h mirror
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Figure 8.12 Nodal patterns of the Eg irreducible representation of Oh: (a) the function 2z2 − x2 −
y2 (the dz2 orbital); (b) the function x2 − y2 (the dx 2−y2 orbital)

planes have been added. The result is the pair of Eu functions that we have been seeking.
Diagrams of them are given in Figure 8.14 but the reader may get a more understandable
result if they, mentally, add the three σ h mirror planes to those in Figure 8.12. Finally, we
note that the way that the Eu combination was obtained explains why its basis is an h orbital
(l = 5, five nodal planes) at the centre of the octahedron.

We have now obtained nodal patterns for all of the irreducible representations of the Oh

point group. Some of them were very complicated and almost impossible to draw. Whilst
these nodal patterns describe the reality, they also make clear why it is so much simpler
to work with the labels given to the irreducible representations. In the label notation all
irreducible representations are equal, something that can scarcely be said of the development
above. One last word. In what follows, we will be drawing functions transforming as
particular irreducible representations. Always – unless a mistake has been made – there
must be a close similarity with the corresponding diagram(s) above.

8.3 The bonding in the SF6 molecule

As is so often the case, the Oh point group is easier to use than to talk (or write!) about.
To illustrate its use (or, more correctly, how its use may often be avoided), we now turn to
a discussion of the bonding in the SF6 molecule. The valence shell atomic orbitals of the
sulphur atom will be taken as 3s and 3p, ignoring the 3d. The behaviour of d orbitals in
octahedral molecules is of major importance in transition metal chemistry and this is the

(b)

_

_ _+
++ +

(a)

_

_
+

+

Figure 8.13 The first step in obtaining the nodal patterns of the Eu irreducible representation: (a)

adding a node to Figure 8.12a; (b) adding a node to Figure 8.12b
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Figure 8.14 Nodal patterns of the Eu irreducible representations of Oh: (a) and (b) correspond to

those labels in Figures 8.12 and 8.13; as an aid to clarity the actual functions shown here have been

located at the corners of the octahedron – they can be thought of as d orbitals on atoms there

context in which they will be discussed later in this chapter. Throughout our discussion of
SF6 it will be convenient to work in the point group O rather than the correct group Oh. The
reason for this lies in the structure of the Oh group. It is twice as large as O (48 operations
compared with 24) and so is more cumbersome to handle. But, as has been seen, Oh is the
direct product of O with Ci so that the only additional information that Oh has compared with
O is that of behaviour under the additional operation introduced by the group Ci – that is,
behaviour under the operation i. It is easier to ask of a basis function ‘how does it transform
under i’ and to add either g (gerade = symmetric with respect to inversion in a centre of
symmetry) or u (ungerade = antisymmetric respect to inversion in a centre of symmetry)
as a suffix to the irreducible representation of O than to plough through the whole set of Oh

operations. This pattern is easy when the function concerned is centred on the S atom, for it
is therefore also centred on the centre of symmetry. When it is elsewhere, and in the present
context that means on the F atoms, then it is neither inherently g or u (with respect to the
centre of symmetry at the S atom) and will always be one of several (they go in multiples
of six – there are six F atoms). In such a case, the several divide equally between g and u.

The following section will be made much easier if the reader can construct for themselves
a suitable model, perhaps from expanded foam – and a cube may be easier to make than
an octahedron. However, it has been written on the assumption that such an aid is not
to hand and that, therefore, the high symmetry – and the numerous equivalent axes and
alternative bases which it presents – may pose a problem. It therefore proceeds more slowly
and with more detail than absolutely necessary. It is easy to show that the sulphur 3s orbital,
shown in Figure 8.3b, transforms as the totally symmetric, A1, irreducible representation
of the point group O. In Oh, of course, it has A1g symmetry. Figure 8.3a shows the axis
system that will be used in the following discussion, although in many of the following
figures the octahedron is drawn from a different viewpoint from that shown in Figure 8.3.
Like the coordinate axes of Problem 8.5, the sulphur 3p orbitals transform together as
the T1 irreducible representation (T1u in Oh). This particular problem will be looked at in
some detail because it illustrates how to handle the sometimes bewildering task of working
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Figure 8.15 The transformation of a set of p orbitals of a central atom of an octahedral molecule

under a C3 rotation operation. The p orbitals are distinguished by solid, broken and dotted lines.

Simplest is to concentrate on the behaviour of the positive lobes

with several equivalent objects in a high symmetry environment. Our discussion is largely
diagrammatic because good diagrams – as much as a good model – are very important.
It is therefore essential that each figure is studied carefully and the transformations that
it shows are followed in detail. Figures 8.15–8.18 illustrate the transformations of the set
of 3p orbitals under a representative operation of each class of the O point group (Figure
8.15 the C3, Figure 8.16 the C4, Figure 8.17 the C2 and Figure 8.18 the C ′

2, this being the
sequence in which they are listed in the character table). For clarity of presentation the lobes

_

_

_
_
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+ + +

+++
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z z

C4 C4
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x y y yx x

Py

Contribution to
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Figure 8.16 The transformation of a set of p orbitals of a central atom of an octahedral molecule

under a C4 rotation operation
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Figure 8.17 The transformation of a set of p orbitals of a central atom of an octahedral molecule

under one of the 3C2 rotation operations

of the p orbitals are shown more as ellipses than the circles used so far in this book; the
different p orbitals are distinguished by the way they are outlined. As an aid to visualizing
the interconversions, these figures not only show the starting arrangement but also show
them at some point whilst the operation is in progress as well as in the final arrangement.
The actual transformations brought about by these operations are listed in the figures and
the compilation of the corresponding characters is detailed. Figures 8.15–8.18 should be
studied very carefully; the characters to which they give rise are:

E 8C3 6C4 3C2 6C ′
2

3 0 1 −1 −1

Before

Pz

Px

Py

+

+

+
+

+
+

+
+

'During'

z z z

x y x xy y
C2'

Contribution to
the character

Px  becomes    Py

Py   becomes   Px
Pz  becomes  −Pz

0
0

−1
−1

−

_
_+

After

Figure 8.18 The transformation of a set of p orbitals of a central atom of an octahedral molecule

under one of the 6C′
2 rotation operations
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A

C

D

F B

E

C3(7,8)

C2' (2)C2' (4)

C2' (6)

C3(3,4)

C4(1,2); C2(1) 

C4(5,6); C2(3) C4(3,4); C2(2)

Figure 8.19 The six fluorine S–F σ -bonding hybrid orbitals of SF6 together with the labels used for

them in the text. Some of the axes used in obtaining Table 8.5 are indicated

Comparison with Table 8.1 confirms that this set of characters is the T1 irreducible repre-
sentation.

Problem 8.11 By a detailed study of Figures 8.15–8.18 derive the above set of char-
acters.

The s and p orbitals of the sulphur atom in SF6 bond with those fluorine orbitals that point
towards the sulphur atoms; without defining their composition further they will simply be
called the fluorine σ orbitals. This set of orbitals is shown schematically in Figure 8.19 (the
labels on the orbitals and on the axes will be described later) and, because all are symmetry
related, the transformations of the six must be considered as a set. This is not a difficult
task but some mental gymnastics can be avoided by remembering a general principle; only
if an object lies on a symmetry element can it give a non-zero contribution to the character
associated with the corresponding operation. It follows, therefore, that because the fluorine
atoms are located on the fourfold axes of the octahedron it is only under the fourfold and
corresponding twofold rotation operations (and, of course, the identity operation) that any
of the fluorine σ orbitals can be left unchanged. Remembering that there are two fluorines
on each C4 axis, it follows that the reducible representation generated by the transformation
of the fluorine σ orbitals is:

E 8C3 6C4 3C2 6C ′
2

6 0 2 2 0

This is a sum (sums such as this are sometimes called a direct sum) of the A1 + E + T1

irreducible representations.

Problem 8.12 Use Table 8.1 to show that the above reducible representation has A1,
E and T1 components.

Hint: This is similar to, but more difficult than, Problems 6.15 and 7.5.
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This result was obtained in the group O. There are several ways in which we could proceed
to obtain the g and u nature of the A1, E and T1 combinations in Oh – the most obvious
way is to repeat the above sequence again but using the full Oh group. However, we would
still be without the explicit forms of the combination of σ orbitals which transform as each
irreducible representation, and this information is something that will be needed later. If
these explicit forms were available at the present point in the text, a detailed study of them
would show their g or u nature. It is therefore simplest next to use the projector operator
method to obtain these combinations (working in the point group O) and subsequently to ask
which are g and which are u in nature. To some extent the result may be anticipated. As we
have already commented, the fluorineσ orbitals used to generate the reducible representation
were neither inherently symmetric nor antisymmetric with respect to inversion in the centre
of symmetry – because they were not located at this centre they were interchanged by the
inversion operation. In such a situation this indifference is reflected by an equal number
of combinations of g and u symmetries being generated. That is, in the present case there
must be three linear combinations of fluorine orbitals which are g and three which are u.
There are, then, two possibilities. Either we have A1g + Eg + T1u in Oh or, alternatively,
A1u + Eu + T1g. Physically, only the first choice makes any sense, because the irreducible
representations generated by the transformation of the sulphur valence shell s and p orbitals
are included in this set whereas they are not in the second. That is, if the first set is correct
then there can be interactions between the fluorine σ orbitals and the sulphur orbitals – and
so the existence of the molecule explained – whereas for the second set there would be no
interactions and the molecule SF6 would not exist!

As has just been said, in order to obtain the fluorine σ orbital combinations transforming
as the A1, E and T1 irreducible representations the projection operator method will be
used – a method that has been met several times before. Because the present case provides a
particularly good example of the general method it will be given in detail, bringing together
the techniques developed in previous chapters.

First, each ligand σ orbital is given a label, A–F, as shown in Figure 8.19. The transforma-
tion of one of these orbitals under the operations of the group is then considered in detail. In
Table 8.5 are listed the twenty-four operations of the group O, and beneath each is the ligand
σ orbital into which A is transformed by the particular operation. Within each set of opera-
tions, 8C3 for example, the order in which the operations are considered is unimportant; what
matters is that all are included. The operations are indicated by the labels on the axes in Fig-
ure 8.19; they should allow the reader to check the individual transformations listed below.

Table 8.5

E C4(1) C4(2) C4(3) C4(4) C4(5)
A A A F E B

C4(6) C2(1) C2(2) C2(3) C3(1) C3(2)
D A C C D E

C3(3) C3(4) C3(5) C3(6) C3(7) C3(8)
E B B F D F

C ′
2(1) C ′

2(2) C ′
2(3) C ′

2(4) C ′
2(5) C ′

2(6)
D B E F C C
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Problem 8.13 Use Figures 8.3a and 8.19 to obtain Table 8.5.

Hint: Good diagrams are important – it may well be necessary to sketch out parts of
Figure 8.3a several times to retain clarity in distinguishing the different effects of the
various operations. Note that because there are just six fluorine σ orbitals but twenty-
four operations, each orbital label appears four times in Table 8.5. To help with this
problem as many axes as is consistent with graphic clarity have been indicated in Figure
8.19. Note that there is nothing sacred about the particular labels we have used; they
are just a tool to get to the final result. If something different seems more natural to the
reader, they should follow their instinct – and perhaps generate the orbitals in a different
order. Nonetheless, they will arrive at the same result, unless they make a mistake.

For each of the irreducible representations in the direct sum obtained from the transfor-
mation of the sulphur orbitals, A1 + E + T1, the labels in Table 8.5 are multiplied by the
character appropriate to the corresponding operation. The products are then added together.
The sum is either the required ligand group orbital (the name used commonly in inorganic
chemistry; more generally, it is called a ‘symmetry adapted function’) or is simply related
to it. For the A1 group orbital, multiplying each of the orbital labels by 1 (the value of each
of the A1 characters) and adding the products together gives

4A + 4B + 4C + 4D + 4E + 4F

On normalizing, the A1 combination is obtained

�(a1) = 1√
6

(A + B + C + D + E + F)

Turning to the E orbitals, the sum obtained after multiplication is

4A + 4C − 2B − 2D − 2E − 2F

which after normalizing is

�e(1) = 1√
12

(2A + 2C − B − D − E − F)

Problem 8.14 Derive ψe(1).

Hint: This problem is quite similar to that solved in Table 7.2 and the associated dis-
cussion.

Now a problem which is closely related to one met in Chapter 7 – how to obtain the second
E function. Using either B or E as the generating orbital in Table 8.5 the (un-normalized)
combinations which would have been obtained are:

from B : 4B + 4D − 2A − 2E − 2C − 2F

from E : 4E + 4F − 2A − 2B − 2C − 2D

Neither of these can be the second E function because they are different and the choice
between them is arbitrary; they cannot both be correct and there cannot be three different
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E functions. The method described in Section 7.2 may be used to systematically obtain the
second function. Study of the results obtained there suggests that the difference between
the functions given above should be taken. This difference is

6B + 6D − 6E − 6F

which on normalizing gives the second function

�e(2) = 1

2
(B + D − E − F)

Problem 8.15 Show by squaring and adding the coefficients with which the fluorine
σ orbitals appear in �e(1) and �e(2) that each orbital makes an equal contribution to
the E set.

Hint: This problem resembles Problem 7.8. Note that the sum of squares of coefficients
is equal to the ratio

Number of E functions

Total number of σ orbitals
= 2

6

In Section 7.2 the argument used leading to the generation of a second E function depended
on the fact that the functions which we were seeking to generate had vector-like properties.
Those that have just been obtained do not behave like axes (as the basis functions given
at the right-hand side of Table 8.1 show; they transform like sums of products of axes).
The method deduced in Section 7.2 clearly has a wider generality than could have been
anticipated.

The T1 functions are readily obtained. The transformation of A in Table 8.5 when multi-
plied by the T1 characters and added gives 4A − 4C which, when normalized, gives

�t1(1) = 1√
2

(A − C)

Similarly, the transformations of B (or D) and E (or F) give

�t1(2) = 1√
2

(B − D)

and

�t1(3) = 1√
2

(E − F)

respectively. Because these three functions each involve different fluorine orbitals they are
clearly independent of each other.

Problem 8.16 Derive the three T1 functions listed above.

The complete list of symmetry-adapted functions is given in Table 8.6. In order to de-
termine their symmetries in Oh the behaviour of these functions under the operation of
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Table 8.6

Symmetry

In the group In the group
O Oh Symmetry-adapted function (ligand group orbitals)

A1 A1g
1√
6
(A + B + C + D + E + F)

E Eg

⎧⎨⎩
1√
12

(2A + 2C − B − D − E − F)

1
2

(B + D − E − F)

T1 T1u

⎧⎪⎨⎪⎩
1√
2

(A − C)

1√
2

(B − D)

1√
2
(E − F)

inversion centre of symmetry has to be determined. Because this operation interchanges the
fluorine σ orbitals as follows:

A ←→ C
B ←→ D
E ←→ F

the effect of this operation is obtained by making these substitutions (A for C, C for A etc.)
in the functions given in Table 8.6. When this is done, A1 and E are left unchanged but
each T1 function changes sign. It is concluded that they transform in Oh as A1g, Eg and T1u

respectively. These labels have been included in Table 8.6. We were correct in our earlier
educated guess! This means that symmetries of the sulphur 3s and 3p orbitals (A1g and T1u

respectively) are matched within the fluorine σ orbital symmetries. The bonding molecular
orbital of A1g symmetry is shown in Figure 8.20a, a representative T1u bonding molecular
orbital in Figure 8.20b and one of the two Eg in Figure 8.20c. Because the two Eg functions
have different mathematical forms, it should perhaps be commented that it is the second
that was generated which is shown in Figure 8.20c.

Problem 8.17 Sketch a diagram of the first-generated Eg function.

There is no doubt that the bonding orbitals have bonding energy stabilities in the order

A1g > T1u > Eg

This order of orbital energies is also the order in terms of the number of nodes. The A1g

bonding molecular orbital is nodeless, the T1u has one nodal plane and the Eg has two.
These nodal patterns are implicit in the expressions given in Table 8.6 and are also evident
in Figure 8.20.

This discussion has assumed that only σ bonding is involved in the interaction between
the central sulphur atom and the surrounding fluorines. Although this is quite a good ap-
proximation for SF6 it is useful, nonetheless, to extend the discussion to include those pπ

orbitals on the fluorine atoms which so far have been ignored. This is because they are of
relatively high energy and they will be seen in the photoelectron spectrum. These pπ orbitals
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Figure 8.20 (a) The A1g bonding molecular orbital. (b) One of the T1u bonding molecular orbitals

(that involving the sulphur pz orbital). (c) One of the fluorine σ orbital symmetry-adapted combi-

nations of Eg symmetry

transform as a degenerate pair of E symmetry under the local C4v symmetry of each fluorine
atom. It follows from the discussion of this symmetry in Chapter 6 that there is no unique
specification of the direction of the local x and y axes but the choice and notation in Figure
8.21 prove to be convenient in practice.

Problem 8.18 Figure 8.21 appears rather complicated. Show that it has an internal
consistency in that all px orbitals are all oriented in the same x direction, the py in the
same y and the pz in the same z direction.
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pz orbitals are shown dashed

Figure 8.21 Fluorine pπ orbitals in SF6
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The next step is to determine the reducible representation generated by the transformation of
these twelve pπ orbitals. As for the case of the σ orbitals it is only possible to obtain non-zero
characters for the identity operation, for the C4 rotation operations and the corresponding C2

rotation operation (because the fluorine atoms lie on the fourfold axes of the octahedron). Of
these, the character for the C4 rotation operation is zero (because, for those fluorine atoms
left unshifted by the operations, the px and py orbitals are interchanged) so that only the
identity and 3C2 classes contain non-zero characters. The reducible representation obtained
is

E 8C3 6C4 3C2 6C ′
2

12 0 0 −4 0

which has components 2T1 + 2T2 (under Oh symmetry these become T1g + T1u + T2g +
T2u).

Problem 8.19 Show that the twelve fluorine pπ orbitals of Figure 8.21 generate the
above reducible representation and that it has 2T1 and 2T2 components in the point
group O.

Appropriate linear combinations are obtained by the usual projection operator method but a
difficulty arises because, in O symmetry, two quite independent sets of functions transform
as T1 and two other sets as T2. The problem of distinguishing between them is readily solved
by working, instead, in Oh symmetry – where all sets are symmetry-distinguished – but this
is a rather tedious task because this group has forty-eight symmetry operations, each of
which has to be considered separately. In Appendix 4 an alternative, short-cut, method of
obtaining these linear combinations is described. This method, depending on an ascent-in-
symmetry, is a most useful one for high symmetry systems in which a large number of basis
functions have to be handled.

The appropriate linear combinations are given in Table 8.7 and one of each symmetry
species is shown in Figures 8.22–8.25 (these replicate the data in Figure 8.10, even if they
seem different). Our interest in these combinations lies in the interactions between adjacent
fluorine pπ orbitals because we shall use these interactions to predict relative energies
for comparison with the results of photoelectron spectroscopy. Figures 8.22–8.25 show an
interesting situation. The interactions between the fluorine pπ orbitals are of two types. For
the T1u (Figure 8.23) and T2u (Figure 8.25) sets the component pπ orbitals are arranged
parallel to each other; their interactions are therefore of π -type. For the T1g (Figure 8.22)
and T2g (Figure 8.24) orbitals the axes of adjacent atomic pπ orbitals are at right angles to
each other so their interaction is a mixture of σ - and π -types (as shown in Figure 8.26 the pπ

orbitals may be treated as vectors and the neighbouring interactions resolved into σ and π

components). Qualitatively, σ interactions are usually greater than π and so it is reasonable
to expect that the energy difference between the T2u and T1g orbitals would be greater than
that between T1u and T2g, provided that the interactions are comparable in other respects.
The other important factor is relative nodality. As evident from Figures 8.22–8.25, the T1u

and T2g orbitals are no-node combinations (apart from the nodes inherent in the pπ orbitals
themselves) – the positive lobe of a p orbital is adjacent to the positive lobe of an adjacent
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Table 8.7 Symmetry-adapted combinations of

fluorine pπ orbitals

T1g orbitals
t1g(1) = 1

2
[px (A) − px (C) + pz(E) − pz(F)]

t1g(2) = 1
2
[py(A) − py(C) − pz(B) + pz(D)]

t1g(3) = 1
2
[px (B) − px (D) + py(E) − py(F)]

T1u orbitals
t1u(1) = 1

2
[pz(B) + pz(D) + pz(E) + pz(F)]

t1u(2) = 1
2
[py(A) + py(C) + py(E) + py(F)]

t1u(3) = 1
2
[px (A) + px (B) + px (C) + px (D)]

T2g orbitals
t2g(1) = 1

2
[px (A) − px (C) − pz(E) + pz(F)]

t2g(2) = 1
2
[py(A) − py(C) + pz(B) − pz(D)]

t2g(3) = 1
2
[px (B) − px (D) − py(E) + py(F)]

T2u orbitals
t2u(1) = 1

2
[pz(B) + pz(D) − pz(E) − pz(F)]

t2u(2) = 1
2
[py(A) + py(C) − py(E) − py(F)]

t2u(3) = 1
2
[px (A) + px (B) − px (C) − px (D)]

py (A) means the py orbital on atom A as indicated

in Figure 8.21.

p orbital – whereas the T1g and T2u orbitals each have two additional nodes – the positive
lobe of one p orbital is adjacent to the negative lobe of its neighbour. We have:

T1g: 2 nodes, σ and π interactions
T2u: 2 nodes, π interaction only
T1u: 0 nodes, π interaction only
T2g: 0 nodes, σ and π interactions

Our discussion leads us to expect that the stability of these orbitals varies in the order

T2g > T1u > T2u > T1g

−

−

−

−

+ +

+
+

E
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C

A

Figure 8.22 One of the T1g fluorine pπ combinations
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Figure 8.23 One of the T1u fluorine pπ combinations
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Figure 8.24 One of the T2g fluorine pπ combinations
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Figure 8.25 One of the T2u fluorine pπ combinations
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Figure 8.26 The overlap of ‘coplanar’ pπ orbitals on adjacent fluorine atoms (shown solid) may

be expressed as a sum of a π overlap (between orbitals shown dashed) and a σ overlap (between

orbitals shown dotted). This diagram shows SF6 viewed down a C4 axis

In arriving at this order any possible bonding of the fluorine pπ orbitals with the sulphur
atom has been ignored. This defect is easily remedied. The only symmetry in common
with the sulphur valence shell orbitals is T1u. The latter are involved in S–F σ bonding
and so interactions between the pπ -derived T1u set and the (more stable) S–F σ bonding
T1u set have to be considered (these are the only ones that will affect the photoelectron
spectrum). Any interaction will lead to a further stabilization of the S–F σ bonding set and
a corresponding destabilization of the pπ -derived T1u orbitals. This destabilization could
change the pπ orbital energy sequence; although the stability order

T2g > T2u > T1g

seems clear enough, the T1u set could slot in between the T2g and T2u – as before – or
between the T2u and T1g (assuming that the destabilization is not too great). In practice, the
stability observed sequence for SF6 seems to be6

T2g > T2u > T1u > T1g

or, including the orbitals associated with σ bonding (A1g > T1u > Eg):

A1g > T1u(1) > T2g > Eg > T2u > T1u(2) > T1g

This order is in good agreement with that given by the qualitative model developed above,
although this was not able to predict that the σ -interaction energy level sequence would
overlap with the π levels.

6 W. von Niessen, W.P. Kraemer and G.H.F. Diercksend, Chem. Phys. Lett. 63 (1979) 65. The order given above is of calculated

orbital energies; in the vertical ionization potentials (observed in the photoelectron spectrum) the T2u and T1u are identical.
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Problem 8.20 Draw an orbital energy level diagram for SF6 (cf. for instance, Figure
7.9).

Sulphur hexafluoride is the last, and most complicated, molecule for which the electronic
structure will be considered in detail in this book. The molecules that were selected were
chosen more because they enabled particular aspects of group theory to be introduced,
rather than for their own intrinsic interest. However, the methods developed are of general
applicability and can be used to gain insight into the electronic structure of quite complicated
molecules. Particularly useful here is to assume the highest reasonable symmetry for a
molecule or molecular fragment and to consider the effects of a reduction in symmetry to
the real-life level as a minor perturbation. This is a particularly useful trick when working
with octahedral transition metal complexes but to enable it our discussion of octahedral
molecules must be extended to transition metal complexes of this symmetry.

8.4 Octahedral transition metal complexes

It is probably true that a majority of transition metal complexes have octahedral symmetry,
at least approximately. Entire books have been written on this subject but only the more
important features will be described here. At the simplest level an octahedral transition
metal complex may be regarded as built up from a transition metal ion, Mn+, surrounded
by six atoms or ions arranged at the corners of a regular octahedron. The six surrounding
atoms may indeed be single atoms or they may be an atom through which a molecule is
attached to the transition metal ion. In the simplest picture the metal ion is bonded to the six
surrounding ligands (a collective noun covering both bonded atoms and molecules) by pure
electrostatic attraction. This simple model leads to crystal field theory and it is this which
will now be discussed in outline. Although simple, it provides the basis for all other, more
detailed, models and so time spent studying it is time well spent, even if it is unrealistic.
The most important thing about it is that it introduces all of the important symmetry-based
arguments. Discussions of bonding can come later.

Transition metals are characterized by the fact that they exhibit variable valencies in their
salts. The corresponding transition metal cations have different numbers of d electrons, the
number of d electrons varying with the valence state of the cation. Loosely speaking, if
a transition metal ion is oxidized then it loses a d electron; if it is reduced it gains one.
Attention is therefore focused on the d electrons and on the d orbitals in which they are
located. In an octahedral ML6 molecule a set of d orbitals on the central metal atom divides
into two sets. One, consisting of the dxy , dyz and dzx orbitals, has T2g symmetry, as indicated
in Tables 8.1 and 8.2. Figures 8.27–8.30 illustrate the transformations of members of this
set and their individual contributions to the resulting characters detailed.

Problem 8.21 Check the transformations of the dxy , dyz and dzx orbitals shown in
Figures 8.27–8.30 and thus show that these orbitals transform as T2 in O. Because they
are centrosymmetric orbitals, it follows that they transform as T2g in Oh.
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Contribution to
the character

dxy  becomes dyz

dyz  becomes dzx

dzx  becomes dxy

0

0

0
0

To simplify the diagram only one lobe of each of dxy, dyz  and dzx is shown

z

y

x

z

y

dzx

dyz

dxy

C3

C3

x

Figure 8.27 Transformation of the T2g set of d orbitals of a central metal atom under a C3 rotation

operation of the octahedron

z z

x y yx
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dxy
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−
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Contribution to
the character

dxy  becomes −dxy

dyz  becomes −dzx

dzx  becomes dyz

−1

−1

0

0

Figure 8.28 Transformation of the T2g set of d orbitals of a central metal atom under a C4 rotation

operation of the octahedron. The d orbitals are distinguished in the same way as in Figure 8.27
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Contribution to
the character

dxy  becomes dxy
dyz  becomes −dyz
dzx  becomes −dzx

1
−1
−1
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Figure 8.29 Transformation of the T2g set of d orbitals of a central metal atom under a C2 rotation

operation of the octahedron
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Contribution to
the character

dxy  becomes dxy

dyz  becomes −dzx
dzx  becomes −dyz

1

0
0
1

Figure 8.30 Transformation of the T2g set of d orbitals of a central metal atom under a C ′
2 rotation

operation of the octahedron
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Figure 8.31 Transformation of the Eg set of d orbitals of a central metal atom under a C3 rotation

operation of the octahedron. It will help to understand this diagram if it is recognized that the C3

operation shown has the effect of converting z → x, x → y and y → z (Figure 8.7)

The second set of d orbitals,7 dx2−y2 and d(1/
√

3)(2z2−x2−y2), transform together as the Eg

irreducible representation. Their transformations are illustrated in Figures 8.31–8.34 where
their individual contributions to the characters are also given. The only point of difficulty
arises in connection with the C3 rotation operations and resembles that discussed in detail in

7 These orbitals are usually called dx2−y2 and dz2 . In the present context we have to recognize that the label z2 is a shorthand

symbol for (1/
√

3)(2z2 − x2 − y2). Note that the latter is cylindrically symmetrical around the z axis.
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dz2  becomes dz2

dx2 − y2  becomes −dx2 − y2

1
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Figure 8.32 Transformation of the Eg set of d orbitals of a central metal atom under a C4 rotation

operation of the octahedron

Section 7.1. There, too, a doubly degenerate irreducible representation gave a character of
−1 under a C3 rotation. In the present case it is helpful to write the Eg orbitals as d(x2−y2) and
d(1/

√
3)[(z2−x2)−(y2−z2)], because this helps to demonstrate that rotation of the pair by 120◦ to

give, for instance, d(y2−z2) and d(1/
√

3)[(x2−y2)−(z2−x2)] (i.e. x → y → z → x) leads to functions
which may be expressed in terms of the original. It is easy to show by expansion of the
coefficients that, for instance,

d(y2−z2) = −1

2
d(x2−y2) −

√
3

2
d(1/

√
3)[(z2−x2)−(y2−z2)]

so that the coefficient with which dx2−y2 , the ‘starting’ orbital, appears in this expres-
sion (−1/2) is its contribution to the character under the C3 rotation. The contribution of
d(1/

√
3)(2z2−x2−y2) to d(1/

√
3)(2x2−y2−z2) is similarly shown to be −1/2 so that the aggregate
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Figure 8.33 Transformation of the Eg set of d orbitals of a central metal atom under a C2 rotation

operation of the octahedron

character is −1. Of course, we have met all this before, in Section 8.2 (for those who had
the strength to read it!), but there were no detailed arguments given.

Problem 8.22 Check the transformation of the dx2−y2 and dz2 orbitals given in Figures
8.31–8.34 and thus show that these orbitals transform as E in O. Because they are
centrosymmetric orbitals it follows that they transform as Eg in Oh.

Crystal field theory, being a purely electrostatic theory which does not admit the existence
of bonding and antibonding molecular orbitals, asserts that since the d electrons (like all
other metal electrons) are non-bonding, they will occupy preferentially that arrangement in
which electrostatic repulsion with the ligands (most simply represented as point negative
charges) and with each other is a minimum. It is convenient to consider these two factors
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Figure 8.34 Transformation of the Eg set of d orbitals of a central metal atom under a C′
2 rotation

operation of the octahedron

separately. Consider first the requirement of minimum electrostatic repulsion between the
metal d electrons and the negatively charged ligands. Figure 8.35 shows a representative
Eg orbital (the dx2−y2 ) and a representative T2g (the dxy). Symmetry ensures that whatever
we conclude about these holds also for the other member(s) of their respective sets. As
Figure 8.35 suggests, it is in the Eg orbitals that an electron gets closest to the ligands and
so experiences the greatest electrostatic repulsion. This conclusion, which is confirmed by
detailed calculations, means that the T2g set of d orbitals has a lower (electrostatic) energy
than the Eg set. The energy splitting between the two sets is usually denoted by either �

or 10Dq. The choice between the two symbols is personal – � is usually taken to be a
quantity derived from experiment whilst 10Dq is theoretical in origin; in principle, both D
and q can be calculated. If d electron–ligand repulsion were the only factor to be considered
then the d electrons in octahedral transition metal complex ions would occupy the lower,
T2g, set of d orbitals until these were filled up. However, this preference is opposed by the
effects of electron repulsion between the d electrons themselves. This electron repulsion is
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− −

−

−

−

− −

− −

(a) (b)

Eg T2g−

Figure 8.35 Representative (a) Eg and (b) T2g orbitals of a central metal atom in an octahedral

metal complex. In this figure – indicates negative electrical charge; the d orbitals are envisaged as

also containing electron density so that electron–electron repulsion occurs

minimized if, as far as possible, the d electrons occupy different d orbitals with parallel spin.
That is, occupation of the Eg orbitals will start as soon as the T2g set is half-full. We have
here a straight conflict between two opposing forces. When the d electron–ligand repulsion
wins we have the so-called ‘strong field’ case; when the d–d electron repulsion dominates
we have the so-called ‘weak field’ case. Alternative, but not quite equivalent (see below),
names are to talk of ‘low spin’ and ‘high spin’ complexes, the names originating from the
fact that weak field complexes have more unpaired electrons – a higher resultant spin – than
do strong field complexes, when there is a choice.

In summary, in crystal field theory, the relative magnitudes of � (10Dq) and the d electron
repulsion energies – the so-called ‘pairing energy’ – determine the way that the set of d
orbitals are occupied. This is illustrated in Figure 8.36, where the clear difference between
high spin and low spin electron arrangements for ions with between four and seven d
electrons is evident (the names ‘high’ and ‘low’ spin really only apply to these electron
configurations). Small orbital occupation differences also exist for ions with two, three
and eight d electrons but these differences are rather subtle and are not manifest in obvious
orbital occupancies. Consequent upon these differences between high and low spin cases are
a variety of associated spectral, magnetic, structural, kinetic and thermodynamic differences.

Inclusion of covalent bonding, along the lines discussed earlier in this chapter for sulphur
hexafluoride, in the interaction between metal ion and ligands in a transition metal complex
leads to ligand field theory. It differs from crystal field theory in that quantities which are
well defined in crystal field theory become less well defined in ligand field theory (and
are generally treated as parameters to be deduced from experiment). Qualitatively, Figure
8.36 remains appropriate except that, as will be explained, the Eg set of d orbitals is now
identified as the antibonding counterpart of the Eg set involved in metal–ligand σ bonding.

In contrast to the discussion of SF6 earlier in this chapter, the valence shell of the central
atom in transition metal complexes consists of s, p and d atomic orbitals. This means that
the nine available metal orbitals span the A1g, T1u, Eg and T2g irreducible representations.
It will be recalled that the σ orbitals of the surrounding six atoms – be they fluorine in SF6

or ligands in a complex – span A1g + T1u + Eg. In a transition metal complex these ligand



JWBK182-08 JWBK182/Kettle September 7, 2007 10:43

226 THE ELECTRONIC STRUCTURES OF SOME OCTAHEDRAL MOLECULES

d1 d2 d3 d4 d5 d6 d7 d8 d9

The weak field case

t2g

eg

Δ or 10 Dq

t2g

eg

Δ or 10 Dq

The strong field case

Figure 8.36 Differences in arrangement of electrons in the d orbitals of a metal atom in an octahedral

complex occur for the d4–d7 configurations (those within the box)

orbitals are full. This is evident if the ligand is a closed shell anion such as F−, Cl− etc. and
is equally true if it is a molecule such as H2O or NH3, where the ligand σ orbital is identified
as a lone pair of electrons on the electronegative atom. This means that the interaction with
the metal orbitals can be regarded as stabilizing the ligand orbitals – lowering their energy.
In this case the metal orbitals are to be regarded as being correspondingly destabilized by
virtue of the same interactions, and the eg orbitals, which in crystal field theory are pure d
orbitals, are to be regarded as antibonding combinations of ligand σ and metal d orbitals.
Here the common practice of using lower case letters before the word ‘orbital’ is followed;
thus, ‘eg orbitals’ (this usage was first met in Section 3.6). To avoid possible disruption of
the logistic sequence, this convention has not been applied earlier in this chapter but use
of the labels eg and t2g is so common in transition metal chemistry that they have to be
introduced at some point.

Before concluding this section on transition metal ions it is of interest to note that in
ligand field theory the d orbitals of T2g symmetry may also interact with ligand orbitals.
It will be recalled that the fluorine pπ orbitals in SF6 transformed as T1u + T1g + T2u +
T2g. The pπ orbitals of any ligand, L, in an octahedral ML6 complex will have the same
symmetries. Evidently, in transition metal complexes the metal d orbitals of T2g symmetry
may interact with the T2g set of ligand π orbitals. If the relevant ligand π orbitals are empty
– and therefore of high energy – then the effect of ligand–metal T2g interactions will be to
depress (stabilize) the lower t2g orbitals. These are those corresponding to the t2g d orbitals
shown in Figure 8.36 – and to raise the energy of the (empty) t2g ligand π orbitals. The
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'Ligand' t2g

'Ligand' t2g

'Metal' t2g

'Metal' t2g

Metal t2g Metal t2g

Figure 8.37 The effect of ligand π orbitals on the eg–t2g splitting (indicated by the double-headed

arrows) depends on the relative energies of the metal and ligand t2g orbitals

effect on the molecular orbitals corresponding to the d orbitals of Figure 8.36 will be to
increase the splitting �. If the ligand π orbitals are filled – and therefore of relatively low
energy – the effect will be to decrease the eg–t2g splitting. These two cases are illustrated in
Figure 8.37. The π bonding that has just been described seems to be of importance because
it is found that it is ligands with available but empty π orbitals that give large values of
�, and thus strong field complexes, whilst those with filled π orbitals give small values
of � and so weak field complexes. Examples of the former are the CN− and CO ligands
(the empty π orbitals being C–N or C–O π antibonding) and examples of the latter are Br−

and Cl−. For these halide anions the filled π orbitals are the atomic pπ orbitals and several
comments are relevant.

First, and perhaps most important, is the fact that the above argument can lead to mislead-
ing beliefs about energy levels. There is a subtle distinction between ‘highest energy’ and
‘easiest to remove’ when talking about electrons. It is a distinction which was recognized
in Section 3.6, where it was unimportant. But there we were talking about a small molecule
(H2O) and here we are talking about a large molecule. When an electron is removed from a
molecule, the electrons that are left rearrange to a new, most stable, pattern. This is an energy
term in addition to the ionization energy. So, despite the above arguments, and although
they may well be unpaired, d electrons may not always be the electrons of highest energy
in a complex. In Figure 8.38 are shown the results of a recent, rather accurate, calculation
on the ion [Fe(CN)6]2−. Although the highest four sets have symmetries which are those
expected for the ligand π , the two which have to be non-bonding, T1g and T2u, are close to-
gether and the others well separated, indicative of important interactions. In fact, those sets
labelled t2g(2) and eg(2) are largely d orbitals, as shown in Figure 8.39. For this molecule,
the ligand π orbitals interleave the t2g–eg pair, to a first approximation. It is t2g(1) which
has a high ligand π component. These calculations, therefore, are not in good agreement
with Figure 8.37, although the pattern which this shows is generally assumed to be correct.
Clearly, whilst group theory can give us an idea of what to look for and, with the addition
of a reasonable model, make suggestions about the outcome, real life is more complicated.
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t2g(2)

t2g(1)

t1u(2)

t1u(1)

t1g

a1g

t2u
eg(2)

eg(1)

Figure 8.38 The (calculated) highest occupied orbitals of [Fe(CN)6]
2−. This should be compared

with Figure 8.37 but with the addition of ligand π orbitals of T1g, T1u and T2u symmetries (the T2g

are already included) and ligand σ orbitals of A1g, Eg and T1u symmetries (pointing away from the

metal atom)

t2g(2) Antibonding interaction between metal d and ligand π bonding

t1u(2) Metal p bonding to ligand σ and antiboding to ligand π

t1g Ligand π non-bonding

t2u Ligand π non-bonding

eg(2) Metal d bonding to ligand σ bonding

t2g(1) Mostly ligand π bonding

t1u(1) Largely ligand σ and π , some metal p

a1g Metal s with ligand σ antibonding, C and N s orbitals are involved

eg(1) Metal d with ligand σ antibonding

Figure 8.39 Pictures of the molecular orbitals of Figure 8.38. The data for Figures 8.38 and 8.39

were kindly provided by Professor E. Diana
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The second point concern the electronic spectra of transition metal ions. These spectra
are important – they are responsible for the colour of transition metal complexes – and have
been much studied. The discussion of their interpretation provides excellent examples in
the application of group theory (and particularly of the Oh group) in chemistry. Typically,
one is dealing with many (d) electron systems and this means that we have to form direct
products between the irreducible representations of the Oh group in order to get the (single)
symmetry species of wavefunctions from the symmetries of the many d electrons involved.
Unfortunately, although not particularly difficult, this is a lengthy problem – so long that
the space can only be justified in rather specialist texts and not generalist, like the present.

8.5 Summary

This chapter has been devoted to the important cubic point group Oh. The equivalence of
the coordinate axes means the introduction of triply degenerate irreducible representations
(p. 193), although it is the doubly degenerate that pose a greater problem (p. 202). The
splitting of d orbitals in octahedral transition metal complexes into t2g and eg sets is of
importance in inorganic chemistry (p. 226).
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9 Point groups and their
relationships

9.1 The determination of the point group of a molecule

The development of the subject in this book is now such that, at last, all of the different
types of point group operations have been met. It is therefore a convenient point at which to
briefly review the chemically important point groups and the allocation of a molecule to the
correct one. That is, we shall tackle the question ‘How do I decide what the symmetry of a
particular molecule is?’. Unless a correct answer can be guaranteed, it would be only too
easy to end up trying to use the incorrect character table. Even if this happens, it is seldom
disastrous. Consequential problems usually arise quickly, which serves to place doubt on
the original choice.

The way that most experienced workers identify the point group of a molecule is by a
spontaneous knee-jerk type of reflex (most common) or to list as many symmetry operations
as they can immediately see (much less common). Such a list is usually mental but the
beginner may prefer to use pencil and paper. Even if incomplete, this list may at once
identify the point group; if not, it will certainly reduce the number of possibilities to two or
three. A glance at the list of operations across the head of the character tables of the possible
groups (Appendix 3) will reveal the operations in which the possible groups differ. These
operations (or, rather, the corresponding elements) are then explicitly looked for and thus the
correct group selected. This procedure of scanning likely character tables is very strongly
recommended to the beginner as the best way forward; it requires intelligent comparisons to
be made of different point groups and this can be a very enlightening process. An alternative,
the one recommended in most texts, is to mount a more systematic search for symmetry
elements. Several schemes for such a search exist and one is given in Figure 9.1. One starts
at the top and traces a path by answering the questions on the way, which ends with the
correct point group (provided that no mistakes have been made!). Unfortunately, all such
schemes (including that in Figure 9.1) tend to suffer from a basic defect – they have been
compiled by someone who would never dream of using it! A more important defect is that
they may not properly address the particular problem confronting the student at a particular
moment. A fellow student may be someone worth talking to – they could have had the same
problem. Alternatively, since what is a logical sequence for one person may not appear so
for another, a search on the web will provide alternatives (search for ‘flow + chart/diagram’

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Is the molecule linear?

Yes No

Does it have a Cn 
rotation axis (n > 1)?

Does it have a 
centre of symmetry?

Yes No

D∞h C∞v

Yes

Yes

Yes

No

No

No

Does it have a 
centre of symmetry?

Does it have a 
mirror plane?

Ci C1

Cs

Does it have several rotation axes 
(not necessarily all the same n)?

NoYes

Is there more than one Cn axis with n > 2? Does it have a mirror plane?

Yes No

Yes No

Cnv Cnh
Does it have a 
rotation-reflection
axis?

Does the Cn axis 
lie in a mirror 
plane?

Yes No

S2n Cn

It is a cubic 
group. Is there 
a C5 axis?

Yes No Yes No

Ih I Is there a C4 axis?

Yes No Yes No

Does it have a 
mirror plane?

Yes No

Td T

Oh OTh

Yes No

Is there a centre of 
symmetry?

Yes No

Dnh Dnd

Is there a mirror 
plane perpendicular 
to the Cn axis with 
largest n?

Yes No

Dn

Does it have a 
mirror plane?

No Yes

Figure 9.1 A ‘yes’ – ‘no’ response table. This is one of the many variants available which may be

used to assign a molecule to the correct point group

and ‘point group of a molecule’). What follows are some comments that should make the
task of allocation of a point group an easier one.

When a molecule has a single rotational axis, Cn , this is usually quite evident (it becomes
easier as n increases). It may be that this Cn axis is the only symmetry element, in which
case the point group is Cn . Frequently, however, there will be other symmetry elements. If
the only ones are mirror planes which contain the Cn axis (there must be n such σ v planes
because if there was only a single one, the existence of the Cn axis would create the other
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n − l), then the point group is Cnv. Were there just a single mirror plane perpendicular to
the Cn axis (a σ h plane), it would be a Cnh point group. The simultaneous existence of n
σ v mirror planes and a σ h plane means that there must be further symmetry elements, in
particular, n C2 axes perpendicular to the original Cn axis, equally spaced around it (and
symmetrically placed relative to the n σ v mirror planes). Such point groups are Dnh (D
for Dihedral). Can these additional n C2 axes exist without the n σ v and σ h? The answer
is that they can; the point group produced is Dn . What of the simultaneous existence of
the Cn , the n σ v’s and the n C2’s? These combinations also exist and lead to the point
groups Dnd. The n σ v axes now symmetrically interleave the n C2 axes and so are, more
correctly, referred to as σ d mirror planes. In similar fashion the ‘σ v’ mirror planes in the
Dnh point groups should be called σ d. Unfortunately, many authors do not use this notation.
In such groups with n even the vertical mirror plane reflection operations invariably fall
into two classes. In many texts, one of these is usually – arbitrarily – denoted (n/2)σ v

and the other (n/2)σ d (in Appendix 3 the notation (n/2)σ d and (n/2)σ ′
d has been used).

The combination of just Cn , σ h and n C2 does not exist – the existence of these elements
requires the co-existence of n σ v and we are back to Dnh. In practice, most problems arise
from C2 axes – which can be somewhat hidden. As a rough test, if the reader can find all of
the symmetry elements in spiropentane (Figure 9.2), a molecule of D2d symmetry (and, so,
three C2 axes, falling into two types, two mirror planes and an S4 axis), they have little to
fear.

In the previous chapter Sn operations were met for the first time. A set of such operations,
together with the identity, can comprise a group, provided that n is even. Such groups are
called Sn , although the case of n = 2, S2, is usually called Ci because the operation S2 is
precisely equivalent to inversion in a centre of symmetry (Figure 9.3).

If it is clear that a molecule has non-coincident Cn and C ′
n axes, where n and n′ are both

greater than two (n can be equal to n′), then the point group of the molecule is one of those
for which the x, y and z axes are interchanged by some of the operations of the group. The
Cartesian axes then transform together as a triply degenerate irreducible representation.
If the molecule also contains a C5 axis (it would actually have several) then the point

CH2

CH2

CH2

CH2

C

Figure 9.2 Spiropentane. Find three C2 rotation axes, two mirror planes and an S4 axis. The molecular

symmetry, D2d, is a subgroup of the tetrahedral and some symmetry elements may be easier to find

there; the tetrahedron is shown dotted
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Object

Image

C2

σh

Figure 9.3 The operation i, indicated by a straight line through the centre of symmetry (itself

shown as a black dot in a circle), is equivalent to ‘rotate about an arbitrary C2 axis (shown as an

arc) containing the i and reflect in a σh containing the i (shown dotted)’. That is, i ≡ S2

group would be an icosahedral one – I or Ih (pronounced ‘eye aich’). An icosahedron of
Ih symmetry is shown in Figure 9.4 and will be discussed in Chapter 10. If the molecule
contains a C4 axis (there would be three of them in all) then the point group would be cubic
(or, equivalently, octahedral) – O or Oh. Finally, if its pure rotation axis of highest symmetry
is a C3 axis (there would be a total of four of these) then its symmetry would be that of a
tetrahedral group – T, Td or Th. The distinction between each of the two icosahedral, the
two octahedral or three tetrahedral groups is quite simple. Groups with no suffix are groups
with only pure rotation operations – they have no mirror planes and no centre of symmetry,
for example. They are fortunately rare – they present problems, which will be discussed
in Chapter 11. Groups with suffixes contain improper rotation operations. The distinction
between Td and Th is that the latter contains a centre of symmetry, whereas the former does
not. The octahedral and tetrahedral groups, together, are often referred to as ‘cubic’ groups.

Linear molecules all have an axis – the molecular axis – about which rotation by any
angle, no matter how large or small, is a symmetry operation. The ‘fundamental’ rotation
operation, from which all others may be built up, is therefore a rotation by an infinitesimally
small angle. It takes an infinite number of these rotations to return the molecule to its original
position (rather than an equivalent, rotated, one). This axis is therefore a C∞ axis. We will
have more to say about this operation in the next chapter. If a linear molecule has a centre
of symmetry they are of the D∞h point group; if they have not, they are C∞v. Because they
each have an order of infinity, the reduction of reducible representations in these groups
has to be handled differently to the method developed in this text. The problem is one that
is seldom encountered but is discussed at the end of the next chapter, after the relevant
character tables have been given.
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Figure 9.4 An icosahedron. A fivefold rotational axis passes through each pair of opposite corners

and a threefold through the mid-points of each pair of opposite faces. It is discussed in detail in

the next chapter

One point group remains. It is that which, in addition to the identity element, contains
only the operation of reflection in a single mirror plane. It is denoted Cs (‘cee ess’).

9.2 The relationships between point groups

Now that we have, in principle at least, met all of the point groups which are of interest
to the chemist, the next question to address is that of the relationships between different
groups. Sometimes there is either little or none, but often relationships exist which can be
used either to gain insights or to simplify work – or both.

As discussed at length in the previous chapter, a molecule in which a central atom M
is surrounded by six identical atoms or groups L, ML6, is of octahedral symmetry, Oh.
Suppose one of the L is now replaced by a chemically similar, but different, atom or group
X (for instance, both L and X could be halogen atoms). The molecule is then ML5X and
has, at most, C4v symmetry (assuming that the change from L to X does not lead to a gross
structural change in the molecule – no C5 axis is introduced, for example). Strictly, then, a
discussion of the ML5X molecule should follow the general pattern developed in Chapter
6, where the electronic structure of BrF5 was considered, due allowance being made for
the presence of X. However, the difference between L and X could be negligible (if they
are isotopic variants of the same element, for instance). In such a case the difference in
conclusions between a discussion based on Oh symmetry and one based on C4v should also
be negligible. There must be a continuity between the C4v and Oh cases because even if
the difference between L and X is large, it could be broken down into a series of small,
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Table 9.1 The group multiplication table for the C2v

group (Table 2.1) modified by deletion of the σ v row

and column

C2v E C2 /σ v σ ′
v

E E C2 /σ v σ ′
v

C2 C2 E /σ ′
v σ v

/σ v /σ v /σ ′
v

/E /C2

σ ′
v σ ′

v σ v /C2 E

hypothetical, steps. Similar arguments will apply whenever there is a similar relationship
between two groups.

Just what is this relationship between groups? In the above example, it is clear that some
of the symmetry elements (and, therefore, operations) of the Oh point group are not present
in C4v. However, the existence of operations common to the two groups means that there
will be some relationship between their group multiplication tables and, very importantly,
between their character tables. The group which has the smaller number of operations is
referred to as a subgroup of the other; there are many fascinating relationships which exist
between a group and its subgroups, some of which will be met in this section.

It is evident from group multiplication tables that the symmetry operations of a point group
are not, in general, independent of one another – if one symmetry operation is removed then
usually, as a consequence, others will be removed also. So, for example, if in the case of the
C2v point group one mirror plane reflection operation is to be deleted then this can only be
done if a second operation is also deleted. This is shown in Table 9.1 where it is seen that
deletion of the σ v column and row still leaves a σ v entry (as a product of C2 and σ ′

v). We
can only totally remove σ v entries from the table if we remove either σ v and σ ′

v or σ v and
C2. Deletion of the former pair leaves the point group C2 (operations E, C2) as a subgroup
of C2v and deletion of the latter pair gives Cs (operations E, σ ). Because there is only one
possible way of producing the subgroup C2 from C2v, C2 is said to be an invariant subgroup
of C2v. More rigorously, an invariant subgroup contains only complete classes of the parent
group. It is thus understandable that the point group Cs is also an invariant subgroup of
C2v, despite the fact that it could be derived from either σ v or σ ′

v. Key is the fact that these
two mirror plane reflection operations are not in the same class in C2v. The existence of an
invariant subgroup can be of key importance. In Chapter 14, for instance, the problem of
the enormous size of space groups will be encountered. If the faces of a crystal are ignored
then it is, effectively, infinite and there is an infinity of translation operations in the group.
Fortunately, it will not prove necessary to work with a group of this size. This is because the
(infinite) group of all translations is an invariant subgroup of the space group. In turn, this
means that we can work with a point group; all this will be explained in detail in Chapter
14.

Not all subgroups are invariant. The C3v point group, which was the subject of Chapter
7, provides an example. The multiplication table for this group is given in Table 9.2; the
operations are those indicated in Figure 7.1. A clockwise rotation by 120◦ is denoted by
C+

3 and an anticlockwise rotation by C−
3 ; the mirror plane reflections are σ v(1), σ v(2) and
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Table 9.2

C3v E C +
3 C −

3 σ v(1) σ v(2) σ v(3)

E E C +
3 C −

3 σ v(1) σ v(2) σ v(3)
C +

3 C +
3 C −

3 E σ v(2) σ v(3) σ v(1)
C −

3 C −
3 E C +

3 σ v(3) σ v(1) σ v(2)
σ v(1) σ v(1) σ v(3) σ v(2) E C +

3 C −
3

σ v(2) σ v(2) σ v(1) σ v(3) C +
3 E C −

3

σ v(3) σ v(3) σ v(2) σ v(1) C −
3 C +

3 E

The first operation is listed along the top and the second down the

left-hand side

σ v(3). The multiplication table in Table 9.2 differs from all the other multiplication tables
that have been explicitly given in this book. It is not symmetric about the leading diagonal
(top left to bottom right). Put another way, for some combinations of operations the result
depends on the order in which the operations are applied. Thus,

C+
3 σv(1) = σv(2)

but σv(1)C+
3 = σv(3)

Care therefore has to be taken to specify that the operations at the head of the columns in
the multiplication table are on the right in expressions such as those above. Equivalently,
they are the first operation. This may seem strange but, if so, it is only because we are
accustomed to reading from left to right so that in the first example above we read C+

3
before σ v(1). However, if the operations operate on some function, ψ say, then we have

C+
3 σv(1)ψ

and, clearly, here σ v(1) must operate before C+
3 .

Problem 9.1 Using Figure 7.1 check that the C3v group multiplication table given in
Table 9.2 is correct.

In the multiplication table (Table 9.2) the complete deletion of a single σ v operation
requires that the other two σ v’s are also deleted, to give the group C3 as an invariant
subgroup, a subgroup that can only be obtained in one way. However, deletion of the two C3

operations causes the multiplication table to break up into three disconnected multiplication
tables. This is because we can only remove the C+

3 and C−
3 entries from Table 9.2 by both

deleting the C+
3 and C−

3 columns and rows and then deleting one of the pairs [σ v(1) and
σ v(2)] or [σ v(2) and σ v(3)] or [σ v(3) and σ v(1)]. For each of these three choices we arrive
at Cs as a subgroup. That is, there are three different but equivalent ways that Cs can be
obtained as a subgroup, so it is not an invariant subgroup of C3v – one that can be obtained
in only one way – (although, as has been seen, it is an invariant subgroup of C2v).
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Problem 9.2 Check the above assertions by deleting from Table 9.2:

(a) All C3 operations. Is it possible to just delete C+
3 but leave C−

3 ?
(b) One σ v operation.
(c) One σ v operation and the C3 operations.

The distinction between invariant and non-invariant subgroups may seem rather aca-
demic. In fact, it has quite a variety of consequences, as two examples will show. The
first example concerns molecular dynamics. Suppose that a molecule of C3v symmetry is
momentarily distorted – by a molecular vibration, for instance – to give a molecule of Cs

symmetry. Thus, in the ammonia molecule, one N H bond might be momentarily longer
(or shorter) than the other two. Because the symmetry of the molecule has been reduced to
that of a non-invariant subgroup there exists other different but equivalent distortions (in the
case of our ammonia molecule there are two such equivalent distortions, corresponding to
distortion of one of the two other N H bonds to give a different but equivalent arrangement
of Cs symmetry). That is, because there are three different Cs subgroups of C3v there will be
three equivalent distortions; the molecule would be of the same energy in each of the three
equivalent configurations. In this situation, the distortion can ‘rotate’ from one bond to the
next with no nett cost in energy. That is, the presence of non-invariant subgroups means that
a molecule may indulge in some unexpected gymnastics. It is clear that special care has to
be taken in a detailed analysis of the vibrational and rotational properties of molecules with
symmetries which have non-invariant subgroups.

The second example is concerned with the character tables of invariant subgroups. When
the operations of a point group can be written as a product of the operations of two of
its invariant subgroups, then its character table can also be derived from those of these
subgroups. Consider the C2v point group. We have seen that it has two invariant subgroups,C2

and Cs. It follows that all of the operations of C2v can be derived from those of these two
subgroups. Take each of the operations of one invariant subgroup and combine it, in turn,
with all of the operations of the other invariant subgroup. Thus, in our case, carry out the
steps shown in Table 9.3. That is, the operations of C2v are products of the operations of C2

and Cs. Using the language of Section 5.3, the group C2v is said to be the direct product of
the groups C2 and Cs, a relationship usually written as

C2v = C2 × Cs

Table 9.3 The combination of operations of the

invariant subgroups of C2v

C2 combines with Cs to give C2v

E combines with E to give E
E combines with σ to give σ v

C2 combines with E to give C2

C2 combines with σ to give σ ′
v
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Table 9.4

C2 C2E C2E

A
B

A
B

  1     1
  1  −1

  1     1
  1  −1

  1     1
  1  −1

  1     1
  1  −1

X =

Cs

A' 1

1

1

−1A''

E σ
σv  σv'

  1     1
  1  −1

  1     1
  1  −1

  1     1
  1  −1

−1  −1
−1    1

C2v C2E

A1
B1

A2
B2

(more strictly, the symbol ⊗ should be used in place of the multiplication sign). In Section
5.3 it was also seen that a similar property holds for the corresponding character tables.
Thus, in the present case the character table for C2 is taken and the whole of it multiplied
by the characters of the Cs table, to give a table four times the size of that of C2. This is
shown in Table 9.4 where, for simplicity, the C2 character table has been written out four
times on the left. Each one is then multiplied by the corresponding Cs character to give the
C2v table.

The C2v character table given in Table 9.4 is the same as that met in Chapter 2 (Table
2.4), with the A2 and B1 irreducible representations interchanged in position.

Problem 9.3 Check through the individual steps in Tables 9.3 and 9.4.

Examples of this relationship between character tables have already been met. In Chapter
5 the fact that D2 and Ci are both invariant subgroups of D2h was exploited (Tables 5.3 and
5.4). In the previous chapter the fact that Oh has invariant subgroups O and Ci was used in
Table 8.2 and the preceding discussion.

Problem 9.4 Show that the operations of the group C3v are the product of operations
of the groups C3 (E, C+

3 , C−
3 ) and Cs (E, σ ). However, because Cs is not an invariant

subgroup of C3v, the character table of C3v is not the direct product of the character
tables of C3 and Cs. This is immediately seen when the character tables of C3v and C3

are compared (Appendix 3).

At the beginning of this chapter it was recognized that C4v is a subgroup of Oh. It is not an
invariant subgroup because there are eight C4 operations in Oh but only two in C4v. It is also
evident that the character table of Oh is not a direct product of that of C4v with any other
group because that of Oh contains triply degenerate irreducible representations whereas C4v

does not. This is another illustration of the rule that the character table of a group is never
the direct product of the character table of a non-invariant subgroup with that of another
group.
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Table 9.5

C3v E 2/C3 /3σ v

A1 1 /1 1
A2 1 /1 −1
E 2 −/1 0

Cs E σ

A′ 1 1
A′′ 1 −1

9.3 Correlation tables

Having discussed how the character table of a group may be related to that of its subgroups
we now consider the opposite problem: how is the character table of a subgroup related to that
of the parent group? Again, the general form of the relationship is best seen by considering
an example. The example which we choose corresponds to the physical situation described
earlier in this chapter, that in which a molecule of C3v symmetry is distorted to give a
structure with Cs symmetry (i.e. a distortion leading to the loss of the threefold axis). The
character tables of the Cs and C3v point groups are given in Table 9.5. Note that in the Cs

character table a single prime as a superscript indicates something which is symmetric with
respect to a mirror plane reflection and a double prime indicates antisymmetry. This use (and
meaning) of primes reappears in other point groups – see Appendix 3. In the C3v character
table in Table 9.5 the loss of the C3 axis has been indicated by deleting the column associated
with the corresponding operations. Since loss of this axis also leads to the loss of two σ v

mirror planes (those generated by C3 operations acting on the ‘first’ σ v) the number 3 has
also been deleted from the 3σ v entry. It is clear from Table 9.5 that the remaining characters
of the A1 irreducible representation of the C3v point group are those of the A′ irreducible
representation of the Cs point group. One says that the ‘A1 irreducible representation of
C3v correlates with the A′ irreducible representation of Cs’. This means that any function
or object which transforms as A1 in C3v must transform as A′ in Cs when the molecular
symmetry changes. Similarly, Table 9.5 shows that the A2 irreducible representation of C3v

correlates with A′′ of Cs.
The E irreducible representation of C3v is both interesting and important for it does

not correlate uniquely with a single irreducible representation of Cs. Rather, it gives rise
to a reducible representation, one which is readily seen to have A′ + A′′ components. In
summary, then, we have the correlations shown in Table 9.6.

This example illustrates the general theorem that each irreducible representation of a
group gives rise to a representation, which may be either reducible or irreducible, of each of
its subgroups. Tables showing these correlations – so-called correlation tables – are available

Table 9.6

C3v Cs

A1 −→ A′

A2 −→ A′′

E −→ A′ + A′′
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but it is very easy to work them out using the example given above as a model. Working-out
sometimes has an advantage over the use of tables. The D2h group was described in Chapter
4 (its character table is given in Table 4.1). This group has C2v as a subgroup and correlation
of the irreducible representations of the two groups seems very easily.

Problem 9.5 Use either Tables 4.1 and 2.4 or Appendix 3 to correlate the irreducible
representations of the D2h and C2v groups.

Hint: If you find this problem more difficult than expected, read the next part of this
section.

As the reader may have discovered when tackling Problem 9.5, whilst the problem is
not a difficult one, there is a catch in correlating from D2h to C2v. The D2h group has
three different C2 axes. The precise correlation between the two groups depends on which
of the three twofold axes is retained in going from D2h to C2v. This does not indicate
any fundamental problem, rather that it may be necessary to relabel coordinate axes (and
associated basis functions) in moving between the two groups. The twofold axis retained in
C2v may not be that labelled z in D2h, although it would be called z in C2v. In compilations
of correlation tables it is usual to indicate all three possible D2h → C2v correlations but one
still has to decide which correlation is appropriate before using the tables. In such cases
even experienced workers may find that they are less likely to make a mistake by working
out the correlation for themselves rather than by using the tables!

There is another way of showing correlations, and this is by use of a diagram. That for
the C3v–Cs correlation is given in Figure 9.5. Such diagrams emphasize another aspect
of the consequences of a decrease in symmetry. Figure 9.5 shows, for example, that a
function transforming as A1 in C3v and one of the two functions transforming as E have a
common symmetry in Cs: that described by the A′ irreducible representation. This means
that in Cs symmetry these two functions can interact with each other, an interaction which
is symmetry-forbidden in C3v symmetry.

Another aspect of a reduction in symmetry, equally evident from either Table 9.6 or
Figure 9.5 (since they describe the same data), is that a decrease in symmetry may lead to

C3v

A1
A'

A''

A2

E

Cs

Figure 9.5 The correlation between the irreducible representations of the groups C3v and Cs
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C3
C3

C4
C4

Distort 
along

Distort 
along

the C4 
axis shown

the C3 
axis shown

Octahedron Tetragonally distorted 
octahedron

Trigonally distorted 
octahedron

Figure 9.6 A symmetrical distortion of an octahedron (Oh) along a threefold axis gives a figure with

D3d symmetry whilst a symmetrical distortion along a fourfold axis gives a D4h figure

a decrease in degeneracy. In the example above, the degeneracy of functions transforming
as E in C3v is lost in Cs. A particularly important case is that of octahedral transition metal
coordination compounds, discussed in Chapter 8. Although much of the basic theory of
such compounds is conveniently developed assuming full octahedral symmetry (Oh), real-
life examples usually show some minor distortion. The most important cases are those
in which such a distortion is either along a fourfold or a threefold axis (either distortion
therefore destroying all other fourfold and threefold rotation axes), as shown in Figure 9.6.
The appropriate correlation table is given in Table 9.7.

Problem 9.6 Use the character tables of the Oh, D4h and D3d point groups in Appendix
3 to check the correlations given in Table 9.7.

It is seen from Table 9.7 that in D4h symmetry all degeneracies present in Oh symmetry
are at least partially removed. One important consequence of this is that when a single
spectral band is predicted in the electronic absorption spectrum of an octahedral transition
metal complex this band would be expected to show a splitting if the real symmetry is D4h

and a degeneracy is involved in the transition (for instance, the excited state might be triply
degenerate). Such a splitting could take the form of the observation of a separate peak, a
shoulder or an asymmetry on the band. The D3d case shows, however, that it is not always
true that a reduction in symmetry causes all degeneracies to be relieved (i.e. a splitting
to occur); thus the Eg and Eu irreducible representations of Oh persist in D3d. There is,
however, a trap for the unwary. In the point group Oh convention was followed in choosing
a C4 axis as the z axis; one would do the same in D4h. In D3d, the axis of highest symmetry
is a C3 axis and this is the z axis. It follows that, although Eg of Oh becomes Eg of D3d

it is NOT true that the basis functions for Eg in Oh, x2–y2 and 1/
√

3(2z2 − x2 − y2), are



JWBK182-09 JWBK182/Kettle September 7, 2007 10:59

CORRELATION TABLES 243

Table 9.7

D3d D4hOh

A1g A1g

trigonal tetragonal

distortion
(along C3)

distortion
(along C4)

A1g

A2g

A1u A1u A1u

A2g B1g

Eg Eg

T1g

A1g + B1g

A2g + Eg A2g + Eg

T2gA1g + Eg B2g + Eg

A1u + B1u

A2u + Eu A2u + Eu

A2u A2u

T1u

B1u

Eu Eu

A1u + Eu B2u + EuT2u

basis functions for Eg in D3d. A detailed analysis, using the methodology of Appendix 2, is
needed to describe the correlations between basis functions in Oh and D3d.

In practice, the correlations which exist between groups are quite important for two
reasons. First, as indicated above, they enable the properties of low symmetry molecules to
be related to those of high symmetry species. Another aspect of this occurs when a molecule
is high symmetry but is trapped in a low symmetry environment – an octahedral molecule
on a low symmetry lattice site in a crystal, for example. Any spectral splittings that occur as
a result can give information on the degeneracies in the high symmetry situation. Second,
some of the problems of degenerate representations – and some were met in the last chapter
and more will be met in the next – can often be neatly side-stepped by pretending that a
molecule has a lower symmetry than is in fact the case – so that the degeneracy is split (or
‘relieved’) – and, after working in the low symmetry group, using a correlation relationship
to apply the result to the high symmetry case.1

Another interesting aspect of the relationship of a group to its subgroups is that the
number of symmetry operations in a group (the order of the group) is a simple multiple
of the number of symmetry operations of any of its subgroups. The multiplication factor –
which is always an integer – is called the index of the subgroup (relative to the particular
parent group). Thus, the C3 group (of order 3) is subgroup of index 2 of the point-group
C3v (of order 6). However, the same C3 group (of order 3) is a subgroup of index 40 of the
point group Ih (of order 120).

1 A particular attraction of a reduction in symmetry is that interactions can be caused to become 1:1 – ambiguities about which
of the functions within a degenerate set interact with members of another degenerate set no longer exist.
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Problem 9.7 Use Appendix 3 to determine the index of each of the following sub-
groups of Oh:

D4h, C4v, D3d, C3v, D2h, C2v

An important application of the concept of index concerns rotational subgroups. A point
group may only contain operations which are proper rotation operations (such as C2, C3

and so on) or it may contain some operations which are pure rotations and others which
are improper rotations (such as σ v, i, S4). By deleting all of the improper rotations one
can always obtain a subgroup of a group which itself contains both proper and improper
rotations. What remains is the pure rotational subgroup of the parent group. This subgroup
is always of index 2. The importance of rotational subgroups is their relationship to the
(infinite) group consisting of all the pure rotation operations associated with a sphere. This
group provides a method of determining how the degeneracies which may be associated
with the free atom (and these degeneracies may be quite large) are split up when the atom
is placed in the molecule (this is dealt with in detail in Chapter 10). For the metal atom at
the centre of a transition metal complex, in particular, this is quite invaluable information.

Problem 9.8 Use the symmetry operations listed at the top of the character tables in
Appendix 3 to show that deletion of improper rotation operations in the following point
groups in each case leads to a pure rotational subgroup of index 2.

Ih, Th, D5h, C2h, D3d

Note: In several of these examples it is possible to obtain subgroups by deletion of all
improper and some proper rotations. Such subgroups are not of index 2. The statements
made in the text refer to the largest pure rotational subgroup of a given group.

9.4 Summary

There are relationships between a group and its subgroups. The operations of a group can
immediately be obtained from the operations of its subgroups (p. 236), as can its character
table (p. 239) provided that the subgroups are invariant (p. 236). Correlations exist between
the irreducible representations of a group with its subgroups and are useful in discussions
associated with molecules which approximate to high symmetry species (p. 240). Groups
containing improper rotation operations always have a pure rotational subgroup of index 2
(p. 244).
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10 Tetrahedral, icosahedral and
spherical symmetries

10.1 An overview

This is a chapter largely devoted to three groups, tetrahedral, icosahedral and spherical, all
of which are such that their coordinate axes, x, y and z, can be chosen to be symmetry-
equivalent. Diagrams with each of these geometries are shown in Figure 10.1, where the
axis sets about to be discussed for the tetrahedron and icosahedron are included and also
extended to the spherical case. The fact that they can have equivalent x, y and z axes is
a feature which they share with the O and Oh groups of Chapter 8. Indeed, much of the
discussion in that chapter can be carried forward to this. In particular, transition metal
coordination complexes with a tetrahedral geometry, the first geometry to be considered
here, are sometimes conveniently discussed at the same time as octahedral complexes.
This is because the character tables of the point groups Td (the tetrahedral group almost
invariably encountered) and O are isomorphous (‘isomorphous’ means that apart from the
labels surrounding them, the tables are identical; for O and Td the labels on the irreducible
representations are also identical).

The first two geometries, each of which encompasses more than one point group, have
a feature in common: they disobey the rule that the axis of highest rotational symmetry
should be taken as the z axis. For tetrahedra the rule can be taken to apply if one adopts a
rather broad definition of ‘rotational’ but for the icosahedra there is no such escape clause.
In both cases, it is the C2 axes which are taken to be x, y and z. The reason is simple – in
both groups there is a set of C2 rotational axes at 90◦ to each other, which is just what one
needs for a coordinate set. For the tetrahedron, these axes are co-linear with three S4 axis
and so if one is prepared to regard S4 as an axis of rotational symmetry (in other words,
ignore the implicit ‘pure’ before ‘rotational’) then the normal rule is followed. However, if
one insists on the ‘pure’, then the axes of highest rotational symmetry are C3 axes, axes that
are inclined relative to each other at the tetrahedral angle, 109◦28′′. If one C3 is chosen as
z then x and y, although perpendicular, point in rather aimless and unhelpful directions in
space, whatever the details of the choice. They remain degenerate, of course, but this is not
much help when working with such an apparently different set. Those that want to make
life as easy as possible will opt for the C2 choice of axes. For the icosahedral groups the
axis of highest rotational symmetry, pure or not, is a C5, of which there are six. The angle
between C5 axes is 63◦26′′ – again not much use in the search for 90◦! For the icosahedron,

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Figure 10.1

there are 15 C2 axes (for the simple twelve-corner icosahedron – that of Figure 10.1 – and
its 30 edges, one C2 axis passes through each pair of opposite edges). From the 15 C2, three
that are mutually perpendicular are chosen as coordinate axes. Clearly, the choice of the
trio to select is not unique.

For both the tetrahedron and the icosahedron the choice of axes has an important con-
sequence for the use of the projection operator method in obtaining symmetry-adapted
functions. When, as is likely for these two, there is no member of a basis set (atomic orbital,
vibration, whatever) which lies on an axis, one has to take care. Basis sets have to be in-
vented which respect the axes. So, take a tetrahedron of four atoms, which are labelled a, b,
c and d (no diagram is given, one can be drawn any way the reader wishes). A twofold axis
bisects the edge joining a and b (or any other pair). As basis functions (a + b) and (a − b)
should be used (and their equivalents for two other edges). The function (a + b) generates
symmetry-adapted combinations which are symmetric under the C2 whilst (a − b) generates
those that are antisymmetric. If either a or b were chosen instead, one would be imposing
a C3 axis as choice of coordinate axis on the problem. With such a choice, whilst the first
function of any degenerate set would look reasonable, the other(s), corresponding to the
other coordinate axes in rather general positions, would both be difficult to generate and
aesthetically unpleasant when obtained. For the Ih group, the generation of all symmetry-
adapted members of sets transforming as the G and H irreducible representations presents
a problem. Again, the crafting of suitable basis sets can be a help, particularly if one has
an idea of the likely answer(!). The latter can be obtained in one of two ways: from basis
functions given in the character table or from the characteristics of the atomic orbital set
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that spans the irreducible representation (the way to discover a suitable set is described
later in this chapter). What one is looking for is the sort of nodal pattern which is going
to be present in the final functions. A useful trick is to pretend that the symmetry is lower
than Ih; that is, to use the method described at the end of the previous chapter. It is also
mentioned at the beginning of Appendix 4. If all else fails, there is a method called ‘Schmidt
orthogonalization’ which always works, albeit at the expense of a lot of effort and, usually,
inelegant final functions.

The final symmetry that we study, that of the sphere, has an even less unique choice of
coordinate axes; any three mutually perpendicular axes are acceptable – and the highest
rotational symmetry of each of these axes is infinite! Put another way, the basic rotational
operation of a sphere, that of which all others are multiples, is an infinitesimally small
rotation. Strange as this may seem, it is in fact very important. Much of quantum mechanics
as we know it arises from the properties of these infinitesimal rotations. First, however, we
start with something much more evidently understandable. The tetrahedron.

10.2 The tetrahedron

We have mentioned that it is often possible to discuss octahedral and tetrahedral transition
metal complexes together; this is because their geometries are derived from a cube and the
labels of the irreducible representations of the point groups O (octahedral, pure rotations
only) and Td (tetrahedral, as in methane) are identical. Tetrahedral complexes, of general
formula ML4, are of widespread occurrence but are not as common as octahedral. Together,
species with geometries which approximate to either octahedral or tetrahedral account
for at least 80% of all coordination compounds. In organic chemistry, of course, it is the
tetrahedral geometry which is the important one. Clearly, it is appropriate that a discussion
of tetrahedral molecules should be included in this text.

Because a tetrahedron is derived from a cube, the symmetry operations which turn a
tetrahedron into itself are also symmetry operations of the cube (but the converse is not
true). The corresponding symmetry operations are:

Cube (and octahedron) E, 8C3, 6C4, 3C2, 6C2
′, i, 8S6, 6S4, 3σ h, 6σd

Tetrahedron E, 8C3, 3C2, 6S4 6σd

The group of operations of the tetrahedron is given the shorthand label Td (pronounced
‘tee-dee’).

Problem 10.1 Draw diagrams to show all of the symmetry operations of a tetrahedron.
Hint: Figure 10.1 is helpful. The mid-point of each cube face in this figure corresponds
to a corner of the octahedron shown in Figure 8.2.

Although there exists a group consisting solely of the pure rotations of the tetrahedron
(E, 8C3, 3C2, a group called T), the group Td is not a direct product group of T with any
other group (if it were, there would be three, not two, additional classes of Td compared
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z
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Figure 10.2 The lobes of the t2 orbitals (left) point towards the mid-point of a cube edge whereas

the lobes of the e orbitals (right) point towards the mid-points of cube faces. These distances are

in a 1:
√

2 relationship so it seems probable that the t2 orbitals will experience the larger repulsion

with T and they would have 1, 8 and 3 operations in them). Remember, character tables are
all square – they have as many irreducible representations as classes of operation.

Problem 10.2 Detail the arguments behind the assertion just made.

The character table of the Td group is given in Table 10.1.
The bonding in tetrahedral molecules will not be discussed in detail but the essentials are

given in Table 10.2, which summarizes the ways in which the various orbitals transform
(Table 10.1 does not give them explicitly, only in coordinate axis form).

Problem 10.3 Check that the transformations given in Table 10.2 are correct. The
generation of the correct reducible representation for the transformation of the apical
atom π orbitals is not a trivial task and the reader who gets the correct answer is to be
congratulated. Success depends on choosing the orientation of the π orbitals mindful
of the symmetry operations under which they are to transform (this problem is best
tackled by the techniques described in Appendix 4).

Problem 10.4 Use the projection operator method to derive explicit forms for the σ

orbitals of four atoms arranged at the apices of a tetrahedron.

Problem 10.5 Use the data in Table 10.2 to describe the bonding in methane, CH4. If
the symmetry-adapted functions are to be generated, there are some helpful comments
following the discussion of coordinate axes earlier in this chapter.
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Table 10.1

Td E 8C3 3C2 6S4 6σ d

A1 1 1 1 1 1 (x2+y2+z2)
A2 1 1 1 −1 −1

E 2 −1 2 0 0 (x 2 − y2), 1
√

3(2z2−x2−y2)

T1 3 0 −1 1 −1 Rx , Ry , Rz

T2 3 0 −1 −1 1 (x, y, z) (xy, yz, zx)

It will be noted that double and triple degeneracies exist in a tetrahedral environment and,
rather important, that the p and three of the d orbitals of a central atom both transform as
T2. This means that the t2 d orbitals in a tetrahedron will be mixed with a bit of p, and vice
versa. In this lies, ultimately, the explanation of the fact that tetrahedral transition metal
complexes tend to be more highly coloured than do octahedral. Because d and p orbitals
mix, this mixing makes some electronic transitions more allowed in a tetrahedron than they
are in an octahedron (pure d–d transitions are forbidden, but d–p are allowed). Just as for
an octahedron, in a tetrahedral environment the d orbitals of a transition metal split into
two sets; dx2−y2 and d(1/

√
3)(2z2−x2−y2) are of E symmetry and, as has been commented, dxy ,

dyz , and dzx of T2. If a diagram analogous to Figure 8.35 is drawn for a tetrahedron then it
is concluded that in this geometry splitting the T2 set is of higher energy than the E – the
inverse of the splitting found for an octahedron (Figure 10.2). This is the sort of problem
for which one could be tempted to orient the z axis of the tetrahedron along a threefold
axis. The orbital dz2 would then point directly towards a ligand and one might hope for a
more evident proof of the E – T2 splitting than is apparent in Figure 10.2. Alas, not so. The
‘new’ dz2 is not the same as the first and, indeed, it is not even an E orbital. The ‘new’ dz2 is
actually a mixture of orbitals from the ‘old’ E and T2 sets. A rigorous proof that the d orbitals
split into e and t2 sets will be given later. The splitting of the d orbitals in a tetrahedron
is only about one half of that for the corresponding ligands arranged octahedrally (more
accurately, 4/9). This reduction in separation means that strong field tetrahedral complexes
are virtually unknown; almost all are weak field. The 4/9 factor is actually the ratio of the

Table 10.2

Symmetry

Orbitals of an atom at the
centre of the tetrahedron

s A1

(px , py , pz) T2

(dx 2−y2 , d(1/
√

3)(2z2−x 2−y2)) E

(dx y , dyz, dzx ) T2

Orbitals of the four atoms at
the apices of the tetrahedron

σ A1 + T2

π E + T1 + T2
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squares of the number of ligands in the two cases, 16/36, and so must be expected to be
rather approximate. Identical metal–ligand bond lengths are assumed, for instance.

It is the fact that in both a tetrahedral and an octahedral environment the d orbitals of
a transition metal split into a set of two (E in Td, Eg in Oh) and a set of three (T2 in Td,
T2g in Oh) – and that the d orbitals of E symmetry in Td are the same as those of Eg in
Oh (and similarly for the T2 and T2g orbitals) – which enables a common discussion of the
two symmetries in specialized texts. In this common discussion the orbital sets are referred
to as E and T2 (one can think of the discussion of octahedral molecules taking place in
the group O – for there, these are the correct symmetry labels). The two geometries are
then distinguished by the fact that the E–T2 splittings are of opposite signs. One warning,
however: a warning signalled in the discussion above. Although a set of three p orbitals of
a central atom have T1u symmetry in Oh, they have T2 symmetry, not T1, in Td. The moral
is clear – never transfer labels between the geometries without checking.

Problem 10.6 Show that the p orbitals of an atom at the centre of a tetrahedron have
T2 symmetry.

We have met two tetrahedral groups, T and Td. There is a third, and although it is scarcely
ever met it is not without interest. It is called Th, and is the direct product of T with Ci (the
group containing only the operation of inversion in a centre of symmetry in addition to the
identity). Consider a molecule [M(H2O)6]n+, where the M and the six surrounding oxygens
comprise an octahedral complex typical of those discussed in the last chapter. Now add the
two H’s to each oxygen. They destroy the fourfold axes, at best leaving only C2’s (and even
this requires that the hydrogens on trans oxygens be co-planar). If, finally, adjacent H2O
ligands are interrelated by a C3 rotation, a Th molecule results (Figure 10.3).

M H

H

H

H H

H

H H

H

HH

H

Figure 10.3 A M(H2O)6 complex of Th symmetry. The oxygens are arranged in Oh fashion but the

position of the hydrogens, whilst destroying the octahedral C4 axes, retain the σ h mirror planes. The

arrangement of the hydrogens is key to the geometry and so has been emphasized
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10.3 The icosahedron

Apart from spherical symmetry, the icosahedron has the highest symmetry possible for a
three-dimensional object. It has a plethora of rotational axes, 6C5, 10C3 and 15C2. The
group containing all the operations associated with these axes (together with E, of course),
is labelled I. It has a deceptively simple character table, only five rows and columns. For
each C5 axis there are two C5 rotation operations (clockwise and anticlockwise by 72◦)
and two C5

2 rotation operations (clockwise and anticlockwise by 144◦). For each C3 axis
there are two C3 operations (clockwise and anticlockwise by 120◦) and for each C2 axis
there is a single C2 operation. The five classes of operations are E, 12C5, 12C5

2, 20C3, and
15C2, a total of 60. The theorems of Chapter 6 (see Section 6.4) indicate something strange.
The sums of the squares of the characters under the identity operation, E, must sum to 60.
And one of the numbers to be squared has to be a 1 (there has to be a totally symmetric
irreducible representation). Subtracting this 1, we need four numbers which, when squared,
sum to 59. Even if all were 3, the highest degeneracy that we have met so far, we would
only get a total of 36 (4 × 32). We have to invoke higher degeneracies. In fact, degeneracies
of 3, 3, 4 and 5 (9 + 9 + 16 + 25 = 59). Fourfold degenerate irreducible representations
are labelled G and the fivefold H.

Whilst the group I is the simplest icosahedral group, it is not the one usually met. Almost
invariably, it is the group Ih which is discussed. (The origin of the subscript h in the label is to
be found in the early German literature; it indicates horizontal mirror planes perpendicular
to the usual C2 choice of coordinate axes. However, in the character table the mirror plane
reflections are denoted σ , not σ h, and it has always been so, even in the early German
literature!.) The key distinction between the groups I and Ih is that the latter contains a
centre of symmetry. Ih is the direct product of I and Ci (which contains just E and i). This
means that the operations of Ih are the 60 of I together with another 60, in which each of the
first 60 is individually combined with i. These second 60, like the first, fall into five classes.
These are i, 12S10, 12S10

3, 20S6 and 15σ . Commonly, as we have met before (Chapter 8),
the Sn (n = 10, 6) are referred to as ‘rotation reflection’ operations by chemists, whilst
physicists and crystallographers tend to prefer ‘rotation inversion’.

Although examples of molecules with an icosahedral geometry have long been known
(the anion B12H12

2− is the classic example and is shown in Figure 10.4a), and some viruses
also have the symmetry, in recent years it has become much more important. The main
reason for this is the discovery of the molecule C60, shown in Figure 10.4b. It has spawned
an entire chemistry, with the icosahedral group as a common reference point.1 But there is
another reason. In Chapter 12 we will see that it is not possible for a crystal to have C5 axes.
But icosahedral crystals exist! The whole subject of so-called quasicrystals, with apparent
fivefold axes, is a fascinating one and we shall refer to it again in Chapter 13. Clearly, the
icosahedral group Ih is worthy of some study; its character table is given in Table 10.3.

There are several other aspects of the Ih character table that are worthy of comment. First,
the appearance of characters related to the angles of 72 and 144◦, although the appearance
is not the simple one that might have been expected. Characters involving cos 72◦ are
associated with rotations of both 72 and 144◦, and the same is true for characters involving

1 A very readable, and pictorial, paper which uses carbon cages akin to C60 as exotic models with which to introduce point

groups, particularly those of high symmetry, including I, is W.O.J. Boo, J. Chem. Educ. 69 (1992) 605.
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C2

(a) (b)

Figure 10.4 Two molecules with Ih geometry. (a) The B12H12
2− anion. This view shows the C3 axes

passing through the centre of pairs of opposite faces. (b) Fullerene, C60. This view is almost down a

C2 axis, which might well be chosen as a coordinate axis. Clearly visible are hexagonal rings, which

are centred by C3 axes, and pentagonal rings, which are centred by C5 axes

cos 144◦. Second, The use of the labels G and H to denote fourfold and fivefold degeneracies,
respectively, is not as obscure as it seems. Although it is now relatively rare, one still
encounters the use of F, rather than the T that we have used in this book, to denote triple
degeneracy. So, one might meet the statement that ‘the d orbitals of a metal in a tetrahedral
complex split into e and f2 sets’, rather than the e and t2 we used above. Following the
alphabetical sequence, E(2), F(3), it is logical that G should be (4) and H (5).2 Third, if
there were a transition metal atom at the centre of a molecule of Ih symmetry (and molecules
with a metal atom inside a C60 cage are well known, even if they are not usually at the centre),
then there would be no splitting of the d orbitals such as occurs for octahedral and tetrahedral
geometries. The d orbitals transform, as a set of five, under the Hg irreducible representation.
This is shown in the character table above (Table 10.3) because the relevant parts of their
explicit mathematical functions are given at the right-hand side of the table. Finally, the nodal
patterns characteristic of the individual irreducible representations and their components
exist, of course, but are very difficult to show in detail. For the Oh group we were just
about able to indicate how to do it by projection onto the surface of a sphere (Figure 8.9).
There the half-sphere that was, more or less, visible had to contain twenty-four segments
(half the order of the group, because only half of the sphere was, more or less, visible). It
would be possible to give a corresponding diagram for the icosahedron but sixty (half of
120) segments would have to be shown. The diagram would be impossibly complicated. We

2 Even more logical would be to follow the sequence T(3), U(4) and V(5) – and, indeed, these labels can be found used in this

way, U and V indicating quadruple and quintuple degeneracies, respectively. However, it is the labels G and H which are the more

commonly used and so have been given in the text.
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shall not attempt to give it. An alternative would be to detail the atomic orbitals which form
a basis for a particular irreducible representation. This is entirely feasible for some of the
irreducible representations, those of low nodality – and we will give them later, although
it is not difficult to anticipate them from the data at the right-hand side of Table 10.3. But
help is at hand for the reader who is masochistic enough to want to see the complexities in
full. In the next section we detail how to work out how any set of orbitals, s, p, d, f, g, . . .,
no matter how complicated, transforms in any molecular symmetry. Applied to the present
example, the masochist simply has to go further and further along the sequence, applying
the method to Ih, ticking off the irreducible representations as they are met, until all have
been encountered.

10.4 Spherical symmetry

The number of rotation operations in the spherical group is infinite; for a sphere, any angle
of rotation about any axis turns the sphere into a sphere indistinguishable from the starting
one. So, the operation of rotation by any angle, about any axis, is an acceptable symmetry
operation. We cannot expect a simple character table! Indeed, the group character table
contains an infinite number of classes of operations and an infinite number of irreducible
representations. And this, of course, is without including any improper rotations – mirror
plane reflections and the like. Of all the improper rotations the only one we need consider is
that of inversion in a centre of symmetry. All of the other improper rotations are combinations
of it with one of proper rotations. Recognizing this, it proves convenient for us to delay
consideration of the operation of inversion in a centre of symmetry. Even so, given its
infinite nature, all we can hope to do is to give a fragment of the character table of the
spherical group. Such a fragment is given in Table 10.4, which is one that will be found in
the literature, with a few trivial additional simplifications.

There is much that can be said about Table 10.4. To start with, it is evidently wrong.
It shows a single C2 operation, a single C3 and so on – but we know that there has to be
an infinite number of each. In each case, the one shown is representative; all the others
of its infinity of partners have exactly the same properties. Next, despite the complexity
of the group, the individual characters are very simple, ones that we recognize (the τ is a
shorthand for the −2cos 144 that we met in Table 10.3). This simplicity suggests that there

Table 10.4

K E C2 C3 C4 C5 C6 . . .

S 1 1 1 1 1 1 . . .
P 3 −1 0 1 τ 2 . . .
D 5 1 −1 −1 0 1 . . .
F 7 −1 1 −1 −τ −1 . . .
G 9 1 0 1 −1 −2 . . .
H 11 −1 −1 1 1 −1 . . .
I 13 1 1 −1 τ 1 . . .
· · · · · · · . . .
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must be a relatively simple way of obtaining these characters, and indeed there is – we will
meet it shortly. Thirdly, the labels given to the irreducible representations are labels that we
recognize – S, P, D, F. . . Remembering that lower case symbols are used when irreducible
representations are used to label orbitals, we realize that they are very familiar, s, p, d, f. . .
Perhaps this is an appropriate point to remind the reader of a phrase earlier in this chapter;
‘much of quantum mechanics as we know it arises from the properties of these infinitesimal
rotations’. Well, something of the ‘quantum mechanics as we know it’ has just been met;
the relevance of the infinitesimal rotations is to come! One final point about Table 10.4:
the label given to the spherical group. We have used K. This has a tradition dating from the
origins of the theory (it is the initial letter of the German word Kugelgruppe – ‘spherical
group’), although alternative labels will be found in the literature. A popular one is R(3),
indicating the group of all rotations in three dimensions.

The way that the K character table has been given, incorrectly, is an indication that Table
10.4 is more for show than for use. Hopefully, however, it will have given an indication
of the importance of the group. To investigate it further it is necessary to depart from the
pattern established so far in the book. Up to this point character tables have been the focus of
attention. Now, we turn to the fundamental operation of the group. The spherical group may
be infinite, but it is built upon a single operation, that of an infinitesimal rotation (about any
axis). Not surprisingly, to gain insight into the properties of this operation is to gain insight
into the spherical group. In fact, that which follows applies to all rotations; infinitesimal
rotations are of fundamental importance (in them lies the reason that the concept of angular
momentum is so often invoked in textbooks on quantum theory). On the other hand, finite
rotations are of practical importance, as we have seen many times – and shall see again.
Because it is an operation, it is convenient to have a rotation (infinitesimal or not) operate
on something; something which is subjected to the rotation. Of course, it could be almost
anything, but it is easiest to work with a single object, one which behaves in a simple way
under the operation. An obvious choice is a radial vector pointing out from the axis of
rotation (Figure 10.5). Rotation turns it into a slightly different vector, but one of the same
magnitude (length). We have met this situation before, in the discussion associated with
Figure 7.4, and the reader may find it helpful to look back at this.

r

r
b

a

irsinθ

rcosθ

θ

Figure 10.5 When a vector originally terminating at the point a is rotated by θ to the point b, the

amount of the original vector contained within the final is rcos(θ). New is an additional component

of rsin(θ); however, this is perpendicular to the original direction and this necessitates the inclusion

of i, where i2 = −1



JWBK182-10 JWBK182/Kettle September 14, 2007 16:9

256 TETRAHEDRAL, ICOSAHEDRAL AND SPHERICAL SYMMETRIES

Here, we focus on somewhat different aspects. First, the character under the operation
and, related, the relationship between the ‘start’ and ‘finish’ vectors. The first of these, the
character, is easy. We are looking for a function (of the angle) which means that the ‘finish’
more closely resembles the ‘start’ the smaller the angle (here, we are thinking of an angle
which is of a significant magnitude; but the function found will apply to an infinitesimal
rotation also). The obvious choice of function is cos(θ ). This has all the right properties.
For instance, when θ = 180◦, and the ‘finish’ vector is the negative of the ‘start’, cos(θ ) =
cos 180◦ = −1. But cos(θ ) clearly gives an incomplete description of the entire rotation.
So, at θ = 90◦, cos 90◦ = 0. But the vector does not vanish, as implied by the 0; rather, it is
pointing in a perpendicular direction to that of the ‘start’. One immediately thinks of sin(θ),
because this is 1 when θ is 90. Whilst this is true, it cannot be the entire story, because the
vector remains the same length, irrespective of the angle of rotation. The function cos(θ)
+ sin(θ ) is not acceptable. To see this point, return to the θ = 0 and 180◦ cases. The two
vectors are of the same length but one is the negative of the other. The length of the vector is
related to the square of the vector, not the vector itself. Actually, this is a point that we have
met in a different guise many times in earlier chapters; for example, the application of the
orthornormality theorems of Section 6.4 and in the normalization of functions throughout
the book. If we want to maintain a constant length for the vector and yet discuss its variation
with an angle θ , then we have to aim for a square which is cos2(θ ) + sin2(θ ), because
cos2(θ ) + sin2(θ ) = 1; the vector stays the same length, irrespective of angle. A function
such as cos(θ ) + sin(θ ) is no good, because its square is cos2(θ ) + 2cos(θ )sin(θ ) + sin2(θ ).

We can see another problem with cosθ + sinθ ; it describes a harmonic motion but contains
no explicit indication that something is rotating – it is the sort of expression that might be
used to describe the vibrations of a violin string. How can we include the rotation? Here, an
aspect of group theory comes to our aid, which can be seen in all of the character tables that
have been met, although sometimes only in trivial fashion. Consider a singly degenerate
irreducible representation (this avoids the possibility of mixing functions). Table 6.1, the
character table of the C4v group, with four singly degenerate irreducible representations, is
ideal for this and is reproduced in Table 10.5. The key point is one that we have met several
times in earlier chapters when talking of direct products. When two operations multiply
(are applied in succession) the character of the (single) operation which is their product
is the product of the characters of the two operations. So, in Table 10.5, the operation of
rotation by C2 is equivalent to two C4 rotations in succession. We can write C2 = C4·C4, or,
C2 = C4

2. A consequence of this relationship is the fact that for all of the singly degenerate
irreducible representations in Table 10.5 the character under C2 is always the square of that

Table 10.5

C4v E 2C4 C2 2σv 2σ ′
v

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 −1 1 1 −1

B2 1 −1 1 −1 1

E 2 0 −2 0 0
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under C4. This result helps us in the problem of how to indicate that the rotational operations
in spherical symmetry are rotations. We have been looking at a unit vector, one that has the
property that rotation by 180◦ converts it into its negative. That is, its character under C2 is
−1. We still have the relationship C2 = C4

2; what then is the character under C4, the thing
that we are interested in? The answer is i, because i2 = −1.3 This suggests that a suitable
expression to describe the rotation is cos(θ) + i sin(θ ). But what of its square, which gives
us the length of the vector – and which has to equal 1? It would seem that it will involve i,
a complex number. The answer is that with complex numbers one does not form a square
as with normal numbers; instead, the square is formed using the complex conjugate of the
original. Here, the complex conjugate is cos(θ ) − i sin(θ ). If this seems strange, note that
this expression is equally suitable as a description of the rotation since −i behaves in the
same way as i (−i2 = −1). We have found two solutions, but they are partners, they go
together. The product of complex conjugates:

[cos θ + i sin(θ )][cos(θ ) − i sin(θ )] = cos2(θ ) + sin2(θ ) = 1

is just the result we wanted; the vector retains its length when rotated!
Let us look at the expression cos(θ) + i sin(θ ) in more detail. The first term, the cos(θ),

is the character associated with the rotation, in the sense that it has been used throughout
this book. The second term, i sin(θ ), is something quite new. It does not contribute to the
character; rather, its presence serves to ensure that the length of the vector does not change
throughout the rotation. There is an identity, cos(θ) + i sin(θ ) = exp(iθ ), and it is both
common – and convenient – to use the latter expression rather than the former. However, in
the present text we will persist in the expanded version, because it enables us to focus on
the character associated with a rotation. Add a couple of lines of simple mathematics and
we will have a very valuable result.

Consider a set of five d orbitals. Fortunately, we do not need to work with their full
mathematical expressions; because we are discussing angles it is convenient to work with
the angular forms of these orbitals rather than labels such as dx2−y2 . These angular forms
are easy, and relate to a common theme in this book, nodal planes. Taking our axis of
rotation as the z axis (as is conventional), then the dx2−y2 and dxy orbitals both have two
nodal planes containing the z axis. We take this number 2 and use it to compile a list of the
five d functions:4

cos(2θ ), cos(θ ), cos(0), cos(−θ ), cos(−2θ )

Here, the expressions involving 2θ relate to the d orbitals with two nodal planes along the
z axis, dx2−y2 and dxy . Those involving θ relate to the d orbitals with one nodal plane along
the z axis (dxz and dyz). Finally, that involving cos(0) ( = 1) is dz2 , with 0 nodal planes along
the z axis. This approach works for all other orbitals. So, p orbitals have a maximum of 1
nodal planes and the expressions run from cos(θ) to cos(−θ ); f orbitals have a maximum
of 3 and so the expressions run from cos(3θ ) to cos(−3θ ); g orbitals have a maximum of 4

3 The student who has problems with this argument may find it helpful to turn to the next section, where a similar – but

different – discussion is applied in the C4 group (Section 10.5).
4 In what follows we use the same symbol to denote the angular form of orbitals, θ , as in the discussion of angular rotations.

Strictly, this is bad practise, but it is adopted here to give a smooth continuity to the discussion. We also confine our discussion to

the θ component of the angular function.
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nodal planes and the expressions run from cos(4θ ) to cos(−4θ ), and so on for even higher
orbitals.

Problem 10.7 In the above list there was no mention made of s orbitals. Does the
generality include them?

We now ask the key question, although its importance is not immediately self-evident.
What is the character generated by the complete set of d orbitals under the operation of
rotation by the angle θ? Before answering this question, we have to recognize a limitation
in the earlier derivation of the expression cos(θ ) + i sin(θ ). We obtained it by looking at the
vector of Figure 10.5, a vector which became the negative of itself by a rotation of 180◦;
that is, it behaved like cos(θ ). Had we, instead, considered something which behaved like
cos(nθ ), then we would have obtained the expression cos(nθ ) + i sin(nθ ), where cos(nθ ) is
the character and i sin(nθ ) is the length-maintaining component. With this generalization,
we can immediately answer the question of the character generated by the complete set of
d orbitals under the operation of rotation by the angle θ . It is:

Character(θ ) = cos(2θ ) + cos(θ ) + cos(0) + cos(−θ ) + cos(−2θ )

This is an unwieldy expression; can we put it into a more compact form? Fortunately, the
answer is ‘yes’ – with a little manipulation. Multiply each side of this expression by sin(θ /2).
We get:

sin(θ/2) · Character(θ ) = sin(θ/2) · cos(2θ ) + sin(θ/2) · cos(θ ) + sin(θ/2)
+ sin(θ/2) · cos(−θ ) + sin(θ/2) · cos(−2θ )

Now, expand the terms on the right-hand side using the identity:

sin(a) cos(b) = 1/2[sin(a + b) + sin(a − b)]

and we obtain:

sin(θ/2) · Character(θ ) = 1/2[sin(5θ/2) + sin(−3θ/2) + sin(3θ/2) + sin(−θ/2)
+ sin(θ/2) + sin(θ/2) + sin(−θ/2) + sin(3θ/2) + sin(−3θ/2) + sin(5θ/2)]

This is not as bad as it seems, because sin(−x) = −sin(x). When this expression is applied
to the terms on the right-hand side of the above expression they largely cancel out, and we
are left with the expression:

sin(θ/2) · Character(θ ) = sin(5θ/2)

that is:

Character(θ ) = sin
(

5θ
2

)
sin

(
θ
2

)
We will apply this expression immediately, but first note its generalization, using the symbol
L to denote the maximum number of nodal planes in a set:

Character(θ ) = sin
[
(2L + 1) θ

2

]
sin

(
θ
2

)
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It is not difficult to see that this generalization is valid because the cancellation of terms
above is general; only the first and last terms in the right-hand expansion will survive,
whatever the value of L.

To see why this is a useful expression, let us apply it first to the case of a set of d orbitals
in an octahedral ligand field, one discussed in detail in Chapter 8, and then to a tetrahedral
ligand field, discussed in this chapter. For the octahedral case we list the pure rotational
operations of the Oh group (pure rotations because we are working with θ ). These are listed
below, with the appropriate values of θ :

E 8C3 6C4 3C2 6C ′
2

0 120 90 180 180

Next, we insert each value of θ , in turn, into the expression

sin 5θ
2

sin θ
2

and obtain:5

E 8C3 6C4 3C2 6C ′
2

0 120 60 180 180
5 −1 −1 1 1

Turning to the improper rotations of the Oh group, we list them in the order corresponding
to combining each of the proper rotations with the operation of inversion in a centre of
symmetry. They are:

i 8S6 6S4 3σh 6σd

Because we are considering d orbitals, they are centrosymmetric and so we simply repeat
the above set of characters (had the orbitals been centroantisymmetric we would also have
repeated the set of characters, but with all signs changed):

i 8S6 6S4 3σh 6σd

5 −1 −1 1 1

Bringing all these together, we have:

E 8C3 6C4 3C2 6C ′
2 i 8S6 6S4 3σh 6σd

5 −1 −1 1 1 5 −1 −1 1 1

and this is a reducible representation with, surprise, surprise, eg + t2g components (lower
case symbols are used because it is an orbital set which is under discussion). With this
example as a model we can now turn to the Td case.

The Td case is more difficult because it is not the direct product of a pure rotational group
with Ci (which contains just E and i). But we can proceed by recognizing that although the
group does not contain a centre of symmetry, individual improper rotation operations may
be written as a product of a pure rotation with inversion in a centre of symmetry. So, the

5 The equation cannot immediately be applied to the θ = 0◦ case. Here, one has to use the relationship that as θ → 0, sinθ →
θ . Note that if one chooses to think of the operation E as a rotation by θ = 360◦, the equation works with multiples of 180◦.
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operations of the Td group, E 8C3 3C2 6S4 6σd, may be rewritten as:

E 8C3 3C2 6C4i 6C2i

We now add the appropriate θ values:

E 8C3 3C2 6C4i 6C2i
0 120 180 90 180

For a set of d orbitals we can either again use the expression

sin
(

5θ
2

)
sin

(
θ
2

)
or, more simply, steal the answers from the calculations on Oh. Either way we obtain the
reducible representation:

E 8C3 3C2 6C4i 6C2i
5 −1 1 −1 1

which, of course, has e + t2 components.

Problem 10.8 What would have been the result had we been considering centroan-
tisymmetric functions?

The technique that has just been introduced is a very valuable one, for it enables the
determination of the way that atomic entities behave in lower symmetry environments.
Although the examples given above refer to atomic orbitals, these were chosen because the
results are known to the reader; they have already been met. When many-electron functions
are under study then entries way beyond those in Table 10.3 have to be handled. So, for
the Mn(II) ion, with five d electrons, one has to go to H and I for some excited states.
For many-f-electron systems these are met as ground states, and one has to go even higher
for the excited! But go as high as you wish, the equation

Character(θ ) = sin(2L + 1) θ
2

sin θ
2

is always simple to use; just plug in the correct values of L and θ . In this way it is seen that
0-noded functions (S in Table 10.4) transform as Ag in Ih (Table 10.3); 1-noded functions
(P in Table 10.4) transform as T1u, 2-noded functions (D in Table 10.4) transform as Hg and
3-noded functions (F in Table 10.4) as T2u + Gu. Actually, except for the last, all of these
results are given in Table 10.3 by the basis functions at the right-hand side.

Problem 10.9 Those who identify with the masochist mentioned earlier are invited
to risk an evening at the disco by using the above expression to discover how much
further one has to go in the spherical harmonics (an alternative name for the irre-
ducible representations of Table 10.4) to generate all of the irreducible representations of
Table 10.3.
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Table 10.6

C∞v E 2Cφ
∞ . . . . ∞σv

A1 ≡ �+ 1 1 . . . . 1
A2 ≡ �− 1 1 . . . . −1
E 1 ≡ � 2 2cosφ . . . . 0
E 2 ≡ 	 2 2cos2φ . . . . 0
E 3 ≡ 
 2 2cos3φ . . . . 0
. . . . . . . . . . .

10.5 Linear molecules

This is an appropriate point at which to include linear systems. There are only two relevant
point groups, distinguished by whether or not they have the operation of a centre of symme-
try: C∞v, without a centre of symmetry, and D∞h which has one; N2 is an example of a D∞h

molecule and CO an example of a C∞v. Both of these groups have a unique axis, a C∞, in
which the basic symmetry operation is that of an infinitesimal rotation, the one discussed
in the previous section. That is, there is a C∞ axis and the infinity of associated operations.
The character table gives the character for the operation of rotation by an arbitrary angle φ

denoted Cφ
∞. Not only is there an infinite number of operations based on C∞, but each group

also has an infinite number of σ v mirror planes. Fortunately, they all fall into a single class.
The two groups are related: D∞h is the direct product of C∞v with Ci. We can therefore
concentrate our discussion on C∞v; its character table is given in Table 10.6.

There are several interesting things about Table 10.6. First, the listing of alternative
symbols for the irreducible representations.6 Both sets are found in the chemical literature,
which is why both have been given in Table 10.6. It is the �, �, 	 system which is perhaps
the more commonly used. Second, the operations. As for the spherical group, the basic
rotation operation is that of an infinitesimal rotation, denoted C∞, carried out sufficient
times to give a real rotation of φ (although φ is the equivalent of θ used in the previous
section, it is the symbol generally used in this character table and so is that adopted here).
The two together, C∞ and φ, are written C∞φ . The prefix 2 on Cφ

∞ in the character table
arises because the rotations can be either clockwise or anticlockwise. Following the 2Cφ

∞
entry a row of dots indicates the infinite number of values that φ may assume. So, this infinity
is the sum of all of these rotation operation entries. In contrast, all of the infinite number of
mirror planes containing the C∞ axis are grouped together as a single entry, ∞σ v. Third, all
but two of the irreducible representations are doubly degenerate, the characters of 2cosnθ

being understandable in terms of the discussion of the spherical group above. Note that there
is no i sin nθ term. Length is preserved because the doubly degenerate functions may mix
under the rotation (an explicit example of this is discussed in Chapter 7). Finally, there is an
apparently major problem with Table 10.6. Because the group is infinite, the usual method
of reducing a reducible representation will not work (it involves dividing by the order of

6 Actually, alternative systems exist for all of the point groups. Those who delve into the physics literature may encounter the

use of a notation based on the � symbol. The � is used in a general way to indicate an irreducible representation whilst different

irreducible representations are denoted by subscripts, �1, �2 etc.
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the group, the number of operations in the group). In practice there is seldom a problem;
reduction by inspection is usually possible (the number of times that 2cosnθ appears in
the reducible representation is the number of times that the En irreducible representation
occurs in the irreducible sum). However, in the past the topic has been a popular one in the
chemical education literature and some (usually!) easy-to-read references are given here.

L. Schäfer and S.J. Cyvin, J. Chem. Educ. 48 (1971) 295.

D.P. Strommen and E.P. Lippincott, J. Chem. Educ. 49 (1972) 341.

J.M. Alvarińo, J. Chem. Educ. 55 (1978) 307.

R.L. Flurry Jr., J. Chem. Educ. 56 (1979) 638.

D.P. Strommen, J. Chem. Educ. 56 (1979) 640.

J.M. Alvarińo and A. Chamorro, J. Chem. Educ. 57 (1980) 785.

10.6 Summary

For the tetrahedral and icosahedral groups it is C2 axes which are taken as coordinate axes
rather than axes of highest symmetry (p. 245). In icosahedral groups degeneracies of four
and five can occur (p. 251). In the spherical group there is no limit to the possible degeneracy
(p. 254). Fortunately, there exists a simple equation which enables the reduction in degener-
acy in real-life situations to be determined (p. 258). The fundamental rotation operation of
a sphere, that of rotation by an infinitesimally small angle, is also a characteristic of linear
molecules and these are also discussed (p. 261).
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11 π-Electron systems

11.1 Square cyclobutadiene and the C4 point group

One of the areas of chemistry in which relatively simple quantum mechanical ideas have
had a very important impact has been in the field of unsaturated organic molecules. When a
molecule contains alternate single and double carbon–carbon bonds then it is found that as a
first approximation those electrons involved in π -bonding can be considered on their own –
that the σ electrons can be ignored. It seems that these π electrons largely determine the
chemistry of such molecules, a recognition which has given an understanding of the chemical
stability and reactions of these molecules and also of their spectroscopic properties. The
distinction between σ and π orbitals was made in Section 5.5. It is important to recognize
that when a molecule contains a series of atoms linked by alternate single and double bonds
then on each atom in the series there is an orbital involved in the π bonding. It is usually the
case that this orbital is a p orbital. The ready availability of detailed and accurate numerical
calculations on simple organic molecules has shown that the idea of σ–π separability rests on
less secure foundations than was once held to be the case. The orbital symmetry distinctions
persist but configuration interaction, effectively electron–electron repulsion, serves to mix
different electron configurations. Nonetheless, there is no doubt that the predictions made
by the simple theory are rather good, even if a detailed and general justification for this is
not available. It is when the results of the simple model are symmetry-determined that the
most evident justification occurs and it is such applications which will be the concern of
this chapter.

The symmetry aspects of Hückel theory, the best known π -electron model, are most
readily seen from an example. A simple molecule, but one which serves to illustrate all
of the main points of the theory, will be considered. The molecule is a very unstable and
fugitive one, cyclobutadiene, C4H4, which will be taken to be a planar molecule with its
four carbon atoms arranged at the corners of a square. The carbon atoms are known to have
this arrangement when the molecule is stabilized by complexing with a transition metal
atom, as in the molecule C4H4Fe(CO)3.1 Figure 11.1 shows square cyclobutadiene together
with the four 2pπ orbitals that will be of interest (we suppose that the carbon 2s and the
other carbon 2p orbitals are involved in the bonding of the σ framework). The molecular
symmetry is D4h and so this is the obvious group in which to work. However, we shall not.

1 In fact, in the spin singlet ground state the molecule is rectangular with somewhat localized double bonds; in its spin triplet

ground state it is square. For a simple discussion of this point see ‘Why do some molecules have symmetry different from that

expected?’ by E. Heilbronner, J. Chem. Educ. 66 (1989) 471.

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Figure 11.1 Cyclobutadiene, C4H4, and the four carbon 2pπ orbitals

Although it is not particularly obvious from the way that the D4h character table is usually
written (Appendix 3), the D4h group is the direct product of C4v × Cs. That is, add a σ h

mirror plane to C4v and other symmetry elements are at once generated so that the group
becomes D4h. Now, the problem that we are considering immediately defines the effect of
this σ h mirror plane. We are only interested in the pπ orbitals shown in Figure 11.1 and
these, and anything derived from them, are antisymmetric with respect to reflection in the
σ h mirror plane. So, it might well be simpler to work in the C4v point group and, at the end,
move to D4h by recognizing this σ h antisymmetry. It is probable that most workers would
be content to stop here and work in C4v, but we shall press on!

Problem 11.1 (a) Using Appendix 3 and Figure 11.1 show that square planar cy-
clobutadiene has D4h symmetry. (b) Using Appendix 3, show that the D4h group is the
direct product of C4v and Cs.

The C4v group possesses two sorts of σ v mirror planes; 2σv and 2σ ′
v. Either the σv or σ ′

v

mirror planes (it does not matter which label we choose, although the distinction between
the B1 and B2 irreducible representations depends on our choice) cut vertically through the
carbon pπ orbitals of cyclobutadiene. They therefore relate one side of each lobe of this
orbital to the other side (Figure 11.2). But these sides must be of the same phase. So, the
operation of reflection in these mirror planes gives no new information. The operations are
superfluous and perhaps can be discarded. But, if they are discarded we must also discard
the other mirror planes – point groups exist with both 2σ v and 2σ ′

v but there are no, and
can be no, point groups with just one set. The most sensible thing to do would be to play
safe and keep them all – after all, not much additional work is involved. We shall be more
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+ +

− −

Figure 11.2 A σ v (or σ ′
v) plane in C4v cuts each carbon 2pπ orbital in half; the relationship between

the two halves is determined by the orbital, not by the mirror plane

daring, however, and eliminate them because this will give us the opportunity to work in
what seems a rather odd group – the C4 point group. It is unusual to discuss a group of pure
rotations such as the C4 group in a text at the level of the present one and as a consequence
these groups tend to be regarded as rather strange and difficult. However, we have already
covered the basic ideas in the last chapter and so it seems sensible to build on this. It must
be admitted, however, that the discussion which results is a bit more difficult than would
have been the case had we worked in an ‘easier’ group. As the reader may check for him or
herself (Problem 11.10), we shall ultimately obtain the same answers as would have been
obtained in C4v (or D4h)!

The C4 character table is given in Table 11.1. Note that it is an Abelian group – there
is only one operation in each class. In particular, note that C4 and C3

4 (the C4 operation
carried out three times in the same sense) are in different classes; there is no operation
that interconverts their effects. In Chapter 6 the importance of the definition of ‘class’ was
mentioned and a formal definition of ‘class’ is given in Appendix 1. The proof that C4 and
C3

4 are in different classes in the C4 group is explicitly given in this appendix.
There are two apparently odd things about the C4 character table: the appearance of

i(= √−1), 2 and the failure of the number 2 to appear against the E irreducible representation

2 It may be helpful to note that the complex conjugate of i , denoted i*, is −i(i i∗ = 1). In some books i* is found where in

this text −i has been used.
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Table 11.1

C4 E C4 C2 C 3
4

A 1 1 1 1
B 1 −1 1 −1{
E

1 i −1 −i
1 −i −1 i

i = √−1.

under the identity column. Note that if the number 2 did appear, Theorem 2 of Chapter 6
would not be obeyed. The sum of squares of characters in the identity column would not
be equal to the order of the group (which is 4, the number of operations in the group). The
main reason for working in the C4 point group is to give an opportunity to look at this E
irreducible representation in some detail. In order to do this, it has to be remembered that
the complex conjugate of (a + ib), a and b being ordinary numbers, is (a − ib), a point
already used in the previous chapter. As we saw there, these complex conjugates have a
special relationship to each other because when they are multiplied together a real number
results:

(a + ib)(a − ib) = a(a − ib) + ib(a − ib) = a2 − iab + iab − (i)2b2 = a2 + b2

because −(i)2 = −(−1) = 1. In contrast, neither (a + ib)2 nor (a − ib)2 are free from i.
Note that where, in the E irreducible representation, one component contains i, the other
contains −i. These components are complex conjugates (as is easily shown if one sets
a = 0, b = 1 in the expressions earlier in this paragraph).

In previous chapters in this book it sometimes happened that an irreducible representation
was multiplied by itself (when forming direct products, for instance). It always happened
when reducible representations were decomposed into their irreducible components; the
method depends on it. The decomposition procedure used in the earlier chapters is followed
when working with the C4 point group for all irreducible representations except E. For
such applications involving the E irreducible representation, it is complex conjugates that
have to be multiplied. That is, one multiplies the first component of this doubly degenerate
representation by the second and vice versa. In this way real, not complex, answers are
obtained. Examples will follow!

The E irreducible representation of the C4 point group is said to be a separable degenerate
representation. Some purists object to this name – holding that it is self- contradictory – but it
is the name commonly used. The word ‘degenerate’ is used because functions transforming
as this representation have the same energy – an example will be met shortly. ‘Separable’
is used because it is possible to design an experiment on a molecule of C4 symmetry which
shows that all functions transforming as the E irreducible representations are not necessarily
quite equivalent. In order to illustrate this we shall return to the topic of optical activity, first
met in Section 4.7. A brief reminder; a molecule is optically active when, in an electronic
transition, there is a helical movement of charge density. A characteristic of a helix is that
movement along it corresponds to a simultaneous translation and rotation and so, as was
outlined in the discussion of Section 4.7, optically active molecules are those in which a
transition is simultaneously both electric dipole (charge translation) and magnetic dipole



JWBK182-11 JWBK182/Kettle September 6, 2007 9:1

SQUARE CYCLOBUTADIENE AND THE C4 POINT GROUP 267

Table 11.2

C4 E C4 C2 C 3
4

A 1 1 1 1 z; Rz; z2; x2 + y2

B 1 −1 1 −1 x2 − y2; xy{ }
E

E1 1 i −1 −i x + iy; Rx + iRy) (yz, zx)
E2 1 −i −1 i x − iy; Rx − iRy)

(charge rotation) allowed; these two have to transform as the same irreducible representation.
The rule we arrived at was:

Molecules3 may be optically active when they have a symmetry such that Tα and Rα

(α = x , y or z) transform as the same irreducible representation.

We saw that this condition is only satisfied when such molecules possess neither a centre
of symmetry nor a mirror plane. They do not have any improper rotation operations. As an
alternative general statement, one can say that optically active molecules do not have any
Sn axis, where n can assume any value (n = 1 corresponds to a mirror plane and n = 2 to
a centre of symmetry).

Problem 11.2 The separation of the cobalt complex ion [Co(en)3]3+ into optical
isomers is a common undergraduate experiment. The complex is, essentially, octahedral
and ‘en’ is the bidentate ligand ethylenediamine, NH2.CH2.CH2.NH2, which is bonded
to the cobalt through the nitrogen atoms on adjacent (cis) coordination sites. Determine
the symmetry of this molecule and thus show that it has no Sn axis.

In order to see that there is some anisotropy in the xy plane of a C4 molecule, a defect
in Table 11.1 has to be remedied; it contained no basis functions. This table is repeated as
Table 11.2, but this time with basis functions. In Table 11.2 the individual components of
the E irreducible representation are labelled E1 and E2. This labelling is for the convenience
of the following discussion and only that (as a study of Appendix 3 will show, the labels
E1 and E2 are often used to distinguish different sets of doubly degenerate irreducible
representations – this is not the usage here!).

In the particular case of the C4 point group, Tz and Rz both transform as A (although
the former is not explicitly included in the table, the entry z implies it) and the complex
combination Tx + iTy transforms in the same way as Rx + i Ry . Similarly, Tx − iTY trans-
forms isomorphically with Rx − i Ry . The complex form of these latter combinations is a
bit off-putting, although such forms were met in the last chapter (to see the connection note
that y is at 90◦ to x and that the problem of length retention reappears; more on this later).

3 Note the word ‘molecules’ in this statement. It does not apply to crystals which, under some circumstances, can contain

mirror planes of symmetry and yet be optically active.
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Even so, ignoring this, it is clear that Tα and Rα transform isomorphically in the C4 group
so that a molecule of C4 symmetry is potentially optically active. A beam of polarized light
incident on such a molecule down the fourfold axis might suffer a rotation. Clearly, this is
not compatible with the isotropy which one normally associates with degeneracy in the xy
plane. The explanation lies, not surprisingly, in the appearance of complex coefficients in
the character table.

Problem 11.3 Despite the discussion of optical activity in the context of cyclobuta-
diene in the text, it is believed that cyclobutadiene is not optically active. Why?

11.2 Working with complex characters4

All of the character tables met in all of the chapters of this book, except the last, contained
simple quantities, usually integers, as characters. This is a pattern common to most texts
at the level of the present. As a consequence, most people approach complex characters
with some apprehension, expecting some strange twists. This apprehension is justified! One
example of the different pattern is seen in the statement made towards the end of Section
4.6 that ‘we will only get the totally symmetric irreducible representation as the direct
product when the two irreducible representations that we are multiplying are the same’.
This statement remains true for the C4 point group but needs some elaboration. Consider
the direct product of the first component of the E irreducible representation of Table 11.2
with itself:

E C4 C2 C3
4

E(1) 1 i −1 −i
E(1)⊗E(1) 1 −1 1 −1

this direct product is the B irreducible representation, not the A. To obtain the A, the direct
product has to be formed of E(1) with its complex conjugate, E(2):

E(1) 1 i −1 −i
E(2) 1 −i −1 i
E(1)⊗E(2) 1 1 1 1

That is, when working with a separately degenerate representation, one has to elaborate on
the statements made in Chapter 4 about direct products, after that, the way to proceed is
reasonably straightforward, and helpful too because it sheds light on other areas of quantum
chemistry. Thus, the general expression for an overlap integral given in texts on quantum
mechanics is

Sab = ∫ ψ∗
a ψbδν

4 A short, readable, paper which deals with the problems covered in this section is ‘Representations with imaginary characters’

by R.L. Carter, J. Chem. Educ. 70 (1993) 17.
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the asterisk on ψ∗
a indicating the complex conjugate of ψa (the implication being that both

ψa and ψb are complex). If ψa and ψb are not complex this reduces to the simple form:

Sab = ∫ ψaψbδν

However, when ψa and ψb are both complex the more general form must be used. We have
seen that group theory can simplify discussions of overlap integrals (Section 4.4); when
ψa and ψb are complex, the corresponding complex conjugate irreducible representations
must be used when carrying out the associated group theory. An explicit example of this
will be met in the next section. We can use the above result to deepen our understanding
of the C4 character table and, in particular, the appearance of i and −i (although in doing
so we will, to some extent, be repeating material already met). In the previous chapter, we
met the general character of a rotation of a simple vector by θ as:

cos θ + i sin θ

Clearly, this applies to the C4 character table because θ = 90, so that cosθ = 0 and sinθ = 1,
giving 0 + i · 1 = i . So, the entry i in the character table, although it would be called a
character, is not the same as those met in earlier chapters, where a character was regarded
as a multiplier. Here, the multiplier is 0. Nonetheless, in carrying out the group theory
corresponding to forming the overlap integral between one of the E functions and itself, we
must get the answer 1 for all of the operations. The function remains itself whatever the
operation. In doing the group theory equivalent to such a normalization, for this is what it
is, we have to multiply characters to obtain the totally symmetric direct product. The only
way that we can obtain the number 1 from i is to multiply it by −i, its complex conjugate.

Problem 11.4 Modify the discussion of selection rules in Section 4.4 so that it covers
the case where the wavefunctions are complex.

11.3 The π orbitals of cyclobutadiene

We now return to the problem of the π -electrons of cyclobutadiene. We know that these
π electrons interact with each other – they form π bonds of some sort, and so the first
problem is that of finding the π molecular orbitals which they occupy. This will be tackled
in two stages. First, the irreducible representations generated by the transformations of the
four carbon pπ orbitals is determined and their symmetry-adapted combinations generated.
Second, the approximate relative energies of these symmetry-adapted combinations will be
determined.

It is easy to show that the transformations of the four carbon pπ orbitals of cyclobutadiene
in the C4 point group (Figure 11.1) generate the reducible representation

E C4 C2 C3
4

4 0 0 0
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and that this gives rise to A + B + E irreducible components.5 The zeros avoid any problems
with complex characters (for the moment!).

The determination of the symmetry-adapted combinations is straightforward, and follows
the projection operator procedure detailed in Chapter 6 very closely. Using the labels shown
in Figure 11.1 for the four pπ orbitals and neglecting overlap between these orbitals, the
two E components given in Table 11.2 are used separately to give the linear combinations
(we work with the orbital labelled a):

ψ(A) = 1
2
(a + b + c + d)

ψ(B) = 1
2
(a − b + c − d)

ψ(E1) = 1
2
(a − ib − c + id)

ψ(E2) = 1
2
(a + ib − c − id)

Problem 11.5 Use the projection operator technique to obtain the above linear com-
binations. The normalization of the E functions will be discussed in the text below.

Hint: The derivation is similar to that detailed in Section 6.6.

As indicated in the above problem, the only difficult point in this derivation concerns
the two E functions. First, a hidden catch. In using the projection operator technique to
generate a function transforming as a component of a separably degenerate representation
one has to use its complex conjugate in the derivation. Thus, using the characters of the
second E component in Table 11.2, the function listed above as ψ(E1) is obtained by the
projection operator technique in un-normalized form: a − ib − c + id = ψ , say. It is easy
to show that this procedure has given the correct answer – that ψ(E1) transforms as the first
E component in Table 11.2. As Table 11.2 shows, the effect of a C4 rotation on a function
transforming as the first E component is to multiply it by i. Now this rotation permutes the
pπ orbitals thus:

a → b
↑ ↓
d ← c

so that it turns ψ(E1) into

b − ic − d + ia

which is i(a − ib − c + id) = iψ(E1), as expected for the first E component. The next step
is to normalize ψ(E1); that is, multiply it by a coefficient such that:

∫ ϕ∗ϕδν = 1

5 Reducible representations like this one – in which the number which is the order of the group appears in the identity operation

column with all other entries zero – are called ‘the regular representation’ (of the particular point group). They always span each

and every irreducible representation, the number of times an irreducible representation is spanned being given by the number in the

identity operation for that particular irreducible representation (i.e. the dimension of the irreducible representation). The regular

representation plays a part in the proof of some theorems of group theory.
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where ϕ* is the complex conjugate of ϕ (and ϕ is the normalized ψ(E1)). The complex
conjugate of a function is obtained by replacing i by −i within it, so the complex conjugate
of ψ(E1) is:

a + ib − c − id = y(E1)∗

This function has been met before, it is ψ(E2); ψ(E1) and ψ(E2) are complex conjugates
of each other.

It follows that the overlap integral of ψ(E1) with itself has the value

∫ ψ (E1) ψ∗(E1) ψδν = ∫(a + ib − c − id) (a − ib − c + id)δν = ∫ aaδν

+ ∫ bbδν + ∫ ccδν + ∫ ddδν = 4

where, as mentioned earlier, it has been assumed that the functions a, b, c and d do not
overlap each other. The fact that a and b, for example, do not overlap each other means that
the overlap integral ∫ abδν is equal to zero. Because a and b are separately normalized,
∫ aaδν = ∫ bbδν = 1. From the value of the overlap integral obtained above, 4, it follows
that the normalization constant for ψ(E1) – and, equally, ψ(E2) – must be 1/2, the value
used in the linear combinations above.

Problem 11.6 Show that ∫ ψ(E2)∗ψ(E2)δν = 4.

11.4 The energies of the π orbitals of cyclobutadiene
in the Hückel approximation

The limit at which simple group theory can help the discussion has now been reached.
To proceed, chemical knowledge has to be added or, failing that, chemical intuition! In
practice, this means that the next step involves using some model which provides a recipe
for obtaining relative orbital energies. Such a model was used in earlier chapters of this
book when a nodal plane criterion was used to obtain orbital energies – the more nodes that
an orbital contains, the higher its energy is expected to be. This model was augmented by
an overlap criterion – the greater the overlap between two orbitals, the larger the energetic
consequences of the interaction between them. The latter part of the discussion of Section 3.5
provides a good example of the augmentation of symmetry arguments by these models.

In the present section the nodal plane argument will be used in a more mathematical
form (when the functions obtained in the previous section were obtained it was assumed the
overlap between pπ orbitals on adjacent carbon atoms in cyclobutadiene is zero. It would
therefore scarcely be convincing to use an overlap model at this point!). The mathematical
form to be used is that contained in Hückel theory; this is the simplest of all mathematical
models of chemical bonding and one that is particularly appropriate to unsaturated organic
molecules.6 Although they were not explicitly discussed in Section 4.4, the conclusions
there are applicable to energy integrals. These are of the form

∫ ψa Hψbδν

6 It was subsequently extended, in a purely numerical form, to inorganic molecules too.
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where H is the so-called Hamiltonian operator for the system. The Hamiltonian operator
represents all the energies (kinetic, potential, attractive, repulsive) of the system. Fortunately,
a detailed expression is not needed for H in the present context; all one needs to note is
that at equivalent points within a molecule the blend of attractive and repulsive forces must
be identical. H has the symmetry of the molecule; it is totally symmetric. So, just like the
corresponding overlap integral, the energy integral is only non-zero when ψa and ψb are
of the same symmetry species. Such energy integrals are important in Hückel theory. In
this application, the orbitals ψa and ψb are pπ orbitals and so, in cyclobutadiene, they are
the orbitals a, b, c and d of Figure 11.1. The energy of each of these orbitals, before each
is involved in any interaction with its partners, is the same. This energy is conventionally
designated α. For the orbital a we have, then

∫ aHaδν = α

with similar expressions for b, c and d. At this point in the development we are dealing
with isolated atoms; the molecular symmetry is not yet relevant. The energy of interaction
between adjacent pπ orbitals is called β. So, the interaction between a and b is

∫ aHbδν = ∫ bHaδν = β

with similar expressions for the pairs b/c, c/d and d/a. Those pπ orbitals which are not
adjacent are assumed not to interact so that, for instance,

∫ aHcδν = ∫ cHaδν = 0

and similarly for b/d. Strictly, up to this point we are working with a set of diatomic
interactions; the next step is to combine them into the molecule, whereupon the C4 symmetry
requirements become applicable.

To obtain the energy, within the Hückel model, of the A combination

ψ(A) = 1
2
(a + b + c + d)

we simply have to evaluate

∫ ψ(A)Hψ(A)δν = 1

4
∫(a + b + c + d)H(a + b + c + d)δν

Expansion of the right-hand side of this expression and substitution of α, β and 0 as
appropriate for the resulting integrals gives the energy of ψ(A) as

E[ψ(A)] = α + 2β

Problem 11.7 (i) Show that the energy of ψ(A) is α + 2β. (ii) Show that the energy
of ψ(B) is α − 2β.

As requested in the above problem, it is a simple matter to show that the energy of the
ψ(B) orbital is

E[ψ(B)] = α − 2β



JWBK182-11 JWBK182/Kettle September 6, 2007 9:1

THE ENERGIES OF THE π ORBITALS OF CYCLOBUTADIENE IN THE HÜCKEL APPROXIMATION 273

but that of ψ(E1) is a bit more difficult. This is because the form of the energy expression
appropriate to complex functions has to be used. This is

∫ ψ∗
a Hψbδν

In our case if we take ψb to be ψ(E1) then ψ*
a is its complex conjugate, that is, ψ(E2). It

follows that we have to evaluate

E[ψ(E1)] = 1
4
∫(a + ib − c − id)H(a − ib − c + id)δν

On expansion of this expression all of the complex quantities disappear.

Problem 11.8 Show that the energy of ψ(E1) is α.

The energy of ψ(E2), which is given by

E[ψ(E2)] = 1
4
∫(a − ib − c + id)H(a + ib − c − id)δν

will be the same as that for ψ(E1) because the right-hand side of this expression on expansion
is identical to that for ψ(E1). We have, then,

E[ψ(E1)] = E[ψ(E2)] = α

Evidently, for the present problem at least, it is entirely reasonable that ψ(E1) and ψ(E2)
should be called ‘degenerate’. Actually, this degeneracy between them is general – the
algebraic expressions obtained for their energies were identical and so the degeneracy did
not result from the Hückel approximations, which came later.

Problem 11.9 Show that the order of energy levels just obtained is also the order of
increasing nodality.

Because the interaction between two of the pπ orbitals is one that leads to a stabilization –
it requires more energy to ionize an electron from a stabilized orbital than from an isolated
pπ orbital – the energy β is negative (as too is α, but because its contribution to all of the
energy levels is the same its value does not affect the relative order of orbital energies). It is
concluded that the relative energies of the π molecular orbitals of cyclobutadiene are those
given in Figure 11.3. There are four pπ electrons – one from each carbon atom – located in
these orbitals and so we conclude that in the most stable arrangement they will be distributed
as shown in Figure 11.3, the degenerate E orbitals containing one electron each; these two
electrons will, in the ground state, have parallel spins (the maximum spin multiplicity
principle). The total π electron stabilization, compared to four carbon pπ orbitals of energy
α, is 4β (2β from each electron in the A orbital).

Suppose that, instead of a delocalized π system, we had two localized, non-interacting,
π bonds – that is, suppose cyclobutadiene is rectangular, rather than square:

rather than
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ψ (B)

ψ (A)

ψ1(E), ψ2(E)

α − 2β

α

α + 2β

E

Figure 11.3 Relative energies of the π molecular orbitals of cyclobutadiene in the Hückel

approximation

Each of the two isolated π bonds will have the form derived in Section 5.5 for ethene

1√
2

(e + f )

The energy of this function is given by

1
2
∫(e + f )H(e + f )δν

which, on expansion and substitution of the Hückel values for the integrals, leads to an
energy of

α + β

There would be two such π bonding orbitals, each doubly occupied so that the total π

electron stabilization would, again, be 4β. As far as the π electrons are concerned, at this
level of approximation, there is nothing to choose between rectangular and square cyclobu-
tadiene. Cyclobutadiene is a very reactive compound – it readily dimerizes (a reaction that
can be discussed by the methods of the next section) – but it has been prepared at 35 K in
an argon matrix. In its ground state it seems almost certain that it is a planar molecule with
no unpaired electrons. Whether it is rectangular or square is not known (for the latter the
electron configuration a2e2 gives rise to both triplet and singlet spin states so, notwithstand-
ing the predictions of Hückel theory, the possibility of a square molecule is not completely
excluded by the observation of a singlet spin state). We shall have more to say about such
spin functions in the next chapter.

Of the π -electron wavefunctions obtained working in the C4 point group, two, ψ(A)
and ψ(B), are identical in form to two that would have been obtained working in either
C4v or D4h (the symmetry labels would have been different, of course). On the other hand,
the ψ1(E) and ψ2(E) wavefunctions are different. The reason for this can be traced back
to the existence of operations in C4v and D4h which have the effect of either mixing or
interchanging the two degenerate functions. If the x and y axes through the carbon atoms
as shown in Figure 11.1 had been taken, then the 2σ v mirror planes discarded in C4v

would have had the effect of interchanging x and y (and so also any functions transforming
like them). Hence, they would have transformed as a pair. In contrast, there is in C4 no
operation which will interchange or mix ψ(E1) and ψ(E2) – they are separate functions,
although degenerate. The only way that we can, in C4, obtain those E functions which
would have been obtained in C4v is to mix ψ(E1) and ψ(E2) although, of course, this is not
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permissible in the C4 group itself. Taking the sum and difference ofψ(E1) andψ(E2), the sum
gives:

ψ(E1) + ψ(E2) = 1

2
(2a − 2c)

or, renormalizing

ψ ′
1(E) = 1√

2
(a − c)

and the difference gives:

ψ(E1) − ψ(E2) = 1
2
(2ib − 2id)

or, renormalizing and remembering that the complex conjugate of (ib − id) is (−ib + id)
one obtains

ψ ′
2(E) = 1√

2
(b − d)

The functions ψ ′
1(E) and ψ ′

2(E) are those E functions which would have been obtained
working in C4v (or D4h).

Problem 11.10 Work in either the point group D4h or C4v and: (a) obtain the explicit
forms of the four pπ molecular orbitals of cyclobutadiene, (b) check that the doubly
degenerate functions obtained have an energy of α within the Hückel approximation.

Before we finally leave the C4 group there is one further point that should be made. In
deriving the C2v character table in Chapter 2 it was asserted that there is no other set of
characters other than those considered there which, when substituted for the operations of
the C2v group in the group multiplication table, would give a table which is arithmetically
correct. The possibility of complex characters such as those which occur in the C4 character
table was not explored. However, it is clear that substitution of a set of characters such as

1 i −1 −i

in the C2v character table would not lead to a multiplication table which is arithmetically
correct (because, for instance, when i multiplies i it gives −1 on the leading diagonal rather
than 1). It is evident from this discussion, and can be readily checked, that the multiplication
tables of C4 and C2v are not isomorphous. Any operation in C2v carried out twice leads to
E, whereas in C4 the C4 and C4 operations have to be carried out four times to give E. As
we first discussed in the last chapter, this explains the appearance of i in the C4 character
table. Because

C2 × C2 = E

only characters of either 1 or −1 for the C2 operation are possible for a singly degenerate
irreducible representation (because 1 × 1 = −1 × −1 = 1). In the C4 group we also have
that

C4 × C4 = C2
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In other words, the character for the C4 operation, squared, must give the character of the
C2. This presents no problems when the character for C2 is 1, because that for the C4 can
then be either +1 or −1 (leading to the A and B irreducible representations of C4). When
the character for C2 is −1, however, the only possibilities are that the character for the C4

operation is either i or −i (either of these squared gives −1), leading to the two components
of the E irreducible representation. We will meet a very similar pattern, but in a very different
context, in the next chapter.

One example of the application of symmetry to the energy levels of π -electron systems has
just been given. There are many others, but, having established the principles and procedures
involved, the subject will not be pursued further in detail. Suffice to say that the concept
of aromaticity in organic chemistry is closely related to the type of stabilization arguments
used when comparing square and rectangular cyclobutadiene. Roughly speaking, aromatic
systems are those for which the delocalized system is more stable than any corresponding
localised one (so cyclobutadiene is not an aromatic system).

11.5 Symmetry and chemical reactions

There have been many attempts to apply symmetry concepts to molecular reactions. This is
a difficult area; it is necessary to assume some geometry for the key step in the reaction and
often the only reasonable symmetry is low and so of little help. Further, large molecular
distortions are usually involved in chemical reactions; that is, the molecules involved are
vibrationally very excited. This has two consequences. First, the analysis given of vibrations
in Chapter 4 evidently needs modification for large amplitude vibrations – when there are
several symmetry-related atoms in a molecule the evidence is that one bond breaks before
the others, whereas the discussion of Chapter 2 would lead us to expect several bonds to
break simultaneously. This is akin to the failure of simple molecular orbital theory at large
internuclear distances (it predicts a mixture of dissociation products, not one), a failure
which is also of relevance.

By far the most fruitful of the applications of symmetry to molecular reactivity has been
the symmetry correlation method introduced by Woodward and Hoffmann and which is
applicable to many organic reactions. A simple example of the application of their approach
will be given, although the formalism which will be used was introduced by other workers.
Consider the possible reaction of two ethene molecules to give cyclobutane, a molecule
which, for simplicity, will be assumed to be planar

‖+‖ → �
Written like this, it seems a perfectly feasible reaction, yet it is not one that readily occurs;
the question then is ‘why does it not occur?’ The answer is not difficult to find. Pictorially,
place two ethene molecules close together so that they are just about to react. The ‘before’
and ‘after’ reaction bonding arrangements are shown in Figure 11.4. The actual symmetry
shown in Figure 11.4 is D2h, but it is common to work in C2v, so that the geometrical
constraints on the molecular arrangement are not as rigid as required by D2h symmetry. If
symmetry constraints arise in C2v (as they do) they are likely to be yet more severe in D2h.
Working in C2v and choosing the C2 axis as shown in Figure 11.4, it is easy to show that
the symmetry species subtended by the two π bonding molecular orbitals in the two ethene
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Figure 11.4 Each of these diagrams show two orbitals, not more. (a, ‘before’) Each π-bonding orbital

of each C2H4 molecule individually transforms in C2v as A1. (b, ‘after’) The two new σ -bonding orbitals

in C4H8 transform together in C2v as A1 + B1

molecules shown in that figure is 2A1 (it is assumed that the reader is reasonably familiar
with the C2v character table!). It is these two π orbitals that are involved in the reaction
and that are assumed to smoothly become the two new C C σ bonds as the reaction takes
place. These two new carbon σ bonds give rise to the symmetry species A1 + B1. This is
not the same as those generated by the π orbitals with which the problem started. There
is a discontinuity; the π bonds cannot smoothly become the new σ bonds and so a ready
reaction is not to be expected.

Let us look at this further by asking whether there exist any B1 orbitals in the two ethene
molecules? The answer is ‘yes’. There are two of them and they are derived from the two
π antibonding orbitals of the two ethene molecules (Figure 11.5). Correspondingly, the σ

antibonding orbitals corresponding to the two newly formed C C σ bonds in cyclobutane
have symmetries A1 + B1 (Figure 11.5). We are led to the orbital correlation diagram shown
in Figure 11.6 which shows the correspondences between the ‘before’ and ‘after’ reaction
orbital patterns. In this figure the detailed pattern of σ orbital energy levels in cyclobutane
has been obtained using the nodal pattern method of determining relative related energy
levels met in the early chapters of this book – the more nodal planes, the higher the energy.

Problem 11.11 Use the nodal criterion (used, for example, in Section 3.6) to show
that it is reasonable to expect both a1 levels in Figure 11.6 to be more stable then the
corresponding b1 levels.
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Figure 11.5 (a) The π-antibonding orbital of each individual C2H4 molecule transforms in C2v as

B1. (b) The two new σ -antibonding orbitals in C4H8 (dashed) transform together in C2v as A1 + B1.

(The diagram shows two orbitals; if regarded, however, as a single symmetry-adapted orbital it is

the B1. The A1 is obtained by changing the phases of all lobes of the σ -antibonding orbital at the

‘front’ of the diagram)

2 × b1

2 × a1

π antibonding

π bonding

Two ethene 
molecules

Cyclobutane

2b1

2a1

1b1

1a1

σ antibonding

σ bonding

Figure 11.6 Correlation between the π-bonding and antibonding orbitals of two ethene molecules

and the σ bonding and antibonding orbitals of cyclobutadiene
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It is clear from Figure 11.6 that there will be no strong bonding driving force to form
cyclobutane from two ethene molecules. As the reaction proceeds the lowest energy orbitals
would be expected to be filled. Up to the energy level crossing-over point in the middle of
Figure 11.6 this means that the two A1 orbitals will be filled. But whilst the stability of one
increases with decreasing separation between the two ethenes (as a π bond becomes a σ

bond), that of the other will decrease rapidly (as a π bond becomes a σ antibonding orbital)
so that no reaction is to be expected.

There is an alternative approach to this problem, an approach which is based on states
and terms rather than orbitals. States and terms are two topics that will be covered in some
detail in the next chapter; only a superficial knowledge is assumed in what follows. The
ground state electronic configuration of two ethene molecules is (a1)2(a1)2, a configuration
which gives rise to a 1A1 term (we shall be concerned with spin singlet terms throughout the
following discussion). A configuration such as (a1)2(b1)2 is an excited state configuration but
also gives rise to a 1A1 term (as is readily seen since the quadruple direct product A1 ⊗ A1 ⊗
B1 ⊗ B1 = A1). In cyclobutane the situation is reversed. The ground state configuration
(considering only the newly formed σ orbitals) is (1a1)2(1b1)2. In contrast, (1a1)2(2a1)2 is
an excited state configuration. The important thing is that both of these configurations give
rise to 1A1 terms. The appropriate term correlation diagram is shown in Figure 11.7, where
the non-crossing rule has been invoked (terms of the same symmetry species only cross in
very rare circumstances). Physically, this application of the non-crossing rule in the present
example arises because electron repulsion favours electrons being as spatially separated as
possible and the energy gained from this separation can contribute the energy apparently
required to promote an electron to a higher orbital. Figure 11.7 demonstrates rather more

1a2
1 1b2

1

1a2
1 2a2

1

1a2
1 1b2

1

1a2
1 2a2

1

CyclobutaneTwo ethene molecules

Figure 11.7 Correlation between 1A1 terms in the dimerization of two ethene molecules to give

cyclobutane. The two bends in the plots are an example of the non-crossing rule. If the bends

were accidentally deleted from the diagram, the natural correction would be with straight lines. In

fact, even a very small energy term connecting the two configurations in the cross-over region is

sufficient to strongly mix the two wavefunctions. The sensitivity of this mixing to the position in

the cross-over region leads to the result shown
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clearly than does Figure 11.6 that ethene should not be expected to spontaneously dimerize to
cyclobutane. Even here, our discussion is somewhat simplified but it does correctly indicate
that one can sometimes be misled by a simple ‘filling of the lowest orbitals’ approach to
chemical bonding. It might be appropriate to remind the reader that the complicating effects
of repulsive forces on simple pictures of chemical bonding were also encountered in the
first chapter of this book.

The discussion which has been presented above can readily be extended to photochemi-
cally induced reactions (that is, reactions involving electronically excited molecules). Many
very readable accounts of the topic have been written but these tend to use symmetry argu-
ments in a rather less formal manner than the present text. Commonly, particular symmetry
operations are selected and orbital behaviour classified as either A (antisymmetric) or S
(symmetric) under these operations; these labels are equivalent to the characters −1 and 1
used in this book.

One final cautionary note. In this discussion the concern has been with a single reaction
mechanism. Other mechanisms may exist which provide an alternative, and more acces-
sible, route to a particular product. Thus, although ethene does not dimerize to cyclobu-
tane, reaction between the ethene derivatives CH3(H)C C(H)OC2H5 and (CN)2C C(CN)2

proceeds smoothly at room temperature to give the corresponding cyclobutane deriva-
tives. In this case there is evidence that a zwitterion intermediate, (CN)2C− C(CN)2

CH(CH3) +CH(OC2H5) is formed. Symmetry arguments are powerful, but nature may be
yet more cunning and have unexpected tricks!

11.6 Summary

Discussion of the π orbitals of cyclobutadiene has provided a relatively simple example of
the use of a group containing complex quantities in its character table (p. 266). It is necessary
in such cases to work with complex conjugate basis functions and an example was provided
in deriving the Hückel energies of cyclobutadiene (p. 271). The fact that the C4 group
contains no Sn operations enabled a discussion of optical activity (p. 267). Molecules having
symmetries without such axes are, in principle, optically active (p. 267). Finally, it was
shown that symmetry correlations can give insight into some chemical reactions (p. 276).
Correlations between molecular terms may be preferable to simple orbital correlations
(p. 278).
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12 The group theory of
electron spin

12.1 The problem of electron spin

Although in earlier chapters electrons have been encountered in the context of molecular
bonding, electron spin has not really been mentioned. The nearest we have approached the
topic is in talk of ‘an electron pair’, the implication being that one electron has spin ‘up’
and the other ‘down’, whilst in Chapter 8 we counted unpaired electrons. A question such
as ‘what is the symmetry of an unpaired electron in the water molecule?’ would have been
met with, at best, a frown. Of course, one could reason that the electron would be associated
with some orbital and that the thing to do would be to ask questions about this orbital.
Alas, not so. The answer can be independent of orbital. Even worse, the question cannot be
answered in the context of the C2v point group! Clearly, there is some basic ground to be
covered before we can answer such a deceptively simple question.

In Chapter 10 we met the equation:

Character(θ ) =
sin

[
(2L + 1)

θ

2

]
sin

(
θ

2

)
which is used when moving from spherical symmetry to a point group geometry. Here, the
angle θ is the angle associated with some pure rotation operation and L is the maximum
number of nodal planes containing the z axis which go with an orbital set (so, L = 2 for a
set of d orbitals). However, L is more commonly given another name; it is referred to as an
angular momentum quantum number. The reason for this is seen in another aspect of Chapter
10; the fact that the basic rotational symmetry operation of a sphere is that of rotation by
an infinitesimally small angle. All other, more evidently real, rotations are multiples of this
basic operation. There is a whole algebra based on these infinitesimal rotation operations
and one result, not really surprisingly, is that angular momentum is a quantized quantity.
So, for a set of d orbitals the angular momentum quantum number is a maximum of 2,
with components with the values 1 and 0 (and, of course, −1 and −2). The orbitals dxy and
dx2−y2 (with two nodal planes containing the z axis) are linear combinations of the orbitals
with angular momentum 2 and −2. The orbitals dyz and dzx (with one nodal plane) are
linear combinations of the orbitals with angular momentum 1 and −1. The orbital dz2 (with

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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zero nodal planes) is the orbital with angular momentum 0. When talking of d orbitals,
it does not matter which definition of L one uses, one gets the same answer in the above
equation. But there is a difference when one is talking of electron spin. Expressions such as
‘the electron behaves as if it were spinning’ (which is subtly different from the statement
that ‘the electron is spinning’) are met. What this means is that the electron behaves as if
it has an angular momentum, an angular momentum which can have the quantum numbers
1/2 and −1/2 (these are generally referred to as the ‘spin quantum numbers’). But what of
the other interpretation of these quantum numbers, where the positive quantum number of
greatest value gives the number of nodal planes containing the z axis? How can one have 1/2
a nodal plane containing the z axis? The only sensible way forward is to double the 1/2 and
so obtain a single nodal plane, and to do this we will have to double everything – and this
means, for example, that the identity operation will have to be associated with a rotation
of 720◦, not 360◦. This sounds strange but it is not, and shortly we will give it a physical
basis. But first it may be helpful to arrive at the same conclusion by a different route.

The equation given above was obtained in Chapter 10 after considering the character
obtained for a set of d orbitals subject to a rotation of θo; this character was:

Character(θ ) = cos(2θ ) + cos(θ ) + cos(0) + cos(−θ ) + cos(−2θ )

We can write a similar equation for the two spin functions and this is:

Character(θ ) = cos(1/2θ ) + cos(−1/2θ ).

This equation is much easier to simplify than that for the d orbitals because cos(−1/2θ ) =
cos(1/2θ ); we obtain

Character(θ ) = 2 cos(1/2θ )

Let θ = 360◦. Character (360) = 2 cos (1/2θ ) = 2 cos(180) = −2. But a rotation of 360◦

is normally associated with the identity and then can only give positive characters, never
negative, as here. To compensate for the 1/2 in the above expression we have to work with 2θ ,
so that a rotation of 720◦ has to be associated with the identity and, consequently, a positive
character is always obtained. What, then, is the operation of rotation by 360◦, in this new
world? It does not seem to have been given a simple, one word, name but it is commonly
denoted I (some authors use R - and this does not exhaust the list). To add some flesh to the
bones of this argument, let us look at a specific case – that of the C2v point group, or, rather,
its equivalent when we are talking of spin, proves convenient. What are the operations of
this group? We can start by listing those of C2v; E , σv, C2, and σ ′

v. This list is deceptive; we
are living in a 720◦ world. E , then, is either rotation by 0◦ or rotation by 720◦. C2 is still
rotation by 180◦, but in a 720◦ world. The mirror plane reflections are similar because, as
has been mentioned more than once (see Figure 4.18, for instance), a σv reflection operation
is equivalent to a C2 combined with an i inversion. This C2 is also in the 720◦ world. In
Figure 12.1 is shown a diagram of the relationships of these symmetry operations, along
with that of rotation by 360◦, I , all in a 720◦ world. It is very evident that there are some
operations missing and that these can be obtained by combining I with the operations of
the C2v point group (except E , which has already been used to get the I of Figure 12.1). A
diagram of all of the operations is shown in Figure 12.2. Because it has twice the number
of operations of C2v, it is called ‘the C2v double group’. Again, there is no established
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I(360)

E(720)

C2

σv

σv'

Figure 12.1 The operations of Figure 2.14 re-drawn in a 720◦ world, with the addition of the new

operation of rotation by 360◦, I

notation for such double groups but that preferred by the author1 is to label them with a
pre-superscript 2, thus; 2C2v. Whenever one is dealing with an odd number of electrons,
strictly, it is a double group which should be used, whatever the point group. This comment
will become more understandable in a moment. For clarity and conformity, in the present
chapter we will usually refer to the ‘ordinary’ C2v point group as 1C2v. Interestingly, Figure
12.2 solves the problem of ‘how can one have 1/2 a nodal plane containing the z axis?’.
In Figure 12.2 it can be seen that one half of the (line representing the) nodal plane runs
from the centre point, horizontally, to the left-hand side of the circle and the other half of
the line (continuous with the first half) runs from the centre point to the right-hand side of
the circle. Two halves which, because they are one line, represent a single nodal plane. In
a 360◦ world we were only aware of the first half of the line.

The discussion of the previous paragraph, with its involvement of an apparently somewhat
artificial 720◦ world, seems rather abstract, remote even. Can it be given a more evident
physical reality? Fortunately, the answer is in the affirmative. The way forward lies in
the Möbius strip. Take a long narrow piece of paper, such as those used in Supermarket
checkouts, and join the ends together. There are many ways in which the ends can be
joined. Simplest is to join them to form a hoop (Figure 12.3, middle). More complicated
is to introduce a twist before they are joined. Hold one end fixed and introduce the twist
into the other as it is brought towards the fixed end. There are two ways of introducing this
twist; either it can be made in a clockwise or an anticlockwise sense (Figures 12.3, upper
and lower). This far from exhausts the ways that the two ends of the strip of paper can be
joined and we will meet some of the others later. For the moment, the two single-twisted
joins, the two Möbius strips, are our concern. Now, on one side of the piece of paper, before
it is joined, list the operations of the C2v group: E , σv, C2, and σ ′

v. On the other side list
the additional operations of the 2C2v group: I , Iσv, I C2, and Iσ ′

v. The order in which they

1 The reason for this preference is that one can envisage triple groups (rotation by 3 × 360 being the identity), quadruple
groups (rotation by 4 × 360 being the identity) and so on. There is no known application of such higher groups but perhaps it is
as well to use a notation which recognizes their existence.
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I(360)

E(720)

IC2

C2

Iσv'

σv'

Iσv

σv

Figure 12.2 Figure 12.1 completed, with the addition of all the operations unique to a 720◦ world.

The complete set comprises the operations of the C 2v double group, labelled 2C 2v

are listed is important; it should follow the sequence of Figure 12.2. Figure 12.4 shows the
result. Now take two such labelled strips and use them to form Möbius strips, one with a
clockwise and the other with an anticlockwise rotation when joining. For either, starting at
the point labelled E it takes two complete rotations, one over each surface, to regain this
point, a rotation of 720◦. The two alternative Möbius strips can be taken as representing the
spin 1/2 and −1/2 situations; we will take the anticlockwise rotation as spin 1/2.

Figure 12.3 Möbius strips. It is possible to twist the central hoop half a turn in either of two

directions before the ends are joined. This gives two different Möbius strips which correspond to

the two different spin quantum numbers
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E

σv'

C2

σv

I

Iσv'

IC2

Iσv

Figure 12.4 The symmetry operation labels to be written on either side of the strips of paper used

to form the Möbius strips of Figure 12.3. It is important that the sequence is that shown, so that

the sequence in Figure 12.2 is reproduced

We now go back to the problem of the additional ways of rotating the paper ends before
joining them. We do so using the pattern just developed; a spin of 1/2 is represented by an
anticlockwise twist and a spin of −1/2 by a clockwise twist. What if we have one electron
with spin 1/2 and one with spin −1/2? We twist first in an anticlockwise sense and then
clockwise. The second twist ‘undoes’ the first. We stay on the ‘C2v’ side of the paper and
never venture into the 720◦ world. What if we have two electrons with parallel spins, both
with spin 1/2 say? The first anticlockwise twist takes us into the 720◦ world but the second
immediately brings us back again into the 360◦. Again, starting with ‘E’, we stay on the
‘C2v’ side of the paper (except for the infinitesimally small piece of paper between the two
twists). It is only for an odd number of electrons, no matter their spin, that we are forced
into the 720◦, the double group, world. So, as we add individual electrons to a system (the
conclusion is general and does not just apply to C2v) we alternate between the ‘ordinary’
and corresponding double group as each additional electron is added.

Problem 12.1 Make a Möbius strip as shown in Figures 12.3 and 12.4 (the longer and
narrower the better). Use it to describe the situations described in the text, involving
varying numbers of electrons of α and β spin. Some imagination will have to be used
if a pair such as αα are to have an infinitesimally small space between their twists.

Whilst we have gained some insight into the 2C2v group, we have yet to meet its character
table (although we have met the fact that the two spin functions of 1/2 and −1/2 give rise to a
character of −2 under the I operation). To generate this character table, several methods are
available. A figure such as Figure 12.2 enables a group multiplication table to be compiled,
if need be, and a discussion such as that in Chapter 2 would enable some, if not all, of the
irreducible representations to be obtained from it. Alternatively, a simple algebraic method,
such as that used for the C4v group in Chapter 6, would be applicable and the development
would, almost word for word, be the same. The groups C4v and 2C2v are isomorphous. Not
surprisingly, the operation of C2, in a 720◦ world, parallels that of the operation of C4 in a
360◦ world, and similarly for the other operations. The class structure of the C4v group is now
given with that of 2C2v beneath it. We have not proved that this is the correct class structure
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C4v E 2C4 C2 2σv 2σ ′
v

2C2v E C2 I σv σ ′
v

I C2 Iσv Iσ ′
v

for the latter group but this can be done quite easily, in case of doubt, using the methods of
Appendix 1.

Table 12.1

2C2v E C2 I σv σ ′
v

IC2 Iσv Iσ ′
v

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E1/2

2 0 −2 0 0

It will be immediately apparent that, in C4v there are two operations grouped together in a
class, but in 2C2v they are listed separately (although still in the same class, shown by them
being given in the same column). The reason for this will become apparent shortly; use some
shorthand for the pair at your own risk! The 2C2v character table is given in Table 12.1.

We will give nodal diagrams of the irreducible representations of 2C2v shortly, and these
should resolve any residual problems that the reader may have with the singly degenerate
ones. First, however, the doubly degenerate irreducible representation, E1/2

. As this label
hints, this is the irreducible representation under which the two spin functions, 1/2 and −1/2,
together, transform. We have seen that the character that they generate under the operation
of rotation by θ is:

Character(θ ) = 2 cos(1/2θ ).

When θ is 180◦ (C2) the character is 2cos(90) = 0. Because σv = C2 · i , Character (σv) =
Character(C2) · Character(i). Again, Character(C2) = 0 and so Character (σv) = 0. These
are sufficient to establish that, indeed, 1/2 and −1/2, together, transform as E1/2

. But this is
not the end; E1/2

has some tricks in store. They will become apparent in the nodal diagrams
which we will shortly draw of it. It may be recalled that in Chapter 6, when first we met
two operations falling into the same class, we commented (at the beginning of Section 6.2)
‘the correct procedure is to consider the transformation of each object under each of the
individual operations in the class and to take the average of the characters generated’. As
the diagrams will show, for E1/2

one can have a character of 1 under the C2 operation and
a character of −1 for the I C2. It is the average of the two, 0, which is the E1/2

character
for the class. The reason for retaining a separate listing of C2 and I C2 at the head of the
character table is now evident – one may need to work with each, separately from the
other. Analogous arguments apply to σv and Iσv and also to σ ′

v and Iσ ′
v. At last, we have –

almost – answered the question ‘what is the symmetry of an unpaired electron in the water
molecule?’ It is E1/2

, irrespective of the symmetry of the orbital in which it finds itself.
Except that the answer, unlike the question, recognizes that there are two possible spin
functions. What are the nodal properties of the irreducible representations of 2C2v? In a
sense the answer is old and in a sense it is new. Because 2C2v and C4v are isomorphous, so
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Figure 12.5 The nodal patterns associated with the irreducible representations of the 2C 2v group.

For the singly degenerate functions, the patterns are the same as those in Figure 3.1 from 0–360◦

and this pattern is repeated from 360–720◦. As a consequence all have an even number of nodal

planes. For the E1/2
functions the 360–720◦ pattern is a repeat of the 0–360◦ but with all phases

changed. As a consequence it has an odd number of nodal planes. Similar even–odd nodal plane

patterns are found in all double groups

too are the nodal patterns associated with their irreducible representations (provided that
we show the whole of 0–720◦ space for the former). We have already met those of C4v in
Figure 6.9, but new is the excursion into the 720◦ world. The diagrams for 2C2v are given
in Figure 12.5. Notice the general pattern; those irreducible representations which carry the
same label as irreducible representations of 1C2v have identical 0–360 nodal patterns as the
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latter. These, singly degenerate irreducible representations, in the region 360–720◦ simply
repeat their 0–360◦ patterns. Not that this is a surprise – the space functions were only
forced into a double group by the spin; the space functions have to accommodate this but
cannot be expected to change. On the other hand, for the degenerate pair, E1/2

, the 360–720◦

pattern is the negative of the 0–360◦ pattern.
But there is a problem which has been avoided up to this point. We have always separately

discussed the orbital and spin properties of an electron. Is this separation justified? And
can we draw pictures like those above if they are not? Not surprisingly, the answers to
these two questions are ‘no’ and ‘yes’ respectively. We start with the ‘no’: the fact that
the orbital and spin properties of an electron may not be separable. Several times we have
found it convenient to talk of the angular momentum that an electron may possess (for
d electrons, units of 2, 1, 0, −1, −2). An electron with an angular momentum may be
likened to an electrical current flowing around a closed wire loop (for those who have
problems reconciling angular momentum and nodal patterns, remember that when we are
talking angular momentum we are not talking fixed nodal patterns because nodal patterns
may rotate too). But electrical current flowing around circular loops of wire is the basis of
most electrical motors; electron angular momentum implies an orbital magnetism. Similarly,
although we talk of ‘electron spin’, with an angular momentum it is implied that the electron,
intrinsically, is a tiny bar magnet. After all, the original Stern–Gerlach experiment, which led
to the recognition of electron spin, was based on a magnetic separation of silver atoms with
a single unpaired electron (with spin either 1/2 or −1/2). Thus with two magnets – one orbital,
one intrinsic – close together surely they must interact;2 they do, and the phenomenon is
known as spin–orbit coupling (or spin–orbit interaction). Roughly, the greater the atomic
number of an atom the more important is the spin–orbit interaction. Not surprisingly, this
interaction changes energies, but this – important – topic will not be our concern. Rather, we
shall address the question of how group theory can deal with the problem of how spin–orbit
coupling can change symmetry species. Fortunately, both ordinary and double groups can
handle both extremes: negligible coupling and strong coupling. But before we address this
problem we must look at the orbital part in more detail.

12.2 More about the symmetry of product functions

In a many-electron atom or molecule, the electronic wave functions will be a product wave
function which, at the simplest level, takes the form

ψ = φ1φ2φ3 · · · · φn

where φ1 · · · · φn are individual one-electron orbitals and ψ is the single wave function which
describes all n electrons. We have already met something similar; products of one-electron
wavefunctions had to be discussed as soon as we became interested in overlap between
orbitals in Section 3.5. Even earlier, we met products in Section 3.1 when normalization
was the topic. At first no name was given to the process but in Section 4.3 the name ‘direct
product’ was introduced. Direct products involving two or more degenerate irreducible

2 There are those who will argue that the description just given of the spin–orbit interaction is inadequate (relativistic effects
are involved). Nonetheless, it correctly establishes grounds for the existence of the phenomenon.
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Table 12.2

C4v E 2C4 C2 2σv 2σ ′
v

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

representations invariably give rise to a reducible representation as a product. Consider the
C4v point group. The C4v character table is given in Table 12.2 (it was first met as Table 5.6)
and it is evident that the direct product E ⊗ E must be reducible because the number that
will appear in the identity column (4) is larger than any character in the table. The direct
product E ⊗ E is:

E 2C4 C2 2σv 2σ ′
v

E ⊗ E 4 0 4 0 0

which is readily seen to be a representation with components

A1 + A2 + B1 + B2

Problem 12.2 Show that the direct product table for the C4v group is:

C4v A1 A2 B1 B2 E
A1 A1 A2 B1 B2 E
A2 A2 A1 B2 B1 E
B1 B1 B2 A1 A2 E
B2 B2 B1 A2 A1 E
E E E E E (A1 + A2 + B1 + B2)

12.3 Configurations and terms

It is instructive to consider the meaning of the E ⊗ E direct product in the C4v point group
in more detail. Suppose that there are two electrons, one of which is to be placed in the
degenerate pair of orbitals of E symmetry denoted individually e1 and e2. The second
electron is to be placed in a different degenerate pair of orbitals of E symmetry which we
individually denote by E1 and E2. The possible two-electron functions are

e1 E1 e1 E2 e2 E1 e2 E2

That is, they are four in number (in agreement with the number 4 which appears in the
identity column when the E ⊗ E direct product is formed). Group theory tells us that it
is possible to take linear combinations of these four functions such that one combination
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Table 12.3

Operation E C+
4 C−

4 C2 σv (1) σv (2) σ ′
v (1) σ ′

v (2)

e1 −e2 e2 −e1 −e1 e1 e2 −e2

E 1 −E 2 E 2 −E 1 −E 1 E 1 E 2 −E 2

e1 E 1 e2 E 2 e2 E 2 e1 E 1 e1 E 1 e1 E 1 e2 E 2 e2 E 2

has A1 symmetry, one has A2 symmetry, one has B1 symmetry and one has B2. These
symmetry-adapted functions may be obtained by the projection operator method described
in Chapter 5 and, more particularly – because it deals with a non-Abelian group – Chapter
6. We first simply choose one function – e1 E1 for instance – and work out how it transforms
under the operations of the group. For this, we need to know how the individual functions e1

and E1 transform. This information is detailed in Table 6.7 (where it is necessary to replace
px by e1 or E1 and py by e2 or E2). In this way Table 12.3 is obtained. Multiplication by the
A1 characters and adding, in the usual projection operator method, leads to the conclusion
that

ψ(A1) = 1√
2

(e1 E1 + e2 E2)

Problem 12.3 Use Table 12.3 to show that

ψ(B1) = 1√
2

(e1 E1 − e2 E2)

Problem 12.4 Derive a table similar to Table 12.3 but appropriate to the function
e1 E2. Use it to show that

ψ(A2) = 1√
2

(e1 E2 − e2 E1)

ψ(B2) = 1√
2

(e1 E2 + e2 E1)

In the belief that a specific example would help the reader, the above discussion was
concerned with electronic wavefunctions in an ‘ordinary’ group. The method, however, is
not limited to such wavefunctions. Thus, the pairs (e1, e2) and (E1, E2) could equally have
been vibrational wavefunctions, in which case the product wavefunctions would have been
the ones relevant to a discussion of combination bands in a vibrational spectrum (vibrational
excitations in which two different vibrations are excited by a single quantum of energy).
Indeed, the discussion is of general applicability, with one exception. Note that the members
of the two pairs of E functions are different – (e1, e2) and (E1, E2), not (e1, e2) and (e1, e2).
This is not to say that the case in which the members of the pairs are identical is not important.
In vibrational spectroscopy, for instance, overtone bands arise from double excitations –
where (e1, e2) is combined with (e1, e2). Such cases are not immediately covered by the
discussion because when products are formed within the members of a doubly degenerate
set only three product functions can be distinguished. Two quanta of vibrational energy can
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be excited in e1 or e2 or one quantum can be excited in each so that the distinguishable
excited states are of the form:

e1e1 e2e2 e1e2

What has happened to the fourth function e2e1? Why should it have been discarded and yet
e1e2 retained? There is no reason; we have made a mistake – these three functions do not
transform as irreducible representations. This is seen from the functions above involving e
and E – they have to translate into the present problem but with E1 and E2 replaced by e1

and e2 respectively. With this change the functions become:

ψ(A1) = 1√
2

(e1e1 + e2e2)

ψ(A2) = 1√
2

(e1e2 − e2e1)

ψ(B1) = 1√
2

(e1e1 − e2e2)

ψ(B2) = 1√
2

(e1e2 + e2e1)

Look at the ψ(A2) function. The two terms on the right-hand side mutually cancel, at least
when we are talking about vibrations. We are left with three overtone vibrational functions,
as we expected. Why should ψ(A2) be so different? The fundamental difference can be seen
if we interchange the suffixes 1 and 2 on the e’s in the above expressions. ψ(A1), ψ(B1) and
ψ(B2) are unchanged. They are all symmetric with respect to the interchange. In contrast,
ψ(A2) becomes -ψ(A2) when the suffixes 1 and 2 are interchanged. It is antisymmetric with
respect to the interchange. That is, the direct product E ⊗ E can be divided into a symmetric
direct product A1 + B1 + B2 and an antisymmetric direct product A2. This is a general
situation; when a direct product is formed between a degenerate irreducible representation
and itself, the product is always a sum of symmetric and antisymmetric components. In the
vibrational example considered above, the antisymmetric component vanished, but this is
not always the case. What is general is the fact that the two components behave differently.
In particular, when they refer to orbital functions the symmetric and antisymmetric direct
products are associated with spin functions of different multiplicities, a point to which we
will return. The interested reader will find the electronic case developed in Ballhausen3 and
more about the vibrational in Wilson, Decius and Cross.4 Both give detailed derivations of
expressions for the symmetric and antisymmetric direct products; the two derivations are
closely related.

There is another simple application of direct products that is important to consider. As
has been seen, if, in 1C2v symmetry, we have a molecule with the electron configuration
a1

2b1
2 (or, as it was previously expressed, the product wavefunction is ϕ1(A2)ϕ2(B2)), then

it is said that this configuration gives rise to a term of B1 symmetry (or, in the form used
earlier, there is a product wavefunction ψ(B1)), the direct product A2 ⊗ B2 being B1. Such a
term would normally have a pre-superscript which indicates the (electron) spin multiplicity.
Thus a triplet spin term would be 3 B1, a singlet 1 B1, and so on. For the moment we neglect

3 C.J. Ballhausen, Introduction to Ligand Field Theory, McGraw Hill, New York, 1962, p.48.
4 E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations, McGraw Hill, New York, 1955, p.152.
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spin, something which is formally expressed by saying that we are only concerned with
orbital terms. Thus, in 1C2v we say that the orbital configuration a1

2b1
2 gives rise to the orbital

term B1. Similarly, for the C4v example considered above, the electron configuration e1 E1

gives rise to the terms A1, A2, B1 and B2. More correctly, and following the notation used
in earlier diagrams in this book, one says that the electron configuration 1e12e1 gives rise
to the terms A1, A2, B1 and B2.

When a singly degenerate orbital is occupied by two electrons the product wavefunction
describing this situation is totally symmetric – because the direct product is totally symmetric
(see, for example, Table 4.4). It is not so easy to see that the same result follows when a
set of degenerate orbitals is completely occupied by electrons because simply forming
direct products leads, apparently, to a large number of terms. However, the Pauli exclusion
principle eliminates all but one of these terms. There is only one way of filling all orbitals
of a degenerate set and that is by putting two electrons into each orbital. There is, then,
only a single wavefunction and so there must be a singly degenerate term. This simple
argument does not tell us whether or not this term is totally symmetric. It seems intuitively
likely that it will be, and this is confirmed by following the transformations of the product
wavefunction under the operations of the point group in the way that was done for e1 E1

above. This leads to a general and very valuable conclusion:

Closed shells of electrons are invariably totally symmetric.

Here, by ‘closed shell’ is meant configurations like a2
1 , b2

1u , e4, t6
2g and so on. This

conclusion means that for a many-electron molecule the possible terms arising from a
configuration can be obtained simply by considering those orbitals which are partially
filled. Those that are totally filled are ignored – unless these are the only ones present, in
which case the orbital term is totally symmetric.

Problem 12.5 Show that in the C4v group the electron configuration e4 gives rise to
a term of A1 symmetry.

Hint: It may be helpful to write this configuration, using the notation adopted earlier
in this chapter, as e1

1e1
1e1

2e1
2. The table constructed as part of Problem 12.4 can then be

modified to be used in the present problem.

It might be thought that, having determined that a totally symmetric term results from a
closed shell and that the many-electron wavefunction is totally symmetric, this would be
the end of the matter. This is not the case. Consider the situation shown in Figure 12.6a,
in which for a C2v molecule in addition to a filled A2 orbital there is an empty B2 orbital
at higher energy. Both the configuration a2

2 and the configuration in which both electrons
are promoted into the b2 orbital, b2

2, have orbital symmetry A1. In general, it is found by
detailed calculation that although the ground term wavefunction is well represented as one
derived solely from a configuration such as a2

2 , this wavefunction is improved if there is
mixed in with it a contribution from the excited term configuration b2

2, which also gives rise
to a term of orbital symmetry A1. Such configuration interaction is an important step in
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a

b

etc

; ; ;

b1

b2

b2

a2

a2

a1

Figure 12.6 (a) A ground state a2
2 configuration and a b2

2, both of the same symmetry (1 A1). (b)

Examples of states, all of 1 A1 symmetry, between which interaction may occur

most detailed calculations of molecular properties, although more than one excited term is
usually involved in mixing with the term arising from the ground term configuration (and
there may be reasons for excluding some others). So, if, in the present example, the ground
term configuration were one in which a doubly occupied orbital of A1 symmetry had above
it a doubly occupied orbital of A2 symmetry followed by empty orbitals of B2 and B1

symmetries (Figure 12.6b), then configuration interaction would be expected between the
A1 terms a2

1a2
2 , a2

1b2
2, a2

1b2
1, a2

2b2
2, a2

2b2
1, b2

2b2
1 and a1

1a1
2b1

2b1
1 and also configuration interaction

between the excited B1 terms arising from the configurations a2
1a1

2b1
2, a1

1a2
2b1

1, a1
1b2

2b1
1 and

a1
2b1

2b2
1.

Problem 12.6 Check that the (first) set of seven configurations given above all give
rise to terms of A1 symmetry and that the (second) set of four all give rise to B1 terms.

As has just been mentioned, the inclusion of configuration interaction is usually an im-
portant step in accurate calculations on the electronic structure of molecules – for instance,
in obtaining those results which have been used at several points in this book. Two points
should be made. First, for configuration interactions, just as for orbital interactions, only
terms of the same symmetry species interact (they also have to be of the same spin multi-
plicity). Second, it is evident that as the number of orbitals included in a molecular problem
increases – also and the number of configurations that arise – so the number of terms of a
given symmetry species which may interact under configuration interaction increases. The
improvement that results in the description of the ground term (and, usually, the lowest
excited terms) is often considerable, so an upper limit on the improvement is usually set
by the capacity of the computer available: its ability to handle the enormous number of
integrals that have to be calculated.
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Figure 12.7 A component of a 2 A2 term. On the left, the orbital, A2, function is in the centre

and an E 1/2
, doublet, function is in the outer ring. Their total separation is symbolized by the open

ring separating them. The central pattern shows the beginning of the breakdown of the separation

between orbital and spin functions, although they retain their separate phase patterns. The inner

circles begin to fragment and the outermost circle to thicken. The right-hand diagram shows the

limit of strong spin–orbit coupling. It contains the products of spin and orbital phase patterns; the

central cirle has vanished and the outer circle has become bold, to indicate the strong spin–orbit

coupling limit.

12.4 The inclusion of electron spin

We now return to a problem left incomplete in the previous two sections, that of spin and
spin–orbit coupling. For simplicity, we shall introduce it in the context of single-electron
functions although the discussion applies equally well to the many-electron functions met in
the last section. Again for simplicity, we will work with the C2v point group, either 1C2v or
2C2v . Consider the latter and the case of an unpaired electron in an orbital of A2 symmetry.
The latter label applies to both 1C2v and 2C2v but because of the single unpaired electron
we must be working in the 2C2v point group, where the electron spin functions (spin ‘up’
and ‘down’) transform as E1/2

. In this description, the spin and orbital functions are totally
independent and so they can have different symmetry labels. But what of the transition to the
other limit, strong spin–orbit coupling, where the spin and orbital functions are completely
coupled and it is meaningless to talk of them as independent? The transition is shown
diagrammatically in Figure 12.7. On the left-hand side the orbital and spin functions are
shown in a single nodal diagram, the orbital component being in the centre and the (outer,
concentric) spin diagram separated from it by an empty circle (empty to emphasize the
separation). In the middle diagram this empty circle is shown both fragmented and thinner,
indicating a decreasing independence of the orbital and spin components. The fragments
of the circle that are removed may be regarded as adding to the outermost circle, which
thickens. In the right-hand diagram the inner circle has vanished and the outer circle has
reached its thickest, indicating the strong spin–orbit coupling limit. The nodal pattern in
this diagram is the product of the two independent patterns in the zero-coupling limit (the
left-hand diagram). That is, it is the direct product of the spin and orbital functions. The
final, strong coupling, function has E1/2

symmetry. True, it is not one of the E1/2
functions

of Figure 12.5, it is more noded, but it has the essential characteristic that the signs in the
360–720◦ region are the negative of those in the 0–360◦ region. The example of Figure 12.7
was one component of a 2 A2 term; for completeness, Figure 12.7 is repeated in Figure 12.8
along with the corresponding diagrams for the second component of the doublet.
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Figure 12.8 This is identical to Figure 12.7 except that it shows both components of the 2 A2 term.

Comparison with Figure 12.5 may be helpful

Problem 12.7 By studying its transformations under the operations of the 2C2v point
group show that the functions at the right-hand side of Figure 12.8 have E1/2

symmetry.

Problem 12.8 By drawing diagrams akin to that of Figure 12.8:

(a) show that the terms 2 A1, 2 B1 and 2 B2 all become E1/2
in the limit of strong spin–orbit

coupling, and
(b) by consideration of the E1/2

diagrams, show that although all four terms 2 A1, 2 A2,
2 B1 and 2 B2 become E1/2

in the strong spin–orbit coupling limit, these four E1/2

functions are all orthogonal (i.e. have zero overlap integrals with each other). If
they were not orthogonal we would have to talk about mixing between them.

The above discussion involved the use of the 2C2v group; it was chosen because there
is a clear symmetry separation between space and (doublet) spin functions. The former
carried the same symmetry labels that they did in 1C2v whilst the latter were E1/2

. When we
consider triplet spin functions this separation is lost – as we saw earlier in this chapter, we
have to work in 1C2v with both. The immediate question is that of how the spin functions
transform. This is less of a problem than it seems at first sight. The real problem is that we
are accustomed to thinking of the triplet spin functions being something like αα, αβ and ββ.
But these, respectively, correspond to angular momenta of 1, 0 and −1. This is reminiscent
of the p orbitals which can be chosen so that they have just these angular momenta. But in
1C2v these are not the p orbital functions used; we use their standing wave counterparts,
px , py and pz – orbitals which are linear combinations of those with angular momenta 1, 0
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Figure 12.9 Diagrams analogous to those of Figure 12.8 for the three components of a 3 A2 term

using the 1C 2v group. The phase patterns are derived from those of Figure 3.1

and −1. And so it is with the spin functions; we need spin functions akin to px , py and
pz . For simplicity, but at the risk of confusion with s orbitals, we will call them sx , sy and
sz (s for ‘spin’). However, care must be taken in giving them symmetry labels. We know
that there are differences between orbital and spin. So, those orbital transitions which are
spectroscopically allowed are electric dipole transitions but the spin are magnetic dipole
(Table 4.5). The former correspond to Tx, Ty and Tz, the latter to Rx, Ry and Rz (Table
4.5). Why should this be important? Look back at Figure 4.19. Rotations and translations
behave differently under inversion in a centre of symmetry. The same equation (that given
at the beginning of this chapter) applies to the proper rotations of both. However, the fact
that improper rotations are a combination of a pure rotation with inversion in a centre of
symmetry means that, in 1C2v , for the σv operations, the spin functions have the negative
of the characters of the corresponding orbital functions. So, sx has B1, sy has B2 and sz has
A2 symmetry.5 Armed with this information, we can now construct diagrams akin to that
of Figure 12.8 for 3 A1, 3 A2, 3 B1 and 3 B2 but now using, of course, the 1C2v group. These
are given for 3 A2 in Figure 12.9 where, as before, increasing coupling between spin and
orbital is indicated by the narrowing, fragmentation and transfer of density from the inner
to the outer circle. Also as before, the strong coupling limit is given by the direct product
of the spin and space symmetries and shown as such by the use of a thick outer circle in the
diagram. There is another interesting aspect of the above discussion; it indicates something

5 This discussion reveals something hidden by the use of the phrase ‘spin triplet’. The three components of the spin triplet can
have different energies.
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in common between spin-orbit coupling and optical activity (but in very different fields, of
course); both involve the linking of linear and rotatory charge displacements.

Another aspect of the two-unpaired electron case which is worthy of study is that we
could tackle it starting from 2C2v . We would use it for the single-electron case, where the
electron would have the symmetry E1/2

. What if we added a second electron, which of course
has the same symmetry? We would have to form the direct product E1/2

⊗ E1/2
and this, with

components A1 + A2 + B1 + B2, would contain a symmetric part and an antisymmetric
part, A2. Of course, the two-unpaired electron problem would be handled in 1C2v , not 2C2v ,
but what happens to the four components found in 2C2v when we move to 1C2v? We have
found the components of the symmetric direct product, A1 + B1 + B2; they are the triplet
spin functions (and symmetric with respect to interchange, since they originate in functions
like α1α2, where we have added subscripts in an obvious way). The other spin function is
A2, the antisymmetric direct product, and this is the singlet spin combination. Such a spin
combination must exist for the two-electron case but it was ignored in the above discussion.

There is a communality between the orbital and spin discussions above. When talking of
degeneracies, we could for each distinguish between symmetric and antisymmetric direct
products. What of their combination, where we specify both orbital and spin functions (as
part of the description of a wavefunction, for instance)? Not all combinations are allowed.
To obtain results which are in conformity with observation, the combination has itself to be
antisymmetric. That is, a symmetric space part combines with an antisymmetric spin part,
and vice versa. Why? This is a topic of debate, not least amongst some writers of science
fiction, who envisage another universe where the allowed spin and space combinations are
symmetric with respect to interchange.

12.5 Summary

The quantum number 1/2 associated with electron spin has to be compensated by doubling
angles, so that the identity becomes 720◦ (p. 282). A double group has twice as many
operations as the corresponding ‘normal’ group (p. 284); the class structure is also different
(p. 286). Nodal patterns may be drawn of the irreducible representations of double groups
(p. 287). By combining spin and space functions in a single diagram it is possible to
follow the evolution of nodal patterns with increasing spin–orbit coupling from the Russell–
Saunders to the jj limit (p. 294).
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13 Space groups

13.1 The crystal systems

Crystals and the determination of their structures at the atomic level represent important
parts of chemistry and so in this chapter it will be assumed that the reader has some basic
familiarity with associated terms such as ‘monoclinic’. Although the solid state is an active
part of chemistry, solid state symmetry is a much neglected area, leading to conceptual
gaps which make the subject much more difficult than need be the case. In an attempt to
meet this problem, in the present chapter some subject areas will be explored which are
normally given a very brief treatment: the relationships between the 7 crystal systems, the
14 Bravais lattices, the 32 crystallographic point groups and the 230 crystallographic space
groups. An attempt will be made to answer the fundamental question ‘why are there 230
space groups and not some other number?’. This will force us into a deeper understanding
of the space groups themselves, which is the object of the exercise. This quest will mean
that a rather unusual attitude to the topic is adopted, one that is closer to the conventional
physics approach than to that of chemistry.

A convenient starting point for the discussion is the concept of an empty lattice. In
talking about crystal structures one expects to be concerned with the arrangement of atoms
in space and the way that they fill unit cells. Despite this very reasonable expectation, our
starting point will be quite different: no atoms, no unit cells, just the fiction of an empty
lattice. The reason for this approach is that it will enable the introduction of atoms into
the lattice as a step which is quite distinct from anything to do with the lattice itself. As
will be seen, the step of introducing atoms adds possibilities which do not exist for the
bare lattices. What, then, is a ‘bare lattice’ (and why is it a fiction)? For our purposes it
is convenient to regard a lattice as arising from a three-dimensional network of vectors,
vectors that connect equivalent points in an empty space (Figure 13.1a). These vectors are
easy to picture; think of an arrow drawn from one point to another (Figure 13.1b). Really,
of course, the equivalent points will only be equivalent after we have introduced atoms –
in empty space all points are equivalent and form a continuum. So, in selecting a regular
array of points from within a continuum, our model is definitely fictional but it will prove
helpful to persist with it. Strictly, it is the network of points that form the lattice in empty
space, although, group theoretically, the vector set which connects any one point with all of
the others is more important. The reason is that the operations of the lattice which parallel
the C2, σv and σ ′

v of C2v are translations, those translations which turn the lattice into a
lattice indistinguishable from the starting lattice (we assume that the lattice is infinite, so no

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Figure 13.1 (a) A lattice typical of a crystal. Equivalent points in space are linked by sets of equally

spaced parallel lines extending to infinity. For simplicity of construction, in this figure all lines are

drawn as intersecting at right angles but this is not a general requirement. (b) A single segment of

the lattice of (a). Each line in (a) is really two superimposed vectors, one the negative of the other,

represented here by an arrowhead at either end of each line
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problems arise by reaching the edges of a crystal). And these operations are the members
of the set of all the translation vectors. The vectors connecting the separated and equivalent
points of the lattice fill all of three-dimensional space in the manner indicated in Figure
13.1a; they look rather like sets of parallel fishing nets, the corners of the mesh (and it is
these corners that are the points of the lattice) in any one net being linked by additional
pieces of string sideways to the corresponding adjacent corners of the nets on either side of
it. It is as if there were a three-dimensional array of string-edged boxes filling all space. It
is tempting to call these boxes ‘unit cells’, and, indeed, this is what they would normally
be called. However, this temptation will be resisted – as has been said earlier, no atoms, no
unit cells. Rather, as we have seen, an arrowhead will be attached at each end of every piece
of string to demonstrate that sets of translation vectors are under consideration; this has
been done in Figure 13.1b. Each vector has a negative (if a is connected to b, b is connected
to a), which is why arrowheads are needed at each end of each segment of string, at each
equivalent lattice point. Our concern is to work out all the possible different symmetries
that can be spanned by such sets of lattice points, and, of course, the translation vectors.
This will lead us to the seven crystal systems. The argument that follows is directed at, and
limited to, finding the symmetries of all those lattices conventionally called ‘primitive’, for
there is one for each crystal system. We shall have more to say about non-primitive (centred)
lattices later.

Problem 13.1 The subject matter of the following paragraphs is unlikely to be new to
the reader, although it is equally unlikely that it will have been well understood. Write
down, briefly, what you know about the seven crystal systems. This should help focus
attention on any problem areas that exist.

It is natural to start with a set of translation vectors in which the vectors are all of the same
length and all mutually perpendicular; this is the most symmetrical arrangement possible.
A cubic lattice results (Figure 13.2). 1 The fact that we have chosen to work with an infinite
set of vectors means that it is sensible to pause before passing from the statement that ‘it
is a cubic lattice’ to the statement that ‘the lattice has Oh symmetry’. It is true that in this
lattice each lattice point has Oh symmetry. That is, the operations of this Oh point group
turn a given vector either into itself or into an equivalent vector. However, if one were to
choose another point in space other than a lattice point,2 the symmetry would usually be
different, although the lattice would still be turned into itself by the relevant symmetry
operations. For example, points ‘along’ the vectors of Figure 13.2 have C4v symmetry,
except the mid-points of such vectors, which have D4h symmetry. The lattice is turned into
itself by the operations of C4v and D4h applied at the relevant points. This is not new. In
an Oh molecule, for instance, there will be points within it where the local symmetry is
lower than Oh. The molecular symmetry is that of the highest symmetry. Recognizing this,
one can say that ‘the lattice of Figure 13.2 has Oh symmetry’. At the end of the present

1 The reader can be forgiven for relating this arrangement to the properties of the primitive cubic unit cell; note, however, one
danger in this association – it leaves unanswered the question of just how the body-centred and face-centred cubic unit cells arise.

2 Here we really ignore the fact that empty space is a continuum. We are saying that the points that we have selected are
somehow different; they are different in that we have selected them! Points external to the chosen network have their symmetry
defined relative to that network.



JWBK182-13 JWBK182/Kettle September 13, 2007 18:4

302 SPACE GROUPS

Figure 13.2 A segment of a cubic lattice drawn in the manner of Figure 13.1b. This segment has O h

symmetry; this is the symmetry of the point at the centre of the cube shown (although this point

is not itself indicated) and also the symmetry of each point at which the vectors meet

chapter a particular choice of unit cell will be described which makes the lattice symmetry
unambiguously clear.

Having established the symmetry of the most symmetrical of lattices, it seems reasonable
to hope to obtain all the other possible lattices by reducing the symmetry. Unlike their string
counterparts, vectors can be continuously deformed: stretched, contracted and re-orientated.
The most natural way of proceeding is to focus on the Oh symmetry of the cubic lattice and
to lower that symmetry by considering all the subgroups of Oh. This is the path that will
be followed (even though it does not give all possible lattice symmetries) but first a basic
and important fact. In Figure 13.1b each vector was drawn as two-headed because both a
vector and its negative interrelate equivalent lattice points. Such a statement holds for each
and every vector and so also for each and every sum of vectors, no matter how twisted and
convoluted the path traced in three-dimensional space by such a sum – the resultant vector
and its negative interrelate equivalent lattice points. There is a much more succinct way
of stating this. It is that the lattice is centrosymmetric: contains centres of symmetry (all
related to each other by members of the translational vector set). This statement is true of
all the translation vector sets, no matter how low their symmetry otherwise. All lattices are
centrosymmetric. It is certainly not true to say that all unit cells are centrosymmetric and so
a good reason for excluding the phrase ‘unit cell’ from the present discussion is evident. The
packing of atoms within a lattice can destroy the inherent centrosymmetry of that lattice. This
is the reason that consideration of atoms is temporarily excluded from the discussion. The
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Cn
Cn

Cn

C2C2

Figure 13.3 Perpendicular to a set of C n axes there will be sets of translation vectors, as shown in

this figure. In a plane perpendicular to the C n axes and bisecting the translation vectors shown, will

be sets of C 2 axes. For simplicity, and to emphasize the fact that translation vectors do not have
to coincide with rotation axes, arrowheads are only shown on the translation vectors, not on the

rotation axes

fact that all lattices are centrosymmetric simplifies the problem of finding the lattices which
can be obtained from the cubic by a reduction in symmetry. Each acceptable symmetry will
be that of a point group, a subgroup of Oh. The inherent lattice centrosymmetry means that
all subgroups of Oh which lack a centre of symmetry can immediately be excluded. Further,
of the groups which remain, only those which are consistent with a lattice are possibilities.
What does this mean?

Suppose the lattice has a Cn rotation axis, with n > 2 (C2 are special and we have to
look at them separately). There cannot be just a single Cn axis; there must be an infinite
set of them, regularly arranged in space – and all parallel. The set of translation operations
ensures this. But this is not all. The double-headed nature of these arrows along the Cn

directions means that perpendicular to the Cn axes there will be C2 axes and these C2

axes are interrelated by the Cn . This is best shown with a diagram, and one is given in
Figure 13.3. The angle between the three Cn axes shown depends, of course, on the value
of n. Looking at the double-arrowed translation vectors interrelating the Cn: the C2 axes
shown interchange them and also the Cn axes. The conclusion is that only centrosymmetric
subgroups of Oh with C2 axes perpendicular to the Cn can give rise to lattices. For Oh, Cn

with n > 2 means C4 and C3. Which centrosymmetric subgroups of Oh are left when we
apply the ‘C2 axes perpendicular’ requirement to these cases? Relatively few. D4h is the
only one containing a fourfold rotation and D3d is the only one with a threefold rotation.
What of the Cn , n = 2 case; why is it different? Here, we will be dealing with at least two
(sets of) C2 axes, the ‘original’ (that corresponding to a Cn set with n = 2, in Figure 13.3)
and any sets which are perpendicular to it (such as the C2 shown in Figure 13.3). The key
difference is that a perpendicular C2 axis is now rotated onto itself (or, rather, one equivalent
to itself, a member of the same set) by the ‘original’ C2, whereas for Cn with n > 2 it is
rotated into a different C2 axis. In the latter cases, therefore, no problem could arise because
a C2 axis failed to rotate onto itself. However, strange as may seem, this possibility exists
for the case where n = 2. An example of a C2 group with no such problems is D2h, which
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Figure 13.4 A layer of mutually perpendicular – and mutually compatible – twofold rotation axes.

To extend the structure into three dimensions, a third set of C 2 axes is added, perpendicular to the

two ‘original’ C 2 axis and through their points of intersection. These ‘new’ C 2 axes are shown as

shaded ellipses. These ‘new’ axes must be perpendicular to both ‘original’ sets. If they are twisted

at an angle (and so do not come straight out of the paper in this figure) then rotation of the ‘old’

axis set about the (oblique) ‘new’ C 2 leads to a non-existent axis set. The lattice cannot exist. All

three C 2 sets must be mutually perpendicular.

contains three mutually perpendicular twofold rotation axes. Rotate about any one C2 axis
and the others interchange (Figure 13.4). But if the C2 axes are not mutually perpendicular,
problems arise. Consider Figure 13.5, which shows two sets of mutually perpendicular
C2 axes together with another set, coming out of the paper and slightly displaced relative
to their position in Figure 13.4. The displaced set is incompatible with the in-plane sets.
Matters are not improved if members of the out-of-paper set are inclined at an angle other
than 90◦ to the others. In all cases an incompatible pattern is obtained. The only group that is
compatible in this situation is C2h, which is centrosymmetric and contains a single twofold
rotation operation.

Finally, destruction of the twofold axis of C2h by relaxing the requirement that additional
axes be perpendicular to the first (an inescapable requirement for Cn axes with n > 2) leads
to the last subgroup of Oh that has to be considered, Ci, which contains no operation except
inversion in a centre of symmetry, the lowest symmetry that a lattice can have. Provided
that all lattices can be obtained by reduction in symmetry from Oh, all have been generated.
Alas, not all lattices can be obtained by such a reduction in symmetry; since Oh contains no
sixfold rotation operation, a point group containing one can never be obtained by starting
with it. Yet there is a perfectly good lattice that is based on a point group that contains
such operations, D6h. If this is so, it at once prompts the question ‘how many others have
been missed?’. Really, this is a question about whether there are any other point groups



JWBK182-13 JWBK182/Kettle September 13, 2007 18:4

THE CRYSTAL SYSTEMS 305

Figure 13.5 Being perpendicular (Figure 13.4) is a necessary but not sufficient condition for a

lattice. In this figure, the C 2 axes perpendicular to the plane of the paper are not compatible with

the in-plane sets

with symmetry operations not present in Oh which can give rise to acceptable lattices.
Clear candidates are groups with fivefold and sevenfold rotation operations. Can they be
excluded (and any others that may well occur to the reader)? The answer is ‘yes’, as is now
demonstrated.

Consider Figure 13.6, which shows a two-dimensional lattice. Clearly, any constraints
that apply to this lattice must apply to a three-dimensional lattice also, because any three-
dimensional lattice may be regarded as linked networks of two-dimensional lattices, just
as the fishing nets were linked at the beginning of this section (remember: the head-to-
head linking of vectors in the manner of Figure 13.1 leads to straight-line arrays, never to
kinks or bends). As we are looking for all rotation axes that are compatible with translation
symmetry, we simply require the lattice points of Figure 13.6 to be interrelated both by pure
translations and pure rotations and enquire into the compatibility of these two requirements.
With no loss of generality for n > 2, assume that the Cn axes are perpendicular to the page
and that one passes through each of the points A, B, C and D. The points A and B in the
top row are separated, in general, by an integral number, m, of translation steps, a, and
so by a distance of ma (the points C and D are separated by a single translation step, a,
and so m will be a small number; for simplicity, in Figure 13.6 the case with m = 2 is
shown). For the purposes of the argument, the lower row of points (that containing C and
D) may be regarded as free to slide around, subject only to the requirement that the points
are interrelated by the Cn axes. The angle of rotation associated with the Cn axis (= 360/n)
is labelled θ so that, from Figure 13.6:

AB = A′B′ = a + 2acos(θ ) = ma



JWBK182-13 JWBK182/Kettle September 13, 2007 18:4

306 SPACE GROUPS

C D

BA

A' B'

a

a

a

a

a

ma

θθ

Figure 13.6 A fragment of a two-dimensional lattice, used in deducing which C n axes through the

dots and perpendicular to the lattice are compatible with the lattice. In this diagram the case of

m = 2 (where m is the number of translation steps separating A and B) is shown but in principle m

can assume any integer value

that is,

2acos(θ ) = (m − 1)a

and

2cos(θ ) = (m − 1)

or

cos(θ ) = (m − 1)

2

Now, m is an integer and cos(θ ) can only have values from 1 to −1. The possible solutions
are therefore rather limited and are detailed in Table 13.1

Table 13.1

Value of m Value of cos(θ)

(this equals (m−1)

2
) Comments

4 1.5 No solution possible

3 1 θ = 0 or 360◦

(corresponding to a C 1 axis)

2 0.5 θ = 60◦

(corresponding to a C 6 axis)

1 0 θ = 90◦

(corresponding to a C 4 axis)

0 −0.5 θ = 120◦

(corresponding to a C 3 axis)

−1 −1 θ = 180◦

(corresponding to a C 2 axis)

−2 −1.5 No solution possible
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Problem 13.2 Work through the above argument but instead of choosing m = 2, as
in Figure 13.5, take m = 3.

Clearly, the only non-trivial rotation operations that are consistent with a lattice are C2,
C3, C4 and C6. This means that the only case not covered by a reduction in symmetry
from Oh is that of the C6 rotations; C5 and C7, for instance, are not acceptable. The highest
centrosymmetric point group containing a C6 axis which also has the required perpendicular
C2 axes (remember Figure 13.3) is D6h. It completes the list of acceptable lattices because
there is no lattice that can be obtained from it which satisfies all the requirements and which
has not already been generated.3

The seven point groups that have been obtained, and the seven lattices to which they
give rise, characterize the seven crystal systems. For convenience, these are listed in Table
13.2. One point about this table is to be noted: that the characteristics of each lattice have
been detailed. Compilations like Table 13.2 are commonly found in texts under a different
heading, that of ‘unit cells’. In such texts the unit cell is chosen as the smallest parallelepiped
(box with three pairs of parallel edges) defined by the translation vectors. There are two
reasons that this precedent is not followed here, quite apart from the fact that the name ‘unit
cell’ has been avoided. First, the translation vectors are the fundamental quantities and this
is better recognized by the name ‘lattice’. Second, as will be seen, there is no unique choice
of unit cell for any crystal structure – just some choices that are more convenient for some
purposes than others (in particular, the choice that is convenient for x-ray crystallography
may be inconvenient for spectroscopy, as will become apparent in the next chapter).

All of the seven three-dimensional lattices (or, rather, remembering the context in which
they were sought, the seven crystal systems) which arise from translationally related repeat
units have now been obtained. The relevance to crystal structures is clear. However, we
should not close our eyes to other possibilities. For instance, suppose the repeat layers were
not related one to another by simple translation operations. What if they were arranged in
a spherical layer fashion, much as the layers of an onion? Perhaps such crystals could be
formed if a nucleating unit led to crystal growth by successive spherical shells being added.
As the shape of the popular form of a soccer ball, or C60, shows, such a crystal could have
fivefold rotation axes (six of them, all passing through the point which was the original
crystal nucleus, giving a crystal with icosahedral symmetry), in complete contrast to the
discussion above, where it was found that C5 axes are not possible for regular arrays of
translationally related units. In fact, crystals with C5 axes are known (although it took time
to convince the scientific community that they are real) and have been the subject of much
debate. They are known as ‘quasicrystals’. Some even seem to show the characteristics
expected of C5 axis perpendicular to a plane; however, whilst there is no problem about
local C5 axes (a molecule such as Fe(C5H5)2 has one), these local C5 axes cannot be inter
related by simple translations. And C5 axes are not the end; examples with C8, C10 or C12

have also been described.

3 Although it comes equally well from Oh, it is often convenient to think of D3d as a subgroup of D6h.
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Table 13.2

Crystal (lattice) Characteristic
System point group Lattice vector characteristics

Cubic O h a = b = c; α = β = γ = 90◦

Tetragonal D 4h a = b �= c; α = β = γ = 90◦

Orthorhombic D 2h a �= b �= c; α = β = γ = 90◦

Monoclinic C 2h a �= b �= c; α = γ = 90◦, β > 90o

Triclinic C i a �= b �= c; α �= β �= γ

Hexagonal D 6h a = b �= c; α = β = 90◦, γ = 120◦

Trigonal D 3d a = b = c; α = β = γ �= 90◦

The quantities a, b and c are the absolute magnitudes of the three primitive translation vectors that define the

lattice. The angles complement the axes; thus α is the angle between the vectors associated with b and c, β

that between the vectors associated with c and a (it helps avoid hidden problems if one is consistent in the

order in which axes are listed by being cyclic: a → b → c → a). Note that in the monoclinic system there is

conventionally a departure from the system followed for point groups where the axis of highest symmetry is

chosen as z (the choice of β as the unique angle means that the y axis is chosen as the C2 in monoclinic

systems). The sixfold axis is not immediately evident in the vectors defining the hexagonal system but when

they are used to define a lattice – and, so, an extended pattern generated – the sixfold axis becomes evident

(it is along the vector associated with c). However, the threefold axis is not along any of the vectors used to

define the trigonal lattice – the vectors associated with a, b and c are interrelated by the threefold axis. As

will be discussed in the text, a better name for the trigonal case above is ‘rhombohedral’. Trigonal is used here

because it is the name normally encountered in a table such as this.

13.2 The Bravais lattices

In the preceding section the concept of a lattice was explored. It was found that all three-
dimensional lattices have to conform to one of seven symmetry types, each characterized
by a unique centrosymmetric point group, and that these are normally spoken of as ‘the
seven crystal systems’. However, there is more to say on the topic of lattices, even the topic
of empty lattices. This can be seen by asking what, strictly, is an inadmissible question. The
question is this: ‘is it possible, for any of the seven lattices, that a second, identical, lattice be
taken and interpenetrated into the first to give an arrangement which retains the symmetry of
the first lattice?’. The question may be phrased in a rather less accurate but more colourful
and understandable way. Suppose the first lattice were made of red string. Is it possible to
construct within it a displaced but otherwise identical lattice made of blue string which does
not destroy the symmetry pattern of the red? Such questions are inadmissible because any
given crystal structure can only have a single lattice4 (and so talk about ‘interpenetrating
lattices’, whilst sometimes useful for teaching purposes, cannot accurately describe reality).
However, having recognized the error, let us continue to sin – we will find that such sinning is
a popular pastime! The question is illustrated in Figure 13.7 for the cubic lattice. The lattice
generated in Section 13.1 (essentially, Figure 13.2) is shown in Figure 13.7a; it is shown

4 This statement originates in the fact that there is a single translational subgroup of the space group. In discussions it is often
very convenient to talk of the lattice composed of one set of atoms and to relate it to the lattice composed of another set. Such
language is convenient rather than strictly accurate.
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(a)

(c)

(d)

"original" lattice

top left front

"added" lattices; each centres a face
of the "original" lattice

(b)

Figure 13.7 (a) The cubic lattice of Figure 13.2, shown without the arrowheads of that figure.

(b) The lattice of (a) with an identical lattice (shown dashed) displaced from the ‘first’ by ar-

bitrary translations (which means that the vectors associated with the two vector sets remain

parallel). Except in very special cases such a ‘second’ lattice will destroy much of the symmetry

of the ‘first’. So, in this figure, the fourfold rotation axes of the ‘first’ lattice are destroyed by the

presence of the ‘second’ and vice versa. (c) One of the special cases of (b) occurs when the ‘cor-

ners’ of the ‘second’ (dashed) lattice coincide with the centre of the cube defined by the first,

because both have O h symmetry. A diagonal of the ‘first’ lattice is shown dotted; the second lat-

tice intersects the mid-point of this diagonal. The open circle shows that the converse pattern is

also true; the ‘corners’ of the solid-line lattice fall at the centre of the cube defined by the dot-

ted line lattice. (d) A second special case occurs when three ‘additional’ equivalent lattices are

added to the ‘first’. In this figure the ‘additional’ lattices are shown small-dashed, large-dashed and

dotted
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again together with an identical interpenetrating lattice (shown dotted rather than coloured)
in Figures 13.7b, c and d. In Figure 13.7b the additional lattice is placed in an arbitrary
position. Not surprisingly, the symmetry of the first lattice is destroyed and also simulta-
neously, that of the second; the combined lattice is probably of no higher symmetry than
Ci – it is difficult to be sure without a more detailed specification of the positioning of
the two lattices in Figure 13.7b. In Figure 13.7c, the dashed lattice has a point at the very
centre of the solid lattice (shown as a black circle – a dotted construction line is added
to show this arrangement). Were it not for the fact that one is shown with dashed and
the other with solid lines, one would not know which lattice is the ‘original’ and which
the ‘added’ – the solid has a point at the very centre of the dashed (the point is shown
with an open circle). The two lattices are arranged in a mutually compatible manner but
have no points in common. The combined arrangement is of Oh symmetry. Because of
the relationship between the two sets of translation vectors, this new lattice is called ‘the
body-centred cubic lattice’. However, as has been indicated above, it is incorrect to think
of the body-centred cubic as defined by two sets of translation vectors. It is a single lattice,
defined by a single set of translation vectors. Clearly, this set is neither of those used in the
construction above but, in some manner, contains both. Detailed discussion of the set will
be deferred until later; here we simply note that the basic vectors of this single set cannot be
mutually perpendicular. If they were, the pattern of the original – primitive cubic – lattice
would be regenerated. In Figure 13.7d is shown another example of sets of interpenetrating
cubic lattices which are mutually compatible but this time involving four such lattice sets
(a solution to the question originally set which goes beyond the assumption in that ques-
tion – that only a single additional lattice need be considered). These four sets, together,
define the face-centred cubic lattice. Again, it is possible to define this lattice by a single
vector set, but again, and not unexpectedly, the vectors of this single set are not mutually
perpendicular.

All of the three possible variants of the cubic lattice – the primitive, the body-centred and
the face-centred – have now been generated. To see why there are no more, consider again
the way the additional lattices were generated. In the body-centred lattice, the second set of
lattice points were placed at what, for the ‘original’ lattice, were positions of Oh symmetry.
Clearly, the ‘second’ lattice was compatible with the ‘first’. The case of the face-centred
cubic was different. The lattice points of the ‘first’ lattice that were occupied by the ‘second’
were only of D4h symmetry. Had just a single ‘second’ lattice been interpenetrated with
the ‘first’ then the symmetry of the ‘first’ would have been destroyed and lattice points
that were originally of Oh symmetry would have been reduced to D4h. This problem was
overcome by, effectively, adding a C3 axis to this reduced D4h symmetry to bring it back
to Oh. This was achieved by adding three points around each ‘original’ lattice point, a step
which required that three additional lattices, not just one, be added. It is less immediately
obvious that this same step serves to turn each of the ‘second’ lattice points, originally of
D4h symmetry, into points of Oh symmetry. However, the fact that the combined lattice
‘looks the same’ whichever lattice is called ‘first’ establishes the point. It is not too difficult
to see that the ‘original’ – solid line – lattice face centres each of the added lattices. The
question then arises as to whether the same sort of trick can be played a different way. Is it
possible, for example, to add several lattices at points of D3d symmetry of the ‘first’ and, by
adding four of them in total, thus regenerate an Oh lattice? The answer is ‘no’; the reason
is that although there are unique points of D4h symmetry in the ‘original’ lattice there are
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none of D3d. The same is true of all other subgroups of Oh. All of the possible cubic lattice
patterns have been generated.5

The type of argument developed in the preceding paragraphs can also be applied to the
six other different possible lattice symmetries. When all of the lattice patterns consistent
with each various lattice symmetry type have been obtained, there are fourteen in all. They
are known as the fourteen Bravais lattices, named after the Frenchman who first recognized
their existence. They are shown in Figure 13.8; Figure 13.8a shows the ‘primitive’ lattices
and Figure 13.8b the ‘centred’. But beware, as has already been noted, it is misleading to
call one set ‘centred’; they too are actually primitive. This primitive lattice is shown for
each in Figure 13.8b, where the primitive translation vectors are shown and labelled ‘P’. In
contrast, the non-primitive translation vectors correspond to the edges of the conventional
centred lattices shown. Note three things. First that our lattices are still empty. Second, that
each of the fourteen Bravais lattices is associated with a unique pattern of vectors – it is
this vector pattern that distinguishes the various lattices. So, there are three qualitatively
different vector sets that define cubic lattices. As has been mentioned above and can be seen
from the P sets in Figure 13.8b, the vectors defining a cubic lattice do not have to be mutually
perpendicular. This point is an important one; despite it, all the Bravais lattices have the
symmetry of the crystal system and so all three cubic Bravais lattices are cubic, and of Oh

symmetry. However, if we work with primitive translation vectors for the centred lattices,
the vectors define the edges of a cell which does not have Oh symmetry! For completeness
it is convenient at this point to list all fourteen Bravais lattices and this is done in Table 13.3.

Problem 13.3 Unconventionally, the name ‘unit cell’ has been (largely) avoided so
far in this text. Make a short(!) list of the arguments given so far in support of this
avoidance (weightier arguments will be given later).

One of the most evident things about Table 13.3 is its rather patchwork character –
some crystal systems have body-centred lattices, others do not; some have one-face-centred
lattices, others do not. It has already been seen why there cannot be a one-face-centred cubic –
it would not be cubic (actually, it would be a primitive tetragonal lattice). The reason for the
non-listing of the other apparently ‘missing’ lattices is similar – they are each equivalent
to one already listed in Table 13.3. In Table 13.4 are given a list of the ‘missing’ lattices
together with their equivalents – which are present.

13.3 The crystallographic point groups

The point has now been reached at which atoms must be introduced into the lattices although
it will continue to be convenient to adopt the fiction that a lattice exists before atoms are
introduced into it. Some consequences of the introduction of atoms are quite evident. Thus,
although up to this point all lattices have been centrosymmetric, the introduction of atoms

5 The way that these have been generated demonstrates a limitation in the way that the seven crystal systems were derived
earlier in the text. All of the cubic lattices have Oh symmetry – this is why the derivation of the seven crystal systems had to be
confined to ‘those lattices conventionally called primitive’. Strictly, the derivation should have been concerned only with groups
and subgroups but it was felt that a less abstract discussion would be more easily followed.
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Figure 13.8 (a) The seven Bravais lattices conventionally called ‘primitive’, together with the asso-

ciated primitive translation vectors (shown bold). Note that only in three cases are all the translation

vectors in directions parallel to the Cartesian axes of the crystal. A, cubic; B, hexagonal; C, tetrag-

onal; D, trigonal(rhombohedral); E, orthorhombic; F, monoclinic; G, trigonal. (Continued)
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Figure 13.8 (Continued) (b) The seven Bravais lattices conventionally called ‘centred’, together

with the associated primitive translation vectors (shown bold). Note that the translation vectors are

generally in directions rather different from those of the Cartesian axes of the crystal. A, body-centred

cubic; B, face-centred cubic; C body-centred tetragonal; D, body-centred orthorhombic; E, all-face-

centred orthorhombic; F, one-face-centred orthorhombic; G face-centred monoclinic. Reproduced

with permission from S.F.A. Kettle and L.J. Norrby, J. Chem. Educ. 70 (1993) 959, 963. c©1993,

Division of Chemical Education, Inc.
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Table 13.3

Crystal system Bravais lattice Number of ‘primitive’
point group lattices needed in

the construction

Cubic (O h) Primitive 1
Body-centred 2
(All)-face-centred 4

Tetragonal (D 4h) Primitive 1
Body-centred 2

Orthorhombic (D 2h) Primitive 1
Body-centred 2
One-face-centred 2
(All)-face-centred 4

Monoclinic (C 2h)
a Primitive 1

(One)-face-centred 2

Triclinic (C i) Primitive 1

Hexagonal (D 6h)
b Primitive 1

Trigonal (D 3d)
c Primitive 1

a In the monoclinic one-face-centred lattice, the face which is centred is parallel to, not perpendicular to, the

twofold axis; it may be thought of as a σv plane being centred.
bThe hexagonal lattice is sometimes drawn showing a unit cell with a hexagon as a face, this face being centred

by a lattice point. This is not a primitive unit cell (it is actually three times the volume of the primitive).
cOne variety of trigonal lattice is referred to as “rhombohedral”, as mentioned in Table 13.2. This name arises

from the shape of the corresponding unit cell as it is usually drawn. A rhombohedron contains eight edges, all

of the same length, and each face is diamond-shaped (essentially, the shape of a rhombohedron is that of a

cube stretched or compressed symmetrically by pulling outwards or pushing inwards on a pair of opposite

corners). A rhombohedron is used for the trigonal lattice in Table 13.2. More will be said about this topic in

the text.

Table 13.4

Crystal ‘Missing’ Equivalent lattice
system lattice actually listed

Cubic One-face-centred Primitive tetragonal

Tetragonal One-face-centred Primitive tetragonal
All-face-centred Body-centred tetragonal

Monoclinic Body-centred One-face-centred monoclinic
All-face-centred One-face-centred monoclinic

Triclinic Any centring Primitive triclinic

Hexagonal Body-centred One-face-centred monoclinic
Unique-face-centred Primitive orthorhombic
All-face-centred one-face-centred monoclinic

Trigonal (rhombohedral) Body-centred Primitive trigonal
Unique-face-centred Triclinic
All-face-centred Primitive trigonal
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means crystal structures, which may or may not retain this centrosymmetry. Clearly, the
actual arrangement of atoms, molecules or ions in the lattice is of key importance. Equally
clearly there are considerable limitations on the admissible arrangements. For instance, to
place atoms randomly in a cubic lattice would immediately destroy the multitude of rotation
axes and other symmetry elements essential to a cubic lattice. The arrangement of atoms
(the word ‘atoms’ will be used for simplicity; ions and molecules are not excluded) in a
lattice must be consistent with the symmetry of that lattice for the lattice symmetry to be
evident in the space group. This prompts the question ‘what are the acceptable symmetries
for a given crystal system?’. As the argument develops it will be seen that this question is
correctly put – the different Bravais lattices falling into one crystal system do not have to
be distinguished.

Because the high symmetry makes it particularly easy to visualize, the cubic case will
be detailed. Rather than deal with the full Oh symmetry of the lattice it is easiest to focus
on one aspect of this symmetry. This is that in cubic symmetry the x , y and z axes are all
equivalent. All acceptable ways of introducing atoms into a cubic lattice must respect this
equivalence. Whilst, no doubt, the number of acceptable ways of introducing atoms into a
cubic lattice is infinite – it is this fact that serves to distinguish one cubic crystal structure
from another – the number of different symmetries that these arrangements can have is
rather limited. The symmetry of any acceptable arrangement has to be one in which x , y
and z equivalence is retained. Relatively few point groups satisfy this condition, they are:

Ih, I, Oh, O, Th, Td and T

Of these, the first two, of icosahedral symmetry, can be excluded because they require the
existence of fivefold axes, and these are inconsistent with a cubic lattice, something that
has already been mentioned (Figure 13.6 and the associated discussion). The other four are
different; they are either Oh or subgroups of Oh. Clearly, all are consistent with a lattice
of Oh symmetry. What would happen if an atomic arrangement with Ih symmetry were to
be put into a cubic lattice? The lattice (that is, the arrangement of other Ih groupings in
space) would destroy all the fivefold axes of Ih; the highest possible effective symmetry
of the atomic arrangement would be T , this being the only subgroup of Ih (and I ) which
is contained in the above list. It is concluded, then, that the only symmetries of atomic
arrangements consistent with a cubic lattice are:

Oh, O, Th, Td and T

Three things are to be noted. First, only two of these groups (Oh and T h) contain inversion in
a centre of symmetry as an operation (this can be checked by reference to Appendix 3). The
absence of this operation in the other groups means that the corresponding atomic arrange-
ments will be such as to destroy the centrosymmetry originating in the lattice (remember,
the translation operations of the lattice will only move the atomic arrangements, not turn
them round in the way needed if the lattice centrosymmetry were to be preserved). Second,
groupings of atoms with these symmetries can only form cubic lattices if the symmetry
axes of the atomic grouping coincide with the corresponding axes of the lattice. So, an
alkali metal salt, K[MX6], say, has a spherical cation and, probably, an octahedral anion.
Both cation and anion, separately, are consistent with a cubic lattice. However, it does not
automatically follow that the salt will crystallize in a cubic space group. Third, there has
been nothing in the above discussion which confines it to the case of the primitive cubic
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lattice. It must therefore be concluded that it applies equally to all the cubic Bravais lattices.
This is an important point, the relevance of which will become apparent when all possible
space groups are counted.

Problem 13.4 Sketch two possible crystal structures for the salt K[MX6], one of
which is cubic and the other which is not.

The pattern for the other crystal symmetries will follow that set by the discussion of
the cubic case. Consider the tetragonal lattices, for instance. Suppose we have a molecule
which, itself, is of a cubic symmetry – an octahedral molecule, ML6, for instance – but which
crystallizes with the molecules so arranged relative to one another that they form a tetragonal
lattice. The crystal can be of no higher symmetry than tetragonal. Conversely, if a molecule
is of low symmetry, for it to crystallize in a tetragonal lattice then the molecules have to
be arranged in groups of four, symmetry related. This is because a symmetry consistent
with a tetragonal lattice must have an atomic arrangement satisfying the basic requirement
of a fourfold axis of some sort or other (the reason for the strange end of this sentence
will become evident immediately). Point groups satisfying this condition (in addition to the
cubic, which have been covered) are:

D4h, D4, C4h, C4v, C4, S4 and D2d

The last two of these may cause some surprise because they do not contain C4 rotation
operations – but they do have S4 rotation–reflection operations and so an essential tetrag-
onality – and this is what is needed for compatibility with a tetragonal lattice. Having
made this point, what is surprising is that the group D4d is missing – this, at first sight,
seems to have the essential requirement of C4 rotation operations. Indeed it has, but it also
has S8 rotation–reflection operations and this is something that no lattice, cubic included,
possesses. It follows that if a group of atoms of D4d symmetry were to be placed in a
tetragonal lattice its symmetry would be reduced (D4 or C4v are the highest symmetries
that could result). Finally, note that of the seven point groups just listed, only two, D4h and
C4h, contain the operation of inversion in a centre of symmetry. It would not be difficult to
apply similar arguments to all the other crystal systems, but no new principle would emerge.
We therefore content ourselves with listing, in Table 13.5, the correspondences between
the crystal systems and acceptable point groups spanned by the atomic arrangements that
may be described by them. These point groups number thirty-two in total and are usually
referred to as ‘the thirty-two crystallographic point groups’. In the next two sections it will
be seen that they play a key role in determining the number of distinct crystallographic
space groups.

Problem 13.5 Explain in detail (use of Appendix 3 may be needed) why a molecular
arrangement of D4d symmetry could, at best, lead to an arrangement of either D4 or
C4v symmetry in a crystal.
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Table 13.5

Crystal system Acceptable point groups

Cubic O h O Th Td T
Tetragonal D 4h D 4 C 4h C 4v C 4 D 2d S4

Orthorhombic D 2h D 2 C 2v

Monoclinic C 2h C 2 C s

Triclinic C i C 1

Hexagonal D 6h D 6 D 3h C 6h C 6v C 6 C 3h

Trigonal (rhombohedral) D 3d D 3 C 3v C 3 S6

Note the absence of D 6d in the hexagonal listing – it has S12 rotation–reflection operations, operations not

possessed by D 6h, the parent of the hexagonal system. In contrast, note the presence of D 3h; this seems

‘wrong’ but is readily explained. The important point is that D 6h, the parent group of the hexagonal system,

has a σ h mirror plane reflection operation whereas D 3d, the parent of the trigonal system, has no such mirror

plane reflection. D 3h has this mirror plane and so cannot be associated with a trigonal lattice. The reason why

S6, which looks as if it should be in the hexagonal system, is in the trigonal is given in the text.

Problem 13.6 The following symmetries, although acceptable as those of atomic
arrangements, cannot persist in a crystal. In each case give the highest symmetry crys-
tallographic point group arrangement that could result.

D5h, D5d, C5v, D7h, D7d, C7v

In retrospect, it is possible to see a very simple way of relating a crystal system with the
acceptable crystallographic point groups associated with it, a method that has been hinted
at more than once in the above section. This relationship depends on the simultaneous
satisfaction of two conditions. The first is that acceptable point groups are always subgroups
of the symmetry of the crystal system. This condition is very important. For instance, it
immediately shows that D3h is associated with the hexagonal system and not the trigonal
because D3h is a subgroup of D6h but not of D3d. The second condition is that the subgroup
is not also the subgroup of the parent group of a lower (= fewer symmetry operations)
crystal system. It is the crystal system of lowest symmetry that is relevant. So, D2 is a
subgroup of Oh, D4h, D6h and D2h. Of these, D2h has the smallest number of symmetry
operations and so D2 is associated with the orthorhombic, D2h, crystal system. It is also for
this reason that S6 is a trigonal crystallographic point group and not a hexagonal.

13.4 The symmorphic space groups

The discussion so far is sufficient to enable the first set of space groups to be obtained
(about one-third of the total) but before doing so it is convenient first to review the present
position. The seven crystal systems were first obtained as the seven different symmetries
of translation vectors that can exist in three-dimensional space. We then found that in sev-
eral cases there exist more than one distinct set of such vectors, all of the same symmetry.
These give rise to the fourteen Bravais lattices. It was at this point that atoms were in-
troduced into the discussion. It was found that for each Bravais lattice there exist several
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Table 13.6

Crystal Number of Bravais Number of crystallographic
system lattices (B ) point groups (N ) The product (B N )

Cubic 3 5 15 (15)
Tetragonal 2 7 14 (16)
Orthorhombic 4 3 12 (13)
Monoclinic 2 3 6 (6)
Triclinic 1 2 2 (2)
Hexagonal 1 7 7 (8)
Trigonal 1 5 5 (13)
Total 14 32 61 (73)

symmetry-distinct ways of introducing atoms which are compatible with the symmetry of
the Bravais lattice. Distinct space groups will differ either in their lattices or in the symmetry
of their atom arrangement in space – or both. Space groups can be generated by combining
each Bravais lattice of Table 13.3 with each of the crystallographic point groups corre-
sponding to it in Table 13.5. Each space group that results will be a unique combination of
lattice and point group. Effectively, from this point on the following approximate equation
will be used to obtain space groups (the question of the points at which this equation is not
quite correct will be at the heart of the following discussion):

(Bravais lattice) + (Corresponding point group) = (Space group)

How many space groups can be obtained in this way? The answer to this question is detailed
in Table 13.6. This table summarizes the data in Tables 13.3 and 13.5 in a numerical format
and then combines them.

In the extreme right-hand column of Table 13.6 is given in parentheses the actual number
of space groups that exist of the sort that have been under discussion. In some cases the
correct number has been obtained, but not in all. So, although perhaps not much is missing,
something has to be added to the approach. In particular, the answer to the trigonal case
is seriously wrong – and this will necessitate a serious discussion! The other errors are
readily dealt with. In Table 13.7a are detailed the cases for which they occur. In this table
the individual crystallographic point groups and Bravais lattices are given. The table shows
the number of space groups that arise from each combination. The argument developed
above leads to the expectation that the answer will be ‘1’ in each and every case. It is where
the number ‘2’ appears that there is a problem!

The obvious thing about Table 13.7a is that most numbers are 1. Those that are 2 do not
occur for the highest symmetry crystallographic point groups of a crystal system. This is
a relevant point, as study of the C2v, one-face-centred orthorhombic, example shows. In
this example, although the lattice is D2h, the crystallographic point group (the filling of the
lattice with atoms) destroys all but a single set of parallel twofold axes (but the primitive
translation vectors remain mutually perpendicular, which is why C2v is an orthorhombic



JWBK182-13 JWBK182/Kettle September 13, 2007 18:4

THE SYMMORPHIC SPACE GROUPS 319

Table 13.7a

Crystallographic
System Bravais lattice point group

Tetragonal p; b.c. D4h 1 1
D4 1 1
C4h 1 1
C4v 1 1
C4 1 1
D2d 2 2
S4 1 1

Orthorhombic p; b.c; o.f.c; a.f.c D2h 1 1 1 1
D2 1 1 1 1
C2v 1 1 2 1

Hexagonal p. D6h 1
D6 1
D3h 1
C6h 1
C6v 1
C6 1
C3h 1

p = primitive, b.c = body-centred, o.f.c = one-face-centred, a.f.c =
all-face centred.

and not a monoclinic crystallographic point group). Is the lattice face that is centred (in
the one-face-centred case) parallel to or perpendicular to the twofold axes? The answer
is that both are possible and so two space groups are obtained but not the expected one.
The duality arises from a degree of freedom between the lattice and its relationship to
the crystallographic point group that was ignored in the analysis of the previous sections.
Similarly, in the D3h, hexagonal, case, in the group defining the parent lattice, D6h, there are
two distinct sets of mirror plane reflections perpendicular to the sixfold axis. In D3h, only
one of the sets is retained. In the parent D6h lattice one of the associated sets of symmetry
elements contains the translation vectors and the other bisects the angle between them.
Which set is retained in D3h? The answer is that either is possible – but two different space
groups are obtained as a result.

Problem 13.7 By sketching a one-face – centred orthorhombic lattice and placing
atoms in it in two different ways, illustrate the two different space groups which were
the subject of the above discussion.

Having thus seen how the relatively small errors in Table 13.6 arise, what of the problem
of the apparent gross error in prediction for the trigonal case? The extension of Table 13.7a
to cover this crystal system is given in Table 13.7b.

This extension is most strange when compared with Table 13.7a because again the number
1 is expected, if not everywhere, at least to be predominant – but it does not appear! Matters
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Table 13.7b

Crystallographic
System Bravais lattice point group

Trigonal p. D3d 3
D3 3
C3v 3
C3 2
S6 2

would perhaps be improved if there were two primitive trigonal Bravais lattices, not just
one (for then the number 2 would be expected rather than 1), but even then there would
be a problem – the ‘additional’ errors occur for the higher symmetry point groups, not the
lower, which is where they were found in Table 13.7a. To deal with the former problem
first. In fact, there has been a long-standing argument about the number of trigonal Bravais
lattices. There have been those who have argued that there are fifteen, not fourteen, Bravais
lattices, and that two of them are trigonal. Indeed, the very first listing ever given of these
lattices gave a total of fifteen. The number was reduced to fourteen by Bravais who showed
mathematically that two of the fifteen could be similarly described. Were there to be two
trigonal lattices, then they would both have to be primitive – and, surprise surprise, this is
where the argument has arisen! The primitive trigonal lattice was introduced as one of those
obtained when the symmetry of a primitive Oh lattice is reduced but later, in tables, this
was associated with the word ‘rhombohedral’. A rhombohedral unit cell6 can be pictured as
obtained when opposite corners of a cube are either symmetrically compressed or stretched
as shown in Figure 13.9. In a sense, this is the ‘true’ trigonal lattice. The second has
already been met as the hexagonal. As Table 13.2 shows, this lattice is characterized by
two equivalent vectors at 120◦ to each other and a third at 90◦ to the other pair. Nothing
else is specified about this third vector. But, from Figure 13.6 and the associated discussion,
the angle of 120◦ (a value that requires that there also be angles of 60◦) could mean that
the third vector is either a C6 or a C3. The former value gives rise to the hexagonal lattice,
and the latter to a trigonal. But since the lattice has already been listed under the heading
‘hexagonal’ we cannot include it a second time as a trigonal. In that a sixfold axis implies
a coincident threefold – but not vice versa – its listing as a hexagonal lattice is clearly
correct.

One problem has now been solved; each and every entry in Table 13.7b should be ‘2’ –
but this still leaves unanswered the problem posed by the fact that three are ‘3’. Why? In
fact, the answer has already been given. It was met when discussing the fact that in the
hexagonal crystal system there were two different ways of introducing a D3h arrangement
of atoms. Either the vertical mirror planes of this group were coincident with the directions
of two of the primitive translation vectors defining the hexagonal lattice or the mirror planes
interleaved the vector directions. It is essentially these two possibilities which give rise to
the additional trigonal space groups, except that for the D3 case there are no mirror planes

6 The following discussion becomes easier to visualize if unit cells are regarded as building blocks, rather than focusing on
the associated lattices.
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Figure 13.9 The three primitive translation vectors of the rhombohedral lattice are interrelated by

threefold rotation operations. There are no restrictions on the angles between the vectors, although

at certain angles special lattices are generated (90◦ gives the primitive cubic, for instance)

and it is the corresponding alternative orientations of the twofold axes which is relevant.
For groups without these symmetry elements this ambiguity does not arise and so these
have only the now-expected ‘2’ in Table 13.7b.

Problem 13.8 Explain why the number 1 does not appear in Table 13.7b.

The end of this section has almost been reached but before concluding it there are
two questions demanding answers. First, the section was headed ‘The symmorphic space
groups’ – yet the word ‘symmorphic’ not not been explained. What is it all about? In this
section our concern has been with those space groups that arise from the combination of
translation operations with point group operations. In making these combinations, life was
made simple by the fact that these two types of operations were quite distinct. The space
groups that result are called the symmorphic space groups. The name itself is of little sig-
nificance until we work with the other space groups, the non-symmorphic space groups.
These will be the concern of the next section. The final question arises because Table 13.7a
gives the number of space groups of a particular type that exist. This implies that there
is some source book containing all such information. Indeed there is, and much study in
the field is impossible without a copy to hand. The book is called International Tables for
Crystallography and it is revised from time to time; with each revision it gets bigger, which
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is the reason why some prefer the early editions. An Internet version is now available.7 As
its name makes clear, the book was originally written for crystallographers, although a real
attempt has been made to make it more generally accessible. A problem is that it is written
using the nomenclature of crystallographers, a nomenclature that is rather different from
that used so far in this book. However, given the unique position of the book, there is no
alternative to working in the crystallographers’ notation when using it. A brief introduction
to this, the Hermann–Mauguin notation, is given in Appendix 5.

13.5 The non-symmorphic space groups

At the beginning of this chapter it was stated that there are 230 space groups but in the
previous section only 73 symmorphic space groups were met. It follows that there are
157 non-symmorphic space groups, whatever the name means. The vast majority of non-
symmorphic space groups are distinguished by the fact that, whilst the lattices are the
Bravais lattices of Table 13.3, one or more of the point group symmetry elements that
combine with them (to give complete space groups) contain a translation component. This
combination of a point group operation with a non-primitive translation is a characteristic
of non-symmorphic space groups.8 So, a typical situation is one in which a twofold rotation
operation has a translation component added to it. Any such translation component cannot
be a primitive translation because all of these have already been included in the translation
vector set. Double counting is not allowed! A C2 rotation carried out twice is equal to
the identity, leave alone, operation. If a translation is to be included along with the C2

then the composite operation carried out twice must also give the identity. It follows that
any translation associated with a C2 has to be of one-half of a primitive translation in the
direction of the twofold axis. Carrying out the operation twice would then give a single
translation step. But as already has been said, this is in the translation group, not the point
group. So, our identity remains the identity as far as the point group is concerned. The way
that operations originally associated with a point group can apparently be transferred to a
translation group clearly merits detailed discussion.

At the present point it is sufficient to recognize that only well-defined non-primitive
translations can be associated with point group operations. The operation in which a non-
primitive translation is associated with a rotation operation is called a screw rotation and the
axis is a screw axis. In Hermann–Mauguin notation the screw axis just discussed is denoted
a 21 axis (pronounced ‘two one axis’). Here, the 2 is the Hermann–Mauguin equivalent of
that which we have so far in this book called C2. The subscript 1 means that associated with
the 2 is a non-primitive translation of an amount equal to one of the two steps needed to
give a pure translation. It therefore corresponds to one-half of a primitive translation in the
direction of the 2 axis. In a similar way, a 31 axis involves one-third of a primitive translation
in the direction of the threefold axis and 41 one-quarter of a primitive translation. These last
two examples show more clearly than the first why the axes are called ‘screw’ axes. The
act of putting a screw into a piece of wood involves a simultaneous rotation and translation

7 Relevant to the present chapter is Volume A, details of which are available on-line at http://www.iucr.org/a.
8 But it does not completely define them. As will be seen, it is possible to get the same effect by moving the position of a set

of axes in space and the complete definition has to take account of this.
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of the screw. So here, we have a combination of a rotation with a translation. However,
these last two examples also point to a problem. Most screws are right-hand but some are
left-hand (many a would-be mechanic has ruined a mechanism because of an unexpected
left-handed screw!). Which do we have here? The answer is met by a convention: 31 and
41 refer to right-handed screws but 32 and 43 refer to left-handed (these latter two might
equally well be written as 3−1 and 4−1 but this is never done). Right-handed screws go into
the wood when rotated clockwise, viewed from the screwdriver end.

It is not just rotation operations that can be combined with non-primitive translations.
So, too, can mirror plane reflection operations. Mirror plane reflections combined with
non-primitive translations (and these are always halves of primitive translations because
two reflections in a mirror plane give the identity) are called glide planes and are denoted
by the direction in which the translation associated with the glide occurs. So, in an ‘a glide’
the translation is one-half of a primitive translation in the x direction, in a ‘b glide’ the
translation is in the y direction, and so on. The requirement on the non-primitive translation
associated with a glide plane is that it lies in a plane parallel to that of the mirror plane. It can,
therefore, be composed of half-primitive translations along more than one axis. Such glides
involving two half-primitive translations are denoted by the letter n (for ‘net’, because they
span the diagonals of a two-dimensional net), and those involving three by the letter d (for
‘diamond’, because they occur in the diamond lattice). The identity cannot be associated
with a non-primitive translation (if it did, the identity would lose its meaning in the point
group) and the operation of inversion in a centre of symmetry is not associated with a
non-primitive translation. For inversion in a centre of symmetry there is a choice. Either it
could be combined with a non-primitive translation (which would have to be one-half of a
primitive) or, because inversion is an operation which operates about a unique point, the point
can simply be moved to a new position which is displaced from the ‘original’ by one-quarter
of the corresponding primitive translation – the overall effect is the same (Figure 13.10). By
adopting the latter choice the need to formally specify the translation involved is avoided
and this makes life easier. So, the diagrams in International Tables, which show centres
of symmetry as points, have this latter choice built-in. A similar (sideways) translation of
rotation axes occurs when a non-primitive translation concerned is perpendicular to the
rotation axis. However, these ‘hidden’ non-primitive translations seldom occur on their
own. They normally occur as a consequence of the presence of one or more of the formally
defined non-primitive translations.

At first sight, all this notation appears rather complicated and one fears that the detailed
discussion of the non-symmorphic space groups will be too. In fact, these fears are not
really justified. Given the plethora of possible ways of combining translations with rotations
and reflections, and the multitude of ways in which axes and centres of symmetry can be
displaced, an enormous number of non-symmorphic space groups would be expected. But,
as we have already seen, whilst the number of non-symmorphic space groups is greater
than the number of symmorphic, there are only about twice as many. The reason is to be
found in the group algebra. The combination of any two operations must be equivalent to
a single operation. This requirement drastically limits the possibilities. Table 13.8 is the
non-symmorphic space group equivalent of an enlarged version of Table 13.7, listing the
number of non-symmorphic space groups associated with each point group. It is evident
that the non-symmorphic space groups are rather unevenly distributed. There can be more,
the same or fewer (even zero) non-symmorphic space groups associated with the point
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Figure 13.10 The action of inversion in a centre of symmetry followed by a translation of one half

of a primitive translation (upper) is equivalent to inverting in a centre of symmetry which has been

moved by one quarter of the primitive translation

group. For comparison, Table 13.8 gives, in parentheses, the corresponding data for the
symmorphic space groups.

Problem 13.9 Draw separate diagrams to illustrate 21, 31, 41, 32 and 42 screw axes
and others to illustrate a, b, c, n and d glides.

It is not possible to give a simple discussion of the number of non-symmorphic space
groups to parallel that for the symmorphic. However, some general comments on Table
13.8 may be helpful. Generally, the number of non-symmorphic space groups associated
with a crystallographic point group is comparable with the number of symmorphic. When
the number of symmetry operations that can be combined with a non-primitive translation
is small, so too is the number of non-symmorphic space groups. So, when there is a large
number it tends to be with that point group which has the full lattice symmetry – although
when there are alternative ways of matching a point group with a lattice an enhanced number
also results. The non-primitive translations associated with a C2 (2) axis and a mirror plane
σ (m) are both one-half of a primitive translation. This communality means that they can
interplay in space groups – and this increases the number possible. So, the groups in Table
13.8 that give rise to the largest number of space groups are those which contain both 2 and
m operations. Beyond these generalities it is best to proceed with specific examples and a
selection is given in Appendix 6.
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Table 13.8

Crystallographic Number of non-symmorphic (Number of symmorphic
System point group space groups space groups)

Cubic O h 7 (3)
T d 3 (3)
O 5 (3)
T h 4 (3)
T 2 (3)

Tetragonal D 4h 18 (2)
D 4 8 (4)
C 4h 4 (2)
C 4v 10 (2)
C 4 4 (2)
D 2d 8 (4)
S4 0 (2)

Orthorhombic D 2h 24 (4)
D 2 5 (4)
C 2v 17 (5)

Monoclinic C 2h 4 (2)
C s 2 (2)
C 2 2 (1)

Triclinic C i 0 (1)
C 1 0 (1)

Hexagonal D 6h 3 (1)
D 6 5 (1)
D 3h 2 (2)
C 6h 3 (1)
C 6v 3 (1)
C 6 5 (1)
C 3h 0 (1)

Trigonal D 3d 3 (3)
D 3 4 (3)
C 3v 3 (3)
C 3 2 (2)
S6 0 (2)

13.6 Unit cells

In the early part of this chapter care was taken to avoid use of the term ‘unit cell’. Later, and
particularly when space groups were discussed, it crept in, although its use was kept to a
minimum. The name is so simple and useful that it cannot long be avoided. Why then should
it be so assiduously avoided in the present text? The reason is that the concept of a unit cell
is more complicated than one might suppose and it is preferable to avoid basing arguments
on an unknowingly simplified concept. Where, then, lies the problem? The answer is that
for no crystal structure is there a unique unit cell. Indeed, quite the opposite. For every
crystal structure there is an infinite number of acceptable unit cells, all of them primitive
(of course, crystallographers will prefer non-primitive unit cells for some structures). This
infinite choice is important – it is the reason for including this section – but it should be
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Figure 13.11 Six different equally acceptable (although not necessarily equally convenient) choices

of two-dimensional unit cell for the two-dimensional lattice shown. All of the choices have identical

areas. Clearly, there is an infinite number of acceptable choices. Similar considerations apply to the

three-dimensional case

contrasted with the common use of the expression ‘the unit cell is. . .’ in research papers
and textbooks when referring to individual crystal structures, a statement which by the use
of the ‘the’ implies that only a single choice exists for a unit cell. Of course, the use is
justified in that for one reason or another there is often a single convenient choice, but it
is important not to overlook the possibility that for a different purpose a different choice
might be preferable.

In Figure 13.11 is shown a two-dimensional grid that might be one layer in an orthorhom-
bic lattice. The figure shows several alternative choices of two-dimensional unit cells, all of
the same area but differing in shape. Clearly, a similar set of constructions is possible in the
third dimension of an orthorhombic (or any other) lattice. For each of these constructions
an infinite number of variants exist, at least for an infinite lattice (and on the atomic length
scale the lattice of a real crystal is, effectively, infinite). The most obvious simplification,
that almost invariably adopted, is to choose those translational vectors (or unit cell edges)
which are the smallest in magnitude. These lead to the chunkiest possible unit cell, one
which makes diagrams of the atomic arrangement within it easiest to draw and understand.
Nonetheless, an infinity of alternative choices exist. But this discussion has been too re-
strictive! Yet more choice exists. First, it has unquestioningly been accepted that unit cells
should be bounded by plane faces. Again, this is a choice of convention and convenience; it
is not a requirement. The faces of a unit cell can be curved, dimpled, re-entrant, whatever.
There is one requirement of a unit cell: that when repeatedly operated on by the primitive
translation vectors it generates the entire crystal (or crystal lattice, depending on the context)
completely.

Problem 13.10 Draw a diagram similar to that in Figure 13.11 but with all unit cell
edges curved.

A second reason why our statement ‘that there is an infinite variety of choice of unit cell’
was too restrictive lies in the fact that all the unit cells considered had one thing in common;
they were each bounded by three pairs of parallel faces. Even if we restrict ourselves to
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plane faces, a unit cell can have many more than three sets of parallel plane faces. Indeed,
if one were to select one choice of unit cell as being preferred to all others then it would
generally be one with many facets, many faces. After all that has just been said about unit
cells this is a strange message – that one choice of unit cell is to be preferred. It is made
more strange by the fact that the actual preferred choice of cell is very different from that
which is familiar to chemists – the unit cells of crystallographers. The final section of this
chapter describes these strange (to the chemist, but not the physicist) unit cells.

Problem 13.11 Repeat Problem 13.3. – the answer should be longer this time!

13.7 Wigner–Seitz unit cells

Wigner–Seitz unit cells are essential to a full understanding of the solid state. This is
because Brillouin zones, which are at the heart of solid state physics, are a sort of Wigner–
Seitz unit cell.9 The construction of Wigner–Seitz unit cells is perhaps best explained in a
somewhat unreal, anthropomorphic, way. Suppose the reader is reduced to the dimensions
of an atom and is standing at a lattice site (alternatively, that the lattice is so enlarged that a
person can stand inside it). From the chosen lattice site draw lines to all other (equivalent,
of course) lattice sites. The chosen lattice site bristles with lines, rather like a curled up
hedgehog/porcupine. Now, exactly halfway along each line, construct a plane perpendicular
to the line; it is perhaps helpful to think of these planes as being rather solid. Standing at the
chosen lattice site, and forgetting the lines used in their construction, the reader will find
themself surrounded by the planes originating from the shortest lines, those running to the
nearest lattice points. These planes will intersect and, although the planes themselves run
to infinity, all that will be seen is the box formed by their intersection immediately around
the chosen lattice point. On the real, atomic, scale, this box is the Wigner–Seitz unit cell
of the lattice. In Figure 13.12 are given examples of Wigner–Seitz unit cells. Note several
things. First, a Wigner–Seitz unit cell has a lattice point at its centre and nowhere else;
the unit cells encountered in most textbooks have lattice points at their corners. Second,
a Wigner–Seitz unit cell, by its very construction, contains only a single lattice point; all
Wigner–Seitz unit cells are primitive. Third, the number of faces of a Wigner–Seitz unit
cell is determined by the number of neighbours and their disposition in space. As will be
seen from Figure 13.12, it is not unusual for a Wigner–Seitz unit cell to have a dozen or so
faces – this is not unreasonable, because each sphere in an array of close-packed spheres
has twelve nearest neighbours. Fourth, each Wigner–Seitz unit cell has the symmetry of its
crystal system. That is, whereas the primitive unit cells of centred lattices shown in Figure
13.8b all had symmetries lower than those of their crystal systems – those listed in Table
13.2 – all of the cubic Wigner–Seitz unit cells are of Oh symmetry, for example.

What makes the Wigner–Seitz unit cell unique? Two things. First, it is the only choice
of primitive cell which invariably has the point group symmetry of its crystal system.
Second, it has a property shared by no other choice of unit cell, a property that is evident

9 The development of Brillouin zone theory is not given in the present text; the author has written about it elsewhere in a
manner which is entirely compatible with the present discussion (see S.F.A. Kettle, Physical Inorganic Chemistry Chapter 17,
Oxford University Press, Oxford, 1998).
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from its construction: it contains all (general, not lattice) points in space that are closer
to the chosen lattice point than to any other lattice point. This is an important property.
Suppose, for instance, that some spectroscopic property of a crystal is studied; the partic-
ular form of spectroscopy is unimportant. It is possible that the spectrum obtained would
show evidence of interaction between individual atoms/bonds/molecules (depending on the
particular spectroscopy) and their environment. In order better to understand the spectrum,
one might attempt to calculate the interaction between a given atom/bond/molecule and
every other in the crystal. Even with the fastest and most powerful of modern computers,
this is a near-impossible task, one that would exhaust any research budget. As a compro-
mise, it might be decided to carry out calculations of the interactions between the given
atom/bond/molecule and all those others with which it interacts more strongly than does

Figure 13.12 (a) The Wigner–Seitz unit cells of three primitive lattices. The conventional unit cell

has lattice points at its corners; the Wigner–Seitz unit cell has a single lattice point at its centre.

The Wigner–Seitz cells are drawn showing the proximate lattice points which give rise to faces of

the cell (see the text for a discussion).(Continued)
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Figure 13.12 (Continued) (b) The Wigner–Seitz unit cells of four centred lattices. As the Wigner–

Seitz unit cell is always primitive it is smaller (in three examples a factor of 1/2 and in one example

a factor of 1/4) than its conventional counterpart. The Wigner–Seitz cells are drawn showing the

proximate lattice points which give rise to faces of the cell (see the text for a discussion)

any other equivalent atom/bond/molecule (because these are likely to be the most important
interactions). Which, then, are the atoms that have to be considered? The answer is simple:
all those contained within the Wigner–Seitz unit cell which has the atom/bond/molecule
at its centre. The only assumption contained within this statement is that the magnitude of
the relevant individual interactions decreases with increase in separation between the in-
teracting centres, as do all interactions of recognized chemical importance. There are more
than fourteen Wigner–Seitz unit cells (only a selection is shown in Figure 13.12) because,
although in principle there is one for each different Bravais lattice, the actual shape of a
Wigner–Seitz unit cell depends on an axial ratio. In a primitive tetragonal lattice, for in-
stance, does the unique translational vector have a magnitude which is greater or less than
the magnitude of the other two translational vectors? The symmetry of the Wigner–Seitz
unit cell is D4h in both cases but the cells look qualitatively different. In total, there are
twenty-four different-looking Wigner–Seitz unit cells.



JWBK182-13 JWBK182/Kettle September 13, 2007 18:4

330 SPACE GROUPS

13.8 Summary

Although there are only seven crystal systems there are fourteen associated Bravais lattices,
all of which are centrosymmetric (p. 302). Corresponding to each crystal system there is a
set of point groups which may describe the symmetry-distinct arrangements of molecules
in space compatible with the crystal system (p. 311, 317). The symmorphic space groups
are obtained as the combination of all Bravais lattices and all crystallographic point groups
of each crystal system, due allowance being made for alternative orientation arrangements
(p. 318). The non-symmorphic space groups are similarly obtained but for each there is a
non-primitive translation associated with one or more point group operations and/or with
the relative disposition in space of the corresponding symmetry elements (such a movement
of a symmetry element automatically changes the translation component contained in the
associated operation) (p. 322, 325). For any crystal there is only one choice of lattice but
an infinite number of choices of unit cell (p. 326). Of these, the Wigner–Seitz unit cell
invariably shows the symmetry of the crystal system (p. 327).
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14 Spectroscopic studies
of crystals

14.1 Translational invariance

The discussion of the previous chapter contained two contributory components – that com-
ing from the lattice and that coming from the crystallographic point group. The allowed
combinations of these parts led to the 230 space groups. However, the discussion was
rather different from that in other chapters of this book in that there was no mention of a
character table, only of symmetry elements and operations. In this chapter we will begin
to introduce space group character tables. Again, there are two distinct approaches which
may be adopted, that through the lattice and that through the crystallographic point group.
The former is that appropriate to solid state physics – it leads to the development of band
theory, relevant to such topics as the electronic energy level patterns in solids. The latter is
more appropriate to spectroscopic studies of solids and is the one which will be the subject
of this chapter. A major distinction between the two approaches arises from the fact that
there is, effectively, an infinite number of translation operations in the translation group of
the lattice but the crystallographic point group is finite. The full space group combines, in
some way, both the translation group and the point group. Whichever one chooses to work
with, one should really be using the full space group and its character table – and so the
relationship between this full group and the one being used is very relevant. There are two
aspects to this relationship – the mathematical and the physical. Although both are relevant
it is arguable that the latter has the greater importance. Unless a mathematical relationship
has some physical significance it remains nothing more than an elegant irrelevance. First
then, it is necessary to look at spectroscopic measurements on crystals in the large, in order
to discover those aspects which enable mathematical simplifications.

The most general and relevant aspect of spectroscopic measurements on crystals is that
of scale. A typical translation vector in a crystal relating adjacent equivalent points has a
magnitude of a few Ångstroms (this is a quantity which would normally be quoted as the
length of a unit cell edge, although it could equally well be called a translation vector). In
contrast, the wavelength of visible radiation is of the order of a few thousand Ångstroms.
In the infrared the wavelength is much longer and even in the vacuum ultraviolet it is a few
hundred Ångstroms. Only for x-rays does the wavelength of the radiation become com-
parable to or smaller than the length of a typical primitive translation vector in a crystal.
This is relevant to the classical explanation of the interaction of light with matter given in

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Section 4.5. There, typically, the electric vector of an incident light wave was seen as induc-
ing a transient charge displacement in a molecule. This charge displacement changes sign
with the oscillations of the electric vector; when these oscillations coincide with a natural
frequency of the molecule then resonance occurs, typically with transfer of energy to the
molecule. This picture carries over, unmodified, into the spectroscopy of crystals. How-
ever, it can be enlarged by recognition of the enormous difference between the wavelength
of the incident radiation and the magnitude of a typical primitive translation vector. In a
crystal, molecules which are close to each other and related by pure translation operations
will experience essentially the same incident electric vector originating in the light wave.
Indeed, they can be thousands of Ångstroms apart and still experience, essentially, the same
electric vector. The fact that different molecules are related by a pure translation means that
they have precisely identical orientations with respect to the incident light wave (ignoring
any small imperfections in the crystal). To a first approximation, then, for all common
spectroscopies the interaction of light with a crystal is a translation-independent process.

Problem 14.1 Neutrons can have wavelengths which are comparable to interatomic
separations. What main extensions would have to be made to the discussion in the text
to cover their use to probe the vibrational properties of crystals (they can be inelastically
scattered, in a sort of Raman process)? Diffraction effects can be ignored.

Translationally related molecules behave in the same way; get the answer for one molecule
and you have it for them all. The same cannot be said of molecules that are related by point
group operations (or composite operations with a point group component). A 2 (C2) rotation,
for example, ‘turns a molecule over’ so that if there two molecules interrelated by a 2 (C2)
they would experience precisely opposite transient dipoles induced by the electric vector
of a light wave. For two molecules interrelated by a 21 screw operation, the 2 would ensure
that the induced dipoles are out of phase; the non-primitive translation component of the
operation would be irrelevant for the reasons given above. The conclusion is that ‘the only
important aspect of solid state symmetry which is relevant to spectroscopy is that contained
in the crystallographic point group’. Even if the actual ‘point’ group is a derivative of a
real point group (if the actual ‘point’ group contains non-primitive translation operations,
as discussed in Chapter 13), then it still will be possible to work with one of the thirty-two
crystallographic point groups. This, then, is the physical picture. Can it be given a more
formal, mathematical, justification? The answer is ‘yes’; indeed, more than one such formal
justification exists. The different justifications are those associated with different models –
two, in particular, are important – the unit cell group model and the factor group model.
Fortunately, these two models invariably lead to identical predictions although the latter is
perhaps the closer related to the detailed discussion above. The next section is devoted to
these models.

One final word about the physical picture. The content of the present chapter is based
on the assumption that there is an interaction of some sort between the molecules in the
crystal under study. If they behave as isolated individuals then there are no spectroscopic
complications arising from the fact that the solid state is involved. Indeed, quite the opposite.
The molecules may behave as if they were in the gas phase (where there certainly would be
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no molecule–molecule interactions) but they are, in fact, fixed in a crystal and that means
that, in contrast to the gas phase, they are fixed in their orientations. This is a topic discussed
at the end of Chapter 4, where it was pointed out that this can mean a change in the spectral
bands excited as the orientation of the crystal is changed (provided that oriented, polarized,
radiation is used). This, so-called oriented gas model will not be discussed in detail (in
truth, there is little that could be added to what has already been said) although it should
be emphasized that it can well happen that it is applicable to some spectral bands arising
from a crystal – but that one of the models to be covered in the next section has to be used
for others. This is because, for instance, some vibrational modes of a molecule may be
well insulated from those of the surrounding molecules but other vibrational modes of the
same molecule are not. A vibration which changes the dipole of a molecule is more likely
to be coupled with the same vibrations of other molecules than is a vibration which is,
say, quadrupole active because dipole–dipole coupling attenuates less rapidly with distance
than does quadrupole–quadrupole. Another possibility is that a molecule is sensitive to
its general environment but, nonetheless, is insulated from specific interactions with other
molecules. It is sensitive only to the symmetry of the site in the crystal at which it is situated.
Almost always, this site is of lower symmetry than that of the isolated molecule and so the
site symmetry model is characterized by the splitting of degeneracies and by the increased
strength (and, perhaps, the appearance) of transitions forbidden in the isolated molecule.
The first task of any analysis is to determine which model is appropriate for each spectral
feature. An example of the application of the oriented gas and site symmetry models will
be given later in this chapter.

Problem 14.2 AsBr3 has a C3v structure, like NH3 (Chapter 7). Some is trapped within
a plastic film matrix, in the hope that when the film is stretched oriented molecules of
AsBr3 will be obtained. First, however, it is necessary to determine whether the oriented
gas or site symmetry model best describes the molecular vibrations in the unstretched
film. Suggest an experimental distinction, assuming that all molecules occupy identical
sites in the film.

14.2 The factor group and unit cell group models

In this section, as in the previous, it is convenient to talk in terms of ‘molecules’, although
in the appropriate context the discussion could equally well apply to atoms or to ions. The
first approach to be considered is the factor group model. Clearly, the first task is to define
what is meant by ‘factor group’. In principle any group could have one or more associated
factor groups. The character tables of factor groups are invariably simpler than those of the
parent group to which they relate1 – an attractive feature; for the case of space groups, the
character tables of the corresponding factor groups are enormously simpler. The concept of

1 This statement is true whenever a factor group is non-trivial. A few groups have only factor groups which are trivial, being

identical to the parent group itself. In such cases the parent group is itself very simple, having no non-trivial invariant subgroup.
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a factor group is closely linked to that of an invariant subgroup, a topic which is covered in
some detail in Section 8.6. There it was shown that when a group is the direct product of
two invariant subgroups then its character table is the direct product of the character tables
of those of the two invariant subgroups. The particular case considered was a demonstration
that the point group C2v is the direct product of the groups C2 and Cs. Let us consider this
case again; Table 8.11 is particularly relevant. We have that:

C2 ⊗ Cs = C2v

(remember, the symbol ⊗ is used to indicate a direct product). Writing each group in full:

{ E C2 } ⊗ { E σ } = { E C2 σv σ ′
v }

The left-hand side of this expression can be written differently:

[E{ E σ } C2{ E σ }]

Written in this form, one sees a generality; the ‘inner’ group { E σ } could be varied without
changing the general form of the expression (although a change would mean that it was no
longer applicable to C2v). Alternatively, in this particular form of the expression, it can be
regarded as a constant which multiplies both the E and the C2. As a constant, it is playing the
role of an identity element. The group [E{ E σ } C2{ E σ }] is said to be the factor group
of C2v with respect to the group { E σ }, the group which plays the part of the identity
element. Most important is the fact that the character table of the factor group is that (really,
is isomorphic to that) of C2. This is a simple, almost trivial, example of a factor group.
Some meaning would be attached to it if it were possible to make some measurement on a
molecule of C2v symmetry, the result of which was independent of the σ v and σ ′

v operations.
The result would depend only on the E and the C2. In such a case, the factor group above,
a group isomorphic to C2, contains all of the relevant information. One could work in the
full group but to do so would be to add nothing new.

The situation is quite different in the solid state. As has been explained in the previous
section, to a very good approximation, spectroscopic phenomena are independent of the
translation operations. Effectively, all measurements concern transitions which transform as
the totally symmetric irreducible representation of the translation group. A detailed study
of the way that these phenomena transform under the translation operations is therefore
not of any value. Further, the translation group is always an invariant subgroup of the
full space group. It is therefore possible to form a factor group of the space group with
respect to the relevant translation group (the detailed operations of which are therefore not
of concern). The translational group plays the role of the identity; can there be a better way
of getting rid of it and all of its problems? So important are these factor groups that they
are simply referred to as ‘the factor group’ (of a particular space group). Just as each and
every space group is different so, too, are the corresponding factor groups. Sometimes, the
difference will lie in the details of the translation group and so not be evident. More evident
will be the relationship between the group of the point-group-derived operations and the
corresponding crystallographic point group. In practice, one works with the character table
of the relevant crystallographic point group. It is necessary to make the correct substitutions
(of 21 for 2, for example) and it is here that the International Tables of Crystallography
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prove invaluable,2 although they do not contain the character tables themselves. A word of
consolation. Those accustomed to working with point groups and not with factor groups may
well find the prospect of handling screw rotations and glide planes somewhat daunting –
these operations may appear in the ‘corrected’ crystallographic point group. In contrast,
those accustomed to working with factor groups welcome the appearance of screws and
glides! The reason is that, almost invariably, the character generated under such operations
is zero, whatever the problem under discussion.3 An example of the use of a factor group
in a vibrational analysis of a solid is given in the next section.

Apparently quite different from the factor group approach is the unit cell model. In this,
the problem of the translation operations is dealt with by the simple expedient of ignoring
them! The justification for this simplification is that given in the previous section – that
the spectroscopic phenomena under consideration are translation-independent. The method
consists of considering a unit cell of the crystal and the operations which interrelate the
molecules that it contains. These operations are taken to be moduli primitive translation;
any operation that takes an object out of the unit cell is held to bring it back again through
the opposite face (so, if it disappears through the top face, it reappears through the bottom –
where the operation is completed). The unit cell method ends by using the same mapping of
crystallographic point group operations onto their space group derivatives as does the factor
group and so the two methods lead to identical results. Of the two, possibly because of its
more evident connection with the results of crystal structure determinations, the unit cell
method is perhaps the more popular. It has to be recognized, however, that it suffers from
two potential weaknesses. The first is that it gives undue prominence to a particular choice
of unit cell. As has been emphasized, there is an infinite number of choices of acceptable
unit cell for any crystal. A particular choice of cell invites statements such as ‘because
in the unit cell they are well separated. . .’, which are strictly unacceptable. Acceptable
alternatives are along the lines ‘because in the crystal they are well separated . . .’ Second,
it is usual for the crystallographically determined unit cell to be used in the unit cell model.
This poses a problem when the crystallographic unit cell is centred because it is a primitive
unit cell which has to be used in the unit cell model – and the method lays down no rules
for moving from the centred to the primitive. Errors have appeared in the literature as a
result. Authors have been known to work with the centred cell rather than the primitive
(and so predict too many spectral features). Others, aware of the problem, have worked
with the centred cell and simply divided the predictions by the relevant factor (those at
the right-hand side of Table 13.3). Unfortunately, this procedure does not guarantee the
correct answer either. An example of the use of the unit cell method is given in the next
section.

2 But beware the problem of centred unit cells in the International Tables. Because the size of the unit cell is increased so,

too, is the number of point-group-derived operations which interrelate points within the unit cell – a doubled unit cell means a

doubling in the number of operations and so on. The ‘extras’ are really translation operations masquerading as point-group-derived

operations, appearing as glides and screws. In looking for the correct set of point-group-derived operations (strictly, a set which

multiply correctly, as described in Appendix 6) pure point group operations should always be retained in preference to derivatives

containing a non-primitive translation component. So, if there are 2 and 21 parallel to each other in a centred unit cell, the 21

should be ignored.
3 The exceptions to this statement are few. A long polymer chain, aligned along a screw axis, in which one monomer unit is

related to the next by the screw operation is one such exception. In such a molecule a vibration could map onto itself under the

screw operation.
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14.3 Examples of use of the factor and unit cell group models

As indicated above, in practice the factor group and unit cell group models lead to identical
predictions. Indeed, despite the fact that they were developed rather differently in the pre-
vious section, someone looking over the shoulder of a spectroscopist might well have some
difficulty in deciding which of the two was being used. The reason is that the development
of the factor group model given above concentrated on how the translation group could be
factored out of the problem. This having been agreed, the next step is to turn to the character
table of the relevant crystallographic point group – and this is the first step in the unit cell
model also. The two methods differ in subtle ways, which relate to the nuances of their
different models. In the following account, these differences will be slightly exaggerated.
Further, since it was presented as a problem area above, the unit cell model will be applied
to a crystal structure which, crystallographically, is treated as having a centred unit cell.

14.3.1 The ν(CO) spectra of crystalline (C6H6)Cr(CO)3

Whilst the effects which are the subject of this chapter may be found in all forms of
spectroscopic measurements on crystals they are more important in some forms than in
others. Roughly, the more local the phenomena observed, the less important are the effects.
So, in Mössbauer spectroscopy, where the excited states of suitable nuclei are probed, the
phenomena are so local that, essentially, only the atoms bonded to the atom under study
have any influence. On the other hand, if in a particular form of spectroscopy the spectral
bands are very broad, the effects can be masked within the bandwidth. Many measurements
made in the visible and ultraviolet regions of the spectrum, where electronic transitions
are studied, fall in this category. The solid state effects can be measured and studied but
rather special conditions are often needed – low temperatures, single crystals together with
polarized radiation and, perhaps, doping of the crystal with an isomorphous diluent. One of
the spectroscopic areas in which the phenomena are easily studied is in that of vibrational
spectroscopy, an area which has the advantage that the reader may well encounter the
relevant phenomena in the laboratory. Particularly attractive for study are transition metal
carbonyl species. For these, the ν(CO) modes are the particular concern. They fall in a
region of the spectrum which is almost free from other modes, making assignment easy.
They are associated with strong spectral bands, making measurement easy. They couple
together rather strongly giving symmetry-determined modes, making interpretation easy4

The species which is the subject of this section, (C6H6)Cr(CO)3, crystallizes in a relatively
simple space group – the space group P21/m, number 11, C2h

2. There are two molecules in
the primitive unit (‘in the unit cell’ would be the way that this is commonly put). As the
m in the P21/m indicates, the space group contains mirror planes and the (C6H6)Cr(CO)3

molecules lie on these, as shown in Figure 14.1. This means that the site symmetry is Cs,
in contrast to the molecular symmetry – which is C3v. The factor group is isomorphic to
the crystallographic point group, which is C2h (in P21/m the C2 of C2h is ‘replaced’ by the
21). In Figure 14.1 and in the following discussion, only the C O stretching modes will be
considered.

4 Easy it may be for simple species but, inevitably, research exploits this to enable the study of species which are complicated

and the spectral interpretation no longer easy!
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Figure 14.1 The crystal structure of the species (C6H6)Cr(CO)3; only the Cr(CO)3 groups are pictured,

with their perspective being exaggerated. A primitive unit is shown and consists of two molecules.

The space group is P21/m (C2h
2) and the molecular site symmetry is Cs.

Because the molecular symmetry is C3v, the prediction of the symmetries of the ν(C≡O)
stretching modes follows the discussion of Section 7.3. This latter dealt with the 1s orbitals
of the hydrogen atoms in ammonia, but if the three (C≡O) stretches of (C6H6)Cr(CO)3

are considered instead, identical results are obtained; A1 + E are the symmetry species.
Application of the criteria described in Section 4.5 shows that these modes are both infrared
and Raman active. This is a single-molecule model, which in a solid state context would
be called the ‘isolated molecule model’. It is also that of the oriented gas model, leading
to identical predictions. The oriented gas model differs from that of the isolated molecule
because the former would recognize that the molecular C3 axes are almost exactly aligned
along the crystal c (z) axis. This means that if a single crystal were studied and if the
incident infrared radiation were polarized along z then only the A1 mode would appear with
any great intensity in the infrared spectrum (the A1 mode is polarized along the molecular
C3 axis). When polarized perpendicular to the z axis, only the E modes would be seen.
With suitable experimental arrangements, a similar separation could also be achieved in
the Raman. Without these experimental distinctions, the isolated molecule and oriented gas
models both simply predict two bands, coincident in infrared and Raman.5

5 A further distinction between isolated and oriented gas models is that there is an environment-induced frequency shift of

spectral features from the isolated molecule to the oriented gas model. However, it is rare for isolated molecule data to be available

(as opposed to data from species in solution – which is not really that of isolated molecules) so this is seldom a useful distinction.
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The site group model is based on the fact that the molecules of (C6H6) Cr(CO)3 are
symmetrically arranged with respect to the mirror planes of P21/m. The three ν(C O)
vibrators of each molecule are therefore, collectively, in an environment of Cs symmetry.
The relationship between the groups C3v and Cs was dealt with in Chapter 9 (Table 9.6
or Figure 9.5), from which it follows that the major effect of site symmetry is to split the
degeneracy of the E modes of C3v. Spectral activities remain unchanged so the prediction of
the site group model is for three infrared bands (two of which, the components of the split
E mode, will probably be close together) and three Raman bands, coincident with those in
the infrared.

The factor group model will be dealt with in some detail. At the heart of the model is the
fact that the translation operations can be ignored. Only the point-group-derived operations
isomorphous to those of C2h need be considered. The relationship between the operations
of P21/m and C2h is:

C2h E C2 i σh

P21/m E 21 i m

where a somewhat mixed nomenclature has been adopted for the operations of the crys-
tallographic point group.6 This means that the character table for the C2h

2 (P21/m) factor
group can be derived from that given for C2h in Appendix 3 (conventionally, there is no
explicit reference to the translation group which has been ‘factored out’) and is:

Table 14.1

C 2
2h E 21 i m

Ag 1 1 1 1 R z x 2;y2;z2; xy

Bg 1 −1 1 −1 R x ;R y yz;zx

Au 1 1 −1 −1 Tz z

Bu 1 −1 −1 1 T x ;T y x ;y

The next task is to use the six ν(C O) vibrators of two (C6H6)Cr(CO)3 molecules (Z,
the number of molecules in the primitive unit, is 2) as a basis to generate a reducible
representation. In doing this it has to be remembered that, for example, both of the mirror
planes in Figure 14.1 are, effectively, equivalent. The act of reflection of an object in two
different mirror planes in this figure will lead to results which differ only in primitive
translations – and these have been taken out of the problem by the use of the factor group.
As far as the point group component is concerned, the final results are identical. So, the fact
that the two molecules shown in Figure 14.1 lie on two apparently different mirror planes
is no problem; the mirror planes are treated as one. Alternatively, each M(C O)3 unit is
reflected in the mirror plane on which it lies. From Figure 14.1 the reducible representation

6 In the Hermann–Mauguin notation the identity element is denoted by 1; the centre of symmetry is 1̄. However, these are

symmetry elements and in group theory it is the corresponding operations that are relevant. Further, characters such as 1 and −1

will be generated in the application of these operations. To avoid possible confusion, the Schönflies symbols E and i are therefore

used to denote the operations.
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Infra-red

Raman

Figure 14.2 A comparison of the infrared and Raman spectra of crystalline (C6H6)Cr(CO)3 in the

ν(C≡O) region. Either the infrared or Raman on its own could be interpreted as originating in the

A1 + E modes of the isolated molecule (the E mode of the C 3v molecule being split by the lowered

site symmetry, C s). However, comparison of the two indicates a general non-coincidence, explicable

only in terms of the factor group model

generated by the transformation of the ν(C O) vibrators is easily shown to be:

E 21 i m

6 0 0 2

which has components 2Ag + Bg + Au + 2Bu.7 As the character table above shows, all of
the modes with a g suffix are Raman active and all of those with a u are infrared active.
The factor group predictions are therefore for three infrared bands and three Raman bands,
non-coincident with the infrared. The observed spectra are shown in Figure 14.2 and are
entirely in accord with these predictions. In both infrared and Raman, two bands are close
together and identified as derived from the split E mode discussed under the site symmetry
model above. The sequence of increasing complexity:

Oriented gas model → Site symmetry model → Factor group model

should not be taken as meaning that the applicability of a more sophisticated model auto-
matically invalidates all of the conclusions derived from a simpler model. So, as here, the
site symmetry model can help in the application of the factor group, because it correctly
predicts a split E mode.

7 Note, as mentioned earlier, the character of 0 under the operation which contains a non-primitive translation component.

This is because such operations almost invariably interrelate different molecules (and so, here, different vibrators).
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Figure 14.3 The diagram for the space group C2/c that appears in the International Tables of

Crystallography. The translation vectors – multiples of which generate the entire crystal from this

unit cell – have been added (that out-of-the-plane has been shown in symbolic fashion; actually, it

is not perpendicular to the other two – the lattice is monoclinic). The meaning of the two different

sorts of dotted lines is given in the text

14.3.2 The vibrational spectrum of a M(C O)3 species crystallizing in the C2/c
(C2h

6) space group using the unit cell model

One of the simplest of the centred space groups is C2/c and this simplicity is why it has
been chosen as an example; it provides sufficient generality for more complicated cases
subsequently to be treated with some confidence. A modified version of the diagram that
appears in the International Tables for Crystallography for this space group is given in
Figure 14.3. The C in C2/c indicates that it is the face perpendicular to the c (z) axis which
is centred, the unique (twofold) axis being b (y) (because this is the crystallographers’
convention for monoclinic systems). As the alternative name for the space group, C2h

6,
shows, the relevant unit cell group is C2h (the superscript 6 indicates that it is the sixth
C2h space group listed in the International Tables, nothing more). The first question that
arises is that of the relationship between the operations of the two groups. Figure 14.3
shows an immediate problem, one that has been mentioned previously - but largely in a
different context and with a different explanation: it contains too many symmetry elements.
For instance, not only are there twofold rotation axes (shown as the arrows pointing along
y) but, interleaving them, 21 axes (shown as half-headed arrows pointing in the y direction).
As befits C2h, the glide planes are perpendicular to the twofold axes but, again, there are
two sorts. Those shown dotted are glides in which the translation component is along c
(out of the plane of the paper), as required by the /c in the name of the space group.
Shown dot-dashed are glides in which the translation contains both c and a components
(one-half of a unit cell edge in each case). There is no mention of these latter glides in the
name of the space group. Finally, although less obvious, there are twice as many centres of
symmetry as are expected. These doublings result from the fact that Figure 14.3 contains
two primitive units, units which are interrelated by a pure translation operation. If, as is
convenient for crystallographers, Figure 14.3 is regarded as containing a single unit cell
then this pure translation has to be combined with point group operations if the symmetry
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(a) (b)

Figure 14.4 (a) The grey area represents a primitive unit cell obtained from that in Figure 14.3 by

chopping it in half. The (genuine) primitive translation vectors, multiples of which generate the

entire crystal from this unit cell, have been added (that out-of-the-plane has been shown as in

Figure 14.3). The points connected by the vectors are general and have no special properties. (b)

The Wigner–Seitz unit cell corresponding to that in Figure 14.3. The (genuine) primitive translation

vectors, multiples of which generate the entire crystal from this unit cell, have been added (that

out-of-the-plane has been shown as in Figure 14.3). As required, these are the same as those shown

in (a). So that the construction of this unit cell can be followed, equivalent points are shown as black

balls and the scale has been reduced compared to that in (a). The edges of the Wigner–Seitz cell

bisect the lines drawn from the central point to the surrounding points. Each edge is perpendicular

to the line that it bisects

relationship between all points is to be recognized. Hence the doubling. The ‘extras’ are
indicated by the fact that they contain extra translation components compared with their
genuine counterparts. So, in a unit cell analysis the 21 and glide containing a and c translation
components are discarded. It is the position in space of the ‘extra’ centres of symmetry which
contains their translation component (this aspect was discussed in Chapter 13; the reason
that the twofold rotation axes – the full arrowheads – are at 1/4c was also covered there).

A unit cell model requires a unit cell. As has been emphasized many times, there is
no unique choice. Two, both shaded, are given in Figures 14.4a and 14.4b (which should
be thought of as cross-sections of three-dimensional unit cells). That in Figure 14.4a is
perhaps the more obvious, being a rectangular block from the crystallographic unit cell of
the International Tables. That shown in Figure 14.4b is the Wigner–Seitz unit cell, which
for some purposes has advantages (to show that it is a Wigner–Seitz unit cell it is drawn
with a smaller scale so that adjacent equivalent points can be shown). In both parts of Figure
14.4 the primitive translation vectors in the plane of the paper are shown; they are identical
in the two parts, as they have to be, and are non-orthogonal (not at 90◦) – in contrast to the
crystallographically preferred choice of axes (shown in Figure 14.3).

In Figure 14.5 are shown sets of M(C O)3 groups in the unit cell of Figure 14.4a (there
seems to be no actual species with data that enable the discussion to be of a real-life
example). The four sets of M(C O)3 groups, labelled α, β, γ and δ, are interrelated by the
operations of the unit cell group; the ability to carry out these conversions is at the heart of
the method. The results of the operations (applied to α) are:

C2/c E 2 i c

α β γ δ
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E

α

c

2 i

δ

β γ

Figure 14.5 The interconversion of four sets of M(C≡O)3 groups in the primitive unit cell of Figure

14.4a. The relevant operations of Figure 14.3 are used (here, i is used to denote inversion in a centre

of symmetry and c to indicate the c glide).

Of these, only the operation of the c glide presents any difficulty. The c axis is perpen-
dicular to the plane of the paper, so the c glide operation involves reflection in a mirror
plane (corresponding to the mirror plane reflection of C2h) followed by a translation of c/2
perpendicular to the plane of the paper. The result of this c/2 translation depends on the
choice of direction of translation, down or up. One of these will lead to the generation of a
M(C O)3 group within the unit cell, and the other to the generation of a M(C O)3 group
in the adjacent unit cell. In the unit cell group, the closure requirement (Appendix 1) is
achieved by the M(C O)3 group which ‘goes out’ of the unit cell and ‘comes back in’
through the opposite face (Figure 14.6, where c is in the plane of the paper). That is, the unit
cell group is defined so that it does not matter whether the translation of c/2 in the c glide is
‘up’ or ‘down’, they lead to the same result. A similar situation holds for 21 screw axes (for
31 and similar screw axes the situation is a little more complicated8). The character table
for the C6

2h unit cell group is obtained from that for C2h using the correspondences:

C2h E C2 i σh

C2/c(C6
2h) E 2 i c

and is:

Table 14.2

C 6
2h E 2 i c

Ag 1 1 1 1 R z x 2;y2;z2; xy

Bg 1 −1 1 −1 R x ;R y yz;zx

Au 1 1 −1 −1 Tz z

Bu 1 −1 −1 1 T x ;T y x ;y

8 If a 31 operation ‘takes a point out’ of the unit cell, then its reappearance through the opposite face means that it is equivalent

to (3−1)2. This is perhaps most readily seen by analogy with the point group relationship C3
+≡(C3

−)2, contained in Table 9.2.
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c

c
2

mirror

c

b a

δ

E

α

Figure 14.6 The c glide operation in the unit cell group. The ‘starting’ molecule (centre) is first

reflected in a mirror plane (shown as a square around the molecule; this mirror plane is perpendicular

to the 2 (C2) axis, as required in the point group C2h). This reflection is followed by a c/2 translation

to complete the c glide operation. If the c/2 translation is upwards (to give the black molecule)

then this molecule ‘reappears’ in the original unit cell (to give the molecule shown dotted). Had

the c/2 translation component been taken in the downwards direction, the dotted molecule would

have been that generated without the need to ‘come back into’ the unit cell

The transformations of the four M(C O)3 groups of Figure 14.5 (and so the correspond-
ing ν(C O) vibrations) are straightforward and give rise to the reducible representation:

E 2 i c

12 0 0 0

which has 3Ag + 3Bg + 3Au + 3Bu components, leading to a prediction of six infrared
active modes and six Raman active, with no coincidences. Several comments are relevant.
Because all of the characters (except that for the identity operation) are 0 no error would
have resulted had we, in error, worked with the crystallographic (doubled) unit cell and
divided the resulting reducible representation by two. However, if the problem had been
one in which there were M(C O) groups lying on a 2 (C2) axis, then these would have given
a non-zero character under this operation. On the other hand, they would have given a zero
character under the 21 operations which, apparently, exist in the (doubled) unit cell. The
reducible representations generated would have depended on just how this (unreal) dilemma
was handled. It is scarcely likely that the correct prediction would have been obtained by
dividing any of the possible answers by two!
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14.4 Summary

Most spectroscopic measurements on crystals involve phenomena which are translationally
invariant (p. 321). As a consequence, great simplification results and knowledge of the crys-
tallographic point group is sufficient to enable spectral predictions (and/or interpretations)
to be made (p. 333). The factor and unit cell groups lead to identical predictions but are only
relevant when there is coupling between corresponding transitions in different molecules9

(p. 333). As the phenomena observed become increasingly localized, the site symmetry and
oriented gas models become more applicable (p. 332).

9 Several alternative names exist which are used to describe the resulting splittings; different names tend to be the province

of different areas of spectroscopy. Whilst the names ‘factor group’ and ‘unit cell group’ splittings are readily understood because

of the content of the present chapter, the alternative names ‘correlation field’ or ‘Davydov’ splitting may also be encountered.
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Appendix 1 Groups and classes:
definitions and
examples

A1.1 Groups

In Chapter 2 a definition was given of a group which was adequate for the purposes at that
point in the text but which was incomplete; all of the requirements were not detailed. The
first object of this appendix is to remedy this deficiency and to accurately define the word
‘group’. At some points in this appendix it will implicitly be assumed that the group under
discussion does not contain an infinite number of elements. This excludes C∞v and D∞h –
but all of the general statements made can be shown to apply to these two groups also.

Suppose we have a collection of elements (some examples will be given shortly which
will help to indicate the breadth of the term ‘element’). The set of these elements, A, B,
C , . . . form a group G, written as

G = {A, B, C, . . . } if :

1 There is some law of combination which relates the elements one to another. No matter
what the precise nature of the operation of combination, it is called multiplication. So,
the fact that A combines with B to give C would be written:

AB = C (A1.1)

At the end of this section several different laws of multiplication will be given to
illustrate equation (A1.1).

Note: (a) Whenever a group is specified it is, formally, necessary to also specify
the law of combination. (b) The order in which elements multiply is important. There
is NO general requirement that, for instance,

AB = BA

so it must be assumed that, in general,

AB �= BA (A1.2)

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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More detailed consideration of this inequality will lead to the concept of class later in
this appendix.

2 Multiplication is closed (the closure requirement). That is, the product of any two
elements within a group is an element within the group.

Note: ‘An element’ here means a single element. Multiplication is single valued;
there can never be any ambiguity about the outcome of a multiplication. Thus, it can
happen that AB = C and AB = D if and only if

C = D

3 Multiplication is associative. One might think that once the multiplication of two
elements is defined there would be no problem about multiplying any number together.
This is not the case. Consider the triple product

ABC

Because we have only defined how to multiply pairs of elements we have to select a
pair from this trio and multiply them first. There is a choice between

(AB )C and A(BC )

But suppose AB = C (as above) and BC = D. Then our products are

CC and AD

It is by no means evident that these are equal unless this equality is introduced as
a requirement. This is just what the statement ‘multiplication is associative’ does. It
means that it must be true that

(AB )C = A(BC )

for the elements to form a group.
Note: This means that a string of elements can now be multiplied together. Thus,

(AB )CD = A(BC )D = AB (CD)

4 The group contains a unit element (often denoted E or I ). This unit element plays a
role which in some ways resembles that of the number 1 in ordinary arithmetic. Thus,
when it multiplies any other element of the group, A, say, the product is A, i.e.

EA = AE = A (A1.3)

5 For each element in the group there is a unique element which is its inverse. Loosely
speaking, the inverse of an element ‘undoes’ the effect of that element. Thus, C−

3 is
the inverse of C+

3 .
The inverse of the element A is usually written A−1 (in ordinary arithmetic think

of multiplying by, say, the number 7; this multiplication can be cancelled out by
multiplying again, this time by the number 7−1 = 1/7), that is,

AA−1 = A−1 A = E (A1.4)

Note: The element which has here been called A−1 would normally have another
label within the group; it could be B, for instance, or it could be A itself if A were



JWBK182-APP-01 JWBK182/Kettle September 14, 2007 16:12

SOME EXAMPLES OF GROUPS 347

self-inverse. The label A−1 is here used in preference to, say, B, because the label B
does not reveal the special relationship between A and A−1 given by the equation above.

Problem A1.1 Apply the relationships given above to the elements of the C2v group
(E , C2, σv, σ ′

v) and thus, formally, show that they comprise a group.

A1.2 Some examples of groups

The multiplication table for the C3v group has already been met – in Table 9.2 and the
associated discussion. It is reproduced below because the examples chosen in this section
have a similarity with it. The reader could be well advised to check out these similarities
and thus to illustrate the meaning of the term ‘isomorphous groups’.

Table A1.1

C3v E C+
3 C−

3 σv(1) σv(2) σv(3)

E E C+
3 C−

3 σv(1) σv(2) σv(3)

C+
3 C+

3 C−
3 E σv(2) σv(3) σv(1)

C−
3 C−

3 E C+
3 σv(3) σv(1) σv(2)

σv(1) σv(1) σv(3) σv(2) E C+
3 C−

3

σv(2) σv(2) σv(1) σv(3) C+
3 E C−

3

σv(3) σv(3) σv(2) σv(1) C−
3 C+

3 E

1 Permutation groups. The groups formed by the operations permuting n objects form a
fascinating subject for study. The character table for the so-called ‘symmetric group’
(the permutation group) with n = 2 is isomorphic to that of C2, that for n = 3 is
isomorphic to C3v and that for n = 4 is isomorphic to Td. The groups with n ≥ 5 are
not isomorphic to any point group. The symmetric groups are of potential importance
when identical particles are of interest. In chemistry these particles could be identical
nuclei but more frequently they are electrons.

The symmetric group with n = 3 has six operations; to describe them we label the
three particles a, b and c. If (a) indicates that a is not permuted, (ab) means ‘interchange
a and b’ and (abc) means cyclically permute a, b and c, then the six operations (and,
beneath each, the commonly used shorthand label) are:

(a)(b)(c) (abc) (acb) (ab)(c) (ac)(b) (a)(bc)
E P1 P2 X1 X2 X3

Using the shorthand symbols indicated (P – cyclic Permutation; X = eXchange) the
following group multiplication table is obtained.

Problem A1.2 Check that Table A1.2 is correct.
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Table A1.2

FIRST OPERATION
SECOND
OPERATION E P1 P2 X1 X2 X3

E E P1 P2 X1 X2 X3

P1 P1 P2 E X2 X3 X1

P2 P2 E P1 X3 X1 X2

X1 X1 X3 X2 E P1 P2

X2 X2 X1 X3 P2 E P1

X3 X3 X2 X1 P1 P2 E

2 Substitution groups. These are fun – and have played an important part in the devel-
opment of group theory – but do not seem to have any general application. Consider
the six functions (which, strictly, should be written E(x), P(x) etc):

E = x P = 1/(1 − x) Q = (x − 1)/x
R = 1/x S = 1 − x T = x/(x − 1)

These form a group when the law of combination is substitution as function of a
function. Thus,

SR = S(1/x) = 1 − (1/x) = (x − 1)/x = Q

and

PT = P[x/(x − 1)] = 1

1 −
(

x

x − 1

)1 = 1 − x = S

The multiplication table, given below, is isomorphic to that of the permutation group
given above (and to C3v). But the reader should be warned. The isomorphism is not
self-evident; work will be required to demonstrate it.

Problem A1.3 Check that Table A1.3 is correct.

Table A1.3

FIRST OPERATION
SECOND
OPERATION E P Q R S T

E E P Q R S T
P P Q E T R S
O Q E P S T R
R R S T E P Q
S S T R Q E P
T T R S P Q E
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3 An example of a two-colour group has been given in the discussion associated with
Figure 2.5. There, the changing of a colour was introduced as a component of a sym-
metry operation. Colour groups are of some importance in chemistry in the context of
space groups, although beyond that discussed in Chapters 13 and 14. The operations
of space groups have the effect of relating molecules in crystal lattices to one another.
But what if the molecules are not quite identical? For instance, the molecules could
be atomically identical but have opposite magnetic properties (because the electron
spins are arranged in opposite ways, for example). In this case the operation – put
colloquially – of ‘turn the magnet over’ is similar to the ‘change the colour’ operation;
it forms a composite with another symmetry operation to relate not-quite identical
objects. Two-colour space groups are also known as black and white groups or Shub-
nikov groups and can be used to describe such magnetic structures. This is not the end;
grey groups (random arrangements of two types of magnetic units over a lattice) and
polychromatic groups also exist.

A1.3 The classes of a group

When in the previous section the definition of a group was detailed it was found necessary
to recognize that the multiplication of any two elements, A and B, of a group could not be
assumed to be commutative. That is, it is not generally true that

AB = BA

(when either A or B is the identity, E , the equation is always true – it is equation (A1.3)).
This equation may hold for some pairs of operations within a group but not others (for
example, it is true for all pairs of σv operations in the C3v point group, but is untrue when
a C3 is combined with a σv, see Table A1.1). Groups for which it is true for all pairs of
elements are Abelian point groups; C2 (Chapters 2 – 4), D2h (Chapter 5) and C4 (Chapter
11) are examples of Abelian point groups. In Abelian point groups there are never two
elements in the same class. Non-Abelian point groups may have more than one element in
each class and so, in giving a more precise meaning to the word ‘class’, equation A1.2 is a
good starting point since it applies to at least some of the operations of non-Abelian groups:

AB �= BA

Multiply each side of this equation, on the right, by the operation A−1. This gives:

ABA−1 �= BAA−1

But AA−1 = E (equation (A1.4)) and so BAA−1 = BE = B (by equation (A1.3)). That is,

ABA−1 �= B

The product ABA−1 must be equivalent to a single operation in the group. To be general, let
us call this single operation D. That is,

ABA−1 = D (A1.5)
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There is a hidden symmetry in equation A1.5. To see this, multiply on the left of each side
of the equation by A−1 and on the right of each side by A. The result is:

A−1(ABA−1)A = A−1(D)A

Because multiplication is associative, this can be written:

(A−1 A)B(A−1 A) = A−1DA
Which, by equation (A1.4), becomes

B = A−1DA (A1.6)

which is to be compared with equation (A1.5). Because of this relationship between B and
D they are said to be conjugate elements of the group. But A was picked at random in the
above development – no restrictions were placed on it. Suppose a different element, C , say,
had been chosen in its place? There is no theorem which would require that because

ABA−1 = D

then

CBC−1 = D

Rather, it must be assumed that CBC−1 gives yet another element (even if, sometimes, it
does not). Consider the case where it does not give D but another element, F , say. So,

CBC−1 = F (A1.7)

But the arguments leading up to equation (A1.6) above can be paralleled with a similar
development to show from equation (A1.7) that

B = C−1FC (A1.8)

That is, B is conjugate with F as well as with D. Not surprisingly, this sequence requires
that F and D are also conjugate elements, as may be shown by combining equations (A1.6)
and (A1.8).

A−1DA = B = C−1FC

Consider the two outer expressions and multiply each on the left by A and on the right by
A−1.

(AA−1)D(AA−1) = (AC−1)F(CA−1)

That is,

D = (AC−1)F(CA−1) (A1.9)

Equation (A1.9) is of a form analogous to equations (A1.5), (A1.6), (A1.7) and (A1.8)
provided that it can be shown that (AC−1) and (CA−1) are inverses of each other. If they are
inverses then they satisfy equation (A1.4) and so they should multiply together to give E .
We have:

(AC−1)(CA−1) = AC−1CA−1

= A(C−1C) A−1

= A(E)A−1
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= AA−1

= E .

That is, (AC−1) and (CA−1) are, indeed, inverses. Now AC−1 must be equal to a single
element of the group; call it H . CA−1 must then be H−1 so that equation (A1.9) becomes

D = HFH −1 (A1.10)

which is of the form required. We conclude that B, D and F are all conjugate elements and
comprise a subset of the set of all the group operations. Each set of conjugate elements in a
group forms a class of the group. Of course, in a particular group the elements just met may
not all be distinct; we could have C = D, for instance (and, indeed, even in non-Abelian
groups, some classes will contain only a single element).

Formally, then, in order to find all members of a group which are of the same class as B,
each element of the group in turn (including B) is taken as A in the expression

ABA−1

(see equation (A1.5)) and all of the products are collected together. They comprise all the
elements which fall in the same class as B.

As an example consider the substitution group given in the previous section and use
its multiplication table (Table A1.3). First, from the table the inverse of each element is
identified:

Element Inverse
E E
P Q
Q P
R R
S S
T T

To obtain all elements in the same class as P , work down this list forming the products of
the form APA−1, where A and its inverse are obtained from the listing above. The results
are given below

E P E = P

P P Q = P

Q P P = P

R P R = Q

S P S = Q

T PT = Q

It is concluded that P and Q are in the same class (a result which could have been anticipated
because they are isomorphous with the C+

3 and C−
3 operations of C3v).

Problem A1.4 Check the above argument.
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As a second example we consider the problem encountered in Chapter 11, that C4 and
C3

4 are in different classes in the C4 group. The group multiplication table for the C4 group
is (note its diagonal symmetry):

Table A1.a

C4 E C4 C2 C3
4

E E C4 C2 C43

C4 C4 C2 C3
4 E

C2 C2 C3
4 E C4

C3
4 C43 E C4 C2

from which it is evident that the inverses are:

Element Inverse
E E
C4 C3

4

C2 C2

C3
4 C4

In the class containing C4 there will be

EC 4 E = C4

C4C4C3
4 = C4

C2C4C2 = C4

C3
4C4C4 = C4

That is, the operation C4 is in a class of its own. It is easy to similarly show that C3
4 is in a

class of its own, as too is C2. This shows that C4 is an Abelian group.

Problem A1.5 Demonstrate that C3
4 is in a class of its own.

Problem A1.6 Show that the C2v group is an Abelian group.

A1.4 Class algebra

When the C3v character table was introduced in Chapter 7 it was done so in the form

Table A1.b

C3v E 2C3 3σv

A1 1 1 1
A2 1 1 −1
E 2 −1 0
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and this and the character tables of all other non-Abelian groups are given in this form in
Appendix 3. Why? Why put elements which fall in the same class, such as C+

3 and C−
3 ,

together as 2C3? Why not write this character table as:

Table A1.c

C3v E C+
3 C−

3 σv(1) σv(2) σv(3)

A1 1 1 1 1 1 1
A2 1 1 1 −1 −1 −1
E 2 −1 −1 0 0 0

After all, this is the form in which, effectively, it was used in the projection operator
method (Section 7.3). First, we note that not all of the character table orthonormality
relationships (Section 6.3) would remain true if this form of character table were used
(some columns in the extended character table are identical). There is, however, another
and fundamental reason: that there exists a class algebra. Take the C3v group as an example.
It contains three classes with elements

Class 1 E
Class 2 C+

3 C−
3

Class 3 σv(1) σv(2) σv(3)

Express this mathematically, thus:

C1 = E

C2 = 1/2(C+
3 + C−

3 )

C3 = 1/3[σv(1) + σv(2) + σv(3)]

These classes can be multiplied together. Thus,

C2C2 = 1/4(C+
3 + C−

3 )(C+
3 + C−

3 )

= 1/4[C+
3 C+

3 + C+
3 C−

3 + C−
3 C+

3 + C−
3 C−

3 ]

which, from Table A1.1, is

= 1/4[C−
3 + E + E + C+

3 ]

= 1/2E + 1/4(C+
3 + C−

3 )

= 1/2(C1 + C2)

A class multiplication table can thus be compiled and which is easily shown to be:

Table 1.4

C3v C1 C2 C3

C1 C1 C2 C3

C2 C2
1/2(C1 + C2) C3

C3 C3 C3
1/3(C1 + 2C2)
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Problem A1.7 Check that Table A1.4 is correct.

Problem A1.8 Show that the above classes do not form a group under the operation
of class multiplication. (Hint: Refer to the relationships used to define a group at the
beginning of this appendix.)

The classes of Abelian groups form groups under class multiplication but this
is trivial because the classes are isomorphic to the elements of the Abelian group
itself.

Problem A1.9 Check the truth of the above assertion by reference to the C2v point
group.

From the class multiplication table given above it is seen that, in general, the product of
multiplying two classes together is of the form

C j Ci =
∑

k

ckCk

where the sum k is over all classes and ck is a coefficient. We now ask what may ap-
pear a rather strange question. Is it possible to obtain a linear sum of the classes of the
form

E =
∑

j

a j C j

which has the property that when multiplied by any class, C|i say, it satisfies an equation of
the form

CiE = λE
where λ is a number (possibly complex)?

Those with some knowledge of quantum mechanics will recognize this as an eigenvalue
equation. The eigenvalues, λ, when determined, lead directly to the characters in the char-
acter table (these characters are not the λ’s but are related to them by simple, well defined,
numerical coefficients). That is, the characters in a character table are intimately related to
the classes. This is the reason why character tables are given in the way that they are. Clearly,
the mathematics given above can be developed to provide a method for the calculation of
character tables. This development will not be given here but the interested reader will find
a very readable account in a book by G.G. Hall, Applied Group Theory, Longman, Harlow,
U.K., 1967.
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Appendix 2 Matrix algebra and
group theory

This book contains a non-mathematical treatment of what, in fact, is a mathematical subject.
The present appendix goes some way towards reinstating the mathematics. However, it
cannot claim to be comprehensive – if it were, its length would be very much greater.

A2.1 Matrix algebra and symmetry operations

An array of quantities – often numbers – such as those given below is called a matrix⎡⎢⎣3 2

4 −1

0 2

⎤⎥⎦ and

⎡⎢⎣3 2 −2

4 −1 0

0 2 3

⎤⎥⎦
Clearly, matrices can be square – contain the same number of rows as they have columns –
or they may be rectangular – the number of rows may be greater or less than the number
of columns. Each number or other quantity appearing in a matrix is referred to as a matrix
element. If represented by an algebraic symbol a matrix element is often given suffixes to
indicate in which row and which column it lies in the matrix.

Matrices of the same size may be added; this is done by adding together the corresponding
entries (elements). We illustrate this by adding two matrices; as an aid to clarity the elements
of one matrix are given as letters⎡⎢⎣3 2 −2

4 −1 0

0 2 3

⎤⎥⎦ +

⎡⎢⎣a b c

d e f

g h i

⎤⎥⎦ =

⎡⎢⎣(3 + a) (2 + b) (−2 + c)

(4 + d) (−1 + e) f

g (2 + h) (3 + i)

⎤⎥⎦
Problem A2.1 Fill in the missing quantities in the following matrix equation⎡⎢⎣sin2 θ 1√

2
3

. . .

3 1 − sin2 θ

⎤⎥⎦ +

⎡⎢⎣ . . 0

1 cos2 φ −1

−1 5 .

⎤⎥⎦ =

⎡⎢⎣1
√

2 .

1 0 −4

. . cos 2θ

⎤⎥⎦

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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The application of matrix algebra to the theory of groups is relatively limited and we
shall have no occasion to add or subtract matrices. Key to our use of them, however, is
the multiplication of matrices. Matrix multiplication does NOT parallel matrix addition;
one does NOT simply multiply corresponding pairs of elements together. Although pairs
of elements are, indeed, multiplied, each element in a complete row is multiplied by the
corresponding element in a complete column – so that the row and column have to be of
equal length, to contain the same number of elements – and the products are added together.
It is this sum of products that is an element in the product matrix. To obtain the entry in the
mth row and the nth column of the product matrix, the elements in the mth row of the first
matrix are multiplied by those in the nth column of the second.

Consider the two matrices which were added above. Now, let us multiply them. The entry
at the top left-hand corner of the product matrix, the one in the first row (m = 1) and first
column (n = 1), is given by:

first row →
⎡⎢⎣3 2 −2

. . .

. . .

⎤⎥⎦ ×

⎡⎢⎣a . .

d . .

g . .

⎤⎥⎦ =

⎡⎢⎣(3a + 2d − 2g) . .

. . .

. . .

⎤⎥⎦
↑

first column

and the reader who is unfamiliar with matrix multiplication should check several of the
elements of this product.

Problem A2.2 Fill in the blanks in the following matrix equation:[
3 −1

2 .

]
×

[
2 −1

. 3

]
=

[
0 .

10 .

]

The multiplication of two matrices may be expressed algebraically. If the product of the
matrices A and B (A being on the left) is denoted AB, then

(AB)mn =
∑

t

Amt Btn (A2.1)

where m and n carry the meanings given above and t is simply a convenient running label
which enables us to distinguish the individual matrix element products which have to be
added together to give the element in the mth row and nth column of the product matrix AB.

In the example above, the two matrices which were multiplied together were square but
this is not a requirement; the sole restriction is the obvious one stated above – that the
number of elements in each row of the matrix on the left of the multiplication sign equals
the number of elements in each column of the matrix on the right.

The relevance of this to molecular symmetry can be seen by reference to Figure 3.2.
This shows the transformation of the hydrogen 1s orbitals, h1 and h2, under the symmetry
operations of the C2v point group. It was discussed in Section 3.2. Figure 3.2 shows that
under the identity operation E , h1 and h2 remain unchanged. Let us look at this apparently
trivial result in some detail. The fact that h1 and h2 each remain unchanged under the
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operation E can be expressed by the matrix product[
1 0

0 1

] [
h1

h2

]
=

[
h1

h2

]
(A2.2)

where, following convention, the multiplication sign between the two matrices multiplied
together has been omitted. Writing them side by side in this way is taken as meaning that they
are to be multiplied. The reader should check that, arithmetically, equation (A2.2) is correct.
It may be correct, but what does it mean? On the left-hand side the hydrogen 1s orbitals are
written as the elements of a column matrix. The order in which they are written is, ultimately,
unimportant but that used is clearly the more natural. When the matrix multiplication is
carried out this column matrix is regenerated, unchanged, on thre right-hand side of the
equation. That is, multiplication by the matrix [1 0

0 1
] has the same effect on h1 and h2 as the

identity operation. However, had a different matrix been used to multiply the h1, h2 column
matrix a different result would have been obtained. It is therefore reasonable to say that the
matrix represents the operation E .

Figure 3.2 shows that the C2 rotation interchanges h1 and h2. The reader can readily show
that this is expressed by the matrix product[

0 1

1 0

] [
h1

h2

]
=

[
h2

h1

]

Here, the matrix [0 1
1 0

] has a similar effect on [h1

h2
] as the C2 operation has on the h1 and h2;

h1 and h2 are interchanged.
It is left as an exercise for the reader to show that the effects of the σv and σ ′

v operations
on h1 and h2 are paralleled in the matrix products:

σv :

[
1 0

0 1

] [
h1

h2

]
=

[
h1

h2

]
(A2.4)

σv′ :

[
0 1

1 0

] [
h1

h2

]
=

[
h2

h1

]
(A2.5)

Problem A2.3 Show, by expansion and comparison with Chapter 3, that equations
(A2.4) and (A2.5) correctly describe the action of σv and σ ′

v on h1 and h2.

In Chapter 2 it was shown that sets of numbers such as 1, 1, −1, −1 multiply in a
manner which is isomorphic to the multiplication of the operations of the C2 point group
(see Table 2.3 and the associated discussion, for example). The important thing about the
square matrices in equations (A2.2)–(A2.5) is that when multiplied under the rules of matrix
multiplication they, too, multiply isomorphically to the C2 operations. The multiplication
of these 2 × 2 matrices is given in Table A2.1.
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Table A2.1

right hand matrix in the product

E C 2 σv σ ′
v[

1 0
0 1

] [
0 1
1 0

] [
1 0
0 1

] [
0 1
1 0

]
left hand matrix
in the product

[
1 0
0 1

] [
1 0
0 1

] [
0 1
1 0

] [
1 0
0 1

] [
0 1
1 0

]
[

0 1
1 0

] [
0 1
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
1 0
0 1

]
[

1 0
0 1

] [
1 0
0 1

] [
0 1
1 0

] [
1 0
0 1

] [
0 1
1 0

]
[

0 1
1 0

] [
0 1
1 0

] [
1 0
0 1

] [
0 1
1 0

] [
1 0
0 1

]

Problem A2.4 Check that Table A2.1 is correct.

Table A2.1 should be compared with Table 2.1. Each matrix in Table A2.1 will be found
to transform isomorphically to the operation associated with it. Is this property limited to
2 × 2 matrices? No, provided that they are square matrices, matrices of any order can be
found which multiply isomorphically to the operations of the C2v point group. Indeed, the
numbers which behaved like this in Chapter 2 may be regarded as 1 × 1 matrices! As an
example of this, the following four matrices describe the transformations of the hydrogen
atoms ⎡⎢⎢⎢⎣

Ha

Hb

Hc

Hd

⎤⎥⎥⎥⎦
of Figure 2.27 (and shown in Figures 2.28 and 2.29).

E :

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

C2 :

⎡⎢⎢⎢⎣
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎦
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σv :

⎡⎢⎢⎢⎣
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦

σ ′
v :

⎡⎢⎢⎢⎣
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤⎥⎥⎥⎦
Further, the multiplication of these matrices is isomorphic to that of the corresponding
operations of the C2v point group.

Problem A2.5 Show that the above matrices do, indeed, describe the transformations
of the hydrogen atoms of Figure 2.27.

Problem A2.6 Show that the multiplication of the above matrices is isomorphous to
that of the operations of the C2v point group (it may be helpful to use Figure 2.28 as a
check).

Matrix multiplication, then, provides a method of describing in detail the transformation
of several objects under the operations of a point group. But in the text – in Section 3.2 –
something similar has been described. It was in Section 3.2 that we first used the trans-
formation of several objects under the operations of a point group to obtain reducible
representations. Not surprisingly, the two methods – the transformations of several objects
and the matrix – are connected. In Section 3.2 what was described was a method of ob-
taining the characters of reducible representations. The bridge between this and the matrix
formalism appears when it is recognized that ‘character’ is the name given to the arithmetic
sum of all of the elements on the leading diagonal (top left to bottom right) of a square
matrix. So, application of this definition to the four matrices given immediately above gives
their characters as:

Matrix associated with

E C2 σv σ ′
v

Character of the matrix 4 0 0 0

This set of characters is just that obtained for the reducible representation generated by the
transformations of the four hydrogen atoms in Figure 2.27.

Problem A2.7 Check that the transformations of the hydrogen atoms of Figure 2.27
lead to the above representation.

Note: The representation which has the number which is equal to the order of the group
(here, 4) under the E operation and zeros elsewhere is called the regular representation.
It is of importance because it is used in the proof of some group theoretical theorems
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(but none which are included in this book). It is generated by a basis set which is not
associated with any symmetry element. Thus, here, the hydrogen atoms are in general
positions – they do not lie on a mirror plane or symmetry axis and so the regular
representation is generated.

The rules for the generation of characters given in boxes in Section 3.2 are now seen
as arising from the definition of the character of a matrix and the fact that it is only when
its transformation is described by an entry on the leading diagonal that an object remains
unmoved under a symmetry operation. (A word of caution: this last statement will need
some modification shortly when fractions will appear on the diagonal.)

Just as one distinguishes between reducible and irreducible representations, so one may
distinguish reducible from irreducible matrix representations. Irreducible matrix representa-
tions will be met later in this section and the connection between reducible and irreducible
is covered in Section A2.4. Both the 2 × 2 and 4 × 4 matrices given above are sets of
reducible matrices.

Those functions whose transformations are described by matrices in the way just de-
scribed are called basis functions. Those basis functions given at the right-hand side of
character tables (Appendix 3) are ultimately related to the transformation of the x , y and
z coordinate axes. It is therefore important to consider the transformation of a set of coor-
dinate axes under typical group symmetry operations. This is not a difficult problem. For
example, the inversion operation, i, is described by

i :

⎡⎢⎣−1 0 0

0 −1 0

0 0 −1

⎤⎥⎦
⎡⎢⎣x

y

z

⎤⎥⎦ =

⎡⎢⎣−x

−y

−z

⎤⎥⎦
Reflection in a mirror plane (let us choose the yz plane as the mirror plane) is:

σ (yz) :

⎡⎢⎣−1 0 0

0 1 0

0 0 1

⎤⎥⎦
⎡⎢⎣x

y

z

⎤⎥⎦ =

⎡⎢⎣−x

y

z

⎤⎥⎦
The problem of the rotations was first met in Chapter 4 (Figure 4.16) and then again
in Chapter 7, where the rotation of axes was discussed (see Figure 7.4 and the related
discussion). When the axes x and y are rotated by an angle α around the z axis and are then
relabelled x ′ and y′, then, as Figure 7.4 shows,

x ′ = x cos α + y sin α

Similarly,

y′ = −x sin α + y cos α.

We can add, trivially,

z′ = z.
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It follows that the matrix describing the effect of a rotation, Rz(α), of an angle α around the
z axis is the 3 × 3 matrix in the middle of equation (A2.6).

Rz(α)

⎡⎢⎣x

y

z

⎤⎥⎦ =

⎡⎢⎣ cos α sin α 0

− sin α cos α 0

0 0 1

⎤⎥⎦
⎡⎢⎣x

y

z

⎤⎥⎦ =

⎡⎢⎣x ′

y′

z′

⎤⎥⎦ (A2.6)

A study of the elements on the leading diagonal of this matrix – those that contribute to the
character – will show the basis for the rule given at the end of Section 7.1:

When an axis is rotated by an angle α its contribution to the character for that operation
is cos α.

This relationship enables a more detailed study of the rotation of x and y axes by 45˚ shown
in moving from Figure 6.6 to Figure 6.7 as well as the rotation to give the more general set
in Figure 6.8; the following discussion is based on these figures and the reader will have to
refer back to them.

It is evident that the character generated by the x and y axes under a C4 operation is
identical for either choice of x and y axes shown in Figures 6.6 and 6.7 (the character is 0
because x and y directions are transposed by the operation). It should also be evident that
the same character under this operation is obtained for the more general x and y axes of
Figure 6.8 (if it is not evident, use equation (A2.6) suitably adapted to the problem). Less
evident is the fact that the general axis set gives the same character as the other sets under
improper rotations. Consider the operation of reflection in the σv(2) mirror plane of Figure
6.3, a mirror plane which is the xz plane in Figure 6.6. All three axis sets give a character
of 1 for the z axis. For the (x, y) axis sets of Figure 6.6 and 6.7 characters of 0 are obtained
for this reflection operation, but what of the axis set of Figure 6.8? If the angle between y′

and the adjacent Br F bond axis contained in the σv(2) mirror plane is denoted θ then the
relationship between x ′, y′ and their images x ′′, y′′ is found to be (Figure A2.1).

x ′′ = −x ′ cos 2θ − y′ sin 2θ

y′′ = −x ′ sin 2θ + y′ cos 2θ

That is, [
−cos 2θ −sin 2θ

−sin 2θ cos 2θ

] [
x ′

y′

]
=

[
x ′′

y′′

]
Clearly, the character of the 2 × 2 transformation matrix is 0 (− cos 2θ + cos 2θ ), just as
was the case for the axis choice of Figures 6.6 and 6.7.

So far, in all of the axis transformations that have been considered the z axis has remained
unmoved. If it, too, varies then the problem becomes that of describing the relationship be-
tween two generally orientated sets of axes. It is easy to see that rotation by three independent
angles about coordinate axes is necessary to describe the relationship between two sets of
arbitrarily orientated Cartesian axes. If the first rotation is about z, then x ′ and y′ must re-
main in the original xy plane. If the second rotation is about x ′ then this axis will remain in
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2θ

90 − 2θ

θ
θ

y"

x"

y' σv(2)

x'

Figure A2.1 The effect of a mirror plane reflection (σv(2)) on x ′ and y ′ of Figure 5.6

the original xy plane; it does not assume a general position. Two rotations are not sufficient
to place all three original axes in general positions; a third is needed.

The general transformation is shown in Figure A2.2. A rotation by φ about z is followed
by one of θ about x ′. Under this latter rotation z becomes z′ and y′ becomes y′′. The final
rotation is one of ψ about z′, whereupon x ′ becomes x ′′ and y′′ becomes y′′′. Mathematically,
equation (A2.6) is applied to each of these transformations in succession. Just for the record,
the final, rather ugly, result is given in equation (A2.7).⎡⎢⎢⎢⎣

(cos ψ cos φ − cos θ sin φ sin ψ) (cos ψ sin φ + cos θ cos φ sin ψ) (sin ψ sin θ )

(− sin ψ cos φ − cos θ sin φ cos ψ) (− sin ψ sin φ + cos θ cos φ cos ψ) (cos ψ sin θ )

(sin θ sin φ) (− sin θ cos φ) cos θ

⎤⎥⎥⎥⎦ ×

⎡⎢⎢⎢⎣
x ′

y′

z′

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x ′′

y′′′

z′

⎤⎥⎥⎥⎦ (A2.7)

Because a set of p orbitals transforms in the same way as the coordinate axes, this relation-
ship is needed to answer the problem left unresolved in Section 3.2, the transformation of
a complete set of p orbitals referred to arbitrary axes under the operations of the C2v point
group.

y"
zz'

y'

x'

θ
θ

x"

y"

z' y"'

x'

ψ

ψ

z

y
y'

x'x

φ
φ

Figure A2.2 The interconversion of two sets of axes (x , y, z) and (x ′′, y ′′′, z′) which are in a general

relationship of one set to the other
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Table A2.2

C3v E C+
3 C −

3 σv(1) σv(2) σv(3)

A1 (1) (1) (1) (1) (1) (1)

A2 (1) (1) (1) (−1) (−1) (−1)

E

[
1 0
0 1

] [
− 1

2
−

√
3

2√
3

2
− 1

2

] [
− 1

2

√
3

2

−
√

3
2

− 1
2

] [ −1 0
0 1

] [
1
2

−
√

3
2

−
√

3
2

− 1
2

] [
1
2

√
3

2√
3

2
− 1

2

]

In the section above, the particular concern has been with sets of matrices which usually
are reducible representations. However, similar considerations apply to irreducible repre-
sentations. That is, there exist sets of irreducible matrices for each group. As will be seen in
Section A2.4, it is always possible to manipulate a set of matrices which form a basis for a
reducible representation in such a way that they can be re-written as a sum of the irreducible
matrices.

As an example of the irreducible matrix representations of a group, those for the C3v

point group are given in Table A2.2. This table should be compared with the C3v character
table given in Table 7.1 (and also in Appendix 3). Comparison of Table A2.2 with the C3v

character table reveals two important things. First, whereas individual operations are listed
separately in Table A2.2, in the character table they are grouped into classes. Second, for a
given irreducible representation, the irreducible matrices of all operations in any one class
have the same character and this is the character listed for the class in the character table. The
rapprochement between the ‘individual operation’ and ‘classes’ presentations is provided
by the class algebra which was introduced in Appendix A1.4. There are some applications
of group theory where it is necessary to use the complete matrix representations of groups.

A2.2 Direct products

In the main text three different uses of the phrase ‘direct product’ were met. First, the
operations of some groups were said to be the direct product of the operations of two
other groups. An example is the D2h group, discussed in Section 5.3, which should be
briefly reviewed before proceeding. Each individual operation of the D2h point group may
be regarded as a product of an individual operation of the D2 group with an individual
operation of the Ci group. For such cases the character table of the product group was also
said to be the direct product of those of the other two groups. The phrase ‘direct product’
was also used to describe the multiplication together of two representations of a group, a
topic which was discussed at some length in Chapter 4 (where, in Section 4.3, the symbol
⊗ was used to denote this particular application of the direct product). Clearly, the concept
of a direct product is one of wide applicability in group theory; it also is an important
one.

At the end of the previous section it was noted that there exists a close connection between
the characters in a character table and sets of irreducible matrices. Just like the case of the
(reducible) matrix representations which were discussed in that section in some detail,
the multiplication of irreducible matrices is isomorphic to the multiplication of the group
operations. Because of this isomorphism and because direct products of group operations
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can be formed, we would expect there to be, correspondingly, a direct product of matrices.
At the beginning of the previous section one way of multiplying two matrices was described;
but this was such that the size of the product matrix is often the same as the size of the
matrices from which it was formed (e.g. when square matrices are multiplied together).
A characteristic of direct products is that an increase in size is the norm – the D2h group
is larger than D2 and C2. This suggests that the direct product of the matrices involves a
second form of matrix multiplication. This is not a unique situation. For instance, there are
two different ways of combining – multiplying – vectors together.

The direct product of two matrices is obtained by individually and separately multiplying
every element of each of the two matrices together. Thus, the direct product of the matrices[

3 2

4 −1

]
and

[
a b

c d

]
is

⎡⎢⎢⎢⎣
3a 3b 2a 2b

3d 3e 2d 2e

4a 4b −a −b

4d 4e −d −e

⎤⎥⎥⎥⎦
If a general element of the matrix A is ai j (i labelling the row and j the column in which

ai j occurs in A) and a typical element of B is bkm (k’th row, m’th column), then the general
element of the matrix C which is the direct product of A and B is:

ai j · bkm = ci j,km (A2.8)

Of course, the general element ci j,km could simply be labelled according to the row and
column in which it occurs in C . To do this, however, would be to lose sight of its origins;
the more explicit, although apparently more unwieldy, expression in equation (A2.8) is
therefore preferred. An example of the reason for this follows.

For the matrices themselves,

A ⊗ B = C (A2.9)

where ⊗ again indicates that a direct product is being formed.
There are several ways in which the matrix C may be written; a convenient one is

C =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 B a12 B · · ·
a21 B a22 B · · ·
a31 B a32 B · · ·

· · · · ·
· · · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ (A2.10)

where a11 B means that each element of the matrix B is multiplied, in order, by a11.
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Table A2.3

Operations of C3v

Operations of Ci Operations of D3d

E C+
3 C−

3 σv(1) σv(2) σv(3)

E E C+
3 C−

3 σv(1) σv(2) σv(3)
i i S−

6 S+
6 C2(1) C2(2) C2(3)

Problem A2.10 Fill in the blanks in the following matrix equation (it may be helpful
to regard the 4 × 4 matrix as consisting of four 2 × 2’s, corresponding to B above.

[
1 2

0 .

]
⊗

[
· ·

−1 ·

]
=

⎡⎢⎢⎢⎣
3 6 0 0

· −3 0 0

· · −4 −8

· · · ·

⎤⎥⎥⎥⎦

The elements of the group D3d are formed as the direct product of the elements of the
C3v group with the elements of the Ci group. The relationship between the operations of
D3d, C3v and Ci is indicated in Table A2.3.

A precisely parallel relationship exists between the irreducible matrix representations
of the D3d, C3v and Ci groups, a relationship detailed below. First, however, note that the
group D3d is also the direct product of D3 with Ci, and it is this latter product which is
conventionally taken to determine the labels of the irreducible representations of D3d.

Problem A2.11 Show that D3d = D3 ⊗ Ci .

The matrix representations of the Ci group are:

Table A2.4

Ci E i

Ag (1) (1)
Au (1) (−1)

so that the direct product with the C3v matrix representations given in Table A2.2 leads to
the irreducible matrix representations for the D3d group given in Table A2.5. It is entirely
reasonable that this isomorphism should exist between multiplication of operations and
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multiplication of matrices in this application of the direct product. The isomorphism exists
in each of the individual groups involved in the direct product.

Problem A2.12 Show that D3d = C3v ⊗ Ci (see above); then check Table 2.3.

The definition of a direct product given by equations (A2.8) and (A2.9) and the convention
given by equation (A2.10) is, of course, also applicable to the direct products formed between
two representations of the same group. Thus the direct product matrices A2 ⊗ E of the C3v

point group are (from Table A2.2)

A2 ⊗ E =
E C+

3 C−
3 σv(1) σv(2) σv(3)[

1 0

0 1

] ⎡⎢⎢⎣−1

2
−

√
3

2√
3

2
−1

2

⎤⎥⎥⎦
⎡⎢⎢⎣ −1

2

√
3

2

−
√

3

2

−1

2

⎤⎥⎥⎦
[

1 0

0 −1

] ⎡⎢⎢⎣−1

2

√
3

2√
3

2

1

2

⎤⎥⎥⎦
⎡⎢⎢⎣ −1

2
−

√
3

2

−
√

3

2

1

2

⎤⎥⎥⎦
Examination of these matrices shows that the characters of the direct product matrices are
the same as those obtained by the method described in the text – using a character table and
multiplying the characters of the two irreducible representations together. The technique
of multiplying characters to obtain direct product characters, although simple, ignores the
subtle changes that have taken place in the corresponding matrices, particularly in those
representing the σv operations (for which multiplying by the character 0 might well have
appeared trivial).

Problem A2.13 Using the C3v character table, form the direct product of the A2 and
E irreducible representations; compare the answer with the matrix form given above.

As a final example we consider the direct product E ⊗ E in C3v but confine the discussion
to just two of the product matrices. The two direct products which will be evaluated are
those direct product matrices corresponding to σv(1) and C+

3 which arise from the E ⊗ E
direct product. For the first of these, expression in the form given by equation (A2.10) leads
to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1

[
−1 0

0 1

]
0

[
−1 0

0 1

]

0

[
−1 0

0 1

]
1

[
−1 0

0 1

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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which, on expansion gives ⎡⎢⎢⎢⎣
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎤⎥⎥⎥⎦
a matrix with a character of 0, the same character as obtained working with the C3v character
table.

The second direct product, that corresponding to C+
3 , involves more work. In the form

of equation (A2.10) the product is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

2

⎡⎢⎢⎢⎣
−1

2
−

√
3

2√
3

2
−1

2

⎤⎥⎥⎥⎦ −
√

3

2

⎡⎢⎢⎢⎣
−1

2
−

√
3

2√
3

2
−1

2

⎤⎥⎥⎥⎦
√

3

2

⎡⎢⎢⎢⎣
−1

2
−

√
3

2√
3

2
−1

2

⎤⎥⎥⎥⎦ −1

2

⎡⎢⎢⎢⎣
−1

2
−

√
3

2√
3

2
−1

2

⎤⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
leading to ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

4

√
3

4

√
3

4

3

4

−
√

3

4

1

4
−3

4

√
3

4

−
√

3

4
−3

4

1

4

√
3

4

3

4
−

√
3

4
−

√
3

4

1

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the expected character of 1.

Because these direct product matrices are 4 × 4 it is clear that they must describe the
transformation of four quantities – basis functions – which must themselves be related to
the basis functions for the E irreducible representation. The exploration and exploitation of
such relationships is an important aspect of advanced group theory but the full development
of this is beyond the scope of the present text, although a start has been made in Section
12.2.

Problem A2.14 Evaluate the direct product matrices of E ⊗ E in C3v for the
operations C−

3 and σv(2).
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Appendix 3 Character tables of
the more important
point groups

At the right of each character table in this compilation are given two columns of bases
for irreducible representations; Rotations and Translations in the first column are needed
for vibrational analyses (see Chapter 4) and for some other forms of spectroscopy; the
second column is useful for some spectroscopies and for discussions of molecular bonding.
Invariably, x2, y2 and z2 in some combination, or independently, transform as the totally
symmetric irreducible representation of a group. It follows that any linear combination
of these functions and, in particular, x2 + y2 + z2 = r2 transform under this irreducible
representation. The function r2 is spherically symmetrical and so is associated with the s
orbital of an atom.

‘Note’ comments have usually either been repeated where relevant or cross-references
given. However, the reader encountering problems should scan the notes for related character
tables, where he or she may well find related suggestions.

Whenever possible the direct product nature of a character table has been indicated by
divisions within the character table itself. It is often possible to simplify a problem by
working in a subgroup instead of the full group and the divisions within the character table
in this appendix are intended to facilitate this. However, these divisions can often only be
brought about by a rearrangement of the character table found in many books.

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Td E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1 x 2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0
(

1√
6
[2 z2 − x 2 − y2], 1√

2
[x 2 − y2]

)
T1 3 0 −1 1 −1 (R x , R y , R z)
T2 3 0 −1 −1 1 (Tx , Ty , Tz) (x , y, z); (x y, yz, zx )

Examples: (a) A tetrahedron (Figure 7.1). (b) CH4, P4, Ni(CO)4, C(CH3)4 in its most symmetrical configuration.

Other cubic point groups

O : The group of the pure rotation operations of the octahedron.

O E 8C3 3C2 6C4 6C′
2

A1 1 1 1 1 1 x 2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0
(

1√
6
[2z2 − x 2 − y2], 1√

2
[x 2 − y2]

)
T1 3 0 −1 1 −1 (Tx , Ty , Tz)(R x , R y , R z) (x , y, z)
T2 3 0 −1 −1 1 (x y, yz, zx )

Example: To obtain a figure of O symmetry follow the instructions given under the I character table, replacing

‘Figure 7.30’ by ‘Figure 7.1’, ‘icosahedron’ by ‘octahedron’ and ‘I ’ by ‘O ’.

T : The group of the pure rotation operations of the tetrahedron.

T E 4C3 4C2
3 3C2

A 1 1 1 1 x 2 + y2 + z2

E

{
1 ε ε2 1
1 ε2 ε 1

(
1√
6
[2z2 − x 2 − y2], 1√

2
[x 2 − y2]

)
T 3 0 0 −1 (Tx , Ty , Tz)(R x , R y , R z) (x , y, z); (x y, yz, zx )

Note: ε
(
ε = exp

[
2π i
3

])
and ε2

(
ε2 = exp 4π i

3 = exp −2π i
3

)
are complex conjugates. See also Chapter 11

and the notes under the C3 group below.

Example: To obtain a Figure of T symmetry follow the instructions given under the I character table,

replacing ‘Figure 7.3’ by ‘Figure 7.1’, ‘icosahedron’ by ‘tetrahedron’ and ‘I ’ by ‘T ’.
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3 THE GROUPS Dnh

A regular, planar polygon with n sides has Dnh symmetry. So, an equilateral triangle has
D3h symmetry, a square has D4h symmetry. The label D arises because of the presence of
twofold axes (Dihedral axes) perpendicular to a Cn axis. There are n of these twofold axes.
The subscript h means that all of the groups have a unique mirror plane perpendicular to the
Cn axis (if this axis is vertical then the mirror plane is horizontal). Although these groups
all have σd operations, the σh takes precedence in the labelling. To avoid possible confusion
with the Dnd groups many authors label as σv some or all of the σd mirror planes.

D2h E C2(z) C2(y) C2(x ) i σ (x y) σ (zx ) σ (yz)

Ag 1 1 1 1 1 1 1 1 z2; x 2; y2

B1g 1 1 −1 −1 1 1 −1 −1 R z x y
B2g 1 −1 1 −1 1 −1 1 −1 R y zx
B3g 1 −1 −1 1 1 −1 −1 1 R x yz

Au 1 1 1 1 −1 −1 −1 −1 x yz
B1u 1 1 −1 −1 −1 −1 1 1 Tx z
B2u 1 −1 1 −1 −1 1 1 1 Ty y
B3u 1 −1 −1 1 −1 1 −1 −1 Tz x

Notes: (1) Because there are three mutually perpendicular C2 axes the choice of x , y and z is arbitrary. A

relabelling of these axes will lead to an interchange of the labels B1, B2 and B3. Similarly, the h, v subscript

notation on the mirror planes is unhelpful and so the mirror planes and the corresponding operations are

defined by the Cartesian axes that lie in them.

(2) The D2h group is a direct product of D2 and Ci. This is indicated by the lines in the character table.

Examples: C2H4; B2H6 (see Chapter 4).

D3h E 2C3 3σv σh 2S3 3σd

A ′
1 1 1 1 1 1 1 z2; x 2 + y2

A ′
2 1 1 −1 1 1 −1 R z

E ′ 2 −1 0 2 −1 0 (T x , T y) (x , y);
(

1√
2
[x 2 − y2], x y

)
A′′

1 1 1 1 −1 −1 −1
A′′

2 1 1 −1 −1 −1 1 Tz z
E ′′ 2 −1 0 −2 1 0 (R y , R x ) (zx , yz)

Notes: (1) The D3h group is a direct product of D3 and Cs. This is indicated by the lines in the character table.

Irreducible representations symmetric with respect to reflection in the σh mirror plane are denoted by ’ while

antisymmetry is denoted by ”.

(2) The 1/
√

2 factor on (x 2 − y2) as an E ′ basis function means that, like x y, it is normalized to unity.

Example: A triangular prism (Figure A3.1)
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Figure A3.1 A triangular prism, of D3h symmetry.

D4h E 2C4 C2 2C′
2 2C′′

2 i 2S4 σh 2σd 2σ ′
d

A1g 1 1 1 1 1 1 1 1 1 1 z2, x 2 + y2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 R z

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x 2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 x y
Eg 2 0 −2 0 0 2 0 −2 0 0 (R x , R y) (zx , yz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 Tz z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (T x , T y) (x , y)

Notes: (1) The D4h group is a direct product of D4 and Ci. This is indicated by the lines in the character table.

(2) The choice between which pair of C2 axes (and operations) are labelled C′
2 and those which are labelled

C′′
2 is arbitrary. A redefinition will interchange B1g with B2g and B1u with B2u. Similarly the choice of the vertical

planes σd and σ ′
d is arbitrary but the σd planes must contain the C′

2 axes and the σd’ planes must contain the C′′
2.

(3) In this character table the strict definition of σd has been followed but many authors label the mirror

planes containing a C′
2 axis as σv and those containing a C′′

2 axis as σd.

Examples: A square prism (Figure A3.2)

Figure A3.2 A square prism of D3h symmetry.



JWBK182-App3 JWBK182/Kettle September 14, 2007 16:59

THE GROUPS Dnh 377

D5h E 2C5 2C2
5 5C2 σh 2S5 2S2

5 5σd

A
′
1 1 1 1 1 1 1 1 1 x 2 + y2; z2

A
′
2 1 1 1 −1 1 1 1 −1 R z

E
′
1 2 2 cos 72 2 cos 144 0 2 2 cos 72 2 cos 144 0 (Tx , T y) (x , y)

E
′
2 2 2 cos 144 2 cos 72 0 2 2 cos 144 2 cos 72 0

(
1√
2
[x 2 − y2], x y

)
A”

1 1 1 1 1 −1 −1 −1 −1

A”
2 1 1 1 −1 −1 −1 −1 1 Tz z

E”
1 2 2 cos 72 2 cos 144 0 −2 −2 cos 72 −2 cos 144 0 (R x , R y) (x z, yz)

E”
2 2 2 cos 144 2 cos 72 0 −2 −2 cos 144 −2 cos 72 0

Notes: (1) The D5h group is a direct product of D5 and Cs. This is indicated by the lines in the character table.

Irreducible representations symmetric with respect to reflection in the σh mirror plane are denoted by the

superscript ’and antisymmetry is denoted by”.

(2) See the notes under the Ih character table.

Examples: A regular pentagonal prism (Figure A3.3) and eclipsed ferrocene (Figure A3.4)

Figure A3.3 A pentagonal prism, of D5h symme-

try.

H

H H

H

H

C

C
HCC

C C

CC

Fe

C C
HH

H H

Figure A3.4 Ferrocene, Fe(C5H5)2, in the ecli-

psed configuration, of D5h symmetry.
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D6h E 2C6 2C3 C2 3C′
2 3C′′

2 i 2S3 2S6 σh 3σd 3σ ′
d

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x 2 + y2; z2

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 R z

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (R x , R y) (x y, yz)

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0
(

1√
2
[x 2 − y2], x y

)
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 Tz z
B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1
B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (T x , T y) (x , y)
E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

Notes: (1) The D6h character table is a direct product of D6 and Ci. This is indicated by the lines in the

character table.

(2) The choice between which pair of C2 axes (and operations) are labelled C′
2 and those which are labelled

C′′
2 is arbitrary. A redefinition will interchange B1g with B2g and B1u with B2u. Similarly the choice of the vertical

planes σd and σ ′
d is arbitrary but the σd planes must contain the C2 axes and the σ ′

d planes must contain the C′′
2.

Examples: A regular hexagonal prism (Figure A3.5) and the benzene molecule (Figure A3.6)

Figure A3.5 A hexagonal prism, of D6h symme-

try.

C

C

C C

C

C
H

H

H
H

H

H

Figure A3.6 The benzene molecule, of D6h sym-

metry.
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4 THE GROUPS Dnd

These groups do not have the σh mirror plane of the Dnh groups. Objects with Dnd symmetry
typically have two similar halves, staggered with respect to each other. Thus solid objects
of Dnd symmetry are called ‘antiprisms’, a term which indicates the staggering.

When n is odd, the groups Dnd are direct products of the groups Dn and Ci (when n is
even, the direct products Dn × Ci are Dnh groups).

D2d E 2S4 C2 2C′
2 2σd

A1 1 1 1 1 1 x 2 + y2; z2

A2 1 1 1 −1 −1 R z

B1 1 −1 1 1 −1 x 2 − y2

B2 1 −1 1 −1 1 Tz z; x y
E 2 0 −2 0 0 (T x , T y); (R x , R y) (x , y); (x z, yz)

Notes: (1) The x axis is taken as coincident with one C′′
2.

(2) Singly degenerate irreducible representations which are symmetric with respect to an S4 operation are

indicated by an A label; antisymmetry is indicated by a B label.

(3) This group is sometimes, but increasingly rarely, called Vd,

(4) Many people find the 2C 2’ axes and 2σd mirror planes difficult to locate in this group. Time spent with

the examples would be time well spent.

Examples: A triangular dodecahedron (Figure A3.7) and the molecule spiropentane (Figures A3.8).

Figure A3.7 The triangular dodecahedron, of

D2d symmetry. Note that all of the apices of this

figure lie in one of two mutually perpendicular

planes.

H H

H H

HH

H H

C

C

C C

C

Figure A3.8 The molecular spiropentane, C5H8,

of D2d symmetry. The ’outer’ carton atoms in this

figure lie at four of the eight apices of the tri-

angular dodecahedron shown in Figure A3.7.
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D3d E 3C 3 3C 2 i 2S6 3σd

A1g 1 1 1 1 1 1 x 2 + y2; z2

A2g 1 1 −1 1 1 −1 R z

Eg 2 −1 0 2 −1 0 (R x , R y)
(

1√
2
[x 2 − y2], x y

)
; (x z, yz)

A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1 Tz z
Eu 2 −1 0 −2 1 0 (Tx ,Ty) (x , y)

Notes: (1) This group is a direct product of D3 with Ci, indicated by the lines in the character table.

(2) The C3 and i operations may be considered as derived from the S6 because S2
6 = C 3 and S3

6 = i .

Example: The staggered ethane molecule (Figure A3.9)

Drawn slightly off-axis

H

H

H C HC

H

H

Figure A3.9 The staggered ethane molecule, of D3d symmetry. This symmetry is best seen if the

molecule is viewed along the C–C bond but it is difficult to draw it adequately in this orientation.

D4d E 2S8 2C4 2S3
8 C2 4C′

2 4σd

A1 1 1 1 1 1 1 1 x 2 + y2; z2

A2 1 1 1 1 1 −1 −1 R z

B1 1 −1 1 −1 1 1 −1
B2 1 −1 1 −1 1 −1 1 Tz z

E1 2
√

2 0 −√
2 −2 0 0 (T x , T y) (x , y)

E2 2 0 −2 0 2 0 0
(

1√
2
[x 2 − y2], x y

)
E3 2 −√

2 0
√

2 −2 0 0 (R y , R x ) (x z, yz)

Note: The unique C2 and the C4 operations may be considered to be derived from the S8 because S2
8 = C 4;

S4
8 = C 2.

Example: The square antiprism (Figure A3.10)

Figure A3.10 The square antiprism, of D4d symmetry.
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D5d E 2C5 2C2
5 5C2 i 2S3

10 2S10 5σd

A1g 1 1 1 1 1 1 1 1 x 2 + y2; z2

A2g 1 1 1 −1 1 1 1 −1 R z

E1g 2 2 cos 72 2 cos 144 0 2 2 cos 72 2 cos 144 0 (R x ,R y) (x z, yz)

E2g 2 2 cos 144 2 cos 72 0 2 2 cos 144 2 cos 72 0
(

1√
2
[x 2 − y2], x y

)
A1u 1 1 1 1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 1 Tz z
E1u 2 2 cos 72 2 cos 144 0 −2 −2 cos 72 −2 cos 144 0 (T x , T y) (x , y)
E2u 2 2 cos 144 2 cos 72 0 −2 −2 cos 144 −2 cos 72 0

Notes: (1) This group is the direct product of C5 and Ci, indicated by the lines in the character table.

(2) Before working with this group refer to the notes under the Ih character table.

(3) Many of the operations of the group may be considered to be derived from the S10 because

S2
10 = C 5; S4

10 = C 2
5 ; S5

10 = i .

Examples: The pentagonal antiprism (Figure A3.11), staggered ferrocene (Figure A3.12).

Figure A3.11 The pentagonal antiprism, of D5d

symmetry.

H

H H

H

H

C

C
H

C
C

C
C

C

C

Fe

C C

H
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H

Figure A3.12 The staggered ferrocene mole-

cule, Fe(C5H5)2, of D5d symmetry.

D6d E 2S12 2C 6 2S4 2C 3 2S5
12 C2 6C2’ 6σd

A1 1 1 1 1 1 1 1 1 1 x 2 + y2; z2

A2 1 1 1 1 1 1 1 −1 −1 R z

B1 1 −1 1 −1 1 −1 1 1 −1
B2 1 −1 1 −1 1 −1 1 −1 1 Tz z

E1 2
√

3 1 0 −1 −√
3 −2 0 0 (Tx , Ty) (x , y)

E2 2 1 −1 −2 −1 1 2 0 0
E3 2 0 −2 0 2 0 −2 0 0

E4 2 −1 −1 2 1 −1 2 0 0
(

1√
2
[x 2 − y2], x y

)
E5 2 −√

3 1 0 −1
√

3 −2 0 0 (R y , R x ) (yz, zx )

Note: Many of the operations of the group may be taken to be derived from S12 because S2
12 = C 6; S3

12 = S4;

S4
12 = C 3; S6

12 = C 2.

Examples: A hexagonal antiprism (Figure A3.13), staggered dibenzene-chromium (Figure A3.14).
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5 THE GROUPS Dn

These are groups of proper (i.e. pure) rotations corresponding to bodies in which there are
n C2 axes perpendicular to a principal Cn axis. To obtain solid figures of these geometries
it is simplest to take a polyhedron shown for a Dnh or Dnd symmetry and to systematically
introduce zig-zag edges such as used to derive Figures for the groups O and T. Molecules
of Dnh or Dnd symmetries drop to Dn symmetry when the ‘top’ and ‘bottom’ parts of the
molecule are given small, arbitrary, twists in opposite directions about the z axis.

Dnh and Dnd (n odd) group are direct products of Dn with either Ci or Cs. For problems
in these groups it is often simplest to work in Dn symmetry and move to the full group at a
later stage.

Figure A3.13 The hexagonal antiprism, of D6d

symmetry.
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H

HH
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C

C
C
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C
C

C

C HC C H

H

H

H
H

Figure A3.14 The staggered dibenzenechr-

omium molecule, Cr(C6H6)2 of D6d symmetry.

D2 E C2(z) C2(y) C2(x)

A 1 1 1 1 x 2; y2; z2

B1 1 1 −1 −1 Tz; R z z; x y
B2 1 −1 1 −1 Ty ; R y y; zx
B3 1 −1 −1 1 Tx ; R x x : yz

Notes: (1) Because there are three mutually perpendicular C2 axes the choice of x , y and z is arbitrary. A

relabelling of these axes will lead to an interchange of the labels B1, B2 and B3.

(2) Because x 2 and y2 transform, separately, as A , it follows that the function x 2 − y2 also has A symmetry.

Example: Ethene in which the two CH2 groups have been made non-coplanar by a counter-rotation of these two

units about the C–C axis (Figure A3.15).

C2

C2

C2
H

H

C
H

H
C

Figure A3.15 A slightly twisted ethene molecule, of D2 symmetry.
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D3 E 2C3 3C2

A1 1 1 1 z2, x 2 + y2

A2 1 1 −1 Tz; R z z

E 2 −1 0 (Tx , Ty); (R y , R x ) (x , y);
(

1√
2
[x 2 − y2], x y

)
; (zx , yz)

Example: Ethane in which the two CH3 units have been counter-rotated about the C–C axis so that the

molecule is neither eclipsed or staggered (Figure A3.16).

H

H

C C
H

H

C2
C2

C2

H
H

Figure A3.16 An ethane molecule which is neither eclipsed nor staggered, of D3 symmetry.

D4 E 2C4 C2 2C
′
2 2C

′′
2

A1 1 1 1 1 1 z2, x 2 + y2

A2 1 1 1 −1 −1 Tz; R z z
B1 1 −1 1 1 −1 x 2 − y2

B2 1 −1 1 −1 1 x y
E 2 0 −2 0 0 (Tx , Ty); (R x , R y) (x , y); (zx , yz)

Notes: (1) The x axis has been taken as coincident with one C
′
2.

(2) The choice between which set of two C2 axes is called 2C
′
2 and which is called 2C

′′
2 is arbitrary. If the

choice opposite to that above is taken then the labels B1 and B2 have to be interchanged (B1 has a character

of 1 under the C
′
2 operations).

Example: A twisted cube (Figure A3.17).

C4

C2'

C2'

C2" C2"

Figure A3.17 A slightly twisted cube, of D4 symmetry.
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D5 E 2C5 2C2
5 5C2

A1 1 1 1 1 x 2 + y2; z2

A2 1 1 1 −1 Tx ; R z z
E1 2 2 cos 72 2 cos 144 0 (Tx , Ty); (R x , R y) (x , y); (x z, yz)

E2 2 2 cos 144 2 cos 72 0
(

1√
2
[x 2 − y2], x y

)
Note: Before working with this group refer to Note 2 under the D5h character table.

Example: Ferrocene when the carbon atoms in opposite rings are neither staggered nor eclipsed (Figure A3.18).
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C C

C
C

H

HH

Figure A3.18 A ferrocene molecule, Fe(C5H5)2, in which the two rings are neither staggered nor

eclipsed, of D5, symmetry.

D6 E 2C6 2C3 C2 3C
′
2 3C

′′
2

A1 1 1 1 1 1 1 x 2 + y2; z2

A2 1 1 1 1 −1 −1 Tz; R z z
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0 (Tx , Ty); (R x , R y) (x , y); (x z, yz)

E2 2 −1 −1 2 0 0
(

1√
2
[x 2 − y2], x y

)
Notes: (1) The x axis has been taken as coincident with one C

′
2.

(2) The choice between which set of three C2 axes is called 3C
′
2 and which is called 3C

′′
2 is arbitrary. If the

choice opposite to that above is taken then the labels B1 and B2 on functions will have to be interchanged (B1

has a character of 1 under the C
′
2 operations).

Example: Dibenzenechromium when the carbon atoms in opposite rings are neither staggered nor eclipsed

(Figure A3.19).
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HH
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C

CC

C

C
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Figure A3.19 A dibenzenechromium molecule, Cr(C6H6)2, in which the two rings are neither stag-

gered nor eclipsed, of D6, symmetry.
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6 THE GROUPS Cnv

This set of groups is of considerable importance since the groups involved are of common
occurrence. One problem that frequently occurs with this is that of ambiguity about the
choice of x and y (z presents no problems). Thus, for C2v, a change of choice interchanges
the meaning of the labels B1 and B2. Related problems arise for all Cnv groups with n even.

C2v E C2 σv σ
′
v

A1 1 1 1 1 Tz z; z2; x 2; y2

A2 1 1 −1 −1 R z x y
B1 1 −1 1 −1 Ty ; R x y; zx
B2 1 −1 −1 1 Tx ; R y x ; yz

Notes: (1) x is taken as lying in σ
′
v.

(2) Interchange of the labels σv and σ
′
v or (equivalently) interchange of choice of direction of x and

y axes (one lies in each mirror plane) interchanges the labels B1 and B2 (B1 has a character of 1 under

the σv operation).

Example: The water molecule. See Chapters 2 and 3.

C3v E 2C3 3σv

A1 1 1 1 Tz z; z2; x 2 + y2

A2 1 1 −1 R z

E 2 −1 0 (Tx , Ty); (R y , R x ) (x , y); (zx , yz);
(
x y, 1√

2
[x 2 − y2]

)
Example: The ammonia molecule. See Chapter 6.

C4v E 2C4 C2 2σv 2σ
′
v

A1 1 1 1 1 1 Tz z; z2; x 2 + y2

A2 1 1 1 −1 −1 R z

B1 1 −1 1 1 −1 x 2 − y2

B2 1 −1 1 −1 1 x y
E 2 0 −2 0 0 (Tx , T y); (R y , R x ) (x , y); (zx , yz)

Notes: (1) x is taken as lying in one σv plane.

(2) Interchange of the labels σv and σ
′
v (and the choice is arbitrary) leads to an interchange of

the labels B1 and B2 (B1 has a character of 1 under the σv operations).

Example: The BrF5 molecule (Chapter 5).

C5v E 2C5 2C2
5 5σv

A1 1 1 1 1 Tz z; x 2 + y2; z2

A2 1 1 1 −1 R z

E1 2 2 cos 72 2 cos 144 0 (Ty , T x ); (R x , R y) (x , y); (x z, yz)

E2 2 2 cos 144 2 cos 72 0
(

1√
2
[x 2 − y2], x y

)
Note: Before working with this group refer to Note (2) under the D5h character table.

Example: η5-cyclopentadienecarbonylnickel (Figure A3.20).
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Figure A3.20 The η5-cyclopentadiene-carbonylnickel molecule, Ni(C5H5)CO, of C5v symmetry.

C6v E 2C6 2C3 C2 3σv 3σ
′
v

A1 1 1 1 1 1 1 Tz z; x 2 + y2; z2

A2 1 1 1 1 −1 −1 R z

B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0 (Tx , Ty); (R y , R x ) (x , y); (x z, yz)

E2 2 −1 −1 2 0 0
(

1√
2
[x 2 − y2], x y

)
Note: Interchange of the labels σv and σ

′
v (and the choice is arbitrary) leads to an interchange of the labels B1

and B2 on functions (B1 has a character of 1 under the σv operations).

Example: The compound η6-hexamethylbenzene, η6-benzenechromium (Figure A3.21).

H
H

H
H

H
HCC

C
C

C C

C
C

Cr

C

C
C

C Me
Me

Me
Me

Me
Me

Figure A3.21 The molecule η6-hexamethylbenzene, η6-benzenechromium, Cr(C6Me6)(C6H6) in which

the two ring are eclipsed, of C6v symmetry.

7 THE GROUPS Cnh

These groups have a derivation similar to that of the Dnh group – they are direct products
of Cn with either Ci (n even) or Cs (n odd). The only one which has been found to be of real
chemical importance is C2h; however, C3h is included to give an example of the n odd case.
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C2h E C2 i σh

Ag 1 1 1 1 R z x 2; y2; z2; x y
Bg 1 −1 1 −1 R x ; R y yz; zx

Au 1 1 −1 −1 Tz z
Bu 1 −1 −1 1 Tx ; T y z; y

Note: This group is a direct product of the C2 and Ci groups, indicated in the character table by lines.

C3h E C3 C 2
3 σh S3 S5

3

A ′ 1 1 1 1 1 1 R z x 2 + y2; z2

1 ε ε2 1 ε ε (T x , T y) (x , y);
(

1√
2
[x 2 − y2], x y

)
1 ε2 ε 1 ε2 ε

E ′
{ {

A” 1 1 1 −1 −1 −1 Tz z
1 ε ε2 −1 −ε −ε (R y , R x ) (yz, zx )
1 ε2 ε −1 −ε2 −ε

E ”
{ {

Notes: (1) See the notes on the C3 group for the meaning of ε and ε2.

(2) This group is a direct product of the C3 and Cs group, indicated in the character table by the lines.

8 THE GROUPS Cn

These are cyclic groups with character tables that look rather strange when compared with
most of those encountered earlier in this Appendix. They only look strange when compared
with other point groups. For many other groups – for instance, in the translation groups
encountered in theories of crystal structure, but not discussed in Chapters 13 and 14 -
the appearance of complex numbers is the norm. The physical meaning of exponential
characters is explicitly discussed in Section 10.4.

Chapter 11 gives detailed examples of working with the C4 group.

C2 E C2

A 1 1 Tz; R z z; z2; y2; x 2; x y
B 1 −1 Tx ; Ty ; R x ; R y x ; y; z; yz; x z
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C3 E C3 C2
3

A 1 1 1 Tz; R z z; x 2 + y2; z2

1 ε ε2

1 ε2 ε
E

{
(Tx , Ty); (R x , R y) (x , y);

(
1√
2
[x 2 − y2], x y

)
; (yz, zx )

Note: In this and two of the next three tables the notation that

ε = exp
(

2π i
n

)
= cos

(
2π
n

)
+ i sin

(
2π
n

)
ε2 = exp

(
−2π i

n

)
= cos

(
2π
n

)
+ i sin

(
2π
n

)
is used, so that here (n = 3).

ε = cos 120 + i sin 120 = − 1
2 + i

√
3
2

ε2 = cos 120 − i sin 120 = − 1
2 − i

√
3
2

Note that ε and ε2 are complex conjugates. That is, in the case of n = 3, ε2 = ε*; the ε2 notation has been

used in the C3, T, Th and C3h character tables.

C4 E C4 C2 C3
4

A 1 1 1 1 Tz; R z z; x 2 + y2; z2

B 1 −1 1 −1
1 i −1 −i
1 −i −1 i

E
{

(T x , T y); (R x , R y) (x , y); (yz, zx )

Note: It is easy to show by substitution in the equations given above that for n = 4,

exp(2π i/n) = i

Chapter 11 gives detailed examples of working with the C4 group.

C5 E C5 C2
5 C3

5 C4
5

A 1 1 1 1 1 Tz; R z z; x 2 + y2; z2

1 ε ε2 ε2* ε

1 ε* ε2* ε2 ε
E1

{
(T x , T y); (R x , R y) (x , y); (yz, zx )

1 ε2 ε* ε ε

1 ε2* ε ε* ε2E2

{ (
1√
2
[x 2 − y2], x y

)
Note: For a definition of ε etc., see under C3.

C6 E C6 C3 C2 C2
3 C5

6

A 1 1 1 1 1 1 Tz; R z z; x 2 + y2; z2

B 1 −1 1 −1 1 −1
1 ε −ε* −1 −ε ε*

1 ε* −ε −1 −ε* ε
E1

{
(T x , T y); (R x , R y) (x , y); (yz, zx )

1 −ε* −ε 1 −ε* −ε

1 −ε −ε* 1 −ε −ε*
E2

{ (
1√
2
[x 2 − y2], x y

)
Note: For a definition of ε, etc., see under C3.
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9 THE GROUPS Sn (n EVEN) (INCLUDES Ci)

Another set of cyclic groups denoted Sn. These only exist for n even because odd values of
n do not satisfy the requirement (Sn)n = E , The S2 group is usually labelled Ci because the
operations S2 and i are identical. (this is demonstrated in Figure 9.3).

Ci E i

Ag 1 1 R z; R x ; R y z2; y2; x 2; x y; yz; zx
Au 1 −1 Tz; Tx ; Ty x ; y; z

Note: Ci often forms a direct product with another group. In this case the g and u suffixes of

the Ci group are carried into the labels of the direct product group.

S4 E S4 C2 S3
4

A 1 1 1 1 R z x 2 + y2; z2

B 1 −1 1 −1 Tz z

E

{
1 i −1 −i
1 −i −1 i

(Tx , Ty); (R x , R y)
(

1√
2
[x 2 − y2], x y

)
(x , y); (yz, zx )

Note: See the note under the C4 group.

10 THE GROUP Cs AND THE TRIVIAL GROUP C1

The group Cs, like the group Ci, often participates in a direct product group. In the case
of Cs it is the post-superscript primes which carry over into the labels of the irreducible
representations of the product group.

Cs E σ

A ′ 1 1 R z; Tx ; Ty x ; y; z2; y2; x 2; x y
A ′′ 1 −1 Tz; R x ; R y z; yz; zx

C1 E

A 1

Note: The group C1 is trivial

because it is the symmetry of an

object which has no symmetry!

The only symmetry operation is

the identity.

In this group no bases are

listed—all bases give rise to the

A irreducible representation!
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11 THE INFINITESIMAL ROTATION (LINEAR) GROUPS C∞v and D∞h

Molecules in which all atoms lie on a common axis demand special attention because a
rotation of any magnitude about this axis is a symmetry operation. The attack which proves
profitable on this problem is to regard all such rotations to be (very large) multiples of an
infinitesimally small rotation. That is, there is a C∞ axis and associated operations. The
character table gives the character for the operation of rotation by an arbitrary angle ϕ

denoted Cϕ
∞. Not only is there an infinite number of operations based on C∞ there is also an

infinite number of σv mirror planes. Fortunately, they all fall into a single class. If the linear
molecule has no centre of symmetry then the appropriate group is C∞v. With a centre of
symmetry the group is the direct product of C∞v with Ci and is denoted D∞h. Because the
groups are infinite, the usual method of reducing a reducible representation will not work.
However, reduction by inspection is usually possible. Section 10.5 discusses this problem
in more detail. The alternative labels for irreducible representations for C∞v and for D∞h

antedate the system used in this book. It is the �, �,  system which is more commonly
used.

C∞v E 2Cφ
∞ .... ∞σv

A1 ≡ �+ 1 1 · · · 1 Tz z; x 2 + y2; z2

A2 ≡ �− 1 1 · · · −1 R z

E1 ≡ � 2 2 cos φ · · · 0 (T x , T y); (R x , R y) (x , y); (zx , yz)

E2 ≡  2 2 cos 2 φ · · · 0
(

1√
2
[x 2 − y2], x y

)
E3 ≡ � 2 2 cos 3 φ · · · 0

· · · · · · · · ·
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Appendix 4 The fluorine group
orbitals of π
symmetry in SF6

It is inevitable that in the application of group theory to chemistry some shortcuts exist –
and are exploited – which circumvent tedious or difficult mathematics. The experienced
worker can often astonish the inexperienced by their ability to write down the correct linear
combinations for a new problem – with no apparent work. In this appendix, an attempt is
made to reveal some of the tricks. Thus, although at first sight it seems an advantage to have
high symmetry, this is sometimes not the case when carrying out a detailed calculation – for
instance, there would be a considerable number of different interactions possible between
two sets of triply degenerate orbitals in a bonding problem. In such a case it may help to
pretend that the symmetry is lower than is in fact the case because the consequent reduced
degeneracy forces a pairing between individual members of each set, thus reducing the
number of interactions to be considered. Having paired the orbitals by this device, the low
symmetry geometry can be forgotten and the correct point group used.

It is a similar trick which provides an alternative to the projection operator method of
obtaining linear combinations of orbitals (Sections 5.7, 6.6, 7.3 and 8.4) and which proves
to be easier to use in high symmetry cases. It uses knowledge of the correct combinations in
a lower symmetry case to obtain those of a higher symmetry molecule, the lower symmetry
group being a subgroup of the higher. There is no unique path in this approach – different
workers might choose different low symmetry groups. For a given choice of subgroup there
may be several equally valid ways of proceeding. Those experienced in the art develop a
‘nose’ which is based on a mixture of experience and the ability to anticipate problems that
will be encountered along each alternative path. Something of this ‘nose’ will be evident
in the next section where an attempt has been made to give the reasons for expecting a
particular approach to be fruitful (or not, as the case may be).

In tackling the problem of generating the fluorine group orbitals of π symmetry in SF6 –
of Oh symmetry – a choice of lower symmetry group must first be made. It is usually sensible
to choose the subgroup of the highest symmetry for which detailed results are available.
In the present case this suggests that the C4v subgroup of Oh be chosen because some
ligand group orbitals for a molecule of this symmetry – BrF5 – were obtained in Chapter
6. It is true that in that chapter only Br F σ -bonding interactions were considered but

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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Figure A4.1 The pure p orbital representation of coplanar fluorine σ orbital symmetry-adapted

combinations in BrF5

perhaps they can be used as a base from which to obtain the π combinations. In Chapter 6
it was explicitly recognized that the fluorine σ orbitals would be mixtures of s and p atomic
orbitals; for simplicity they were drawn there as pure s orbitals. In Figure A4.1 they are
drawn again, but this time as pure p orbitals; the C4v symmetry labels are included. Suppose
the p orbitals are tilted out of the plane, as shown in Figure A4.2. The symmetry labels of
Figure A4.1 remain appropriate, as do the linear combinations. This is really an indication
that in BrF5 there is no symmetry-dictated requirement that the Br F σ -bonding orbitals
have their maxima in the plane defined by the fluorine atoms. If the tilting process is now
completed Figure A4.3 is obtained, which shows that the π orbital combinations have been
obtained – starting from the σ ! This method could be used because there is no operation
in C4v which interchanges – and thus compares – the ‘top’ with the ‘bottom’ of each p
orbital in Figure A4.3. The trick could not have been used in the D4h subgroup because
the σh mirror plane in that group gives this comparison and so distinguishes between σ

and π orbitals. Nonetheless, the combinations shown in Figure A4.3 remain correct in
D4h because C4v is also a subgroup of D4h – but the symmetry labels would have to be
changed.

The next step is that of recognizing that the twelve pπ orbitals of the fluorine atoms in
SF6 can be obtained from those of the three planes of four atoms shown in Figure A4.4.
Recall that the twelve π orbitals of Figure A4.4 transform as T1g + T1u + T2g + T2u, i.e.
four different sets of triply degenerate orbitals. This triple degeneracy neatly matches the
three planes and associated sets of orbitals shown in Figure A4.4. If this is exploited and the
three orbitals, one from each plane, which correspond to the A1 combination in Figure A4.3
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Figure A4.2 The same p orbitals as in Figure A4.1 but with each tilted out of the plane in the

direction of the apical fluorine in BrF5

are collected together:

1/2[pz(B) + pz(D) + pz(E) + pz(F)] ←
1/2[py(A) + py(C) + py(E) + py(F)]
1/2[px (A) + px (B) + px (C) + px (D)]

then the T1u set of ligand π orbitals in Oh is obtained, as may be checked by considering
their transformations as a set. The combination shown in Figure 8.23 is indicated by an
arrow. Similarly, the three combinations corresponding to the B1 in Figure A4.3 are:

1/2[pz(B) + pz(D) − pz(E) − pz(F)] ←
1/2[py(A) + py(C) − py(E) − py(F)]
1/2[px (A) + px (B) − px (C) − px (D)]

which is the T2u set of ligand π orbitals in Oh, the combination shown in Figure 8.25 being
arrowed.

It is at this point that anticipation cautions against plunging on and finishing the problem.
There are two indications that we should pause. First, the next step would have involved
three pairs of orbitals (the three sets, one from each plane, corresponding to the degenerate E
set in Figure A4.3). It seems that six orbitals, apparently all degenerate, would be obtained.
However, we are looking for two sets of three (T1g and T2g) and the two sets are not
expected to be degenerate. Second, some arbitrariness has been exercised in the procedure
that has been followed. In particular, when working with the planes shown in Figures A4.4
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Figure A4.3 The same p orbital combinations as in Figure A4.1 but reoriented so as to be perpen-

dicular to the original set

only pπ orbitals which have their maximum amplitude perpendicular to this plane have
been considered. Equally, the choice could have been made to work with the pπ orbitals
which ‘lie in’ the plane, as shown in Figure A4.5, although it is not immediately clear how to
proceed had this alternative choice been made. Experience suggests that when six apparently
degenerate orbitals are obtained, as seems to be the case here, this is because symmetry-
distinct combinations have been mixed together. After all, this is always mathematically
possible even if it is a step which would not be made from choice. Further, experience is
that because a choice exists between ‘perpendicular pπ orbitals’ and ‘coplanar pπ orbitals’
each alternative must be expected to appear to an equal extent in the answer.

The way to extract symmetry-distinct combinations from sets in which they have been
mixed together is to take suitable linear combinations of members of the mixed-up sets (a
set of six orbitals in the present case). These six (un-normalized) are:

ψ1 = [pz(E) − pz(F)] ψ2 = [pz(B) − pz(D)]

ψ3 = [py(A) − py(C)] ψ4 = [py(E) − py(F)]

ψ5 = [px (A) − px (C)] ψ6 = [px (B) − px (D)]

Which orbitals should be combined together? It is here that the expectation of a ‘coplanar’
set of pπ orbitals comes to our aid. Note that the set of ‘coplanar’ pπ orbitals shown in
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py orbitals are shown solid

px orbitals are shown dotted

pz orbitals are shown dashed
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Figure A4.4 The twelve pπ orbitals of SF6 are shown at the top (this part of the diagram is a

duplicate of Figure 7.13). These twelve are the sum of the three sets of four shown at the bottom

(except that in the latter we do not indicate phases). In each of the three sets the plane of four

fluorine atoms is drawn, the two other fluorine atoms being represented as dots

Figure A4.5 contain contributions from

py(F), px (B), py(E) and px (D)

that is, those orbitals contained in ψ4 and ψ6 in the list above. Clearly, then, we have to
combine these two. Because ψ4 and ψ6 are symmetry-equivalent (a C4 rotation turns ψ4

into ψ6) they must be expected to contribute equally to the combinations. The only way for

Figure A4.5 A set of four fluorine pπ orbitals which lie in the plane of the fluorine atoms (cf. Figure

A4.3 and the second part of Figure A4.4, where the sets of fluorine pπ orbitals shown are all

perpendicular to the plane of the four fluorine atoms)
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this to occur is to combine them first with the same and then with opposite signs. The result
is (giving the final combinations in normalized form):

ψ6 + ψ4 : 1/2[px (B) − px (D) + px (E) − px (F)]

ψ6 − ψ4 : 1/2[px (B) − px (D) − px (E) + px (F)]

Having thus discovered a way forward with one pair, it makes sense to apply the same
procedure to the pairs:

ψ1 and ψ5

ψ2 and ψ3

and thus obtain the complete sets:

T1g : 1/2[px (A) − px (c) + pz(E) − pz(F)] ←
1/2[py(A) − py(C) − pz(B) + pz(D)]
1/2[px (B) − px (D) + py(E) − py(F)]

T2g : 1/2[px (A) − px (C) − pz(E) + pz(F)] ←
1/2[py(A) − py(C) + pz(B) − pz(D)]
1/2[px (B) − px (D) − py(E) + py(F)]

The combinations illustrated in Figure 7.22 (T1g) and 7.24 (T2g) are indicated by arrows.
The reader may well object that whilst a method has been given for obtaining combina-

tions, it has not been shown that they are the ones that are required. To put it another way;
how were the six combinations allocated correctly between the T1g and T2g sets? Formally,
of course, the answer is ‘by considering their transformations’, but, fortunately, experience
relieves us of the tedium of this step. The character table for the Oh point group given in
Appendix 3 shows that T1g functions have the characteristic of a rotation whilst T2g functions
behave like products of coordinate axes. Figure A4.6 shows how these two observations
may be used as a yardstick to discriminate between T1g and T2g functions.

This method of assignment of functions generated by a building-up procedure appears
to break down when there is no basis function listed against an irreducible representation
in a character table – for instance in Oh there is nothing listed against A1u. This does
not mean that no basis functions exist – they always do. Instead, they tend to be rather
complicated, containing many nodes. Such high nodality is usually enough to identify
functions transforming under such an irreducible representation – it seldom happens that
one is interested in more than one of this type at a time. If this is to be pursued in more
detail, Section 10.4 provides the way forward.

In this appendix an attempt has been made to give some insight into the way that experi-
enced practitioners tackle some group theoretical problems. The approach used is comple-
mentary to more formal shortcut treatments which can be given, one of which is described
in the reprint of an article in the Journal of Chemical Education which follows. The case of
the fluorine orbitals in SF6 is not included in this article and the reader may find it of value
to extend the treatment to include it.
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Figure A4.6 (a) A T1g function compared to a rotation (central arrow). Note the arrows drawn

between lobes of adjacent pπ orbitals. (b) Comparison with a typical T2g function (x y, dx y , etc.) –

at the centre – with the nodal pattern of the corresponding T2g combination of pπ orbitals

A4.1 Ligand group orbitals of complex ions1

Several articles which discuss ligand field theory reflect the growing interest in this re-
finement of simple crystal field theory (see References at end of appendix) . The reasons
why covalency needs to be introduced into the latter theory are too well known to need
elaboration here. Rather, we shall discuss a problem which arises in teaching the theory
to undergraduate classes. As we have pointed out, the derivation of the ‘correct linear
combinations of ligand orbitals’ in ligand field theory is a step almost invariably omit-
ted in expositions of the subject suitable for undergraduates.2 The reason is simple: the
derivation is difficult. The derivation in the most important case – that of the octahedral
complex – using a group theoretical approach has been discussed.2 In the present article
an alternative derivation is given of the form of ligand group orbitals (LGOs) which is
more suitable for undergraduate tuition. In particular, no use is made of detailed group
theory.

The method which we use may be termed the method of ‘ascent in symmetry’. The
LGOs of a complicated molecule are derived from those of simpler ‘molecules’ which are
fragments of the complicated one, i.e. vectors appropriate to any point group are derived
as linear combinations of the vectors of its subgroup, implicit use being made of the group
correlation tables. The method is one of considerable power; e.g. one may obtain the LGOs
for an icosahedral arrangement of equivalent σ -type orbitals in relatively simple form by
this method. The standard group theoretical procedure is most unwieldy in this case, making
it necessary to resort to a Schmidt orthogonalization procedure.

1 Reprinted with minor alterations from an article by S.F.A. Kettle in J. Chem. Educ. 43 (1966), 652. Copyright 1966 by the
Division of Chemical Education, American Chemical Society, and reprinted by permission of the copyright owner.

2 S.F.A. Kettle, J. Chem. Educ. 43 (1996) 21.
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The method may conveniently be based on three axioms:

Axiom 1 The LGOs of a complicated molecule are related to those of its fragments by the
condition that only sets with non-zero overlap may interact.

Axiom 2 Two equivalent orbitals are properly considered in-phase and out-of-phase com-
binations. So, the correct combination of two localized orbitals σ1 and σ2 are, with neglect
of overlap,3

ψs = 1√
2

(σ1 + σ2)

ψa = 1√
2

(σ1 − σ2)

Axiom 3 If a set of LGOs is d-fold degenerate and is formed from n equivalent orbitals
then the sum of squares of coefficients with which each equivalent orbital appears in the set
is d/n. This axiom may often be used in the simpler form that for every set of n equivalent
orbitals (σ1, σ2, . . . , σn) there is always a totally symmetric combination:

1√
n

(σ1 + σ2 + · · · + σn)

We now illustrate the use of these axioms by deriving the LGO’s appropriate to five
different stereochemistries. In all cases we include group theoretical labels although these
are not essential to the argument.

Example 1 The σ LGOs of a planar AB3 molecule (D3h symmetry). Label the σ orbitals
σ1, σ2 and σ3. Consider σ1 and σ2. From Axiom 2 the correct combinations, neglecting
overlap, are:

ψs = 1√
2

(σ1 + σ2)

ψa = 1√
2

(σ1 − σ2)

By Axiom 1, of these only ψs can interact with σ3 (the nodal plane implicit in ψa bisects
σ3). We have, then:

ψ1 = 1√
1 + λ2

(ψs + λσ3)

and

ψ2 = 1√
1 + λ2

(λψs − σ3)

where the constantλhas to be determined. Now, from Axiom 3 the first of these combinations
must be, in expanded form,

ψ1 = 1

3
(σ1 + σ2 + σ3)

3 For consistency, a positive phase is assigned to each localized orbital.
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so, by comparison of coefficients, λ = 1/
√

2 (we need only consider the positive root). It
follows that

ψ2 = 1√
6

(σ1 + σ2 − 2σ3)

ψ1 is of A′
1 symmetry and ψa and ψ2 together transform as E ′.

Example 2 The σ LGOs of a planar AB4 molecule (D4h symmetry). Label the σ orbitals
cyclically σ1, σ2, σ3 and σ4. Consider the pairs σ1 and σ3; σ2 and σ4. By Axiom 2 we have
the combinations:

ψ1 = 1√
2

(σ1 + σ3) ψ2 = 1√
2

(σ1 − σ3)

ψ3 = 1√
2

(σ2 + σ4) ψ4 = 1√
2

(σ2 − σ4)

The nodal plane implicit in ψ2 contains atoms 2 and 4. Similarly, the ψ4 nodal plane contains
atoms 1 and 3. It follows, from Axiom 1, that only ψ1 and ψ3 interact. From Axiom 3, one
combination is

ψ5 = 1/2(σ1 + σ2 + σ3 + σ4), i.e.
1√
2

(ψ1 + ψ3)

so the other must be

ψ6 = 1/2(σ1 − σ2 + σ3 − σ4), i.e.
1√
2

(ψ1 − ψ3)

ψ5 is of A1g symmetry, ψ2 and ψ4 together transform under the Eu irreducible representation
and ψ6 is of B2g symmetry.

Example 3 The σ LGOs of a tetrahedral AB4 molecule (Td symmetry). The derivation in
this case is identical to that in Example 2. ψ5 transforms as A1 and ψ2, ψ4 and ψ6 as T2. In
this T2 set the Cartesian coordinates onto which ψ2, ψ4 and ψ6 have a one-to-one mapping
are not equivalently orientated. Two of them, those which map onto ψ2 and ψ4, pass through
the edges of the cube corresponding to the tetrahedron, but the third passes through the mid-
point of faces. The T2 LGO set which maps onto the usual choice of Cartesian axes for the
tetrahedron is:

1√
2

(ψ2 + ψ4) = 1/2(σ1 + σ2 − σ3 − σ4)

1√
2

(ψ2 − ψ4) = 1/2(σ1 − σ2 − σ3 + σ4)

and

ψ6 = 1/2(σ1 − σ2 − σ3 + σ4)

Example 4 The σ LGOs of an octahedral AB6 molecule (Oh symmetry). We isolate
four ligand σ orbitals in a plane and label them cyclically σ1, σ2, σ3 and σ4. The correct
combinations for this set are given in Example 2. Above and below this plane, respectively,
lie the orbitals σ5 and σ6.
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We consider the combinations:

ψ1 = 1/2(σ1 + σ2 + σ3 + σ4)

ψ2 = 1√
2

(ψ1 − ψ3) ψ5 = 1√
2

(ψ5 + ψ6)

ψ3 = 1√
2

(ψ2 − ψ4) ψ6 = 1√
2

(ψ5 − ψ6)

ψ4 = 1/2(σ1 − σ2 + σ3 − σ4)

Axiom 1, applied by the ‘nodal plane’ criterion, shows that only ψ1 and ψ5 are non-
orthogonal. The combination

1√
1 + λ2

(ψ1 + λψ5) leads to (Axiom 3)

ψ7 = 1√
6

(σ1 + σ2 + σ3 + σ4 + ψ5 + ψ6) =
√

2

3
ψ1 + 1√

3
ψ5

It follows, by comparison of coefficients, that λ = (1/
√

2) so that the combination:

1√
1 + λ2

(λψ1 − ψ5)

is

ψ8 = 1√
12

(σ1 + σ2 + σ3 + σ4 − 2ψ5 − 2ψ6)

ψ7 is of A1g symmetry, ψ4 and ψ8 transform as Eg and ψ2, ψ3 and ψ6 as T1u.

Example 5 The σ LGOs of an AB8 Archimedean antiprismatic molecule (D4d symmetry).
This example again uses the results of Example 2 by considering the allowed combinations
between two square planar arrangements of ligand orbitals, rotated with respect to one
another by 45◦. In order to use Axiom 1 the nodal planes of the two sets must be brought
into coincidence. This involves the rotation of coordinate axes as discussed in Example 3.
Label the ligand orbitals cyclically σ1, . . . , σ8, those of one plane being σ1, . . . , σ4 and those
of the other σ5, . . . , σ8. σ5 is positioned so that viewed down the fourfold rotation axis it
appears to lie between σ1 and σ2.
Appropriate combinations are:

ψ1 = 1/2(σ1 + σ2 + σ3 + σ4) ψ5 = 1/2(σ5 + σ6 + σ7 + σ8)

ψ2 = 1√
2

(ψ1 − ψ3) ψ6 = 1/2(σ5 − σ6 − σ7 + σ8)

ψ3 = 1√
2

(ψ2 − ψ4) ψ7 = 1/2(σ5 + σ6 − σ7 − σ8)

ψ4 = 1/2(σ1 − σ2 + σ3 − σ4) ψ8 = 1/2(σ5 − σ6 + σ7 − σ8)
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Application of Axiom 1 shows that we must consider further combinations between the
pairs:

ψ1 and ψ5

ψ2 and ψ2

ψ3 and ψ7

The first pair gives

ψ9 = 1√
8

(σ1 + σ2 + σ3 + σ4 + σ5 + σ6 + σ7 + σ8)

ψ10 = 1√
8

(σ1 + σ2 + σ3 + σ4 − σ5 − σ6 − σ7 − σ8)

while use of Axiom 3, in its more detailed form, shows that the correct combinations of ψ2

and ψ6 are

ψ11 = 1√
2

(ψ1 − ψ3) + 1

2
√

2
(σ5 − σ6 − σ7 + σ8)

ψ12 = 1√
2

(ψ1 − ψ3) − 1

2
√

2
(σ5 − σ6 − σ7 + σ8)

and of ψ3 and ψ7

ψ13 = 1√
2

(ψ2 − ψ4) + 1

2
√

2
(σ5 + σ6 − σ7 − σ8)

ψ14 = 1√
2

(ψ2 − ψ4) − 1

2
√

2
(σ5 + σ6 − σ7 − σ8)

since it is evident that ψ11 and ψ13 must be degenerate, as must also be ψ12 and ψ14. The
symmetries of these combinations are

ψ4 and ψ5: E2

ψ9: A1

ψ10: B2

ψ11 and ψ13: E1

ψ12 and ψ14: E3

Example 6 As an example of the application of the method to combinations of ligand
orbitals of diatomic π symmetry we consider the LGOs of π symmetry in a tetrahedral
complex. Although the standard technique can be used to obtain the correct combinations,
in practice the calculation is rather difficult.

We choose axes and orientations as shown in Figure A4.7. One set of ligand π orbitals
(labelled α) is ‘coplanar’ with the z axis. The other set (labelled β) lies in planes perpen-
dicular to the z axis. If the x and y axes are chosen as shown some slight simplification
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2
α2

α1

β2

β1
z

1

x y
α3

β3

3

4

β4
α4

Figure A4.7 Cartesian axes and orientation of ligand π orbitals in a tetrahedral complex ion

results. Our basic combinations are

ψ1 = 1√
2

(α1 + α2) ψ2 = 1√
2

(α1 − α2)

ψ3 = 1√
2

(α3 + α4) ψ4 = 1√
2

(α3 − α4)

ψ5 = 1√
2

(β1 + β2) ψ6 = 1√
2

(β1 − β2)

ψ7 = 1√
2

(β3 + β4) ψ8 = 1√
2

(β3 − β4)

Following the usual procedure it is readily seen that

ψ9 = 1√
2

(ψ1 + ψ3) = 1/2(α1 + α2 + α3 + α4)

ψ10 = 1√
2

(ψ1 − ψ3) = 1/2(α1 + α2 − α3 − α4)

are orthogonal to all other combinations. It follows that they must be members of degenerate
sets because they contain no β component (cf. Axiom 3). Consider ψ9. This obviously
transforms like the z axis and so will be a member of a triply degenerate set of which the
other components transform as x and y. It follows that d/n = 3/8. However, the coefficient
of the α’s, squared, in ψ9 is 1/4 so there must be an α component in the x and y transforming
members. Evidently, these components are derived from ψ2(y) and ψ4(x), each of which
must appear with a coefficient of 1/2 (3/8 − 1/4 = 1/8 = 1/2[(1/

√
2)]2). Now, ψ6 transforms

like x and ψ8 like y so we are evidently seeking combinations of ψ6 with ψ4 and of ψ8 with
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ψ2. The correct combinations are

ψ11 =
√

3

2
ψ6 − 1

2
ψ4 = 1

2
√

2
[
√

3(β1 − β2) − α3 + α4]

and

ψ12 =
√

3

2
ψ8 − 1

2
ψ2 = 1

2
√

2
[
√

3(β3 − β4) − α1 + α2]

where we have been careful to make sure that the phases of ψ6 and ψ4 mapping onto x and
of ψ8 and ψ2 onto y are identical.

Combinations of ψ6 and ψ4 and of ψ8 and ψ2 orthogonal to ψ11 and ψ12 are

ψ13 = 1

2
ψ6 +

√
3

2
ψ4 = 1

2
√

2
[β1 − β2 +

√
3(α3 − α4)]

and

ψ14 = 1

2
ψ8 +

√
3

2
ψ2 = 1

2
√

2
[β3 − β4 +

√
3(α1 − α2)]

We have only to deal with ψ5 and ψ7, which are not orthogonal; the correct combinations
are

ψ16 = 1/2(β1 + β2 + β3 + β4)

ψ17 = 1/2(β1 + β2 − β3 − β4)

The symmetries of these combinations are

ψ9, ψ11, ψ12: T2

ψ13, ψ14, ψ16: T1

ψ10, ψ17: E
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Appendix 5 The Hermann–Mauguin
notation

The symbolism used in the vast majority of applications of symmetry to chemistry is the
Schönflies notation; it is the one used in this book. There are others; so, those reading the
physics literature may well meet irreducible representations labelled �, ε1, �2 and so on.
When dealing with the solid state, and invariably in crystallography, the notation used is
the Hermann–Mauguin. In this book, the notation began to be used in Chapter 13 and, in
more detail, in Chapter 14. Appendix 6 uses it extensively. This appendix largely consists of
two tables which provide a connection between the Schönflies and the Hermann–Mauguin
notation, although a brief descriptive introduction follows.

Whereas the concern of the group theoretician is with symmetry operations, the concern
of the crystallographer is more with symmetry elements – the symmetry elements associated
with a crystal structure influence both the pattern of diffracted beams in an x-ray structure
determination and also which occur and which are ‘missing’ (systematic absences). As
far as point groups are concerned, the Hermann–Mauguin notation is most simply thought
of as offering an approximate answer to the question ‘for a given point group which are
the symmetry elements needed to uniquely define it?’. The idea here is that, as group
multiplication tables show, the multiplication of symmetry operations (performing them
one after the other) may lead to the generation of other symmetry operations. So, what is
the smallest list of elements which uniquely specifies a particular group? Whilst the answer
to this question is not provided by the Hermann–Mauguin notation, this notation certainly
approximates it. Before illustrating this, a point of symbolism. In place of Cn , the notation
uses n. So, C4 is replaced by 4, C3 by 3 and a group which contains distinct fourfold and
threefold axes would be denoted 43 (remember, we are dealing with crystallographic point
groups so there is no confusion with a forty-three-fold axis because one can never exist). It
so happens that these two axes serve to uniquely identify the point group. This group is the
one that, in Schönflies notation, is called O. Actually, in Hermann–Mauguin notation, this
group is called 432, but this merely serves to illustrate the point that the notation sometimes
only approximates to the minimal defining symmetry element set. Mirror planes containing
a Cn axis are denoted m. So, C2v becomes 2mm (a minimal set would be 2m or mm). When
the mirror plane is perpendicular to a Cn axis the notation is n/m. So, the point group C2h is
written 2/m, a minimal set (it is pronounced ‘two over m’). A centre of symmetry is never
explicitly indicated unless it is the only non-trivial symmetry element (the group Ci), when

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
C© 2007 John Wiley & Sons, Inc.
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it is written 1̄; centres of symmetry are indicated by the bar, so a threefold rotation inversion
axis is denoted 3̄. Most likely to be encountered are the short Hermann–Mauguin symbols
but usually longer, more explicit, ones exist. Thus, the normal, short, notation which is
equivalent to Oh is m3m, the more explicit version of which is 4/m 3̄2/m (4/m means that
perpendicular to each 4, C4, axis is a mirror plane). In most cases the long symbols describe
the symmetry characteristics of the x, y and z coordinate axes in this sequence; the short
symbols are a contraction in which this sequence may well not appear. For cubic space
groups, where all three coordinate axes are equivalent, symmetry-distinct axes are detailed
(for instance, a fourfold and a threefold). A few minutes spent with this appendix (perhaps
by covering up the Schönflies and working out the Schönflies equivalents of the Hermann–
Mauguin) is a good way of gaining some familiarity with the Hermann–Mauguin (H–M)
notation.

Point group operations

This table details the connection between individual symmetry operations (or elements) in
the two systems.

Table A5.a

HERMANN-

MAUGUIN SCHÖNFLIES Comments

1 E

1 i A bar over a symbol in the H–M notation indicates inversion in a
centre of symmetry.

2 C2

3 C3 Care has to be taken to ensure that rotation is in the same sense in
the two notations.

32 C2
3 This is particularly important when S4 or S6 axes are present (see

below).

4 C4

43 C3
4

6 C6

65 C5
6

m σ Unlike σ , the m symbol never carries suffixes.

3 S5
6 It is very important to recognise that the common practise is to use

different definitions for the operations in the two notations (H–M;
rotation+inversion: S; rotation+reflection) leading to apparently
perverse correspondences. These can be reduced by defining
rotation to be in opposite senses in the two notations (not done
here).

3
2

S6

4 S3
4

4
3

S4

6 S2
3

6
5

S3
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Point groups

Although extension to other cases is straightforward, in practice, use of the Hermann–
Mauguin notation is normally confined to the thirty-two crystallographic point groups.
Only these are given here.

Table A5.b

HERMANN-

MAUGUIN SCHÖNFLIES Comments

1 C1

1 Ci

2 C2

m Cs

2
m C2h

222 D2

mm2 C2v In H–M sometimes called mm

222
mmm D2h In H–M sometimes called mmm

4 C4

4 S4

4
m C4h

422 D4

4mm C4v

42m D2d

444
mmm D4h In H–M sometimes called

4
mmm

3 C3

3 S6

32 D3

3m C3v Beware confusion with m3

32
m D3d In H–M sometimes called 3m

6 C6

3
m C3h

6
m C6h

622 D6

6mm C6v

3m2
m D3h In H–M sometimes called 6m2

622
mmm D6h In H–M sometimes called

6
mmm

23 T

23
m Th In H–M often called m3 (beware confusion with 3m)

432 O

43m Td

434
m m Oh In H–M often called m3m
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Appendix 6 Non-symmorphic
relatives of the point
group D2

In Chapter 13 it was pointed out that both C2 axes and mirror planes could be associated with
one half of a primitive translation and so the interplay of these with each other increases the
number of non-symmorphic space groups associated with a crystallographic point group.
As a brief introduction both to this and to the detailed derivation of non-symmorphic space
groups, in this appendix some of the space groups associated with the D2 point group will be
studied. This group has several advantages. In Table 13.7 it appeared without complications
(under ‘Orthorhombic’). Having three symmetry-distinct C2 axes (and Cartesian axes), it
will enable us to examine the interplay between different non-primitive translations. The
group multiplication table of the D2 group is small and so easily manageable. Finally, the
orthorhombic system has more Bravais lattices than any other crystal system, giving an
opportunity to explore all likely problem areas. However, it lacks mirror planes and so to
compensate for this, as a final example, an important space group derived from the point
group C2h will be examined. It will also prove convenient to refer to a system containing a
mirror plane within the D2 discussion.

As a first example consider the orthorhombic crystallographic point group D2. A diagram
of axes and operations of the D2 point group is given in Figure A6.1, in both Hermann–
Mauguin and Schönflies notations (the former in projection, the latter in perspective). In
both, the effect of the operations on a starting point, that labelled E , is shown. The corre-
sponding group multiplication table is given as Table A6.1a. A feeling for this table will be
essential in the development that follows. In particular, its implications for the way that the
point [x, y, z]1 is converted by the symmetry operations to the four other coordinate sets –
and the way that the operations of D2 convert these points into each other – need to be well
understood. The reader would be well advised to stop at this stage and relate each entry in
Table A6.1a to the corresponding coordinate transformations in Figure A6.1. To skip this
step now may well be to invite problems later!

1 A word of caution; the same symbols are being used to indicate an axis, as in 2(y), and a general point, as in x, y, z. This has

been done because of the familiarity of this usage; with this word of caution no confusion should result.

Symmetry and Structure: Readable Group Theory for Chemists Sidney F. A. Kettle
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2(z)2(y)

2(x)

2(x)[x,−y,−z]

2(z)[−x,−y,z]2(y)[−x,y,−z]

E[x,y,z]

222

C2(z)

C2(x)

C2(x)

C2(z)

C2(y)

C2(y)

ED2

Figure A6.1 The symmetry axes of the point group D2 (Schönflies notation), 222 (Hermann–Mauguin

notation), using the symbolism appropriate to the particular notation. Whilst a perspective view has

been adopted for the Schönflies diagram (lower), that given for the Hermann–Mauguin is that which

will be adopted in the following figures. Note the representation of twofold rotation axes, particularly

that viewed ‘end-on’ (that along z). In this diagram, as in the following figures, a general point in

space is denoted by a solid circle and those into which it is converted by empty circles. For each,

the relevant operation and coordinates are given. In the following figures it will be important to

follow these carefully; it will often be helpful to compare the entries in them with those given here

Problem A6.1 Relate each entry in Table A6.1a to the corresponding coordinate
transformations in Figure A6.1.

To help in understanding the symbolism Table A6.1a will now be repeated as Table A6.1b
using the Hermann–Mauguin notation. This notation uses the symbol 1 for the identity but
to avoid any ambiguity E will continue to be used.

Table A6.1a

D2 E C2(x) C2(y) C2(z)

E E C2(x) C2(y) C2(z)
C2(x) C2(x) E C2(z) C2(y)
C2(y) C2(y) C2(z) E C2(x)
C2(z) C2(z) C2(y) C2(x) E
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Table A6.1b

D2 E 2(x) 2(y) 2(z)

E E 2(x) 2(y) 2(z)
2(x) 2(x) E 2(z) 2(y)
2(y) 2(y) 2(z) E 2(x)
2(z) 2(z) 2(y) 2(x) E

Figure A6.1 and Table A6.1 refer to the symmorphic space group P222 (Primitive with
three 2-fold axes), D1

2 (the first D2 listed). The table will now be repeated yet again but
replacing some or all of the 2 rotation axes (this should be read ‘twofold rotation axes’) by
21 screw axes (‘two-one screw axes’). One, two or all three of the 2 can be replaced by a
21 – and, because no coordinate axis has any unique properties compared with any other,
they can be replaced in any order. The choices to be adopted for the three examples detailed
in this appendix are given in Table A6.2.2

The first row in Table A6.2 corresponds to the elements in the multiplication table,
Table A6.1b. To obtain a multiplication table corresponding to ‘Choice 1’ (P2122, D2

2) it
seems sensible to substitute 21(x) for 2(x) in Table A6.1b and then to ask whether this is a
correct step to take. This substitution has been made in Table A6.3.

At first sight this table may appear fine, but in fact all of the entries in bold typeface present
problems. All involve the 21(x) operation in some way or other. The first encountered
in reading the table is the identity element resulting from the combination of two 21(x)
operations. Although the entry in Table A6.3 is E, the actual outcome of combining the two
21(x) operations is a primitive translation along x. It will be necessary to return to this problem
later. In the same row as this E are 2(z) and 2(y) entries, resulting from the combination of
21(x) with 2(y) and 2(z), respectively. Where has the non-primitive component of the 21(x)
operation gone – there is no indication of it in the final answer? Two other entries in bold
typeface are 21(x) operations which, apparently, have to result from the combination of two
operations which do not have any translation component! How can this be – if it can be?
The answer is that it can, indeed, be. The reason is the existence of a flexibility noted in
Chapter 13 which must now be developed further.

As an aside, consider a space group derived from the C2h point group in which the 2 is
replaced by a 21. The combination of reflection in the mirror plane with inversion in the
centre of symmetry of C2h must now equal 21, rather than 2. But neither the mirror plane nor
the centre of symmetry is associated with a non-primitive translation! Where can the 1 in
21 come from? The translation component in the combination of operations arises because
this is an example of the centre of symmetry being displaced by a quarter of a primitive
lattice translation (Figure A6.2). In this particular case, not surprisingly, the displacement
of the centre of symmetry is along the 21 axis. It is important to note that the displacement
takes the centre of symmetry out of the mirror plane. As a result, there is no longer a point
through which all of the symmetry elements pass. We are no longer talking about a point
group. Indeed, it is by no means clear that we are talking about a group at all (we can be,

2 Although the choice of substitutions that follows has an evident logic, it is not that used in International Tables – in Choice

1, for instance, the 21 is there taken to be along z, not x.
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Table A6.2

D2 E 2(x) 2(y) 2(z)

Choice 1 E 21(x) 2(y) 2(z)
Choice 2 E 21(x) 21(y) 2(z)
Choice 3 E 21(x) 21(y) 21(z)

and this is a topic covered in Chapter 14 and again below). Is it an inevitable consequence
of having non-primitive translations associated with point group operations that some of
the corresponding symmetry elements no longer pass through a point? The answer is ‘yes’,
so that the problems of the sort under discussion are common to all of the crystallographic
point groups associated with non-symmorphic space groups. Can such non-coincidences
resolve the problems associated with Table A6.3? Not surprisingly, the answer is ‘yes’.

We now return to the D2 non-symmorphic space groups. There are two ways in which
the argument could be developed. Either the problem of the non-coincidence of symmetry
elements could be treated as one requiring an answer to the question ‘what is the dis-
placement required?’ or the answer to the question could simply be presented. In the latter
case all would become clear in solving the problem of what is meant by ‘a group’ in the
present context. In fact, the two approaches are linked as something of a circular argument
is involved. In Figure A6.3 is given the answer for the Choice 1 (Table A6.3) space group,
(P2122, D2

2). 2(y) and 2(z) are displaced relative to each other along x, although each still cuts
the 21(x) axis. Also shown in Figure A6.3 are the effects of the three non-trivial symmetry
operations on the point [x, y, z]. It was in preparation for diagrams like this that practice
with Figure A6.1 was strongly recommended! In Figure A6.3 the origin has been taken as
the intersection of 21(x) and 2(y); a primitive displacement along the x axis, a, has been
indicated and set symmetrically about the origin. The 2(z) axis is displaced from the origin
by a/4. This displacement could be either ‘up’ or ‘down’; the latter has been chosen. A
table which is the equivalent of Table A6.1b will now be generated but, instead of giving
symmetry operations, it gives the coordinates of the points generated. This is Table A6.4.
If Figure A6.1 has been thoroughly studied then the compilation of Table A6.4 should not
prove unduly difficult – certainly, all the y and z entries are those appropriate for Figure
A6.1. In any event, the reader should stop and check the entries in Table A6.4 (the use
of Figure A6.3 is essential). There is an important point. In contrast to Table A6.3 which
was obtained by simple substitution in Table A6.1b, the entries in Table A6.4 depend on
whether the operations in the left-hand column operate first and are followed by those in
the first row, or vice versa. Table A6.4 has been compiled with the left-hand column entries

Table A6.3

Choice 1 E 21(x) 2(y) 2(z)

E E 21(x) 2(y) 2(z)
21(x) 21(x) E 2(z) 2(y)
2(y) 2(y) 2(z) E 21(x)
2(z) 2(z) 2(y) 21(x) E
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m

i

a 2a

21

Figure A6.2 The combination of the m and i operations must be equivalent to the 21. Starting with

the dark circle, rotating by 180◦ about the 21 axis and then translating along this axis by half a

translation unit (but here denoted 2a) one arrives at the open circle at the bottom of the diagram.

For this operation to be equivalent to m followed by i the centre of symmetry, i (denoted by a large

star) has to be displaced from the mirror plane by one-quarter of a translation unit (here, a) in a

direction parallel to the 21 axis

operating first (this makes the table easier to read). So, for instance,

21(x) · 2(y)[x, y, z] = 21(x) · [−x, y, −z]

=
[a

2
+ (−x), −y, −(−z)

]
=

[(a

2
− x

)
, −y, z

]

E[x,y,z]

2(y)[−x,y,−z]

2(y)
2(z)

aa
4

21(x)[( + x),−y,−z]a
2

2(z)[(− − x),−y,z]a
2

21(x)

Figure A6.3 The relative arrangements of the symmetry elements of Choice 1 (those of the space

group P2221; note that in this label, which in the text has been treated as P2122, as in the following

figures, some liberty has been taken with such things as conventions for the directions of axes, always

in the interests of simplifying the discussion). Note the standard convention for showing a 21 axis

in the plane of the paper – a half-headed arrow
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Table A6.4

Choice 1 E 21(x) 2(y) 2(z)

E x, y, z (a/2 + x), −y, −z −x, y, −z (−a/2−x), −y ,z
21(x) (a/2 + x), −y, −z (a + x), y ,z (−a/2−x), −y, z (−a−x), y, −z
2(y) −x, y, −z (a/2−x), −y, z x, y, z (−a/2+x), −y, −z
2(z) (−a/2−x), −y, z −x, y, −z (a/2+x), −y, −z x, y, z

Problem A6.2 Check Table A6.4.

The only problem area of Table A6.4 might have been in the bottom right-hand corner, in
a square of 3 × 3 entries. As an example of these, 21(x) followed by 2(y) can be expanded as
follows: 21(x) acting on (x, y, z) gives [(a/2 + x), −y, −z]. 2(y) acting on these coordinates
(remember, 2(y) changes (x, y, z) into (−x, y, −z)) gives [−(a/2 + x), −y, z], the same
as the entry for 2(z), as it should. But there are problems. So, the opposite sequence, 2(y)
followed by 21(x), gives [(a/2 − x), −y, z], a different result – but D2 is an Abelian group,
and so they should be the same. The difference between the two is a, twice the non-primitive
translation along the x axis, as are all differences that might be encountered in compiling
Table A6.4, and indeed any other similar table compiled for a non-symmorphic space group.
The differences are all members of the translation group. Because of their presence, the
set of operations E, 21(x), 2(y) and 2(z) do not form a group. To form a group, a set of
elements has to map onto itself when combined according to the rules of multiplication
of that group – the ‘closure’ requirement, discussed in detail in Appendix 1. The problem
is that members of another group, the translation group, are obtained and their presence
prevents closure. Can the rules of multiplication of the would-be-group be modified so that
this problem is avoided and the would-be-group is turned into a real group? The answer
is ‘yes’. The multiplication is made ‘moduli primitive translations’. That is, it is made
impossible to obtain primitive translations by the simple expedient of defining it to be so!
Physically, and in the context of unit cells as usually defined, whatever ‘moves out’ of one
face of the unit cell ‘comes back in again’ through the opposite face. This is perhaps the
point for the author to confess that Figure A6.3 has been made more apparently difficult than
need be the case. Had the point [x, y, z] been chosen to lie in the lower left-hand quadrant
then all of the generated points would have been within the limits of the a displacement
indicated. To have made this choice would have temporarily concealed the fact that in
compiling Table A6.4 points lying outside the boundaries of the a displacement could have
been produced and might have made the problem appear less fundamental than is in fact the
case.

Significant progress now has been made and it is perhaps timely to review the position
reached. It has been seen that when non-primitive translations are combined with point
group operations the combination does not lead to a group unless an additional restriction
is placed on the group multiplication rules. This restriction only makes any sense in the
context of crystals and so it is only in this context that these groups have meaning. Further,
it was seen that whereas there is only one D2 point group, it is possible to create three
more groups by adding non-primitive translations – these are those listed in Table A6.3.
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Table A6.3 is evidently exhaustive – one, two or three 2 axes can become 21, there are no
other possibilities. To generate more non-symmorphic D2 space groups we have to change
to a centred lattice. All of this explains why it is reasonable to expect more non-symmorphic
space groups than symmorphic. Whilst this expectation is justified, an important restriction
working in the opposite direction must be noted: by invoking non-primitive translations in
the definition of point – group-derived operations the corresponding primitive translation
has automatically been defined. Yet, as has been seen in Figure 13.8, the definition of the
non-primitive Bravais lattices of a particular crystal system invariably requires a different
choice of primitive translation vectors to that appropriate to the corresponding primitive
lattice (compare Figures 13.8a and 13.8b). This variation of choice is in potential conflict
with the rigidity imposed by combining non-primitive translations with point group opera-
tions. In particular, for none of the so-called non-primitive Bravais lattices do the primitive
translation vectors form an orthogonal (mutually perpendicular) set. For there to be an asso-
ciation of non-primitive translations with point group operations, perpendicular axes tend
to be required (more on this later). So, the majority of non-symmorphic space groups are
associated with primitive lattices. Of the 157, 113 are primitive and only 44 non-primitive,
notwithstanding the fact that there are equal numbers of primitive and non-primitive Bravais
lattices.

As an example of the consequences of there being two point group operations associated
with non-primitive translations consider Choice 2 of Table A6.2. The space group is P21212
(D3

2). Following the pattern set by the previous example, in Figure A6.4 is shown a diagram
which indicates how an original point −E[x, y, z] − is transformed when it is operated
upon by the set of operations of Choice 2. The screw axes have been taken as along x and y

a

b

a
4 b

4

21(x)[( + x),−y,−z]a
2

21(y)[−x,( + y),−z]b
2

21(x)

21(y)
21(x)

2(z)

2(z)

E[x,y,z]

21(y)

2(z)[(− − x),(a
2

b
2 − y),z]

Figure A6.4 Transformations of the point [x , y, z] produced by the operations 21(x ), 21(y) and

2(z) of Choice 2 (corresponding to the space group P22121). In this Figure, as in Figure A6.3, the

transformed points are indicated by empty circles. However, in addition, the corresponding points

moduli primitive translations are shown (as stars). In each case they are labelled with the same

operation as that containing the primitive translations.
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Table A6.5

Choice 2 E 21(x) 21(y) 2(z)

E x, y, z (a/2+x), −y, −z −x, (b/2+y), −z −(a/2+x), (b/2−y), z
21(x) (a/2+x), −y, −z (a+x), y, z (a/2−x), −(b/2+y), z −x, −(b/2−y), −z
21(y) −x, (b/2+y), −z −(a/2+x), (b/2−y), z x, (b+y), z (a/2+x), (b−y), −z
2(z) −(a/2+x), (b/2−y), z −(a+x), (b/2+y), −z −(a/2−x), −y, −z x, y, z

and their intersection has been chosen as origin. Perhaps predictably, 2(z) is displaced from
this origin by translations along two axes, by a/4 and b/4 (in the previous example where
there was just a single screw axis it was displaced by translation along a single axis). Again,
as in the previous example, it could have been arranged that all transformed points fall
within the bounds set by the primitive translation units shown in Figure A6.4, that is, within
the area bounded by a and b. This could have been achieved by placing both the identity
point, [x, y, z], and 2(z) in the lower left-hand quadrant. A less comfortable arrangement has,
in fact, been chosen in which all generated points (indicated by empty circles) fall outside
the a, b bounds, safe in the knowledge that the ‘moduli primitive translations’ requirement
means that there are equivalent points within these bounds; the latter have been indicated by
stars in Figure A6.4. The actual coordinate changes associated with Choice 2 are shown in
Table A6.5, which, like Table A6.4, is compiled with the operation in the left-hand column
operating on the coordinates implied by the entry in the first row.

Problem A6.3 Check Table A6.5.

Just as for Table A6.4, the multiplication of entries for individual operations in Table A6.5
does not always generate the products listed there. Again, all the differences are an integer
number of primitive translations so that, again, if multiplication is made moduli primitive
translations a group is obtained. This exercise could be repeated for Choice 3 of Table A6.2
(the space group P212121, D4

2) – but the general pattern is clear. In Figure A6.5 is given a
figure appropriate to Choice 3. No screw axes intersect and, really, the diagram should have
an indication of the out-of-paper translation distance, c. Although a table akin to Tables
A6.3 and A6.4 could be given for Choice 3, it would contain nothing new in principle and
so is not included here.

Problem A6.4 Compile a multiplication table appropriate to Choice 3 of Table A6.2.

The three space groups generated above were all primitive. What of their centred coun-
terparts? They have already been mentioned and the problem posed by the fact that their
axes are not mutually perpendicular was recognized. The relevant Bravais lattices are the
body-centred, all-face-centred and one-face-centred orthorhombic, shown in Figure 13.8b
as D, E and F. We start with the latter, the one-face-centred Bravais lattice. Following the
convention that z is unique, the face that is chosen to be centred is that perpendicular to this
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a

b

a
4

b
4

21(y)[−x,( + y),−z]b
2

21(y)

21(x)

E[x,y,z]
21(y)

21(z)

c
421(x) ( up)

21(x)[( + x),−y,a
2

c
2 − z)]

21(z)[−( + x),(a
2

b
2 − y),( + z)]c

2

(

Figure A6.5 Transformations of the point [x , y, z] produced by the operations 21(x ), 21(y) and

21(z) of Choice 3 (corresponding to the space group P212121). Note the way that a 21 axis is

conventionally shown when viewed end on (the 21(z)). In this figure, to emphasize the fact that

a primitive translation does not have to be chosen to be symmetrically placed with respect to

symmetry elements, one has been chosen asymmetrically placed.

axis. It is denoted C, as opposed to A and B which would characterize the other possibilities.
So, the question to be answered is ‘which of the following exist?’:

C222 C2221 C21212 C212121

Clearly, the first presents no problems – it was included when counting the symmorphic
space groups (Table 13.7). What of the others? Here the guiding principle is that lattice and
‘point group’ (quotes are used to indicate that this is a convenient, but not quite correct,
term) must be mutually compatible. They will be incompatible if, for example, one requires
that the primitive translation vectors all be perpendicular when the other requires that one
pair are not perpendicular. Now, as Figure 13.8b(F) shows, the translation vectors that
define the one-face-centred orthorhombic lattice are not all mutually perpendicular (P3 is
perpendicular to P1 and P2 but this pair are not mutually perpendicular – if they were, a
tetragonal lattice would result). So, whilst P3 could be associated with a 21 axis, the other
two could not. That is, a space group C2221 is expected but not C21212 or C212121 – these
last two require that two and three, respectively, of the primitive translation vectors defining
the lattice be oriented along twofold axes of the Bravais lattice, but, as has been seen, only
one is. And, indeed, there is a space group C2221, D5

2, and none of the others.
Turning now to the all-face-centred orthorhombic Bravais lattice (Figure 13.8b(E)), none

of the primitive translation vectors are directed along twofold axes (these latter are in the
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directions of x, y and z in Figure 13.8b(E)). It follows that none can be associated with 21

screw axes and so the three following space groups have an incompatibility between the
‘point group’ and the Bravais lattice and do not exist:

F2221 F21212 F212121

Indeed, none of them are listed in the International Tables. Of course, the space group F222
exists because there is no requirement that the twofold axes and primitive translation vectors
coincide.

Arguments parallel to those for the one-face-centred orthorhombic apply to the body-
centred orthorhombic lattice, Figure 13.8b(D). The three primitive translation vectors are not
mutually perpendicular. Body-centred lattices are conventionally labelled I; it is concluded
that the following space groups do not exist:

I2221 I21212 I212121

As predicted, the first two do not exist; unexpectedly however, the International Tables
list I212121! The reason is that this is the name conventionally given to one of the space
groups mentioned in Chapter 13 in a footnote.3 It is a space group derived from D2 in which
the three genuine 2 axes are retained (even though they are not mentioned in the name of
the space group). The non-symmorphic nature of the group is shown by the fact that none
of the 2 axes intersect; the translational components are manifest in that the 2 axes are all
displaced by 1/4 translations perpendicular to the direction of the twofold axis. Each twofold
axis is associated with a non-primitive translation but it is not such as to generate a screw
axis (despite the label given to the group).4 There is only one other space group of this type –
the cubic group conventionally labelled I213 (a group which contains genuine 2 axes).

This appendix has shown how to obtain all of the space groups that are derived from the
combination of the elements of the point group D2 (and its derivatives) with the relevant
Bravais lattices. The principles used are general and so the reader should be in a position
to apply them to any such combination and thus to understand the origin of each and every
space group. No doubt, there will be problems of detail which will be encountered but the
broad principles are in place. The major omission is that none of the examples considered
contains a glide plane. This omission is remedied in the next section, where the most
commonly encountered space group, P21/c, is studied.

A6.1 The space group P21/c (C5
2h)

The first and most obvious question when one encounters the symbol P21/c (pronounced
‘pee two one over see’) is ‘what does it mean?’. The P and 21 should present no problems –
a primitive lattice in some as-yet uncertain crystal system but which certainly contains a
twofold rotation axis which, in this space group, has become a 21 screw. This group is derived
from the C2h point group, which means that there must be a 1:1 correspondence between the
operations of C2h and the point-group-derived operations of P21/c, just as exemplified earlier

3 It can be argued that the use of the label I212121 is not ideal.
4 The diagram given in the International Tables shows 21 screw axes but these are artefacts, arising from the doubling of the

primitive group (as indicated by the I symbol). The ‘real’ twofold rotation axes, also shown in the International Tables, are the

important ones!
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for the case of the D2 point group. In P21/c the C2 (2) of C2h is replaced by a 21 and the σ

mirror plane is replaced by a glide. In the Hermann–Mauguin notation this is represented
as 2/m (the symbol/m indicates that the mirror plane is perpendicular to the 2 axis). Clearly,
a, b and c glides exist, the labels indicating half-primitive translations in the direction of
the x, y and z axes respectively. How are they to be incorporated into the symbolism? The
answer is that the letter a, b or c replaces the m in 2/m – so that one talks of 2/a, 2/b and
2/c. When incorporated into a group, the moduli primitive translation requirement has to
be applied in the group multiplication. When combined with a primitive lattice these point
groups derived from C2h give the space groups P21/a, P21/b and P21/c, where, following
convention, the symbol is written on a single line, and not in bold type. These three are
not different space groups; the only way they differ is in the choice of axis labels. Indeed,
there is a fourth equivalent choice which is quite often used in crystallography – P21/n,
where the ‘n’ indicates a translation involving half-translations along two coordinate axes.
In this case it is more than a choice of axis labels which is involved, it is a change of axes
(so that, for example, an axis is chosen which lies between the ‘original’ x and y). This
may seem rather obtuse but in fact such a choice can be crystallographically convenient.
Care has to be taken, however. In the symbol which corresponds to the crystallographer’s
‘standard’ setting, P21/c, the 21 axis is the y axis, not the z which would be conventional in
C2h when used in a non-crystallographic context. One other point, in that the ‘parent’ point
group is C2h, there must be a centre of symmetry somewhere because C2h contains one.
In the non-symmorphic space groups P21/a, P21/b and P21/c this centre of symmetry is

21(y)

i[−x,−( + y),(b
2

c
2 − z)]

gc[x,− y,(c
2 + z)]

c c/4

b/4

E[x,y,z]

c/2

z

x

y

mirror
component
of the c glide

i

21(y)[−x,(b
2

+ y),−z]

Figure A6.6 Pictorial perspective representation of the symmetry elements of the space group P21/c.

The centre of symmetry is here represented by a five-point star; note its displacement from both the 21

and the glide plane. The glide operation is shown divided into two components; the act of reflection

leads to the star; the end product of the complete operation is shown, as usual, by an empty circle
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c

a

1
4

Figure A6.7 The diagram given for the space group P21/c in the International Tables (viewed down

the y axis). Note the way that the glide plane is b/4 above the plane containing the centre of

symmetry is represented (top left-hand corner). Centres of symmetry are conventionally represented

by circles, as here – beware confusion with a different use for this symbol in Figures A6.1–A6.6. In

this diagram nine such centres of symmetry are shown but they differ only in the way that they add

translations to the basic operation of inversion in any one of them. In this diagram the origin is

taken as at the top left-hand corner

displaced out of the (former) mirror plane by one-quarter of a primitive translation. This has
already been met in Figure A6.2. This is all brought together in Figure A6.6, which shows
the space group P21/c. The displacement of the centre of symmetry is related to, but a bit
more convoluted than, that shown in Figure A6.2 (it is moved along two, not one, axes).

In Figure A6.6 are shown the coordinates generated by the symmetry operations of the
21/c group (moduli primitive translations, of course). The reader will find it very useful
practice to work through the generation of these. In Figure A6.7 is shown the diagram that
appears in “International Tables” for the P21/c space group; its connection with Figure A6.6
may not be immediately evident. Figure A6.7 is Figure A6.6 viewed down the y axis; unlike
the latter, it recognizes the existence of a lattice, so that more than one 21 axis is shown
(the 21 in Figure A6.6 may conveniently be regarded as that in the middle of the top row in
Figure A6.7). Finally, the plane shown in Figure A6.7 is not the one shown in Figure A6.6;
it is best thought of as the one containing the centre of symmetry in the latter. There may
appear to be too many screw axes, glides and centres of symmetry in Figure A6.7 – after
all, the correspondence with C2h discussed above requires one of each. Any one of each
sort of symmetry element may be selected from Figure A6.7 – all of the others are then
such that the corresponding operation is equivalent to the selected one plus a translation
(always a primitive translation, although possibly a sum of them). One final point; there
is no space group C21/c. The reason should be obvious from the earlier discussion and
Figure 13.8b(D–F).
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class algebra 352
class 147, 346
closed shells of electrons 292
closure 412, 346
complex congugate 268, 270
complex characters 153
configuration 289
configuration interaction 293
conjugate elements 350
correlation tables 240, 241
crystal systems 299, 307
crystal field theory 218
crystallographic point groups

311

D2 111
D2h 111
degeneracy 145
diborane 136
dihedral 111
direct product 94, 114, 197, 238,

288, 334, 363
direct sum 208, 210
displacement vectors 81
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double degeneracy 146, 159
double groups 282

electric dipole 100
electromagnetic radiation 99
electron deficiency 137
electron-repulsion model of

ammonia 4
electron-spin 281
electron-spin-repulsion model of

ammonia 6
element (of a group) 345
equivalent orbitals 144
ethene 109

face-centred cubic 310
factor group model 332, 333,

338

g (gerade) 117
glide planes 323
grey groups 349
group multiplication tables 36, 39
group 17, 345

Hermann-Mauguin notation 322,
407–409, 411–412

high spin 225
hybrid orbital model of ammonia

3

I 282
icosahedral symmetry 245
icosahedron 235
identity operation 16
improper symmetry operation 12,

15, 90
improper rotations 198
index (of a subgroup) 243
infrared spectroscopy 92
invariant subgroup 115, 236, 334
irreducible representations 40, 52

isomorphism 100, 125, 141, 245
isomorphous groups 116, 347

jj limit 297

K(spherical group) 254

laboratory axes 102
lattice 299
law of combination 345
LCP (ligand close packing) 5
LGO (ligand group orbital) 210,

399–400
ligand 218
ligand field theory 225
linear molecules 261
localized orbitals 144
low spin 225

magnetic dipole 100
matrices 159
matrix algebra 355
matrix multiplication 356
Maxwell 99
mirror planes 15
moduli primitive translation

416–418, 421–422
molecular dynamics 238
molecular axes 102
Möbius strip 284
Mössbauer spectroscopy 336
multiplication 38, 345
multiplication table D2h 114, C3v

237, 347, C2v 39, C4 352
multipliers 19

nodal patterns D2 117, Ci 119, C4v

160, Oh 199, C2v 48, D2h 121, C3v

179, 2C2v 287
non-Abelian 153
non-crossing rule 279
non-invariant subgroups 238
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non-symmorphic space groups
322

normal modes 103

octahedral transition metal
complexes 218

operation 11
optical activity 108, 297
order (of a group) 46, 243
order 153
oriented gas model 333, 337
orthonormality 45, 46, 98
orthonormality theorems 146,

152

pairing energy 225
passive convention 84
Pauli exclusion principle 292
permutation groups 347
point group allocation 232
point group 17, 19
polychromatic groups 349
product functions 92, 288
projection operators 109, 129, 131,

209, 290, 353
proper rotations 198
proper symmetry operation 12, 90
pure rotational subgroup 244

quantum mechanical integrals 96
quasicrystals 251, 307

R 282
Raman spectroscopy 92
reducible matrices 360
reducible representations 51
regular representation 270, 359
relief of degeneracy 243
representations 40
rotation-inversion operations 251
rotation-reflection operations 251
Russell-Saunders coupling 297

S2 234
S4 operations 194
S6 operations 194
Schmidt orthogonalization 247, 399
Schönflies notation 407–409,

411–412
screw axis 322
selection rules 99
separable degeneracy 152, 266
Shubnikov groups 349
single degeneracy 159
site group model 333, 338
space group 236
spectroscopic selection rules 96
spherical symmetry 245, 254
spherical harmonics 260
spin-orbit coupling 288
spiropentane 233
Stern-Gerlach 288
strong field 225
subgroup 236
substitution groups 348
symmetric group 347
symmetric direct product 291
symmetric stretch vibration 78
symmetry operation 11
symmetry adapted combinations 54,

129, 131, 164, 180, 210
symmetry element 11, 19
symmetry-enforced degeneracy 145
symmorphic space groups 317

term correlation diagram 279
term 289, 291
tetrahedral symmetry 245
totally symmetric 41
transformation as a pair 274
translation vectors 300
translational subgroup 308
translational invariance 331
translations 87
triple direct products 101
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triple degeneracy 193
two-colour group 349

u (ungerade) 117
unit cells 301, 325
unit element 346
unit cell model 332, 335

VSER (valence shell electron
repulsion) model 5, 145

vibrational spectroscopy 75

Walsh diagram 68, 185
weak field 225
Wigner-Seitz unit cells 327
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