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PREFACE

This book gathers original contributions from a selected group of distinguished researchers 

that are actively working in the theory and practical applications of solvent effects and 

chemical reactions. 

The importance of getting a good understanding of surrounding media effects on 

chemical reacting system is difficult to overestimate. Applications go from condensed 

phase chemistry, biochemical reactions in vitro to biological systems in vivo. Catalysis is  a 

phenomenon produced by a particular system interacting with the reacting subsystem. The 

result may be an increment of the chemical rate or sometimes a decreased one. At the 

bottom, catalytic sources can be characterized as a special kind of surrounding medium 

effect. The materials involving in catalysis may range from inorganic components as in 

zeolites, homogenous components, enzymes, catalytic antibodies, and ceramic materials..

With the enormous progress achieved by computing technology, an increasing number 

of models and phenomenological approaches are being used to describe the effects of a 

given surrounding medium on the electronic properties of selected subsystem. A number of 

quantum chemical methods and programs, currently applied to calculate in vacuum 

systems, have been supplemented with a variety of model representations. With the 

increasing number of methodologies applied to this important field, it is becoming more 

and more difficult for non-specialist to cope with theoretical developments and extended 

applications. For this and other reasons, it is was deemed timely to produce a book where 

methodology and applications were analyzed and reviewed by leading experts in the field. 

The scope of this book goes beyond the proper field of solvent effects on chemical 

reactions. It actually goes deeper in the analysis of solvent effects as such and of chemical 

reactions. It also addresses the problem of mimicking chemical reactions in condensed 

phases and bioenvironments. The authors have gone through the problems raised by the 

limitations found in the theoretical representations. In order to understand, it is not 

sufficient to have agreement with experiments, the schemes should meet the requirements

put forward by well founded physical theories. 

The book is structured about well defined themes. First stands the most methodologic 

contributions: continuum approach to the surrounding media (Chapter 1), density

vii
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functional theory within the reaction field approach (Chapter 2), Monte Carlo 

representations of solvent effects (Chapter 3), molecular dynamics simulation of 

surrounding medium within the ab initio density functional framework (Chapter 4). 

Dynamical aspects of chemical reactions and solvent effects occupies the central focus in 

Chapters 5 and 6. The last chapter contains a general quantum mechanical analysis of

dynamical solvent effects and chemical reactions. 

In chapter 1, Profs. Cramer and Truhlar provide an overview of the current status of

continuum models of solvation. They examine available continuum models and 

computational techniques implementing such models for both electrostatic and non- 

electrostatic components of the free energy of solvation. They then consider a number of 

case studies with particular focus on the prediction of heterocyclic tautomeric equilibria. In 

the discussion of the latter they focus attention on the subtleties of actual chemical systems 

and some of the danger in applying continuum models uncritically. They hope the reader

will emerge with a balanced appreciation of the power and limitations of these methods. In 

the last section they offer a brief overview of methods to extend continuum solvation 

modeling to account for dynamic effects in spectroscopy and kinetics. Their conclusion is 

that there has been tremendous progress in the development and practical implementation 

of useful continuum models in the last five years. These techniques are now poised to 

allow quantum chemistry to have the same revolutionary impact on condensed-phase

chemistry as the last 25 years have witnessed for gas-phase chemistry.

In chapter 2, Profs. Contreras, Pérez and Aizman present the density functional (DF)

theory in the framework of the reaction field (RF) approach to solvent effects. In spite of 

the fact that the electrostatic potentials for cations and anions display quite a different

functional dependence with the radial variable, they show that it is possible in both cases to 

build up an unified procedure consistent with the Born model of ion solvation. The 

proposed procedure avoids the introduction of arbitrary ionic radii in the calculation of 

insertion energy. Especially interesting is the introduction of local indices in the solvation 

energy expression. the effect of the polarizable medium is directly expressed in terms of 

the natural reactivity indices of DF theory. The paper provides the theoretical basis for the 

treatment of chemical reactivity in solution.

In chapter 3, Profs. A. González-Lafont, Lluch and Bertrán present an overview of 

Monte Carlo simulations for chemical reactions in solution. First of all, the authors briefly 

review the main aspects of the Monte Carlo methodology when it is applied to the 

treatment of liquid state and solution. Special attention is paid to the calculations of the free 

energy differences and potential energy through pair potentials and many-body corrections. 

The applications of this methodology to different chemical reactions in solution are 
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checked.

In chapter 4, Profs. Corongiu, Estrin, Paglieri and Inquimae consider those systems they 

have analysed in the last few years, while indicating shortcomings and advantages in 

different approaches. In the methodological section they pay especial attention to the 

density functional theory implementation in their computer programs. Especially

interesting is the presentation of DF theory and Molecular Dynamics method developed by 

Carr and Parrinello. Here, the electronic parameters as well as the nuclear coordinates are 

treated as dynamical variables. 

In chapter 5, Prof Hynes reviews the Grote-Hynes (GH) approach to reaction rate 

constants in solution, together with simple models that give a deeper perspective on the 

reaction dynamics and various aspects of the generalized frictional influence on the rates. 

Both classical particle charge transfer and quantum particle charge transfer reactions are 

examined. The fact that the theory has always been found to agree with molecular 

dynamics computer simulations results for realistic models of many and varied reaction 

types gives confidence that it may be used to analyze real experimental results. Another 

interesting result in MD simulations of SN2 reaction in solution is that a major portion of 

the solvent reorganization to a state appropiate to solvating the symmetric charge 

distribution of the reagents at the barrier top takes place well before the reagent charge 

distribution begins to change. This shows very clearly for the SN2 system that one canot 

picture the progress of a chemical reaction as a calm progression along the potential of 

mean force curve (a chemical reaction is intrinsically a dynamic, and not an equilibrium 

event).

In chapter 6, Profs. Bianco and Hynes give some highlights of a theory which combines 

the familiar multistate valence bond (VB) picture of a molecular system with a dielectric 

continuum model for the solvent and includes a quantum model for the electronic solvent 

polarization. The different weights of the diabatic states going from gas phase to solution 

introduce easily the polarization of the solute by the reaction field. Non equilibrium effects 

are introducing dividing the solvent polarization in two components: the electronic 

polarization (fast) and the reorientation polarization (slow). In this way the theory is 

capable of describing both the regimes of equilibrium and non-equilibrium solvation. For 

the latter the authors have developed a framework of natural solvent coordinates. The non- 

equilbrium free energy surface obtained can be used to analyze reaction paths and to 

calculate reaction rates constants. Finally, the quantum model for the electronic solvent 

polarization allows to define two limits : self consistent (SC) and Born-Oppenheimer (BO). 

In the SC case, the electronic solvent frequency is much smaller than the frequency of 

interconversion of VB states. So, the solvent see the average charge distribution. In the BO 

case, it happens the contrary. Now the electronic solvent frequency is much faster than VB 
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interconversions. It means the solvation of localized states and, as a consequence, that the

free energy from the solvent point of view is lower than the solvation of the delocalized

self-consistent charge distribution.

In chapter 7, Profs. Tapia, Andrés and Stamato give an extended analysis of the quantum 

mechanics of solvent effects, chemical reactions and their reciprocal effects. The stand 

point is somewhat different from current pragmatic views. The quantum mechanics of n-

electrons and m-nuclei is examined with special emphasis on possible shortcomings of the

Born-Oppenheimer framework when it is applied to a chemical interconversion process. 

Time dependent phenomena is highligthed. The authors go a step beyond previous wave

mechanical treatments of solvent effects by explicitly including a time-dependent approach

to solvent dynamics and solute-solvent coupling. Solvent fluctuation effects on the solute 

reactive properties include now most of the 1-dimensional models currently available in the 

literature. Time dependent effects are also introduced in the discussion of the quantum 

mechanics of chemical interconversions. This perspective leads to a more general theory of

chemical reactions incorporating the concept of quantum resonaces at the interconversion 

step. The theory of solvent effects on chemical reactions is then framed independently of 

current quantum chemical procedures. As the chapter unfolds, an extended overview is 

included of important work reported on solvent effects and chemical reaction.

A book on solvent effects today cannot claim completeness. The field is growing at a

dazzling pace. Conspicuous by its absence is the integral equation description of

correlation functions and, in particular, interaction-site model–RISM– by D. Chandler  and 

H.C. Andersen and later extended for the treatment of polar and ionic systems by Rossky 

and coworkers. Path integral method is currently being employed in this field. By and 

large, we believe that the most important aspects of the theory and practice of solvent 

effects have been covered in this book and we apologize to those authors that may feel 

their work to have been inappropriately recognized. 

Finally, the editors of this book would tend to agree with Cramer and Truhlar’s 

statement that contemporary advances in the field of solvent effect representation would 

allow quantum chemistry to have the same revolutionary impact on condensed-phase

chemistry as the last 25 years have witnessed for gas-phase chemistry. We hope this book 

will contribute to this end. 



Continuum Solvation Models

Christopher J. Cramer and Donald G. Truhlar 

Department of Chemistry and Supercomputer Institute, University of Minnesota, 
207 Pleasant St. SE, Minneapolis, MN 55455-0431

June-1995

Abstract This chapter reviews the theoretical background for continuum 

models of solvation, recent advances in their implementation, and illustrative 

examples of their use. Continuum models are the most efficient way to include 

condensed-phase effects into quantum mechanical calculations, and this is 

typically accomplished by the using self-consistent reaction field (SCRF) 

approach for the electrostatic component. This approach does not automatically 

include the non-electrostatic component of solvation, and we review various

approaches for including that aspect. The performance of various models is 

compared for a number of applications, with emphasis on heterocyclic tautomeric 

equilibria because they have been the subject of the widest variety of studies. For 

nonequilibrium applications, e.g., dynamics and spectroscopy, one must consider 

the various time scales of the solvation process and the dynamical process under 

consideration, and the final section of the review discusses these issues. 

1
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1 Introduction

Accurate treatments of condensed-phase systems are particularly challenging for 

theoretical chemistry. The primary reason that condensed-phase problems are

formidable is the intractability of solving the Schrödinger equation for large, non-

periodic systems. Although the nuclear degrees of freedom may be rendered

separable from the electronic ones by invocation of the Born-Oppenheimer

approximation, the electronic degrees of freedom remain far too numerous to be 

handled practically, especially if a quantum mechanical approach is used without

compromise. Therefore it is very common to replace the quantal problem by a

classical one in which the electronic energy plus the coulombic interactions of the 

nuclei, taken together, are modeled by a classical force field—this approach is

usually called molecular mechanics (MM). Another approach is to divide the

system into two parts: (1) the primary subsystem consisting of solute and perhaps

a few nearby solvent molecules and (2) the secondary subsystem consisting of the 

rest. The primary subsystem might be treated by quantum mechanics to retain the

accuracy of that approach, whereas the secondary subsystem, for all practical

purposes, is treated by MM to reduce the computational complexity. Such hybrids

of quantum mechanics and classical mechanics, often abbreviated QM/MM, allow

the prediction of properties dependent on the quantal nature of the solute, which is

especially important for conformational equilibria dominated by stereoelectronic

effects, open shell systems, bond rearrangements, and spectroscopy. At the same

time, this approach permits the treatment of specific first-solvation-shell

interactions.

The QM/MM methodology [1-7] has seen increasing application [8-16]

and has been recently reviewed [17-19]. The classical solvent molecules may also

be assigned classical polarizabiIity tensors, although this enhancement appears to

have been used to date only for simulations in which the solute is also represented

classically [20-30]. The treatment of the electronic problem, whether quantal, 

classical, or hybrid, eventually leads to a potential energy surface governing the

nuclear coordinates. 

The treatment of the nuclear coordinates also presents imposing

challenges. The potential energy hypersurface for a condensed-phase system has 

numerous low-energy local minima. An accurate prediction of thermodynamic 

and quasi-thermodynamic properties thus requires wide sampling of the 6N-
dimensional energy/momentum phase space, where N is the number of particles 

[31, 32]. Both dynamical and probabilistic methods may be employed to 

accomplish this sampling [33-44], but it can be difficult to converge [42, 45-50],

and it is expensive when long-range forces (e.g., Coulomb interactions) are 
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significant [48, 51-54]. Often local minima in the hypersurface have steep 

surrounding potentials due to intermolecular interactions or to solute molecules

having multiple conformations separated by significant barriers [48, 55]; such 

situations are problematic for sampling approaches that are easily trapped in deep

potential wells. The (impractical) fully quantal approach, and the QM/MM and 

fully MM methods that treat solvent molecules explicitly, share the disadvantage 

that they all require efficient techniques for the sampling of phase space. For the

QM/MM and fully MM approaches, this sampling problem becomes the 

computational bottleneck. 

When structural and dynamical information about the solvent molecules

themselves is not of primary interest, the solute-solvent system may be made 

simpler by modeling the secondary subsystem as an infinite (usually isotropic) 

medium characterized by the same dielectric constant as the bulk solvent, i.e., a 

dielectric continuum. In most applications the continuum may be thought of as a

configuration-averaged or time-averaged solvent environment, where the

averaging is Boltzmann weighted at the temperature of interest. The dielectric 

continuum approach is thus also sometimes referred to as a “mean-field” 

approach. The model includes polarization of the dielectric continuum by the 

solute’s electric field; that polarization and the energetics of the solute-continuum

interaction are calculated by classical electrostatic formulas [56], in particular the

Poisson equation or the Poisson-Boltzmann equation, the latter finding use in 

systems where the continuum is considered to have an ionic strength arising from 

dissolved salts. 

Continuum models remove the difficulties associated with the statistical 

sampling of phase space, but they do so at the cost of losing molecular-level

detail. In most continuum models, dynamical properties associated with the 

solvent and with solute-solvent interactions are replaced by equilibrium averages. 

Furthermore, the choice of where the primary subsystem “ends” and the dielectric 

continuum “begins”, i.e., the boundary and the shape of the “cavity” containing 

the primary subsystem, is ambiguous (since such a boundary is intrinsically non- 

physical). Typically this boundary is placed on some sort of van der Waals 

envelope of either the solute or the solute plus a few key solvent molecules. 

Continuum models have a long and honorable tradition in solvation 

modeling; they ultimately have their roots in the classical formulas of Mossotti 

(1850), Clausius (1879), Lorentz (1880), and Lorenz (1881), based on the 

polarization fields in condensed media [32, 57]. Chemical thermodynamics is 

based on free energies [58], and the modern theory of free energies in solution is 

traceable to Born’s derivation (1920) of the electrostatic free energy of insertion 

of a monatomic ion in a continuum dielectric [59], and Kirkwood and Onsager’s 
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closely related treatments [60-62] (1930s) of the electrostatic free energy of 

insertion of dipolar solutes. The seminal idea of a reaction field [32] was 

developed in this work. Nonelectrostatic contributions to solvation were originally

treated by molecular models. However, Lee and Richards [63] and Hermann [64]

introduced the concept of the solvent accessible surface area (SASA). When a

proportionality is assumed between, on the one hand, the SASA and, on the other

hand, non-bulk-type electrostatic effects and non-electrostatic effects in the first 

solvation shell (where they are largest), this augments the continuum approach in

a rational way. The quasithermodynamic formulation of transition state theory

extends all these concepts to the treatment of reaction rates by defining the

condensed-phase free energy of activation [65-67]. The breakdown of transition 

state theory for dynamics, which is related to (if not identical to) the subject of

nonequilibrium solvation, can also be discussed in terms of continuum models, as 

pioneered in Kramers’ model involving solvent viscosity [67-69] and in Marcus’ 

work involving nonequilibrium polarization fields [70].

The last thirty years have seen a flowering of simulation techniques based

on explicit treatments of solvent molecules (some references are given above).

Such methods provide new insight into the reasons why continuum methods work

or don’t work. However they have not and never will replace continuum models.

In fact, continuum models are sometimes so strikingly successful that hubris may 

be the most serious danger facing their practitioners. One of the goals of this

present chapter will be to diffuse (but not entirely deflate!) any possible 

overconfidence.

The present chapter thus provides an overview of the current status of

continuum models of solvation. We review available continuum models and

computational techniques implementing such models for both electrostatic and

non-electrostatic components of the free energy of solvation. We then consider a

number of case studies, with particular focus on the prediction of heterocyclic

tautomeric equilibria. In the discussion of the latter we center attention on the 

subtleties of actual chemical systems and some of the dangers of applying 

continuum models uncritically. We hope the reader will emerge with a balanced

appreciation of the power and limitations of these methods.

At this point we note the existence of several classic and recent reviews

devoted to, or with considerable attention paid to, continuum models of solvation 

effects, and we direct the reader to these works [71-83] for other perspectives that

we consider complementary to what is presented here. 

Section 2 presents a review of the theory underlying self-consistent

continuum models, with section 2.1 devoted to electrostatics and section 2.2 

devoted to the incorporation of non-electrostatic effects into continuum solvation 
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modeling. Section 3 discusses the various algorithmic implementations extant. 

Section 4 reviews selected applications to various equilibrium properties and

contrasts different approaches. Section 5 offers a brief overview of methods to

extend continuum solvation modeling to account for dynamic effects in kinetics

and spectroscopy, and Section 6 closes with some conclusions and remarks about

future directions.

2 Theory

2.1 ELECTROSTATICS

A charged system has an electrical potential energy equal to the work that must be 

done to assemble it from separate components infinitely far apart and at rest. This

energy resides in and can be calculated from the electric field. This electrostatic 

potential energy, when considered as a thermodynamic quantity, is a free energy

because it is the maximum work obtainable from the system under isothermal 

conditions [84]. We have the option, therefore, of calculating it as an electrostatic

potential energy or as the isothermal work in a charging process. Although the 

latter approach is very popular, dating back to its use by Born, the former

approach seems to provide more insight into the quantum mechanical formulation, 

and so we adopt that approach here. Recognizing that the electrostatic potential

energy is the free energy associated with the electric polarization of the dielectric 

medium, we will call it GP.
In general the electrostatic potential energy of a charge distribution in a

dielectric medium is [84, 85] 

(1)

where the integration is over the whole dielectric medium (in the case of solvation

this means an integration over all space except that occupied by the solute), E is

the electric field, T denotes a transpose, D is the dielectric displacement, and the

second term in the integrand references the energy to that for the same solute in a 

vacuum. Recall from electrostatics that 

(2)

where ρfree is the charge density of the material inserted into the dielectric, i.e., of

the solute, but
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(3)

where

(4)

and ρP is the polarization charge density, i.e., the charge density induced in the

dielectric medium by the solute (in classical electrostatics, ρP is often called

ρbound). In an isotropic medium, assuming linear response of the solvent to the

solute, it is generally the case that [84]

where d(r) is the operator that generates the displacement at r. Then

Using the linear response result (5), we then get

(5)

where ε(r) is the dielectric constant (i.e., relative permittivity) of the  solvent at 

position r.
Clearly, D(r) is a function of the solute charge density only, and we can

write

(6)

(7)

(8a)

(8b)

(8c)

where
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and we have defined the integral operator

for any function f(r). If the gas-phase Hamiltonian is H0, then the solute’s energy

in the electrostatic field of the polarized solvent is

(11)

where GENP has the thermodynamic interpretation of the total internal energy of
the solute (represented by H0) plus the electric polarization free energy of the

entire solute-solvent system.

We note that GENP is a complicated function of Ψ; in particular it is 
nonlinear. Recall that an operator Lop is linear if

However

(9)

(10)

(12)

(13a)

(13b)

Hence GP,op is nonlinear, and therefore the energy functional GENP of (11) is 

nonlinear.

Note that GP,op of eq. (9) can be written in several equivalent but different

looking forms, as is typical of electrostatic quantities in general. For example, it is 

often convenient to express the results in terms of the electrostatic scalar potential

φ(r) instead of the electric vector field E(r). In the formulation above, the

dielectric displacement vector field associated with the solute charge distribution

induces an electric vector field, with which it interacts. In the electrostatic
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potential formulation, the solute charge distribution induces an electrostatic scalar

potential field, with which it interacts. The difference between either induced field

in the presence of solvent compared to the absence of solvent may be called the

reaction field, using the language mentioned above as introduced by Onsager. In 

any such formulation, GP ,op will remain nonlinear. In particular it will have the

form Aop(Ψ*Ψ) where Aop is some operator. Sanhueza et al. [86] have constructed

variational functions representing general nonlinear Hamiltonians having the form

Lop +A op(Ψ*Ψ)q, where q is any positive number. The sense of the notation is

simply that Ψ* and Ψ each appear to the first power in one term of the operator. 

Thus, comparing to eq. (9), we see that their treatment reduces to our case when q
= 1. The q = 1 case is of special interest since it arises any time a solute is

immersed in a medium exhibiting linear response to it. Since this case is central to

the work reviewed in this chapter, we present below a self-contained variational

formulation for the q = 1 case. In particular we will consider the case of GENP as

expressed above although the procedure is valid for any Hamiltonian whose

nonlinearity may be written as Aop(Ψ*Ψ)q with q = 1.

In order to motivate the quantum mechanical treatment of a system with

the energy functional GENP, we first consider the functional

(14)

where H0 is the gas-phase Hamiltonian. We use Euler-Lagrange theory to find a

differential equation satisfied by the Ψ that extremizes the value of the integral

functional E of Ψ. The Euler equation for an extremum of E subject to the

constraint

is

where λ is a Lagrange multiplier. Carrying out the variation gives 

or

J = 0 

(15)

(16)

(17)

(18)
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where

(19)

For this to be valid for any variation δΨ, it is required that 

(20)

where λ is evaluated by using eq. (15). To use eq. (15), note that (20) implies that 

and using (15) then yields the interpretation of λ 

Putting this in (20) yields 

(21)

(22)

(23)

Thus, as expected, the Euler equation equivalent to extremizing E is the 

Schrödinger equation. 

Now consider the functional 

The Euler equation for an extremum of GENP subject to the constraint 

is

(24)

(25)

(26)

where λ is a Lagrange multiplier. Carrying out the variation gives 

(27)
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For this is to be valid for arbitrary variations δΨ, it is required that

(28)

where λ is again to be evaluated from the constraint equation. Following the same 

procedure as before we find

(29)

It is conventional to rewrite eq. (28) as a nonlinear Schrödinger equation with 

eigenvalue E:

Comparison of (30) to (28) and (29) shows that

Solving the nonlinear Schrödinger equation yields E and Ψ and the desired

physical quantity GENP may then be calculated directly from (11) or from 

=E–Gp (32)

which is easily derived by comparing eq. (8), (9), (24), and (31).

The fact that the eigenvalue E of the nonlinear effective Hamiltonian,

(30)

(31)

(33)

does not equal the expectation value of the functional GENP that is extremized is

sometimes a source of confusion for those unfamiliar with nonlinear Schrödinger

equations. This is presumably because in the linear case the expectation value of

the function extremized, e.g., eq. (14), and the eigenvalue, e.g., –λ in eq. (20), are 

the same. 

The second term of equation (33) may be called the self-consistent 

reaction field (SCRF) equation in that eq. (30) must be solved iteratively until the 
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|Ψ> obtained by solving the equation is consistent with the |Ψ> used  to calculate 

the reaction field. Having established an effective nonlinear Hamiltonian, one may

solve the Schrödinger equation by any standard (or nonstandard) manner. The

common element is that the electrostatic free energy term GP is combined with the

gas-phase Hamiltonian H0 to produce a nonlinear Schrödinger equation 

(34)

where Ψ is the solute wave function, and the reason that 2GP appears in eq. (34) is 

explained above, namely that GP depends on Ψ*Ψ, and one can show that the 

variational solution of (34) yields the best approximation to

(35)

In most work reported so far, the solute is treated by the Hartree-Fock 

method (i.e., H0 is expressed as a Fock operator), in which each electron moves in

the self-consistent field (SCF) of the others. The term SCRF, which should refer 

to the treatment of the reaction field, is used by some workers to refer to a 

combination of the SCRF nonlinear Schrödinger equation (34) and SCF method to

solve it, but in the future, as correlated treatments of the solute becomes more 

common, it will be necessary to more clearly distinguish the SCRF and SCF 

approximations. The SCRF method, with or without the additional SCF 

approximation, was first proposed by Rinaldi and Rivail [87, 88], Yomosa [89, 

90], and Tapia and Goscinski [91]. A highly recommended review of the 

foundations of the field was given by Tapia [71]. 

When the SCRF method is employed in conjunction with Hartree-Fock

theory for the solute, then the Fock operator is given by 

(36)

where F(0) is the gas-phase Fock operator. Using eq. (9) we can also write this as

(37)

There is another widely used method of obtaining the Fock operator, namely  to

obtain its matrix elements Fµv as the derivative of the energy functional with

respect to the density. In our case that yields 



12 C. J. CRAMER AND D. G. TRUHLAR

(38a)

(38b)

where Fµv
(0) is the matrix element of the gas-phase Fock operator, and Pµv is a

matrix element of the density. This method bypasses the nonlinear  Schrödinger

equation and the nonlinear Hamiltonian, but a moment’s reflection on the

variational process of eqs. (24)–(30) shows that it yields the same results as eqs. 

(36) and (37). This too has caused confusion in the literature. 

In conclusion, we note that there has recently been considerable interest in 

including intrasolute electron correlation energy in SCRF theory [77, 92-106].

Further progress in this area will be very important in improving the reliability of

the predictions, at least for “small” solutes.

Next we discuss two aspects of the physical interpretation of the SCRF

method that are well worth emphasizing: (i) the time scales and (ii) the

assumption of linear response. 

The natural time scale τelec of the electronic motion of the solute is

ϑ(h/∆E1) where ϑ denotes “order of’
,, h is Planck’s constant, and ∆E1 is the

lowest electronic excitation energy. Assuming a typical order of magnitude of 101

eV for ∆E1yields τelec = ϑ(10-16s). The time scale for polarization of the solvent 

is more complicated. For a polar solvent, orientational polarization is the 

dominant effect, and it is usually considered to have a time scale of ϑ(10-12 s).

Thus the electronic motion of the solute should adjust adiabatically to solvent 

orientational polarization, and the solvent should “see” the average charge 

distribution (i.e., the “mean field”) of the solute. This argument provides a

physical justification for the expectation value in (6) providing the field that 

induces the solvent polarization, resulting in a net electric field given by (5). We 

should not forget though that a part of the solvent polarization is electronic in 

origin. The time scale for solvent electronic polarization is comparable to that for 

electronic motions in the solute, and the SCRF method is not so applicable for this 

part. A correct treatment of this part of the polarization effect would require a 

treatment of electron correlation between solute electrons and solvent electrons, a 

daunting prospect. This correlation problem has also been discussed from other 

points of view [107-111]. 

Tapia, Colonna, and Ángyán [112-114] have presented an alternative 

justification for the appearance of average solute properties in the SCRF 
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equations. Their argument is based starting with a wave function for the entire 

solute-solvent system, then assuming a Hartree product wave function of the form 

ΨsoluteΨsolvent. This allows the “derivation” of a solute-only Schrödinger equation 

identical to the one derived here. The appearance of the Hartree approximation 

[115] in the derivation again makes it clear that solute-solvent electron correlation 

is neglected in the SCRF equations. It also raises the question of exchange 

repulsion, which is the short-range repulsion between two closed-shell systems 

due to the Pauli Exclusion Principle. (i.e., if the systems start to overlap, their

orbitals must distort to remain orthogonal. This raises the energy, and hence it is a 

repulsive interaction.) Exchange repulsion between two systems is properly

included in the Hartree-Fock approximation but not in the Hartree approximation. 

The neglect of exchange repulsion is a serious limitation of the SCRF model that 

prevents it from being systematically improvable with respect to the solute- 

solvent electron correlation. 

The assumption of linear response played a prominent role in the 

derivation (given above) of the SCRF equations, and one aspect of the physics 

implied by this assumption is worthy of special emphasis. This aspect is the 

partitioning of GP into a solute-solvent interaction part GsS and a intrasolvent part

GSS . The partitioning is quite general since it follows entirely from the 

assumption of linear response. Since classical electrostatics with a constant 

permittivity is a special case of linear response, it can be derived by any number 

of classical electrostatic arguments. The result is [114, 116-119]

and hence 

and

(39)

(40)

(41)

The physical interpretation of these equations is that when the solute polarizes the 

solvent to lower the solute-solvent interaction energy by an amount GsS, half the 

gain in free energy is canceled by the work in polarizing the solvent, which raises 

its own internal energy. 

Since these equations are general for a system exhibiting linear response, 

we can illustrate them by the simplest such system, a harmonic oscillator 
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(representing the solvent) linearly coupled to an external perturbation 

(representing the solute). The energy of the system (excluding the internal energy 

of the solute) is 

(42)

where k is the oscillator force constant, y is the oscillator coordinate, which is a 

generalized solvent coordinate, g is the coupling force constant, and s is the solute 

coordinate. We identify 

Now, at equilibrium 

Therefore, from the derivative of (42): 

and putting this in (45) yields 

(43)

(44)

(45)

(46)

(47)

(48)

Comparison of (48) to (44) agrees with (39). 

A subject not treated here is the use of distance-dependent effective 

dielectric constants as a way to take account of the structure in the dielectric 

medium when a solute is present. This subject has recently been reviewed [120]. 

In the approaches covered in the present chapter, deviations of the effective 

dielectric constant from the bulk value may be included in terms of physical 

effects in the first solvation shell, as discussed in Section 2.2. 

As a final topic in this section, we briefly consider the effect of electrolyte

concentration on the solvent properties. The linearized Poisson-Boltzmann

equation [31,121] can be used instead of (2) and (3) when the dielectric medium
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is a salt solution, and this equation can be solved analytically for the case of a 

single point charge Z at the center of a cavity of radius ρ in a solvent of dielectric 

constant ε. The resulting electric potential at a distance r from the center of the 

cavity is [122] 

where rD is the Debye screening length

(49)

(50)

R is the gas constant, T the temperature, and I is ionic strength. We may write this

as

which yields [123]

(51)

(52)

For 0.1 M NaCl in water, this yields εeff(r) values of about 105 and 130 at r
equals 3 and 5 Å, respectively, as compared to ε = 78.5 for pure water. Since, 

however, for homogeneous ε, the dielectric constant enters the solvation free

energy through the expression (1 - the relative effect of such an increase will

not be quantitatively large (whereas a decrease in ε could be more significant). In

an organic biophase though, where ε is smaller, the relative effects of ions could

be very significant, but they tend to be excluded from such phases. Even in

aqueous solution and even when the relative change in the solvation free energy is 

small, the absolute effect of ions may be significant, especially for reactions

involving ions [124] and electrostatics [125, 126], in both of which cases the 

magnitude of the total electrostatic free energy is large.

2.2 NON -ELECTROSTATIC CONTRIBUTIONS

It should be clear from the presentation in the previous section that the SCRF 

method is a model that by design focuses on only one physical effect 

accompanying the insertion of a solute in a solvent, namely the bulk polarization 

1–ε),
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of the solvent by the mean field of the solute. Thus the model admittedly neglects 

all other physical effects. One of these, electron correlation between the solute and 

the solvent, was mentioned explicitly already. This and other physical effects 

missing in the SCRF method are discussed in more detail in this section. As a

shorthand we call these effects “non-electrostatic” (and abbreviate them N), but a

more precise wording would be that used in Section 1, namely and “non-bulk-

type electrostatic.” 

Electron correlation between the solute and solvent has an important

quantitative effect on the solvation free energy. The most important qualitative

manifestation of this correlation is the existence of dispersion interactions 

between solute and solvent (dispersion interactions are neglected in both the 

Hartree and Hartree-Fock approximations). The solute-solvent dispersion 

interactions are inseparable in practice from several other effects that are often 

grouped under the vague heading of cavitation. If we make a cavity in a solvent B 

to accommodate a solute A, the solvent molecules in the first solvation shell gain 

A–B dispersion and repulsive interactions, but at the expense of B–B ones. This 

tradeoff may have significant effects, both enthalpic and entropic, on solvent 

structural properties. The dispersion and solvent structural aspects of cavitation 

are two physical effects not accounted for in the treatment of the previous section, 

with its assumption of an uncorrelated, homogeneous dielectric medium with 

dielectric constant equal to the bulk value. 

Certain aspects of the solvent structural changes in regions near to the 

solute have received specialized attention and even inspired their own 

nomenclature. Two examples, each with a long and distinguished theoretical 

history, are the “hydrophobic effect” and “dielectric saturation.” 

The hydrophobic effect refers to certain unfavorable components of the 

solvation free energy when a nonpolar solute is dissolved in water. The most 

generally accepted explanation (no explanation is universally accepted) starts 

from the premise that a typical cluster of water molecules in the bulk makes 

several hydrogen bonds and has several ways to do so. When a non-hydrogen-

bonding solute is introduced, the neighboring water molecules will still make 

about the same average number of hydrogen bonds (although enthalpic 

components of hydrophobicity, when observed, may sometimes be ascribed to a 

reduced total number of hydrogen bonds), but they will have less ways to do so 

since the opportunities for maximum hydrogen bonding will restrict the 

orientation of solvent molecules in the first solvation shell, and flipping a 

hydrogen-bonded cluster will not provide the same possibilities for hydrogen 

bonding as it does in the bulk where the cluster is surrounded on all sides by 
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water. Thus the water structure in the first hydration shell is more “rigid,” which

is entropically unfavorable. 

Dielectric saturation refers to the breakdown of linear response in the 

region near the solute. At high enough fields, the permittivity of a dielectric 

medium is not a constant; it depends on the field [116, 127]. The field in the 

vicinity of the solute may be high enough that this concern becomes a reality, and 

the solvent may fail to respond with the same susceptibility as bulk water 

responds to small applied fields. This will be especially likely to be a problem for 

multiply charged, small ions [128, 129]. Bucher and Porter [130] have analyzed 

the dielectric saturation effect quantitatively for ions in water, and they find that

the effect of this saturation on the electrostatic contribution to the hydration 

energy comes primarily from the region within 3 Å of the atomic centers and

hence only from the first hydration shell.

Another, related effect leading to non-bulk response in the first hydration 

shell is electrostriction [131], which is the change in solvent density due to the

high electric fields in the first solvation shell of an ion. 

A fourth solvent structural effect refers to the average properties of solvent 

molecules near the solute. These solvent molecules may have different bond 

lengths, bond angles, dipole moments, and polarizabilities than do bulk solvent 

molecules. For example, Wahlqvist [132] found a decrease in the magnitude of

the dipole moment of water molecules near a hydrophobic wall from 2.8 D (in

their model) to 2.55 D, and van Belle et al. [29] found a drop from 2.8 D to 2.6 D

for first-hydration-shell water molecules around a methane molecule. 

Dispersion is not the only short-range force that needs to be added to the 

electrostatic interactions. For example, hydrogen bonding is not 100%
electrostatic but includes covalent aspects as well, and exchange repulsion is not 

included in classical electrostatics at all. An accurate model should take account 

of all the ways in which short-range forces differ from the electrostatic 

approximation with the bulk value for the dielectric constant. 

All these overlapping effects, namely cavitation, solute-solvent dispersion 

interactions, other solute-solvent electron correlation effects, hydrophobic effects,

dielectric saturation, and non-bulk properties of solvating solvent molecules, 

would be expected to be most significant in the first solvation shell, and numerous 

molecular dynamics simulations have borne this expectation out [133-137]. One 

might hope, in light of this, to treat such effects by treating all solvent molecules 

in the first solvation shell explicitly. In this section, however, we wish to make the 

point that continuum models need not be abandoned for treating such effects. In 

fact, continuum models have some significant advantages for such treatments, just 

as they do for treating bulk electrostatic effects. 
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The key to the continuum treatment of first solvation-shell effects is the 

concept of solvent-accessible surface area, introduced by Lee and Richards [63] 

and Hermann [64]. In a continuum treatment of the solvent, it is useful to define a 

non-integer “number” of solvent molecules in the first solvation shell so that in 

some sense this continuous number simulates the average of the integer number of 

discrete molecules in the first solvation shell in a treatment with explicit solvent

molecules. If we imagine a continuous first hydration shell and pass a 

hypersurface through the middle of the shell, then the simplest assumption is that 

the average number of solvent molecules in the first solvation shell is proportional 

to the area of this hypersurface. This area is called the solvent-accessible surface 

area A . Other possible definitions of molecular surface area do not have this

interpretation [138]. Because the surface tensions are empirical they can make up 

for many flaws in the model. For example, simulations have shown that, due to

the dominance of water-water hydrogen bonding, hydrophobic crevices are not 

accessed by the solvent as much as would be predicted by the calculated solvent-

accessible surface areas. Environment-dependent surface tensions can and do 

make up for such deficiencies in the model in an average way [139]. 

Since many of the effects that need to be added to the bulk electrostatics 

are localized in the first solvation shell, and since the solvent-accessible surface 

area is proportional to the number of solvent molecules in the first solvation shell, 

it is reasonable to assume that the component of the free energy of solvation,

is proportional to the solvent-accessible surface area. A critical refinement of this

idea is the recognition that the contribution per solvent molecule of the first-

solvation shell in contact with one kind of atom is different from that in contact

with another kind of solute atom. If we divide the local surface environment of a

solute into several types of region, α = 1, 2, ... (e.g., α = 1 might denote amine-

like nitrogen surface, α = 2 might denote nitrile-like nitrogen surfaces, α = 3

might denote the surface of carbonyl oxygens, etc.), and if we partition A into

parts Aα associated with the various environments of type α, then it is even more

reasonable to write

(53)

where each σα is some proportionality constant with units of surface tension. 

Although entropy cannot be strictly localized, some contributing factors to 

the solvent entropy change induced by the solute are localized in the first solvent

shell, and contributions to the entropy of mixing that are proportional to the 

number of solvent molecules in the first solvation shell might sometimes 

Go
N,
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dominate σα as well. In assessing such entropic effects there has been

considerable attention paid to the effects of size and shape. A nice overview of the 

current status of our understanding in this area, along with further original 

contributions, has been provided by Chan and Dill [140]. From a more empirical 

standpoint, we expect that these size effects, if and when present, may well scale 

with solvent-accessible surface area [141]. 

Clearly, since it includes so many effects (see above), σα can be positive 

or negative. Sometimes one effect will dominate, e.g., dispersion or solvent 

structural change. If the are determined empirically, they can also make up for

fundamental limitations of the bulk electrostatic treatment (such as the 

intrinsically uncertain location of the solute/bulk boundary and also for systematic 

errors in the necessarily approximate model used for the solute. 

We summarize this section by emphasizing that we have identified a host 

of effects, and we have seen that they are mainly short-range effects that are 

primarily associated with the first solvation shell. A reasonable way to model

these effects quantitatively is to assume they are proportional to the number of 

solvent molecules in the first hydration shell with environment-dependent

proportionality constants. 

Some workers have attempted to treat particular effects more rigorously, 

e.g., by scaled-particle theory [142] or by extending [95, 103] Linder’s theory 

[143] of dispersion interactions to the case of an SCRF treatment of solute-solvent

interactions. We will not review these approaches here. 

Finally, we note that we have mostly limited attention so far to the self- 

consistent reaction field limit of dynamical solvent polarization, which is the only 

one that has been generally implemented (see next Section). Nevertheless, there 

are problems where the solute-solvent dynamical correlation must be considered, 

and we will address that topic in Section 5. 

3 Implementations 

As reviewed above, when a solute is placed in a dielectric medium, it electrically 

polarizes that medium. The polarized medium produces a local electrostatic field 

at the site of the solute, this field polarizes the solute, and the polarized solute 

interacts with the polarized medium. The interaction is typically too large to be

treated by perturbation theory, and some sort of self-consistent treatment of 

polarized solute and polarized medium is more appropriate. At this point several 

options present themselves. It promotes orderly discussion to classify these 

σα
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options, but because there are many aspects, one needs several classification

elements. The elements and the popular choices are as follows: 

E. How to treat the electrostatics (E):

E-A. Numerical or analytic solution of the classical electrostatic 

problem (e.g., Poisson equation) with homogeneous

dielectric constant for solvent. 

A model solution to the electrostatic problem, e.g., the 

Generalized Born Approximation or a conductor-like

screening solution.

Electrostatics treated empirically, without reference to solute

charge distribution.

E-B.

E-C.

S. What shape (S) to assume for the boundary between the solvent,

considered as a continuum, and the solute: 

S-A. Taking account of molecular shape, e.g., treating the solute as 

a set of atom-centered spheres. 

S-B. Treating the solute as an ellipsoid. 

S-C. Treating the solute as a sphere.

At what level (L) to model the solute: 

L-A.

L.

With polarizable charges obtained by an approximate

quantum mechanical method including electron correlation or 

by a Class IV charge model. 

L-B. With polarizable charges obtained by the ab initio Hartree-

Fock method. 

L-C. With polarizable charges obtained by semiempirical 

molecular orbital theory. 

L-D. With polarizable charges obtained by A, B, or C combined 

with a truncated multipole expansion, including multipole 

moments up to some predetermined cutoff l, where l > 1 but 

not necessarily large enough for convergence. 

Like D but with only l = 0 and/or 1.

By non-polarizable charges, e.g., as might be used in a 

molecular mechanics calculation, or an unpolarized charge 

L-E.

L-F.
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density on a grid. (Use of non-polarizable dipole moments,

i.e., permanent rather than permanent plus induced, would 

also fit in here.) 

N. Whether to augment the electrostatics terms by an estimate of non-

electrostatic (N) contributions:

N-A. Yes, including empirical elements to make up for the

approximate character of the electrostatics as well as to

include other identifiable effects.

Yes, treating one or more non-electrostatic interactions non-

empirically.

Yes, by a single linear function of molecular surface area. 

N-B.

N-C.

N-D. NO.

Although the list of choices is lengthy, we should also note some choices 

that are not present. With regard to the electrostatic (E) element, all models

currently in general use assume a homogeneous dielectric constant for the solvent, 

thereby neglecting possible dielectric saturation in the first solvation shell and

also neglecting the fact that solvent molecules near to the solute have different 

properties (average dipole moment, polarizability, geometry, size, and hence 

dielectric constant) than bulk solvent molecules. (Note, though, that Hoshi [144]

and Tomasi and co-workers [145-148] have discussed algorithmic 

implementations of an inhomogeneous dielectric continuum in SCRF models, and

note also that both dielectric saturation and the unique properties of the solvent 

molecules in the first solvation shell are included in models that make choice A

for element N) With regard to the shape (S) element, all choices assume a well

defined discontinuous change of dielectric properties at a fixed, sharp

solute/solvent boundary. In reality of course, this boundary is a fluctuating, finite-

width boundary layer. With regard to the level (L) element, we note that the ideal

choice of “by converged quantum mechanics” is missing, for reasons of

practicality. The missing choices have an important consequence for which 

combinations of the other choices seem most suitable. For example, one asks, 

given that the assumption of homogeneous dielectric constant, the assumption of a 

rigid, sharp solute/solvent boundary, the assumption of an approximate solute

wave function, and the neglect of solute-solvent exchange repulsion all introduce 

significant approximations into the electrostatics, is it still worthwhile to solve the 

Poisson equation numerically, or would an approximate solution introduce errors 

smaller than those already inevitably present? Different workers have answered 
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such questions differently. We believe, in fact, that more than one answer to such 

questions is justifiable, and there is room in the computational toolbox for more 

than one tool, with the best choice depending on the application. 

Tables 1 and 2 provide a list of recently proposed solvation models and 

classifies them according to the above scheme. For convenience, each row of the 

table is given a label. In some cases the label is based on a well established name

or acronym (e.g., PCM, SMx), or an acronym to be used in this chapter.  The 

acronyms to be used in labels are as follows: 

SCME single-center multipole expansion 

DO

DME distributed multipole expansion 

PCM polarized continuum model 

PE

GB generalized Born (approximation) 

COSMO conductor-like screening model 

GCOSMO generalized COSMO 

/ST or /SA plus surface tensions 

SASA solvent-accessible surface area 

TBS truncated basis set 

SMx

AM1aq Austin model 1 aqueous

dipole only (SCME with l ≤ 1)

Poisson equation (direct solution in physical space) 

Solvation model x (a name we give to our own 

parameterized GB/ST models)

In other cases we base the label on the author's initials. Next we comment on the 

methods in the tables and some aspects of the issues they raise. 

The oldest methods are based on multipole expansions. Because these 

methods have been around for a long time, and because they lend themselves to 

appealing analytical solutions if further approximations are made, they have 

developed a history of sometimes being used with additional, unrealistic 

assumptions. The two most important of these further assumptions are truncating 

the multipole expansion at the dipole term (DO) and replacing the solute cavity by 

a sphere or ellipsoid. We now recognize, though, that these further 

approximations are usually unwarranted; indeed, we recommend that methods 

employing either or both of these approximations should be avoided for serious 

work.
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TABLE I 

Continuum models based on electrostatics only. 

Elements

Label Authors Reference(s) E S L N

Models with S = B, C, and/or L = D, F 

PE1

PE2

PE3

PE4

DO

DO1

DO2

DO3

DO4

DO5

GB 1 

SCME

SCME1

SCME2

SCME3

SCME4

SCME5

SCME6

SCME7

DME

DME1

DME2

DME3

DME4

TBS

Honig group 

Rashin

McCammon group 

Lim, Chan, Tole 

Kirkwood, Onsager 

Tapia, Goscinski 

Szafran, Karelson, Katritzky, Zerner 

Wong, Wiberg, Frisch 

Freitas, Longo, Simas 

Adamo, Lelj 

Tucker, Truhlar 

Kirkwood, Onsager 

Rivail, Rinaldi 

Rivail, Terryn 

Chipot, Rinaldi, Rivail 

Dillet, Rinald, Rivail 

Mikkelsen et al. 

Ford, Wang 

Pappalardo, Reguero, Robb, Frisch 

Huron, Claverie 

Friedman

Gersten, Sapse 

Karlström

Karelson, Tamm, Zemer 

Kim, Bianco, Gertner, Hynes 

[149-151]

[152]

[153]

[154]

[61, 155] 

[156, 157] 

[99, 158] 

[159]

[160]

[161]

[61, 155] 

[88]

[162, 163] 

[100]
[164, 165] 

[93, 106] 

[166]

[167]

[168]

[170]

[172]

[173, 174] 

[91]

[169]

[171]

A A F D

A A F D

A A F D

A A F D

A C F D

A C E D

A C E D

A C E D

A C E D

A C E D

B A F D

A C F D

A C D D

A B D D

A B D D

A A D D

A C D D

A B D D

A B D D

A C F D

A C D D

A B F D

A C B D

A C C D

B C F D
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TABLE I (continued) 

Continuum models based on electrostatics only. 

Elements

Label Authors Reference(s) E S L N 

Models with untruncated, polarizable charge distributions and shape sensitivity 

PCM

PCM2

PCM3

PCM4

PCM5

PCM6

PE4

PE5

GB2

GB3

DME5

DME6

COSMO

Miertus, Scrocco, Tomasi 

Hoshi et al. 

Ford and Wang 

Fox, Rösch, Zauhar 

Negre, Orozco, Luque 

Rashin, Bukatin, Andzelm, Hagler 

Baldridge, Fine, Hagler 

Chen, Noodleman, Case, Bashford 

Peradejordi

Kozaki, Morihasi, Kikuchi 

Tapia, Colonna, Angyan 

Dillet, Rinaldi, Ágyán, Rivail 

Klamt, Schüürmann 

[175]

[144,176, 177] 

[178,1791

[180, 181] 

[182, 183] 

[184]

[185]

[187]

[186]

[188, 189] 

[112]

[164]

[190]

A A B D

A A C D

A A C D

A A C D

A A C D

A A A D

A A A D

A A A D

B A C D

B A C D

A A B D

A A A D

B A C D



SASA

SASA1

SASA2

GB/SA

SCME/RCR

SCME/RRR

SCME/YGHB

SCME/TSB

DME/ST/LCCP

DME/ST/SK

PCM7

PCM8

KH

BCN

Hermann

Eisenberg

Ooi, Oobatake, Némethy, Scheraga 

Still et al. 

Rinaldi, Costa Cabral, Rivail 

Rivail, Rinaldi, and Ruiz-López 

Young, Green, Hillier, Burton 

Tuñón, Silla, Bertrán 

Langlet, Claverie, Caillet, Pullman 

Sato, Kato 

Purisima and Nilar 

Varnek et al.

Karlström and Halle

Basilevsky, Chudinov, Newton 

Models with untruncated, polarizable charge distributions and shape sensitivity 

PCM/ST/FTP Floris, Tomasi, and Pascual-Ahuir [202, 203] A A B B 

PCM/ST/OAT Olivares del Valle, Aguilar, Tomasi [97, 103, 104] A A A B 

PCM/ST/YGHB Young, Green, Hillier, Burton [195] A A B B

PCM/ST/A Amovilli [204] A A B B

PCM9/ST Bachs, Luque, and Orozco [205] A A B A

PCM10/ST Orozco, Luque, coworkers [205-209] A A C A

GB/ST/SM1-3.1 Cramer and Truhlar [210-215] B A C A

PCM/D Rauhut, Clark, Steinke [219] A A C B

PE/ST/FGH Friesner, Goddard, Honig [220] A A A C

AM1aq Dixon, Leonard, Hehre [221] B A C A

GCOSMO Truong and Stefanovich [222, 223] B A A C 

GB/ST/SM4&5 Cramer and Truhlar [213, 216-218] B A A A 

C A F A

C A F A

C A F A

B A F C

A B D B

A A D B

A B D A

A B D A

A A D B

A C B B

A A F C

A A F A

B C D B

B C C B
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TABLE II 

Classification of continuum models that include both electrostatic and non- 

electrostatic contributions. 

Elements

Label Authors Reference(s) E S L N 

Models with S ≤ B, C and/or L = D, F

[64]

[191]

[192]

[193]

[194]

[95]

[195]

[196]

[197]

[199]

[200]

[201]

[110]

[198]
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If the cavity is not simplified and terms are added to the multipole

expansion until it converges, the result is exact and none of the unphysical

consequences of a truncated multipole expansion remain. One difficulty with this

approach though is that the multipole series is not necessarily convergent at small

distances. A second is that for large molecules, a single-center expansion is a very

unnatural way to represent the electrostatics. Even very small molecules may

require large numbers of terms in the multipole expansion to converge it. For

example, a treatment of electron scattering by acetylene that employed a single-

center multipole expansion contained terms with l up to 44 in an attempt to

converge the anisotropy of the electrostatics [224].

One way around the slow convergence of single-center expansions is a

multi-center multipole expansion [225-229]. Several workers have explored the

utility of DME within the SCRF framework [112, 164, 171]. Of course, when the

multipoles do not reside at atomic positions, it is clear that calculation of such

quantities as analytic energy derivatives will become more difficult.

Alternatively one can avoid multipole expansions altogether. There are

two main approaches in use for solving the electrostatic problem without a

multipole expansion. One of these solves the Poisson equation in terms of virtual

charges on the surface of the primary subsystem. This is usually called the

polarized continuum model (PCM) in quantum chemistry although it is called a

boundary element method in the numerical analysis literature. The second

approach solves the Poisson equation directly in the volume of the solvent, e.g.,

by finite differences. The latter approach will be called a Poisson equation (PE)

approach. We should keep in mind, however, that SCME, DME, PCM, and PE

methods will all lead to (the same) accurate electrostatics if the numerical

methods are taken to convergence and there is no difference due to the handling of

other “details.”. One such detail that might be mentioned is charge penetration

outside the cavity. By construction in the PCM model, the small amount of

electronic density outside the cavity is eliminated from the surface charge

computations and as a result the solute bears a very small charge. Tomasi has

emphasized the need to correct for this phenomenon [79], but his approach has yet

to be adopted by other groups doing PCM calculations.

As mentioned above, the PCM is based on representing the electric

polarization of the dielectric medium surrounding the solute by a polarization

charge density at the solute/solvent boundary. This solvent polarization charge

polarizes the solute, and the solute and solvent polarizations are obtained self-

consistently by numerical solution of the Poisson equation with boundary

conditions on the solute-solvent interface. The free energy of solvation is obtained

from the interaction between the polarized solute charge distribution and the self-



CONTINUUM SOLVATION MODELS 27

consistent surface charge distribution [175]. The physics is the same for the PCM

and PE approaches (and for the fully converged SCME or DME, for that matter),

although the numerical methods are different. 

The next question to be discussed was already mentioned in Section 2.1,

namely, since the electrostatic problem, with its sharp boundary and its

homogeneous solvent dielectric constant, already represents a somewhat

unrealistic idealization of the true molecular situation, how important is it to solve

that problem by exact electrostatics? We would answer that this is not essential.

Although it presumably can't hurt to solve the electrostatics accurately, except

perhaps by raising the computer time, it may be unnecessary to do so in order to

represent the most essential physics, and a simpler model may be more

manageable, more numerically stable, and even more interpretable. This is the

motivation for the GB approximation and COSMO.

GB-like approximations [41, 71, 119, 161, 187, 189, 230-233] may be 

derived from eq (1) by using the concept of dielectric energy density, as in the 

work of Bucher and Porter [130], Ehrenson [131], and Schaefer and Froemmel 

[234]. As the GB methodology has been extensively reviewed in the recent past 

[81, 83, 213], we confine our presentation to a very brief discussion of the key 

aspects of the theory. The polarization free energy in the GB model is defined as 

(54)

where ε is the solvent dielectric constant, q is the net atomic charge, k labels an 

atomic center, and γkk' is a coulomb integral, which in atomic units is the

reciprocal of an effective radius (monatomic diagonal terms) or effective distance

(diatomic off-diagonal terms). The descreening of individual parts of the solute 

from the dielectric by other parts of the solute is accounted for in these effective 

quantities. In particular, in our work we use an empirical functional form for γ that

was proposed by Still et al. for their GB/SA model [193]. The present authors 

modified that form in several ways, including making it a function of atomic 

partial charges, in the development of the SM1 [210], SM1a [210], SM2 [211], 

SM2.1 [214], SM2.2 [215], SM3 [212], SM3.1 [214], and SM4 [213, 216, 217] 

GB/ST solvation models. The SM5 solvation model [218] further modifies γ so

that it may be expressed purely as a function of geometry, i.e., it has no explicit 

dependence on elements of the density matrix, thereby facilitating the calculation 

of analytic energy derivatives. The SM4 and SM5 solvation models are based on 

Class IV charge models [235], which provide the best available estimates of 

partial charges for electrostatics calculations. 
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The E, N, and P terms are then obtained from the density matrix P of the 

aqueous-phase SCF calculation as 

(55)

where H and F are respectively the one-electron and Fock matrices, µ and v run 

over valence atomic orbitals, and Zk is the valence nuclear charge of atom k

(equal to the nuclear change minus the number of core electrons). When the net

atomic charge q in equation 54 is determined by Mulliken analysis of the NDDO

wave function, the Fock matrix is simply given by [71, 210, 236]

(56)

where δµv is the Kronecker delta function. This approach was used in the SM1,

SM1a, SM2, and SM3 solvation models. The SM4 alkane models [216, 217] an 

interim SM4 water model specific for selected kinds of {C, H, O} compounds 

[213], and SM5 models, on the other hand, use Class IV Charge Model 1 (CM1) 

partial atomic charges [213, 235], which provide a more accurate representation 

of the electronic structure. This renders eq 56 somewhat more complex [216], but 

does not change its basic form. In all SMx models, the density matrix is 

determined self-consistently in the presence of solvent. 

Values of GENP
calculated from the GB approximation compare well to 

values obtained from numerical solution of the Poisson equation for similar

collections of point charges [83,237,238]. A very promising extension of the GB

methods is provided by a new scaled pairwise approximation to the dielectric 

screening integrals [215]. 

The COSMO method is a solution of the Poisson equation designed 

primarily for the case of very high ε [190]. It takes advantage of an analytic 

solution for the case of a conductor (ε = ∞). The difference between (1- ) for the 

case of ε = 80 and ε = ∞ is only 1.3%, so this is a good approximation for water. 

Its use for the treatment of nonpolar solvents with ε ≈ 2 depends on further 

approximations which have not yet been sufficiently tested to permit an

evaluation of their efficacy. 

Finally we address the issue of contributions. In our view it is unbalanced 

to concentrate on a converged treatment of electrostatics but to ignore other 

effects. As discussed in section 2.2, first-solvation-shell effects may be included 

in continuum models in terms of surface tensions. An alternative way to try to 

include some of them is by scaled particle theory and/or by some ab initio theory

1–
ε
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of dispersion. Table 2 summarizes continuum models that attempt to treat both 

electrostatic and first-solvation-shell effects. 

Some models carry the surface tension approach to extreme, and attempt 

to include even the electrostatic contributions in the surface tensions. These pure 

SASA models are obviously limited in their ability to account for such 

phenomenon as dielectric screening, but they have the virtue of being very easy to 

compute. Thus, they can be used to augment molecular mechanics calculations on 

very large molecules with a qualitative accounting for solvation. 

Also within the molecular mechanics framework is the molecular-

mechanics-type GB/SA model of Still et al. [193] In this instance, the 

electrostatics are handled by a Generalized Born model, but the atomic charges 

are parametric. They are chosen in such a way that Still et al. assign only a single 

surface tension to the entire molecular solvent-accessible surface area; this is also 

done in the PE/ST/FGH and PCM10 models. All these authors rationalize this by 

calling the ST part a hydrophobic term, but it is clear that other non-electrostatic 

effects must then be being absorbed into the cavity parameterization and, in Still 

et al’s MM case, possibly into the partial atomic charges. 

Many groups have chosen to specifically calculate cavitation and/or

dispersion terms. The former typically are computed by the scaled particle theory, 

following Pierotti [142], while several different approaches have been formulated 

for the latter. Ultimately, however, there are non-electrostatic components of the 

solvation free energy remaining that do not lend themselves to ready analysis. 

Bearing that in mind, it is not clear that there is much point in spending resources 

calculating any one non-electrostatic component more rigorously than the others. 

Thus, the most general approach is to parameterize all non-electrostatic effects 

into atomic surface tensions (so as to reproduce experimental free energies of

solvation after the electrostatic components have been removed). This is the 

philosophy guiding the SMx, AM1aq, PCM9/ST, PCM10/ST, and SCME/TSB

models, and an increasing number of workers appear to be moving in this 

direction.

4 Solvation effects on equilibrium properties 

As discussed in Section 2, one key assumption of reaction field models is that the 

polarization field of the solvent is fully equilibrated with the solute. Such a 

situation is most likely to occur when the solute is a long-lived, stable molecular 

structure, e.g., the electronic ground state for some local minimum on a Born-

Oppenheimer potential energy surface. As a result, continuum solvation models 
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based on reaction fields should be especially useful for the prediction of solvent 

effects on equilibrium constants. 

Equilibria may take a number of forms—constitutional, tautomeric, 

conformational, etc. For any equilibrium problem in solution, one may consider 

the free energy cycle depicted in the figure below, where A and B label different 

molecules or different isomers of the same molecule, depending on the type of 

equilibrium. The scheme below shows that the free energy change for a reaction 

or tautomerization on going from the gas phase into solution is equal to the 

difference in the free energies of solvation of the initial and final species (the 

figure depicts a unimolecular reaction, but this statement is true in the general 

case).

Tautomeric equilibria involving populations of isomers that differ by bond 

connectivity are of special interest for the study of solvent effects, and such 

equilibria involving heterocycles have proven to be a favorite testing ground for 

developers of continuum solvation models. For protomeric heterocyclic equilibria, 

this is at least partly due to the very large changes in one-electron properties (e.g., 

the dipole moment) that affect the solvation free energy when the proton 

substitution pattern changes. 

In this section we will consider only equilibria in which the number of 

moles of solute does not change. In such cases the population of a given 

contributor to the equilibrium may be calculated by using a standard Boltzmann 

formalism, i.e., the fraction of species A is 
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(57)

where G may be either a gas phase or a solution value, and the sum over B runs

over all equilibrium contributors. In below discussion we will take %(A) ≡ 100

F(A). When free energies in both the gas phase and in solution are available, one

may calculate [239] the absolute free energy of solvation, ∆G O
S , as

(58)

where the sums over both B and A run over all contributors. 

This section will focus on the application of dielectric continuum models 

to equilibria like those described above. A special effort will be made to highlight 

investigations that compared two or more solvation models. We emphasize that 

some care must be taken to distinguish the degree to which different continuum 

models have been extended to account for non-electrostatic effects, since these 

effects may certainly play a large role in some of the equilibria under discussion. 

Those continuum models that consider only electrostatics are of limited 

applicability unless non-electrostatic effects cancel for all equilibrium 

contributors.

We will begin with a discussion of reaction equilibria, including acid-base 

reactions and more complex bond-making/bond-breaking reactions. We will then 

move on to tautomeric equilibria. We note that Reichardt [240] has provided a 

thorough compilation of many equilibria, including most of those discussed 

below, where solvent effects had been studied experimentally and/or using some 

theoretical model, as of 1990. On the theoretical side, at least, the number of 

systems studied has greatly expanded since then.. Whereas Reichardt summarizes 

the use of linear free energy relationships for predicting such equilibria, a large 

amount of the recent work is based on SCRF models. 

4.1 REACTION EQUILIBRIA 

As one might expect, reactions that create, destroy, or separate charge tend to 

exhibit very large solvation effects. The most common examples of such reactions 
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are Brønsted acid-base equilibria. A particularly striking example is available for 

the special case of an internal acid-base proton transfer, which is also a special

case of a tautomeric equilibrium. This occurs, for example, when amino acids are 

placed in water. Several continuum modeling studies have focused on this

equilibrium for glycine, and they are summarized in section 4.1.1. Intermolecular

proton transfers have also been the subject of several studies, particularly transfers 

between amine bases; these investigations are described in section 4.1.2. 

4.1.1 Intramolecular proton transfer 

At biological pH, glycine exists exclusively in its zwitterionic form 2 [241],

whereas in the gas phase, only the non-zwitterionic species 1 is observed [242]. In 

the absence of solvation, the zwitterion is not a stationary point, but instead 

undergoes spontaneous proton transfer back to the neutral form. In an early study, 

Bonaccorsi et al. [243], using the PCM model, showed that a continuum solvation 

model can account for the stability of the zwitterion in aqueous solution. Although 

they made some comparison to the experimental enthalpy for the transfer of 1
from the gas phase to 2 in aqueous solution (-19.2 ± 1 kcal/mol) [244], this 

particular study emphasized the sensitivity of the computational results to solute 

geometries (many of those discussed were unoptimized), basis set, and cavity 

size. Thus, the calculated gas-phase proton transfer energy ranges from 20 to 40 

kcal/mol at the HF/4-31G [245] level, to 65 to 90 kcal/mol at the HF/STO-3G

level. Different prescriptions for choosing the zwitterion cavity yielded solvation 

free energies varying from -36.2 kcal/mol to -57.3 kcal/mol. Since the zwitterion 

is not stationary in the gas phase, the experimental enthalpy of transfer cited 

above cannot be separated into proton transfer and solvation components (and the 

entropic aspects are similarly unclear, making comparison to reaction field free 

energies results difficult). Hehre et al. [246] used the AM1-SM2 model to study 

the solvation of neutral and zwitterionic glycine, and found the zwitterionic form 

to be better solvated by 25 kcal/mol in aqueous solution. Adding this differential 

free energy of solvation to the relative gas phase free energy difference (using a 

frozen zwitterion geometry) of 17.8 kcal/mol favoring the neutral form at the 

HF/3-21+G level, they predict the zwitterion to be the preferred form in aqueous 

solution by 7.6 kcal/mol. 
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4.1.2 Intermolecular proton transfer 

In the gas phase, simple deprotonations tend to be barrierless reactions leading to

a high-energy separated proton and anion, but solvation can change the situation 

even qualitatively. Pietro has emphasized the pedagogical utility of employing a 

continuum solvation model (in this case the SM1 model) in a computational study 

on the deprotonation of nitromethane [247]. When reaction field calculations are 

used to calculate standard state free energies of conjugate acids and bases in 

solution, this permits direct calculation of the acid dissociation constant (pKa).

Such calculations of the absolute pKa are notoriously difficult, since very high

levels of theory are required to accurately calculate the gas-phase component of 

proton affinities and since solvation energies of ions are very large, so that even

relative errors in solvation energies can be large on an absolute scale. As a result, 

most methods for predicting pKa values tend to be empirical in nature [248-250].

A simpler alternative to calculations of absolute pKa’s is to examine trends in pKa
values for related molecules. In this vein, Rajasekaran et al. [251] have used the

finite difference Poisson-Boltzmann method to examine differences in pKa values

for aliphatic dicarboxylic acids. They identify the importance of solvent screening

of charge-charge interactions internal to the solute. Urban et al. [252] have 

employed a similar approach in examining the relative pKa values for phenol and 

ortho-, meta-, and para-fluorophenol, using the SM2 and SM3 quantum

mechanical solvation models, and the physically similar molecular mechanics 

GB/SA model. They noted in particular the importance of accounting for non-

electrostatic hydrophobic interactions of the fluorine atom. The QM models agree 

with experiment to within about 1 kcal/mol for the effect of solvation on the 

relative pKa values. The MM model does similarly well when charges derived 

from fitting to the molecular electrostatic potential (ESP) are employed. 

Other workers have considered proton transfer reactions between different 

bases and the effect of solvation on these processes. Terryn and Rivail [253], 

Galera et al. [254], Pascual-Ahuir et al. [255], Tuñón et al. [256], and Young et al. 

[195] have all focused on the interesting aqueous basicity trend of the series 

ammonia, methylamine, dimethylamine, and trimethylamine. In the gas phase, it 

is well established that the order of basicity for these amines is Me3N > Me2NH > 

MeNH2 > NH3 [257, 258]. This may be understood on the basis of simple

polarizability arguments. However, in aqueous solution, the basicity ordering 

changes to MeNH2 ≈ Me2NH > Me3N ≈ NH3 [259]. All of these studies indicate 

that changes in basicity are dominated by the electrostatic component of the free 

energy of solvation of the relevant ammonium ions. In aqueous solution, the

smaller ions are better solvated, and as a result have lower free energies. These
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studies also emphasize, however, how sensitive the results are to choices of basis 

set and cavity size. In particular, Young et al. [195] compared an ellipsoidal cavity 

SCRF model with multipole expansions of l = 1 and l = 6 to the generalized-

cavity PCM approach. The ellipsoidal cavity model predicts considerably larger 

differential solvation free energies between different members of the homologous

amine series than does the PCM model, but these differences tend to cancel so

that both PCM and the l = 6 expansion gave qualitatively correct answers (i.e.,

proper sign and within about 1 pKa unit for ∆pKa  on going from the gas phase to 

aqueous solution). The l = 1 expansion, i.e., an ellipsoidal Kirkwood-Onsager

model, was less satisfactory, and did particularly poorly when comparing

ammonia and methylamine. 

The present authors, using the SMx series of models, have considered

aqueous solvation effects on proton transfer for these same amines, together with 

several other bases, and have arrived at similar conclusions to those detailed 

above [83, 236, 260]. 

Tuñón et al. have considered the inversion of the alcohol acidity scale on 

passing from the gas phase to solution [261]. They used gas-phase geometries, the 

PCM method for electrostatics (with a radius for O of 1.68 Å in the alcohol and 

1.4 Å in the conjugate base), and separate estimates of dispersion and cavitation 

energies. They found that increasing the size of the alkyl group decreases the 

solvation energy of the conjugate base in solution and concluded that this is the 

primary source of the acidity order. 

Finally, studies of proton transfer reactions in aqueous solution where an 

individual water molecule plays a role that distinguishes it from the bulk solvent 

have also recently appeared. Rivail et al. [105, 262] have examined the water- 

assisted ionization of HF and HCl in both nonpolar and polar solutions. Using a 

generalized multipole reaction field method (with multipoles up to l = 6) within an

ellipsoidal cavity (to facilitate geometry optimization), they concluded that 

ionization of HCl requires the specific assistance of two water molecules, and that 

the resultant cation is better described as H5O2
+ than as (H3O+)•H2O. They also 

concluded that ionization of HF does not proceed in a polar continuum even with

two explicit water molecules included in the cavity. This may be compared to a

study by Ando and Hynes [263] in which the bulk water solvent is treated not 

within the framework of a reaction field formalism, but instead is represented as a 

generalized solvent coordinate [264]. The energetics associated with the solvent 

coordinate were determined from Monte Carlo simulations using explicit water 

molecules for various points along an assumed proton transfer reaction path. 

Ando and Hynes also included two explicit water molecules in their quantum 

mechanical treatment. Their key conclusions were that two proton transfer steps 
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occur adiabatically; the first has a negligible free energy barrier and proceeds with 

significant motion along the solvent coordinate (i.e., solvent structural 

rearrangement is required), while the second free energy barrier is about 0.9

kcal/mol and arises primarily from the requirement for nuclear reorganization of 

the two water molecules. The free energy change associated with this ionization 

was calculated to be 6.9 kcal/mol (an estimate of -7.5 kcal/mol was offered that 

includes complete separation of the ions), which may be compared with the 

experimental ionization free energy of -8 to -10 kcal/mol [265]. Ando and

Hynes’ findings agree with those of Rivail et al. in that the transferred proton is 

associated about equally strongly with both of the explicit water molecules; 

however Ando and Hynes observe this to be the case only after inclusion of zero 

point vibrational energy, while Rivail et al. find only a single equilibrium

structure in the appropriate region of the (Cl-)•H5O2
+ potential energy surface.

4.2 TAUTOMERIC EQUILIBRIA

A tautomeric equilibrium is a unimolecular equilibrium in which the various

contributors differ based upon bond connectivity. In the special case of a 

protomeric tautomeric equilibrium, they differ only in how many protons are 

attached to each heavy atom. In-text figures throughout this section illustrate 

molecules for which multiple tautomers exist. When the molecules of interest are 

heterocycles, different tautomers may exhibit very large differences in electronic 

properties [266]. In particular, they may span a wide range of polarities. That 

being the case, tautomeric equilibria can be quite sensitive to solvation effects, 

and they have thus proven to be attractive testing grounds for continuum solvation 

models.

In a recent review [83], the present authors discussed the tautomeric 

equilibria of 2-hydroxypyridine/2-pyridone and the 5-(2H)-isoxazolone system in 

considerable detail, focusing on the application of several different continuum 

solvation models. The following presentation will be somewhat more broad in 

terms of the different equilibria discussed and will not recapitulate all of the 

analysis previously presented for the above two systems. 

Section 4.2.1 will be devoted to heterocycles, section 4.2.2 will cover 

other kinds of protomeric tautomeric equilibria (e.g., enol/ketone, formic acid, 

formamidine, etc.), and section 4.2.3 will discuss an example of a ring/chain 

tautomeric equilibrium. The order of presentation will be approximately by 

increasing molecular weight within each section. A review by Kwiatkowski et al. 

[267] covers work on formamide, pyridines, pyrimidines, purines, and nucleic 

-
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acid bases up to 1984, so for these systems our focus will predominantly be on 

more recent investigations. 

We note one general point prior to addressing individual systems. 

Computational studies aimed at providing quantitative predictions of equilibrium 

populations in solution must accurately predict total free energies in solution. In

particular, if the theory employed involves calculating solvation free energies to 

be added to a gas-phase potential energy surface with thermal rovibrational effects 

included (and essentially all calculations in solution may be viewed as conforming 

to this separation of components), then either the gas-phase free energies and the 

free energies of solvation must both be calculated accurately, or errors in one part 

of the calculation must be offset by errors in the other. Clearly, the former 

situation is the more desirable. Where possible, we will provide some analysis of 

the quality of the gas-phase portions of the following calculations as well. 

Naturally, when the point of the calculation is merely to provide qualitative 

indications of relative free energies of solvation for different tautomers, 

requirements on the accuracy of the levels of theory are less stringent. 

4.2.1 Heterocycles

This section is divided into eight subsections, covering imidazoles, pyrazoles, 

isoxazoles, oxazoles, triazoles, tetrazoles, pyridines, and pyrimidines, purines, and 

nucleic acid bases respectively. 

4.2.1.1 Imidazoles

Two tautomeric equilibria have been considered for substituted imidazoles, that 

between 2-imidazolone 3 and its 2-hydroxyimidazole tautomer 4 [268] and also 

that between the 1H and 3H tautomers of 4-nitroimidazole, 6 and 5, respectively

[269, 270]. Karelson et al. used the DO2* model with a spherical cavity of 2.5 Å 

radius and found 2-imidazolone to be better solvated than its tautomer by 7.7 

kcal/mol at the AM1 level. [The asterisk in DO2* indicates that the reaction field 
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was derived from solution of an incorrect non-linear Schrodinger equation, i.e., 

not eq 30 [157]. In the DO2* model, a factor of 0.5 precedes the operator Kop in

eq 30; the result is reduced polarization of the wave function in response to 

solvation.] AM1 further predicts the gas phase energy difference to favor the oxo

tautomer by about 8 kcal/mol. The observed tautomer in solution is the oxo
tautomer [266]. 

Using the same theoretical model, Karelson et al. [269] and later Rzepa et 

al. [270] examined 4-nitroimidazole. The latter work corrected incomplete 

geometry optimizations present in the former study. In this instance, AM1

predicts 5 to be 1.4 kcal/mol lower in relative energy than 6. However, the DO2* 

model predicts the aqueous solvation free energies to be –25.3 and –7.1 kcal/mol 

for 6 and 5, respectively, rendering 6 considerably lower in energy than 5 in

solution, which agrees with the experimental situation. 

It is clear in both of these studies that the small cavity size (which fails to 

entirely contain all of the atoms given standard van der Waals radii) causes 

electrostatic solvation free energies to be seriously overestimated-the difference 

in the 4-nitroimidazole system seems much too large to be physically reasonable. 

This overestimation would be still more severe were a correct DO model to have 

been used (i.e., one which accounted self-consistently for the full solute 

polarization using eq 30). Nevertheless, the DO2* results may be considered 

qualitatively useful, to the extent that they identify trends in tautomer electrostatic 

solvation free energies. 

One measure of the inaccuracy associated with the small cavity radius may 

be had from the calculations of Orozco et al. [207], who also studied the 

4-nitroimidazole system using the PCM8/ST model. The general cavity in this 

case was constructed from atom-centered spheres having typical van der Waals 

radii [207]. At the AM1 level, the differential electrostatic free energy of 

hydration is predicted to be only 4.5 kcal/mol; this may be compared to the value 

of 18.2 kcal/mol noted above for the DO2* model. Orozco et al. [207] also 

included first-solvation-shell effects, which they found to favor 5 by 1.2 kcal/mol, 

leading to a net differential free energy in solution (AM1 + PCM8/ST) of 2.1 

kcal/mol.
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4.2.1.2 Pyrazoles

Karelson et al. [268] also used the AM1 DO2* method with a spherical cavity of 

2.5 Å radius to study tautomeric equilibria in the 3- and 4-hydroxypyrazole

systems, 7-9 and 10-12, respectively. Rzepa et al. [270] later corrected the results

for incomplete geometry optimization in the latter heterocycle. Although the 

observed [266] forms in aqueous solution are the oxo tautomer 8 (i.e., the 

pyrazolone) in the first case and the zwitterion 12 in the latter case, gas-phase 

AM1 calculations predict these tautomers to be much higher in relative energy 

than the corresponding hydroxy tautomers 7 and 10, respectively. In each case, it 

was found that the DO2* method successfully predicted the observed aqueous 

tautomer. However, the DO2* electrostatic solvation free energy for 12 was

predicted to be –57.3 kcal/mol! As for the nitroimidazole results discussed in the 

last section, this number is incredibly large, probably as a result of the small 

cavity radius chosen. However, so large a solvation free energy was required in 

order to overcome a very unfavorable gas-phase energy predicted by AM1 (about 

40 kcal/mol higher than the other two tautomers). It seems likely that the AM1 

relative energy is inaccurate, given the experimental situation and the very small

likelihood of two tautomers differing in solvation free energy by so large an 

amount.

One qualitative result of particular interest arises in the study of 

3-hydroxypyrazole. The electronic structure of the oxo tautomer 8 may be thought 

of as having two mesomeric (i.e., resonance) contributors 8a and 8b, as illustrated 
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above. In the gas phase, Karelson et al., using the DO2* model, found the C–O

bond length in 8 increased by 0.098 Å on going from the gas phase into a solution

with a dielectric constant ε of 78.4, which implies increased contribution from the

zwitterionic mesomer. 

Parchment et al. [271] have provided more recent calculations on the 3-

hydroxypyrazole equilibrium at the ab initio level. They noted that tautomer 9,
which was not considered by Karelson et al. [268], is the lowest-energy tautomer 

in the gas phase at levels of theory (including AM1) up to 

MP4/6-31G**//HF/3-21G [271]. Although 8 is the dominant tautomer observed 

experimentally in aqueous solution, in the gas phase 8 is predicted to be nearly 9 

kcal/mol less stable than 9 at the MP4 level [271]. Using a DO model with an 

unphysically small cavity radius of 2.5 Å, Parchment et al. [271] were able to 

reproduce at the ab initio level the AM1-DO prediction of Karelson et al. [268],

namely that 8 is the most stable tautomer in aqueous solution. With this cavity,

though, 8 is predicted to be better solvated than 9 by -22.2 kcal/mol [271]. This 

result is inconsistent with molecular dynamics simulations with explicit aqueous 

solvation [271], and with PCM and SCME calculations with more reasonable 

cavities [271]; these predict that 8 is only about 3 kcal/mol better solvated than 9.
In summary, the most complete models used by Parchment et al. do not lead to 

agreement with experiment

The comparisons made by Parchment et al. [271] illustrate the importance 

of combining electronic polarization effects with corrections for specific solvation 

effects. The latter are accounted for parametrically by the explicit simulation, but 

that procedure cannot explicitly account for the greater polarizability of tautomer 

8. The various SCRF models do indicate 8 to be more polarizable than any of the 

other tautomers, but polarization alone is not sufficient to shift the equilibrium to 

that experimentally observed. Were these two effects to be combined in a single 

theoretical model, a more accurate prediction of the experimental equilibrium

would be expected.

4.2.1.3 Isoxazoles
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Karelson et al. [268] used the AM1 DO2* method with a spherical cavity of 2.5 Å,

radius to study tautomeric equilibria in the 3-hydroxyisoxazole system (the keto

tautomer 13 is referred to as an isoxazolone). AM1 predicts 13 to be 0.06

kcal/mol lower in energy than 14 in the gas phase. However, the AM1 dipole

moments are 3.32 and 4.21 D for 13 and 14, respectively. Hydroxy tautomer 14 is

better solvated within the DO2* model, and is predicted to be 2.6 kcal/mol lower

in energy than 13 in a continuum dielectric with ε = 78.4. Karelson et al. note,

however, that the relative increase in dipole moment upon solvation is larger for

13 than for 14 (aqueous AM1 dipole moments of 5.05 and 5.39 D, respectively).

This indicates that the relative magnitude of gas-phase dipole moments will not

always be indicative of which tautomer will be better solvated within a DO

solvation approach-the polarizability of the solutes must also be considered. In 

any case, the DO2* model is consistent with the experimental observation [266]

of only the hydroxy tautomer in aqueous solution.

Woodcock et al. [272] also studied the 3-hydroxyisoxazole system,

making several comparisons to the above work of Karelson et al. They noted in

particular that the hydroxy tautomer has two possible rotamers about the C–O

bond, one which places the hydroxyl proton syn to nitrogen (14) and one which

places it anti (15). Karelson et al. considered only 14, which is 4.3 kcal/mol lower

in energy in the gas phase at the MP4/6-31G**//HF/3-21G level. Woodcock et al.

also demonstrated that AM1 agrees poorly with this correlated ab initio level of

theory for the relative energies of 13 and 14: the MP4 calculations predict 13 to

be 7.1 kcal/mol higher in energy than 14. Finally, AM1 also disagrees with HF/6-

31G**//HF/3-21G with respect to the molecular dipole moments. Tautomers 14
and 13 are predicted to have gas-phase dipole moments of 2.5 and 3.8 D

respectively at the ab initio level, reversing the order found at the AM1 level.

Moreover, the anti hydroxyl tautomer 15 has a gas-phase dipole moment of 6.2 D

at the HF/6-31G**//HF/3-21G level! Thus, when Woodcock et al. considered the

effects of solvation using a correct DO model (as opposed to DO2*) but

continuing with the small spherical cavity radius of 2.5 Å used by Karelson et al.,

they find the relative energies in aqueous solution of 14, 15, and 13 to be 12.8, 

0.0, and 1.8 kcal/mol respectively. Note the difference between AM1 and the ab 

initio level of theory with respect to 14 vs. 15: the former predicts 15 to be the 

more stable tautomer by 2.6 kcal/mol while the latter predicts a reversal of this 

ordering by about 15 kcallmol. Note as well that the relative energies of the two 

hydroxyl rotamers differ by 12.8 kcal/mol—this is a very large difference in 

electrostatic solvation free energies for rotamers, and, if we recall that the DO 

model calculates the free energy of solvation as being proportional to the square 

of the molecular dipole moment and inversely proportional to the cube of the 
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cavity radius., we can reasonable conclude that this large difference reflects both 

the problems of truncating the multipole expansion at the dipole and of choosing 

unreasonably small cavity radii. 

Woodcock et al. also examined a different continuum model, namely the 

PCM model with a solvent accessible surface area defined according to the 

prescription of Aguilar and Olivares del Valle [273] based on basis set and partial 

atomic charge. This much more realistic cavity still predicts 13 to be better 

solvated than 14, but by only 2.4 kcal/mol at the HF/6-31G**//HF/3-21G level. 

When combined with the MP4 gas phase energies, 14 is predicted to predominate 

by 4.7 kcal/mol. This is remarkably consistent with molecular dynamics 

simulation studies carried out by Woodcock et al. using frozen ab initio 

geometries for the solutes, solute partial atomic charges derived from electrostatic 

potential fitting [274], and the Transferable Intermolecular Potential 3-Point 

(TIP3P) [275] water model with the AMBER [276] force field. The simulations 

predict 13 to be better solvated than 14 by 2.2 ± 0.4 kcal/mol. They also make the 

much more reasonable prediction that the difference in solvation free energies for 

the two hydroxyl rotamers is only 1.7 ± 0.5 kcal/mol, favoring the anti rotamer. 

When either the PCM or the MD solvation results are added to the MP4 relative 

gas-phase energies, 14 is predicted to be the most stable in aqueous solution. 

Karelson et al. [268] used the AM1 DO2* method with a spherical cavity 

of 2.5 Å radius to study tautomeric equilibria in the 4-hydroxyisoxazole system 

(they did not specify which hydroxyl rotamer they examined). Tautomer 17
predominates in aqueous solution. Although AM1 predicts 16 to be about 10 

kcal/mol more stable in the gas-phase than 17, its dipole moment is only predicted 

to be 0.68 D. Tautomer 17 has a predicted dipole moment of 2.83 D in the gas-

phase. With the small cavity, the two dipole moments increase to 0.90 and 4.56 D, 

respectively, and this is sufficient to make 17 0.3 kcal/mol more stable than 16 in

solution. Zwitterion 18 is much better solvated than either of the other two 

tautomers, but AM1 predicts its gas-phase relative energy to be so high that it 

plays no equilibrium role in either the gas phase of solution. 
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The present authors have discussed the 5-hydroxyisoxazole tautomeric 

equilibrium at length in a previous review [83]. For the sake of completeness, we 

note that Karelson et al. [268] studied this equilibrium with the DO2* model and a 

spherical cavity radius of 2.5 Å and came to the conclusion that 19 should slightly 

predominate (hydroxyl rotation in 21 was not specified). Woodcock et al. [272] 

found that AM1 gas-phase energies differed from MP4/6-31G**//HF/3-21G

energies by up to 5 kcal/mol, although predicted dipole moments were in better 

agreement between the two levels of theory than was the case for 

3-hydroxyisoxazole (vide supra). Although Woodcock et al. found that adding 

solvation free energies from an ab initio DO model with a 2.5 Å spherical cavity

radius also predicted that 19 should slightly predominate, this was not consistent 

with either PCM results or MD simulations, both of which suggested 20 to be 

lower in energy in aqueous solution. The present authors [277] employed ab initio 

levels of theory that effectively converged the gas-phase relative energies, noting, 

as had Rzepa et al. [270], that inaccurate geometries had been used for 19 in the 

earlier studies. When SMx solvation free energies were added to these gas-phase

energies, the present authors predicted that both isoxazolone tautomers should be 

present with 20 slightly predominating. This is consistent with trends apparent in

the tautomeric equilibria of the 3-methyl, 4-methyl, and 3,4-dimethyl homologs of

this heterocyclic system, for which experimental equilibrium data are available 

[278, 279], and for which the SMx models are in good agreement with experiment

[277]. Gould and Hillier [280] subsequentIy revisited this system and illustrated 

that the DO model was incapable of providing accurate predictions even when 

accurate geometries and a more reasonable cavity were employed. However, 

when higher solute multipole moments were included in the reaction field, the

results were more consistent with the SMx predictions for the unsubstituted

system. Finally, both the present authors as well as Gould and Hillier emphasized 

the importance of accounting for non-electrostatic components of the free energy 

of solvation. 
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4.2.1.4 Oxazoles

Karelson et al. [268] used the AM1 DO2* method with a spherical cavity of 2.5 Å

radius to study tautomeric equilibria in the 2-, 4-, and 5-hydroxyoxazole systems 

(the keto tautomers are referred to as oxazolones). Tautomers illustrated above in 

parentheses were not considered and hydroxyl rotamers were not specified. In the 

first two systems, tautomers 22 and 25 are predicted by AM1 to be about 14 

kcal/mol more stable than the nearest other tautomer in their respective equilibria.

Differences in tautomer solvation free energies do not overcome this gas-phase

preference in either case, and the oxazolones are predicted to dominate the 

aqueous equilibrium, as is observed experimentally [266]. 

In the 5-hydroxyoxazole system, AM1 predicts the 5-(4H)-oxazolone

tautomer 28 to be the lowest in energy in the gas phase by 12.4 kcal/mol. This

tautomer is experimentally observed in the solid state [266]. The employed DO2*
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model, however, predicts that the zwitterionic tautomer 29 should predominate in

aqueous solution by about 20 kcal/mol with a solvation free energy of nearly –40 

kcal/mol; this is probably a large overestimation of the magnitude owing to the 

arbitrarily small size of the DO2* cavity employed. Experimental solution data 

are not available. The AM1 gas-phase energies are also not quantitative, 

suggesting that this might be an interesting system for which to make higher level 

predictions.

4.2.1.5 Triazoles

Tomás et al. [281] have calculated the tautomeric equilibrium of 1,2,3-

benzotriazole in the gas phase and compared their results to experimental data 

[282] derived from ultraviolet spectroscopy. Experiment suggests that 35 is about 

4 kcal/mol more stable than 34; this result is consistent with calculations [281] at 

the MP2/6-31G* level, which predict 35 to be 2.5 kcal/mol more stable than 34.
The same level of theory predicts 33 to be 5.0 kcal/mol more stable than 32 in the 

parent triazole system. Although experimental data are available indicating 35 to

be the dominant tautomer in CDCl3 and d6-dimethyl sulfoxide solutions [279,

283], this equilibrium does not appear to have been the subject of any modeling, 

continuum or otherwise. It may prove to be somewhat challenging, however. 

Tomás et al. point out that correlation effects favor 35 by about 5 kcal/mol at the 

MP2 level; AM1, PM3, and HF calculations with moderate basis sets all predict 
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34 to be the lowest in energy in the gas phase. Moreover, Fabian [284] has noted 

significant discrepancies between experimental tautomeric equilibria and 

predictions from both AM1 and PM3 when one or more tautomers has adjacent 

pyridine-like lone pairs, as is the case for 34. This suggests that the electronic 

densities calculated at these levels may not be sufficiently accurate for solvation 

modeling.

In conjunction with the present review we have carried out AM1-SM4

calculations in solvent n-hexadecane (ε = 2.06) for the benzotriazole equilibrium.

We find that 35 is better solvated than 34 by 0.9 kcal/mol, with all of the 

differential solvation being found in the ∆GENP term. Not surprisingly, PM3-SM4

results are very similar. This seems to be out of step with the data from CDCl3,

the most nonpolar solvent for which experimental results are available. It is not 

clear, however, whether this difference is attributable to (i) the smaller dielectric

constant of n-hexadecane compared to CDCl3 (for CHCl3 ε = 4.8 at 293 K [240]),

(ii) specific interactions between weakly acidic chloroform and the basic 

benzotriazole tautomers, (iii) inadequacies in the semiempirical electronic 

structure, (iv) inadequacies in the SM4 model, or (v) some combination of any or

all of the above. When SM5 models are available for CHCl3 and DMSO, it will 

be interesting to revisit this system. 

Another challenging triazole system, 3-amino- 1,2,4-triazole, has been 

discussed by Parchment et al. [285]. In aqueous solution, 15N-NMR indicates 

[286] a 2:1 mixture of 37:36, with no detectable amounts of 38 present. Tautomer 

38 is the least stable in the gas phase: at the CCSD/6-31G*//HF/6-3 1G* level, 36,
37, and 38 are predicted to have relative energies of 0.0, 0.4, and 7.8 kcal/mol, 

respectively [285]. With a DO model using a cavity radius of 3.0 Å at the 

HF/6-31G** level, Parchment et al. [285] predicted the relative energies of 36,
37, and 38 in aqueous solution to be 2.5, 0.0, and 1.4 kcal/mol, respectively; 

although the relative ordering of 36 and 37 is correct, 38 is too low in energy 

based on the above NMR data. PCM calculations at the same level of theory 

predicted the relative energies of 36, 37, and 38 in aqueous solution to be 0.0, 1.8, 

and 5.0 kcal/mol, respectively. This prediction of the electrostatics is more 

consistent with the observed equilibrium, and it appears that correcting for 

specific solvation effects could easily reverse the relative energies of 36 and 37.
However, it may be that the proximity of the primary and secondary amino 

functionality in tautomer 37 requires inclusion of a specific water molecule in the 

continuum calculation as there is an opportunity for a unique hydrogen bonding 

pattern possible only for that tautomer (each amino group hydrogen bonding to 

one lone pair of a single water molecule). 
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4.2.1.6 Tetrazoles

Tetrazole can exist as three tautomers, as illustrated above. Wong et al. [287] have 

summarized the experimental and theoretical data for the gas-phase equilibrium; 

there is general agreement that 40 is more stable than 39 by about 2 kcal/mol, 

while 41 is about 20 kcal/mol higher in free energy. Wong et al. also used the 

DO3 model to examine electrostatic solvation effects on the tetrazole equilibrium 

at the MP2/6-31 1+G**//HF/6-31G* level. At this level they predict the

equilibrium to barely reverse in a continuum dielectric of ε = 2, so that 39 is

favored over 40 by about 0.1 kcal/mol. For ε = 40, they predict 39 to be favored

over 40 by about 3 kcal/mol. This ordering is consistent with the experimental

observation [283] of only 39 in dimethylsulfoxide (ε = 46.5 at 298 K [240]). The 

possible differential effects of specific interactions between tetrazole tautomers 

acting as hydrogen-bond donors to DMSO were not considered. Tautomer 41
remained much higher in energy for both dielectric constants.

For comparison purposes, we have carried out for the present review

AM1-SM4 calculations in n-hexadecane (ε = 2.06). We find the solvation free

energies of 39 and 40 to be –3.5 and –2.7 kcal/mol, respectively. Thus, the two 

solvation models agree that 39 is better solvated than 40. However, we calculate

the differential solvation free energy, 0.8 kcal/mol, to be smaller than that found 

by Wong et al., 2.0 kcal/mol (in a hypothetical solvent with ε = 2.0). Moreover,

we calculate ∆GENP for 39 and 40 to be –4.4 and –3.6 kcal/mol,  respectively. 

These values may be compared to the DO3 (also electrostatics only) results of 

Wong et al., which were –2.4 and -0.4 kcal/mol. These differences, as noted 

above for the 5-hydroxyisoxazole system, are probably attributable to the failure

of the DO model to take account of higher multipole moments. The net result is 

that the two models differ for ε = 2—the DO3 model predicts a very slight

prevalence of 39, while the SM4 model predicts about a 7:1 ratio of 40:39.
Unfortunately, limited solubility of tetrazole in solvents less polar than DMSO 

has not yet permitted an experimental measurement of this equilibrium. 
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4.2.1.7 Pyridines

Hydroxypyridine/pyridone equilibria have been extensively studied. Numerous 

experimental [240, 266, 288, 289] and modeling studies of these systems in the 

gas phase [284, 290-293] and in solution [157, 159, 160, 195, 236, 260, 294-300]

have appeared. An earlier review [83] by the present authors includes a summary 

of the literature through 1993. We briefly review that earlier work and include 

some more recent contributions. 

The 2-substituted system has proven especially attractive to modelers 

because the experimental equilibrium constants are known both in the gas phase 

and in many different solutions. As a result, the focus of the modeling study can 

be on the straightforward calculation of the differential solvation free energy of 

the two tautomers, without any requirement to first accurately calculate the 

relative tautomeric free energies in the gas phase. However, in 1992 Les et al. 

[290] suggested that prior experimental data [240, 266, 288], primarily in the form 

of ultraviolet spectra in the gas phase and in low-temperature matrices, had been 

misinterpreted and that the reported equilibrium constants referred to homomeric 

dimers of tautomers (i.e., (42)2 (43)2). Parchment et al. [291] contested this 

assertion and suggested an incomplete accounting for correlation in the modeling 

studies of Les et al. Simultaneously, a gas-phase microwave experiment appeared 

that unambiguously established the two tautomers to be monomeric in the gas 

phase [289]. 

Calculations on the differential solvation free energies of the two relevant 

tautomers are presented in the following table for several different models 

implemented at a number of levels of theory. The following discussion will focus 

on comparing specific calculations in the table. 

We begin with a comparison of the various DO models to each other. 

Based on a parametric procedure that takes account of the molecular volume 

encompassed by the 0.001 a.u. electron density envelope, Wong et al. [297] 

suggested that an appropriate spherical cavity radius is 3.8 Å. Szafran et al. [157] 
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TABLE III

Differential free energies of solvation (kcal/mol) for 2-pyridone 42 and

2-hydroxypyridine 43 for different dielectric constants and solvent models.a

Model/Hamiltonianb ε=2 ε=5 ε=36 ε=78 Cavity Ref

DO2*/AM1 4.3 rad. 3.15 Åc [295]

DO2*/AM1 0.8 1.5 2.0 2.1 rad. 3.8 Å [157] 

DO2*/PM3 0.7 1.3 1.8 1.9 rad. 3.8 Å [157] 

DO2*/AM 1d 1.5 rad. 3.8 Å [157]

DO2*/PM3d 1.7 rad. 3.8 Å [157]

DO/AM1 4.8 rad. 3.0 Å [159] 

DO/AM1 0.9 1.6 2.3 2.3 rad. 3.8 Å [157]

DO/PM3 0.7 1.4 2.0 2.1 rad. 3.8 Å [157]

DO/AM1d 2.7 rad. 3.8 Å [157]

DO/PM3d 2.4 rad. 3.8 Å [157]

DO/HF/3-21G 5.7 rad. 3.8 Å [298]

DO/HF/6-31G** 1.1 3.0 sad. 3.8 Å [297]

DO/HF/6-31+G** 1.2 3.4 rad. 3.8 Å [297]

DO/MP2/6-31+G** 1.0 3.2 rad. 3.8 Å [297]

SCME(l= 6)/HF/6-31G** 1.5 4.2 4.3 rad. 3.8 Å [195]

SCME(l= 6)/HF/6-31G** 3.3 4.5 4.6 ellipsoidal [195]
PCM/AM1 1.6 3.3 4.8 5.0 van der Waals [301] 

PCM/HF/6-311G** 2.6 5.7 5.8 van der Waals [195]

AM1-SM4 cyclohexanee 0.6 van der Waals f
PM3-SM4 cyclohexanee 1.6 van der Waals f
AM1-SM1 watere 4.4 van der Waals [260]

AM1-SM2 watere 2.6 van der Waals [236]

PM3-SM3 watere 4.3 van der Waals [236]

PCM8/ST/AM1 water 4.1 van der Waals [207]

PCM8/ST/PM3 water 3.0 van der Waals [207] 

a In every case, 2-pyridone is the better solvated isomer by the amount indicated.
b See text for description of Hamiltonians/acronyms. c rad. denotes radius of a 

spherical cavity. d Includes one explicit water of hydration. e The SMx and

PCM8/ST models include non-electrostatic effects; the other models do not. 
f This work. 

Dielectric Constant 

DO/VWN/DZP 6.4 rad. 3.8 Å [160]
DO/BP/DZP 6.2 rad. 3.8 Å [160] 

Experiment 1.1 1.8 3.8 4.3 [288]
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arrived at a similar cavity radius based on van der Waals volumes of the solutes.

At the semiempirical level, Szafran et al. [157] compared the DO2* model to the

normal DO approach. Although the DO2* model does not polarize the wave

function as much as the full DO model, the effect on the differential solvation

energy is fairly small at the AM1 and PM3 levels, amounting to only 0.2 kcal/mol

at ε = 78. The agreement with experiment is good for the two smallest dielectric

constants and rather poor for the two largest dielectric constants. When the cavity

radius is treated as a free parameter, it is of course possible to improve the

agreement with experiment for ε = 78. Karelson et al. [295] and Freitas et al.

[159] chose unrealistically small cavity radii (2.5 Å) for their DO2* and DO

calculations, respectively, at the AM1 level, and were able to increase the

differential solvation free energy to more than 4 kcal/mol. Using the more

reasonable cavity radius of 3.8 Å, Szafran et al. [157] considered the addition of

one explicit water molecule. It is not clear, however, what the differential 

solvation energy of the monohydrates should be, since the tautomeric equilibrium 

constant for the monohydrates in the gas phase is not known (at the AM1 and 

PM3 levels, Szafran et al. found the monohydration energies to be identical for 

both tautomers—ab initio results focusing on the monohydrates in the gas phase 

have also appeared [293, 298-300]). What is noteworthy about the monohydrate 

calculations is that the difference between the DO2* and DO models becomes

considerably more pronounced-the differential solvation energy differs by

almost a factor of 2 at the AM1 level. 

At ab initio levels of theory, Wong et al. [297] examined the effects of

basis set and correlation (evaluated at the MP2 level) on the differential solvation

free energy at ε = 2 and ε = 36. They did not calculate the ε = 78 case, noting that 

specific interactions not accounted for by the continuum model might be expected 

to be significant in aqueous solution. Within the DO model, however, the

difference between ε = 36 and ε = 78 is almost negligible, as can be seen from 

many of the other calculations. In any case, Wong et al. achieve excellent 

agreement with experiment for ε = 2 and somewhat underestimate the differential

solvation free energy for ε = 36. The effects of adding diffuse basis functions and

taking account of electron correlation at the MP2 level are fairly small: each 

changes the differential solvation free energy by about 10%, albeit in opposite 

directions. Barone and Adamo [298] use the same cavity radius as Wong et al., 

(3.8 Å) but obtain a much larger differential solvation free energy at ε = 78, 5.7

kcal/mol, than would be expected based on the HF results of Wong et al. at

ε = 36. The situation is not entirely clear, since the paper of Barone and Adamo

states the calculation to be at the HF/3-21G level, while another paper by Adamo 

and Lelj [160] refers to this result as being at the HF/6-31G** level, which should 
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certainly agree closely with the results of Wong et al. at ε = 36. Assuming the

calculations to be at the HF/3-21G level, it appears more likely that the

discrepancy arises from the lack of polarization functions in the smaller basis set,

since the reported geometries do not differ markedly. This seems to suggest a

potentially important point, namely that at ab initio levels polarization basis 

functions appear to be crucial in permitting a realistic relaxation of the solute

wave function in the presence of a reaction field. Adamo and Lelj [160] found a 

similarly large differential solvation free energy for ε = 78 using density

functional theory (DFT). In this case, the local density approximation of Vosko,

Wilks, and Nusair [302] (VWN) was used; the nonlocal corrections of Becke

[303] and Perdew [304] for exchange and correlation energy, respectively (BP),

were also employed. In both cases the results significantly overshoot the aqueous 

experimental values. Hall et al. [292] have found very similar density functional 

approaches to do poorly with respect to prediction of the gas-phase tautomeric 

equilibrium constant, so it appears that the DFT density for one (or both) of the 

two tautomers is inaccurate. 

Young et al. [195] have provided a calculation in which they compared 

expanding the multipole series up to l = 6 in a spherical cavity of 3.8 Å. These 

results may be compared directly to those of Wong et al. [297] at the identical 

level of theory/basis set in order to assess the effect of including higher moments. 

In each case, the differential solvation free energy increases by about 40%. This 

illustrates nicely the relationship between cavity radius and model 

approximations—it is apparent that the prescription used by Wong et al. to 

calculate cavity radii may be useful when the effects of higher multipole moments 

are ignored (i.e., for a DO model) but it will not necessarily be useful for more 

general reaction field approaches. In this case, inclusion of higher order 

multipoles improves agreement with experiment for ε = 36 but agreement is now 

less good for ε = 2. As noted earlier, there is effectively no difference between the 

results for ε = 78 and ε = 36—for a cavity radius of 3.8 Å, the former are in 

quantitative agreement with experiment. Upon switching from a spherical cavity 

to an ellipsoidal one, however, the agreement with experiment is degraded [195], 

especially for ε = 2. This is in opposition to the general observation that

ellipsoidal cavities are to be preferred over spherical ones (although both are 

inferior to more general cavities). 

Results for continuum models having more general cavities are available. 

In particular, Wang and Ford [301] and Young et al. [195] have carried out PCM 

calculations at the AM1 and HF/6-311G** levels, respectively. Both sets of 

calculations significantly overestimate the differential solvation free energies. 

This may reflect a difficulty with charge penetration outside the cavity. 
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The GB/ST-type SMx models also employ a general cavity. Since they 

include non-electrostatic effects, they require parameterization on a solvent-by-

solvent basis, and at present results for 2-pyridone are only available for ε = 2

(using the SM4 cyclohexane model [217]) and ε = 78 (using the SM1 [210], SM2

[211], and SM3 [212] water models). The cyclohexane solvation model brackets

the experimental result depending on whether the AM1 or PM3 Hamiltonian is

used. This is somewhat surprising, since the CM1 charge models should minimize

differences between the two Hamiltonians. Indeed, for the pyridones the AM1-

CM1 and PM3-CM1 atomic partial charges are very similar and the absolute

solvation free energies agree closely (–6.7 and –6.9 kcal/mol for AM1-SM4 and

PM3-SM4 cyclohexane, respectively). For 2-hydroxypyridine, the charges remain

quite similar; the largest deviation is 0.06 charge units on the pyridine nitrogen (-
0.53 with AM1-CM1 and –0.47 with PM3-CM1). Nevertheless, the solvation of 

this tautomer appears very sensitive to these small charge differences, and the 

absolute free energies of solvation are –6.1 and –5.3 kcal/mol for AM1-SM4 and 

PM3-SM4 cyclohexane, respectively. This effect is discussed in somewhat more 

detail for formamidic acid in section 4.2.2.1. Non-electrostatic contributions to the

differential solvation free energy, as measured by values, are less than 0.1

kcal/mol. This is intuitively reasonable and consistent with the assumptions of the

electrostatics-only continuum studies. 

The aqueous solvation results are in good agreement with experiment for

the SM1 and SM3 models, but quantitatively too small for the SM2 model. The 

present authors have provided a detailed analysis of these results that emphasizes 

the importance of (i) relaxing the electronic wave function in the presence of the 

reaction field and (ii) reoptimizing the geometry in the presence of the reaction

field [236]. The latter effect is small in terms of changes in bond lengths, angles, 

etc.; but, it permits additional electronic relaxation which contributes to the 

overall solvation free energy. 

Using the PCM8/ST model, Orozco et al. [207] arrive at values similar to 

those found by the SMx models. Interestingly, in this case it is the AM1-based

model that is more accurate than the PM3-based one. This illustrates the subtle 

balancing that goes into the parameterization of models that include electrostatic 

and non-electrostatic effects simultaneously. 

One point of particular interest is that it is not clear from the electrostatics- 

only models whether non-electrostatic phenomena affect the aqueous tautomeric

equilibria. For instance, the DO results of Wong et al. [297] would suggest there

are differentiating non-electrostatic phenomena, while the results of Young et al. 

[195] for a multipole expansion in a spherical cavity suggest that there are not. 

Since the SM1, SM2, and SM3 GB/ST models use Mulliken charges rather than 
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CM1 charges in the calculation of ∆GENP, corrections for charge inadequacies 

appear in and it is not possible to separate the electrostatic and non-

electrostatic components of the free energy of solvation.

Finally, we note that Karelson et al. [295] have used the DO2* model with 

small cavity radii to consider aqueous solvation effects on other tautomeric 

equilibria of substituted pyridines. In particular, they examined methyllmethylene, 

amino/imino, hydroxy/oxo, and mercapto/thiono substitution at the 2-, 3, and 4-

positions of pyridine. They observed methyl/methylene equilibria to be only

slightly perturbed by aqueous solvation. Amino/imino equilibria were slightly 

more perturbed, followed by hydroxy/oxo equilibria. Mercapto/thiono equilibria 

were very significantly affected by aqueous solvation; Karelson et al. predicted 

pK shifts of up to 16 units. This sensitivity of the thiono group to solvation is also 

discussed in the next section. Overall, the tautomeric equilibria of 3- and 4-

substituted pyridines were more sensitive to aqueous solvation than were those of 

2-substituted pyridines. 

4.2.1.8 Pyrimidines, Purines, and Nucleic Acid Bases 

Some of the impetus for studying tautomeric equilibria in heterocycles arises 

because of the postulate that point mutations in genetic material may be 

introduced when a given base exists in a tautomeric form during replication [279, 

305-307]. Cytosine, in particular, has imino and hydroxy tautomers that are within 

3 kcal/mol of the global minimum illustrated above (because of the very large 

number of possible tautomers for the purines and pyrimidines, only the lowest 

energy tautomers are presented). This analysis has been made based on a 
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combination of matrix infrared spectroscopy [308] and theoretical [309-313] (gas 

phase) results. In the latter case, it is worth noting that Estrin et al. [314] found 

both local and gradient-corrected implementations of density functional theory to 

be effective in computing the relative tautomeric energies. This is in contrast to 

the observations of Hall et al. [292], discussed in the previous section, with 

respect to 2-pyridone. Even for the other nucleic acid bases, there has been 

interest in the possibility that solvation might influence the tautomeric equilibrium 

sufficiently to play a role in biological systems. 

Continuum models have been employed by a number of groups in an 

effort to address this question. Scanlan and Hillier [309] considered the effect of 

aqueous solvation on uracil, thymine, 5-fluorouracil, and cytosine using a non-

self-consistent DO reaction field model and HF/3-21G electronic structures. They 

observed that the model gave qualitative agreement with experimental results for 

solvation effects on the tautomeric equilibria, but that the predicted aqueous 

populations of non-standard tautomers were too small to be consistent with the 

observed rates of mutation in DNA replication. They concluded that other factors 

associated with the macromolecular system could not be ignored in this regard. 

Katritzky and Karelson [315] used the DO2* model with the AM1 and PM3 

Hamiltonians to evaluate tautomeric equilibria for all of the nucleic acid bases, as 

well as for the 1-methylated pyrimidine bases. Cavity radii ranged from 3.45 to 

3.83 Å for the pyrimidines, and the qualitative results were reported to be

insensitive to 10% changes in these values; cavity radii were not reported for the

purines. Katritzky and Karelson emphasized that the semiempirical dipole 

moments were in good agreement with experiment for uracil and thymine, and 

that the semiempirical structures also agreed well with higher level ab initio 

results. Similar points have been made by Fabian with respect to the success of 

semiempirical levels of theory in predicting the geometries and dipole moments 

for these and related heterocycles [284]. Katritzky and Karelson provide detailed 

comparisons between theory and experiment for the relative tautomeric energies 

of each base. Although uncertainties in some of the experimental relative free 

energies are quite large, nevertheless, the DO2* results were in quite reasonable 

qualitative agreement. 

Young et al. [316] examined the cytosine tautomeric equilibrium using 

both the DO model (cavity radius of 3.54 Å) and a multipole expansion through

l = 6 in both spherical and ellipsoidal cavities. They also employed the PCM 

model. All of their results were at the HF/6-31G** level. They observed that the 

absolute free energies of solvation were quite sensitive to choice of model, but 

that relative free energies were much less sensitive. They also noted that only the 

DO model gave good agreement with experimental estimates for the solvation 
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free energy of a high-energy oxo-amino tautomer. Finally, they noted that in some

cases the AM1 results of Katritzky and Karelson benefited from a cancellation of

errors in the gas phase and solvation energies. Ford and Wang [178] also

examined the solvation of the three lowest energy tautomers of cytosine using an 

AM1 PCM model, and arrived at similar conclusions to those discussed above. 

Orozco and Luque [317] have examined the tautomerism and protonation 

of 7-aminopyrazolopyrimidine (a drug component resembling adenine) using free

energy perturbation and the SM2, PCM9/ST, and PCM10/ST continuum models. 

In this case, they note good agreement between the ab initio PCM9/ST model and 

their simulations with respect to which tautomer is the best solvated. This appears 

to be supported by experimental data. The AM1-based SM2 and PCM10/ST 

results, on the other hand, predict a different tautomer to be better solvated, 

apparently illustrating a case where the semiempirical wavefunction fails to

provide an adequate representation of the solute electronic structure. 

Lastly, some studies have recently appeared examining thiosubstituted 

purines (commonly used in the treatment of human leukemia) and 

thiopyrimidines. In particular, Contreras and Alderte [318] used the AM1-SM1 

model to examine the tautomeric equilibrium of 6-thiopurine, and Alhambra et al. 

[319] used an HF/6-31G* PCM model to examine the tautomeric equilibrium of 

6-thioguanine. Both studies noted very large polarization free energies associated 

with thiono tautomers, the net effect being a large shift of negative charge onto 

sulfur and a corresponding large gain in solvation free energy. These observations 

are consistent with the results of Karelson et al. [295] for thiosubstituted 

pyridines. In each case, aqueous solvation reversed the relative stability of the 

lowest energy thiol and thiono tautomers compared to the gas phase. Alhambra et 

al. also considered the solvation of protonated forms of 6-thioguanine [319]. 

Contreras and Alderete [320, 321] calculated free energies of solvation of 

prototropic tautomers of 2-thiopyrimidine using the SM2 and DO models. They 

found considerably larger solvation energies for the thione than the thiol by both 

approaches.

4.2.2 Non-heterocyclic Tautomeric Equilibria

In addition to heterocycles, other molecular systems have attracted theoretical 

attention with respect to prediction of tautomeric equilibria and solvation effects 

thereon. The most commonly studied example in this class is the equilibrium 

between formamide and formamidic acid, discussed in the next section. In 

addition, some continuum modeling of solvation effects on keto/enol equilibria 

have appeared; these are presented in section 4.2.2.2. We note that the equilibrium 
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between glycine and its zwitterionic form, discussed in section 4.1.1, is also

formally a tautomeric equilibrium. 

4.2.2.1 Formamide

High-level gas-phase calculations unambiguously establish formamide 46 to be 

roughly 13 kcal/mol more stable than formamidic acid 47 [198, 297, 322]. It will 

be noted that these molecules represent the critical “fragment” of 2-pyridone

involved in that molecule’s tautomeric equilibrium. As such, it comes as no 

surprise that modeling of solvation effects indicates the amide form to be further 

stabilized in solution [198, 297]. As a result, no experimental data are available to 

which to compare. It remains instructive, however, to compare different 

theoretical studies. Wong et al. [297] used the DO model with a spherical cavity 

radius of 3.15 Å at the QCISD/6-31+G** level and concluded that the amide 

tautomer had the larger electrostatic free energy of solvation by 1.5 and 4.1 

kcal/mol for dielectric constants of 2 and 36, respectively. Sato and Kato [198] 

also examined this system using a multicenter multipole expansion within a 

spherical cavity of radius 3.7 Å. These authors concluded that the amide tautomer 

had the larger electrostatic free energy of solvation by only 2.3 kcal/mol for a 

dielectric constant of 36 (ε = 2 was not examined). The reduction in magnitude of 

the differential solvation free energy may be a manifestation of either the more 

complete multipole expansion favoring the imine tautomer (which has a smaller 

dipole moment), or the considerably larger cavity radius employed, or both. The 

cavity radius is probably playing a significant role, since Wong et al. found 

∆GENP (ε = 36) for formamide to be –4.3 kcal/mol, while Sato and Kato [198],

with a more complete multipole expansion, obtained a value of only –2.8

kcal/mol.

For the present review we examined the ε = 2 case using the PM3-SM4

n-hexadecane model. This model is particularly appropriate because the PM3-

CM1 dipole moments (3.4 and 1.2 D for formamide and formamidic acid, 

respectively) agree well with values obtained from MP2/6-31G** wave functions 

(3.9 and 1.2 D, respectively) [235]. The predicted differential free energy of 
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solvation is 1.9 kcal/mol, which is fairly close to the value obtained by Wong et

al. [297]. However, the PM3-SM4 model predicts ∆GENP to be –4.4 kcal/mol at 

ε = 2; the DO model of Wong et al. [297] predicts a value of only –1.7 kcal/mol.

Evidently, although solvation terms arising from multipole moments larger than

the dipole and/or the approximation of a spherical cavity are not small, they

appear to cancel in the differential free energy calculation. The PM3-SM4 results

predict the change in to be 0.3 kcal/mol on going from formamide to

formamidic acid, a not entirely negligible change.

Finally, we note that the AM1-SM4 model is less satisfactory for this

problem (predicted differential free energy of –0.2 kcal/mol in n-hexadecane),

apparently because it overestimates the polarity of the functional groups in

formamidic acid, especially the imine group (the AM1-CM1 dipole moment is 1.7

D and the atomic partial charges are up to 0.2 units larger than found for PM3-

CM1). This deficiency is probably also reflected in the AM1-SM4 

underestimation of solvation effects at ε = 2 for the 2-pyridone/hydroxypyridine

tautomeric equilibrium discussed above. The greater generality of the PM3-CM1 

model for nitrogen-containing systems has been previously noted [235]. 

4.2.2.2 Keto/enol equilibria 

Substantial populations of intramolecularly hydrogen bonded enol tautomers of 

β-diketones and β-ketoesters are found in the gas-phase and in nonpolar solvents 

[240]. In water, on the other hand, the dione form is better solvated than the enol, 

causing the equilibrium to shift; for example, for ethyl 3-oxobutanoate 50, the

differential free energy of aqueous solvation for the two tautomers is 1.4 kcal/mol 

[323, 324]. The present authors examined this equilibrium with the SM1, SM2, 

and SM3 aqueous solvation models and found the differential free energies of 

solvation to be 1.1, –1.2, and 1.2 kcal/mol, respectively [236, 260]. The sizable 

difference between the predictions of the SM2 and SM3 models, with the latter

being in much better agreement with experiment, arises from the ∆GENP term of

the enol, which is very sensitive to the partial atomic charges on the oxygen atoms 

and on the hydroxyl proton. For 2,4-pentanedione, the differential free energy of 

aqueous solvation favors the dione tautomer 48 by 2.4 kcal/mol [323, 324] (note

that a tabulation error occurred in our earlier work [236, 260]; our previously 
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tabulated experimental value of 1.0 kcal/mol is for gas to dimethylsulfoxide, not
to water). The SM1, SM2, and SM3 aqueous solvation models predict differential

free energies of solvation of 0.9, –1.6, and 0.6 kcal/mol, respectively [236, 260].

Again, the ∆GENP term of the enol 49 is very sensitive to variations in partial 

charges from the AM1 and PM3 Mulliken population analyses.

The 2,4-pentanedione system is interesting, since it seems to represent a

challenge for the earlier generation SMx models. Moreover, data are also

available for the tautomeric equilibrium constant in cyclohexane [324]. This

allows us to explore the performance of the SM4 cyclohexane model, and the

SM4-SRP water model (developed originally for hydrocarbons, ethers, and

aldehydes [213], and later extended to include alcohols [325]; we observe that the

performance of the SM4-SRP water model is about as good for ketones as for

aldehydes). The situation is made particularly interesting because the direction of

the equilibrium perturbation relative to the gas phase is opposite for the two

solvents. In cyclohexane, the differential free energy of solvation for 48 and 49 is

–0.7 kcal/mol i.e., favoring 49) while in water it is 2.4 kcal/mol (i.e., favoring

48). Obviously, the differential free energy of transfer from cyclohexane to water

favors 48 by 3.1 kcal/mol.

This system is ideal for illustrating many issues associated with

continuum solvation modeling, and we note several points that particularly merit

discussion. Table IV provides the relevant details of the calculations.

To begin, the shift of the equilibrium constant in one direction in

cyclohexane, and in the other direction in water (relative to the gas phase) could

arise from several different phenomena. For instance, it could be that the enol is

more polar than the dione in the gas phase, but the dione is more polarizable than

the enol. In such a situation, the low dielectric medium would not induce

sufficient polarization in the dione, and ∆GENP would be larger for the more polar

enol; in water, the greater polarizability of the dione would permit a reversal of

the relative magnitudes of the two ∆GENP terms. This does not appear to be the

case, however. Instead, ∆GENP favors the dione slightly in cyclohexane, and by a 

still larger margin in water, i.e., it is both more polar and more polarizable than

the enol. Instead, focusing on the AM1-SM4 models, specific solvation effects

associated with sufficiently favor the enol in cyclohexane to overcome the

small difference in ∆GENP. That preference is found entirely in the CD

component; since the two tautomers are essentially equal in size, there is no

distinction between them in the CS term. In the enol, there is a greater exposure of 

more polarizable (now in the sense of participating in favorable interactions 
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TABLE IV

Predicted solvation free energies and solvent-accessible surface areas (SASA) of

2,4 -pentanedione tautomers in cyclohexane and water. a,b 

Dione 48 Enol 49

AM1 PM3 AM1 PM3

SM4 (cyclohexane)

-3.0 -3.5 -2.4 -1.9

0.5 1.0 0.2 0.2

-2.5 -2.5 -2.2 -1.7

-17.0 -17.1 -17.5 -17.4

14.8 14.8 14.8 14.7

-2.1 -2.3 -2.6 -2.7

4.6 4.8 –4.8 4.4

0.0 0.0 0.2 0.4

358.2 361.6 360.1 357.9

596.0 593.9 596.7 591.6

GP

∆EEN

∆GENP

relative

SASA f

SM4-SRP (water)

16.5

7.8

8.7

0.3

8.4

0.0

304.6

16.1

6.9

9.2

0.3

8.9

0.0

304.8

9.1

2.2

6.9

0.2

6.7

1.7

300.8

7.7

1.7

–6.0

0.3

5.7

3.2

298.2

a Free energies in kcal/mol. SASA in Å2. b All geometries were fully optimized

both in the gas phase and in solution. c Relative solvation free energy of dione

and enol using the same NDDO Hamiltonian. d Solvent radius 2.0 Å for 

cavitation and dispersion. e Solvent radius 4.9 Å for cavitation and solvent 

structural rearrangement. f Solvent radius 1.4 Å. 
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associated with dispersion) hydrocarbon surface area at the expense of less

polarizable oxygen surface area compared to the dione. This effect is worth about 

0.4 kcal/mol favoring the enol in both of the SM4 models. In the AM1 case, that 

is sufficient to perturb the gas-phase equilibrium in the correct direction, although

the magnitude of the perturbation is underestimated by about 0.5 kcal/mol. In the 

PM3 case, the difference in ∆GENP between the dione and the enol is larger,

(apparently this term is quite sensitive to small charge variations in the enol-note

that both SM4 models give much more consistent answers for the dione than the 

enol) and the net prediction is a very small shift of the gas-phase equilibrium in 

the wrong direction. Still, this is a fairly small quantitative error and the 

qualitative observation that these two terms are opposed remains unchanged. 

While the PM3-SM4 model does appear to slightly underestimate the 

polarity of the enol component, there is some cancellation of errors upon 

considering the differential transfer free energies between cyclohexane and water. 

As noted above, experiment indicates that the differential free energy of transfer 

of the dione and the enol is 3.1 kcal/mol; the PM3-SM4 model predicts this value 

to be 2.8 kcal/mol, in excellent quantitative agreement. AM1-SM4 is less 

satisfactory in this regard, predicting only 1.9 kcal/mol. 

Optimized 2,4-pentanedione geometries: 

The analysis is complicated, however, because the dione undergoes a 

dramatic change in geometry upon optimization in aqueous solution. As 

illustrated above, the dihedral angle between the planes containing the two 

carbonyl groups and their respective substituents changes from 137° in the gas 

phase, to 113° in cyclohexane, to 59° in water. Reducing this dihedral angle aligns 

the carbonyl bond dipoles (1.36, 1.43, and 1.92 D in the gas phase, cyclohexane 

and water, respectively, using AM1-CM1A [235] charges) and improves the 

solvation of this tautomer. Note that GP is increased dramatically in water

compared to the twofold increase one would expect over cyclohexane due to 
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polarizability and geometric relaxation. That geometry change comes at the cost 

of an increase in solute internal energy, reflected in ∆EEN being a very sizable 7

to 8 kcal/mol for the two models. The quantity ∆EEN is the difference in the

expectation values of the gas phase Hamiltonian operating on the optimized gas-

phase and solvated wavefunctions. That is the complicating factor in the

differential free energy of solvation analysis, because it brings the gas-phase

potential energy surface back into the problem. It is not at all clear that the 

semiempirical levels accurately represent the gas-phase energetics of the observed 

change in geometry, and this may result in quantitative differences between 

experiment and the two SM4 models. In any case, the 2,4-pentanedione system 

should be interesting to study with ab initio solvation models that employ levels 

of theory adequate for the gas-phase torsional aspect of the problem. It would also

be of interest to see how well this large change in geometry is reproduced by 

models that employ idealized cavities compared to ones that more accurately 

represent the solute’s shape. 

Finally, although they have not yet been the subject of any modeling study 

that has included solvation effects, 3-acetyltetronic and 3-acetyltetramic acid are 

very interesting solutes to consider. Each has more than 10 plausible tautomers— 

only the lowest-energy structures, as calculated at both the AM1 and MNDO 

levels by Broughton and Woodward [326], are shown above. The experimental 

situation in chloroform, as determined by NMR, remains unclear with respect to 

preferred structure. Gelin and Pollet [327] and Saito and Yamaguchi [328] have 

offered contrasting interpretations of the spectral data. Broughton and Woodward 

note that their semiempirical gas-phase calculations are in accord with the spectral 

interpretation of Gelin and Pollet, and as a consequence they suggest that 

solvation effects do not affect the tautomeric equilibrium. It seems evident that an 

investigation using a suitable chloroform continuum model would be worthwhile. 
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4.2.3 LACTOLIZATION

The present authors have examined the equilibrium between the lactol 2-hydroxy-

2-methyltetrahydrofuran 52 and its corresponding open chain hydroxyketone 53
using the SM1, SM2, and SM3 models. The experimental situation indicates that 

the two structures are present in roughly equal proportions in non-polar media, 

while in water none of the lactol form is observed [329]. Making a reasonable

assumption about detection limits, this sets a lower bound on the differential free

energy of solvation for the two isomers of about 4 kcal/mol. Calculation of the

differential free energy of transfer from the gas phase to aqueous solution using

the SM1, SM2, and SM3 models gives values of 4.1, 3.6, and 4.4 kcal/mol,

respectively. These results are probably somewhat too small since available

experimental values are for the free energy of transfer from cyclohexane to water.

Moreover, only one conformation of each tautomer was considered. For the

hydroxyketone, the semiempirical models all predict the illustrated conformation

having the intramolecular hydrogen bond to be lowest in energy, but this system

should be revisited with an SM4 water model. Unfortunately, the gas-phase

energies are required in order to calculate the free energy of transfer from one

solvent to another when multiple conformations are involved, and this makes the 

problem somewhat more challenging. 

5 Dynamic effects in kinetics and spectroscopy 

The simplest generalization of free-energy-of-solvation concepts to dynamics in

solution is provided by transition state theory. In conventional transition state

theory, the rate constant of a chemical reaction at temperature T is given by

(59)

where kB is Boltzmann’s constant, h is Planck’s constant, K≠,0 is unity for

unimolecular reactions and the reciprocal of the standard state concentration for

bimolecular reactions, and ∆G
≠,0 (T) is the standard-state free energy of
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activation of the saddle point. For reactions in solution, ∆G≠,0 (T) contains a

solvation contribution which equals the free energy of solvation of the transition

state minus the free energy of solvation of reactants [65-67]. To go beyond the

conventional theory, we must define a reaction coordinate s and generalize the

free energy of solvation to be a function of that coordinate; this is done by

generalizing [330-333] the concept of potential of mean force [41, 82, 334-337] to 

treat generalized transition states defined at arbitrary locations along the reaction

coordinate. The resulting standard-state free energy of activation as a function of s
(called, for short, the free energy profile) is given by 

(60)

where all quantities are standard-state ones at temperature T, and the first term on 

the right-hand side is the internal standard-state free energy of the solute at s, the

second term is the free energy of solvation at s, and the third term is the free

energy of solvation of the reactant species. Note that the last term is an

equilibrium quantity, but ∆G 0
S (s,T) is a generalized equilibrium quantity

(sometimes called a quasiequilibrium quantity) for any choice of s, even the gas-

phase saddle point, because both the conventional and generalized transition states

have one less degree of freedom than equilibrium species. 

Even at this level of dynamical theory, one is not restricted to considering 

equilibrium solvation of the gas-phase saddle point or of configurations along the 

gas-phase reaction path [109, 338-344], and to the extent that the solvent is 

allowed to affect the choice of the reaction path itself, dynamic (i.e., 

nonequilibrium) solvation effects begin to appear in the theory. 

To more fully appreciate the equilibrium models, like SCRF theories, and 

their usefulness and limitations for dynamics calculations we must consider three 

relevant times, the solvent relaxation time, the characteristic time for solute 

nuclear motion in the absence of coupling to the solvent, and the characteristic 

time scale of electronic motion. We treat each of these in turn. 

First, consider the solvent. The characterization of the solute-solvent 

coupling by a relaxation time is based on analogy to Brownian motion, and the 

relaxation time is called the frictional relaxational time τF. It is the relaxation time 

for momentum decay of a Brownian motion in the solute coordinate of interest 

when it interacts with the solvent under consideration. If we call the subject solute

coordinate s, then the component of frictional force along this coordinate may be 

written as 
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(61)

where µ is the reduced mass for motion along coordinate s, ζ is the frictional 

constant, and t is time. Then the momentum (or velocity) for Brownian motion in

coordinate s decays as [32, 345, 346] e- ζt .
Writing the momentum decay function as e-t/τFyields

(62)

Even if we consider a single solvent, e.g., water, at a single temperature, say

298K, ζ depends on the solute and in fact on the coordinate of the solute which is

under consideration, and we cannot take τF as a constant. Nevertheless, in the

absence of a molecular dynamics simulation for the solute motion of interest, τF
for polar solvents like water is often approximated by the Debye model. In this 

model, the dielectric polarization of the solvent relaxes as a single exponential 

with a relaxation time equal to the rotational (i.e., reorientational) relaxation time

of a single molecule, which is called τD) or the Debye time [32, 347]. The Debye 

time may be associated with the relaxation of the transverse component of the

polarization field. However the solvent fluctuations and frictional relaxation occur 

on a faster scale given by [348, 349] 

(63)

where ε∞ is the infinite-frequency relative permittivity, and ε0 is the static (i.e.,

zero-frequency) relative permittivity. (At constant temperature and pressure, the

relative permittivity is the dielectric constant.) The quantity τL is called the

longitudinal relaxation time [350, 351]. Dielectric dispersion measurements [352]

on water yield ε∞ = 1.8, ε0 = 78.5, and τD = 8.5 ps, and hence τL = 0.2 ps. Thus 

Next consider the solute. We will again call the relevant solute nuclear

coordinate s and the characteristic time now τs. For a thermally activated bamer

crossing, where s is the reaction coordinate for passage over an effective potential 

Veff(s) at temperature T, a reasonable expression is

τF ≅ 0.2 ps. 

(64)

where the barrier is written in the vicinity of its maximum as 



64 C. J. CRAMER AND D. G. TRUHLAR

(65)

Note that the imaginary frequency associated with such a barrier is iω ‡ . For a 

bound mode with frequency ωvib, an analogous approximation would be

(66)

The solute electronic time scale will be called τelec . It may be

approximated as h/∆E1, where ∆E1 is the lowest (spin-allowed) electronic

excitation energy of the solute. 

A fully realistic picture of solvation would recognize that there is a

distribution of solvent relaxation times (for several reasons, in particular because a 

second dispersion is often observable in the macroscopic dielectric loss spectra 

[353-355], because the friction constant for various types or modes of solute 

motion may be quite different, and because there is a fast electronic component to

the solvent response along with the slower components due to vibration and 

reorientation of solvent molecules) and a distribution of solute electronic 

relaxation times (in the orbital picture, we recognize different lowest excitation 

energies for different orbitals). Nevertheless we can elucidate the essential

physical issues by considering the three time scales τF, τs, and τelec.

The SCRF models assume that solvent response to the solute is dominated 

by motions that are slow on the solute electronic motion time scales, i.e., τF >>

τelec. Thus, as explained in Section 2.1, the solvent “sees” the solute electrons

only in an averaged way. If, in addition to the SCRF approximation, we make the 

usual Born-Oppenheimer approximation for the solute, then we have τs >> τelect.

In this case the solute electronic motion is treated as adjusting adiabatically both

to the solvent motion and to the solute nuclear motion. 

For gas-phase molecules the assumption of electronic adiabaticity leads to 

the usual Born-Oppenheimer approximation, in which the electronic wave 

function is optimized for fixed nuclei. For solutes, the situation is more 

complicated because there are two types of heavy-body motion, the solute nuclear 

coordinates, which are treated mechanically, and the solvent, which is treated 

statistically. The SCRF procedures correspond to optimizing the electronic wave 

function in the presence of fixed solute nuclei and for a statistical distribution of 

solvent coordinates, which in turn are in equilibrium with the average electronic 

structure. The treatment of the solvent as a dielectric material by the laws of 

classical electrostatics and the treatment of the electronic charge distribution of 

the solute by the square of its wave function correctly embodies the result of 
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statistically averaging over a thermal solvent in equilibrium with an average 

(adiabatic) solute charge distribution. Because the self-consistent calculation of

the adiabatic solute electronic distribution and the equilibrium polarization of the

solvent is carried out at fixed solute atomic coordinates, the treatment corresponds

most precisely to the case τs >> τF >> τelec.

There are cases where the time scales do not satisfy these assumptions.

Effects due to the violation of τs >> τF are often called nonequilibrium solvation; 

and effects due to the violation of  τF >> τelec are often called nonadiabatic effects. 

The latter effects have been studied primarily in the context of electron transfer

reactions. In electron transfer theory the interesting case of τelec >> τF arises, and 

this is called nonadiabatic electron transfer. It occurs commonly for outer-sphere

electron transfers in which ∆E1 is very small in the critical configuration. For 

example ∆E1 might be the energy difference of the symmetric and antisymmetric

delocalized combinations of the two localized configurations Fe3+X6...Fe2+Y6

and Fe2+X6...Fe3+Y6, where X and Y are ligands, and ... indicates only weak

interaction between the ferrous and ferric centers. In contrast, for typical chemical

reactions involving the making and/or breaking of bonds, as well as for many

inner-sphere electron transfers (“inner-sphere” electron transfer refers to the case

in which a ligand is part of the coordination sphere of both the donor and the

acceptor), we have τF >> τelec, which is called the adiabatic case. For adiabatic 

electron transfers it is often assumed that τs >> τF in which case the rate constant 

decreases as τF decreases. This regime is variously called high-friction [67], 

overdamped [333], or solvent-controlled adiabatic [356]. In adiabatic bond

rearrangements (i.e., ordinary chemical reactions) on the other hand, one typically

finds τF = ϑ(τs), in which case frictional effects are small but not necessarily 

completely negligible [357-359]; if τF > τs, this might be called bond-coordinate-

controlled adiabatic. The other adiabatic case, τF >> τs >> τelec is called the low-

friction [67], energy diffusion [333], or strong adiabatic [356] limit. In this case

reaction is controlled by the rate of activation of reactants to the transition state,

which is not in equilibrium with the reactants. The scenario just sketched leads to

a pattern of the rate constant increasing with increasing friction at low friction,

then becoming independent of friction, then decreasing as friction increases 

further [67]. This pattern can also be observed in the nonadiabatic case, but in that

case the friction-independent region is wider [360]. When quantum mechanical

effects are important, nonequilibrium effects may be very large [361]-this

regime needs further study. 

The SCRF models should be useful for any of the adiabatic cases, but a 

more quantitative treatment would recognize at least three time scales for 

frictional coupling based on the three times scales for dielectric polarization, 
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namely electronic, τF,elec, vibrational, τF,vib, and Orientational, τF,rot, with τF,rot

>> τF,vib >> τF,elec. The convenient adiabatic limit is never totally appropriate

because τF,elec = ϑ(τelec), even when τF,vib>> τelec.

One important phenomenon that sometimes occurs when τelec ≥ τF is 

solvent-induced charge localization. Thus, even though the adiabatic states are

delocalized, the solvent-induced states are not. Consider the system

Fe3+X6...Fe2+X6, which is the reactant of the outer-sphere electron transfer 

reaction mentioned above when X = Y. Clearly the ground state involves a 

symmetric linear combination of a state with the electron on the right (as written) 

and one with the electron on the left. Thus we could create the localized states by 

using the SCRF method to calculate the symmetric and antisymmetric stationary 

states and taking plus and minus linear combinations. This is reasonable but does 

not take account of the fact that the orbitals for non-transferred electrons should 

be optimized for the case where the transferred electron is localized (in contrast to 

which, the SCRF orbitals are all optimized for the delocalized adiabatic structure). 

The role of solvent-induced charge localization has also been studied for ionic 

dissociation reactions [109]. 

Having obtained the charge-localized state, the dynamics of electron 

transfer can be treated as a time-dependent configuration interaction problem 

[356, 362-364]. In this case the two configurations would be taken as the left 

localized and right localized ones. A more general treatment, applicable in the 

regime [365] where electronic coupling is larger (i.e., τelec is smaller), but 

electronic motion is still not adiabatic, would involve a 3-state CI composed of

the delocalized adiabatic state interacting with the two localized diabatic ones.

In electron transfer reactions one studies the conversion of an electron 

state localized on A to one localized on B. One can also consider the relaxation of 

a charge localized state to the adiabatic delocalized state [366]. 

The most general available treatment of solute electronic structure that 

does not make the SCRF assumption that solvent electronic motion is slow 

compared to solute electronic motion is provided by the coherent-state 

formulation introduced by Kim and Hynes [109] and generalized by Bianco et al.
[111]. Hynes and coworkers denote the SCRF limit simply as SC. They call the 

opposite limit [109, 173], in which the solvent polarization is fast compared to the 

vacuum solute electronic time scale, the Born-Oppenheimer (BO) limit, which 

should not be confused with the usual Born-Oppenheimer approximation for 

separating the electronic and nuclear motions of a gas-phase molecule or of the 

solute. Kim and Hynes note that one might also call this an adiabatic limit, which, 

they correctly note, would introduce other possible confusions. [Adiabatic and 

sudden limits have a long history of introducing confusion in many fields since 
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the opposite of an adiabatic limit is always another adiabatic limit. Consider for 

example, the case where x has a time scale that is rapid compared to the 

controlled, slow motion of y; then x adjusts almost adiabatically to that motion, 

and one can treat x by an adiabatic approximation or y by a sudden approximation. 

But the opposite limit, where x moves slowly compared to the timescale of y is

also an adiabatic limit with y adjusting almost adiabatically to x, and x may be 

treated by a sudden approximation. Furthermore, even under the same conditions 

x may be sudden with respect to y, but adiabatic with respect to z. To avoid

ambiguity one must be specific about which two variables are under consideration

and which one is considered to be fast and adiabatic. This may, of course, be 

obvious from context, but often it is more obvious to the author than to the 

reader!]

The effective frequencies that characterize solvent response can be 

characterized more quantitatively from several points of view, including

generalized Langevin theory [367-372], Brownian osciIlators [373, 374], and 

instantaneous normal modes [375]. 

In addition to the intrinsic time scales of the system τF, τs, and τ elec ,  one 

may introduce an additional time scale by the nature of the measurement. For

example, electronic absorption spectroscopy may probe events on a time scale 

τspect that satisfies τF,vib >> τspect >> τF,elec . In this case the excitation would

occur to a state with the electronic contribution to solvation operative but the

nuclear solvation coordinates frozen in their initial state. A direct analog would be

gas-phase ultraviolet or visible spectroscopy with τs >> τspect >> τelec. This leads

to the familiar Franck-Condon principle [115] according to which the electronic 

state is changed but the nuclear motion is frozen during the excitation. In solution, 

this leads to the general observation that emission is red-shifted relative to 

absorption, since the orientational components of solvation are optimal only for 

the initial (in this case, excited-state) configuration. 

Because of the economic importance of dyes, the calculation of solvent

effects on electronic spectroscopy using the SCRF methods has been a subject of 

significant interest. The interesting dynamical issue that arises in this context is 

the fact that solute electronic excitation may be viewed as occurring essentially 

instantaneously on the solute reorientational time scale, as discussed in the 

preceding paragraph. We refer the reader to the original source literature for 

further details [167, 180, 181, 219, 298, 299, 376-380]. 

The reader is referred to review articles concerned with dynamic solvent 

effects for further discussion of the interesting issues involved in applying 

continuum and explicit solvation models to dynamical situations [333, 381-385]. 



68 C. J. CRAMER AND D. G. TRUHLAR

6 Concluding remarks

There has been tremendous progress in the development and practical 

implementation of useful continuum solvation models in the last five years. These 

techniques are now poised to allow quantum chemistry to have the same 

revolutionary impact on condensed-phase chemistry as the last 25 years have 

witnessed for gas-phase chemistry. 
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Abstract.

Theoretical considerations leading to a density functional theory (DFT) 

formulation of the reaction field (RF) approach to solvent effects are dis-

cussed. The first model is based upon isolelectronic processes that take 

place at the nucleus of the host system. The energy variations are derived 

from the nuclear transition state (ZTS) model. The solvation energy is

expressed in terms of the electrostatic potential at the nucleus of a pseudo
atom having a fractional nuclear charge. This procedure avoids the in-

troduction of arbitrary ionic radii in the calculation of insertion energy, 

since all integrations involved are performed over [0,∞]. The quality of the 

approximations made are discussed within the frame of the Kohn-Sham

formulation of density functional theory. 

Introduction of the static density response function for a system with a 

constant number of electrons yields the RF – DFT model. This second

approach is expected to be more useful in the analysis of chemical reactivity 

in condensed phases. 
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1. Introduction.

The physical properties of atoms and molecules embedded in polar liquids

have usually been described in the frame of the effective medium approx-

imation. Within this model, the solute-solvent interactions are accounted

for by means of the RF theory [1-3]. The basic quantity of this formalism

is the RF potential. It is usually variationally derived from a model en-

ergy functional describing the effective energy of the solute in the field of

an external eIectrostatic perturbation. For instance, if a singly negative or

positive charged atomic system is considered, the RF potential is simply

given by 

( 1)

In Eq (1), α(ε) is the RF response factor depending on an effective di-

electric constant ε [4,5], and the quantity in brackets is the electrostatic

potential of the ion Φ(r), expressed in terms of the nuclear charge Z, the

ionic radius rA and the one particle electron density ρ(r).

If we introduce the following definition for the net charge of the ion : 

( 2) 

then, the electrostatic solute-solvent interaction energy is simply given by 

[6] : 

( 3) 

Using statistical thermodynamic arguments [5,7], it may be easily shown 

that the Born solvation free energy may be written as [8]: 

( 4) 

Equations (1)- (4) have been generalized to molecules [2,3,10-13], in the 

context of the self consistent reaction field (SCRF) theory [14]. 

→

→
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( 9)

where T[ρ(r], Ex[ρ(r] and Ec[ρ(r] are the kinetic, exchange and correlation

energy functionals, respectively. Politzer et al [20] showed that Eq (9) may

provide physically meaningful electrostatic potentials and atomic radii in

the frame of the simple Thomas-Fermi-Dirac (TFD) theory. For this model,

analytic simple expression for the kinetic, exchange and correlation energy 

functionals are available and it becomes possible to find a critical density 

ρ*(r) for which the chemical potential µ  does exactly equal the negative of 

the electrostatic potential. This critical point is determined by :

( 10) 

Equation (10) is satisfied within TFD model, for a critical value ρ*(r) =

0.00872 [20]. Use of accurate atomic Hartree-Fock wavefunctions [21] to
evaluate the electron density allowed the authors to obtain a set of critical

radii for neutral atoms rµ , associated to ρ*(r), which resulted in a remark-

able good agreement with the covalent atomic radii. Application of this

procedure to a series of singly charged monoatomic ions also produced a

good agreement between rµ and ionic radii [17]. In the case of doubly

charged atomic cations however, such a good correlation was not found

[17, 18]. 

With physically meaningful ionic radii at hand, it is a rather simple task

to evaluate the electrostatic properties of solvated cations in the frame of

Born formalism. For instance, we may redefine the net charge of the ion

given in Eq (2) as follows :

( 11) 

Physically, Q represents the amount of charge inside the sphere S(0, rµ) of

radius rµ centered at the nucleus. We may then associate to this net charge

Q, the electrostatic potential ΦQ(rµ) = Q/rµ which is the electrostatic po-

tential at any point r ≥ rµ, that is created by the nucleus and the electronic

→ →

→

→
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charge within S(0, rµ). Moreover, Eq (11) guarantees that the electrostatic

potential at r ≥ r is the same as if the charge was concentrated at the

nucleus. This feature is very important because it allows, within the Born

formalism of ion solvation, the central charge Q to be considered as the

limit of an ideal dipole centered at the origin of a spherical cavity repre-

sented by S(0, r ).

According to the above argument, the central electrostatic potentia1
ΦQ (r ) of an atomic ion in the field of a polarizable environment, will be

given by :

( 12) 

where ∈ is an affective dielectric constant of the medium. 

According to the virtual charge model of Constanciel and Tapia [2], 

the same potential may be reproduced at the same point in vacuum, if

we introduce the polarization charge Qpol(∈), distributed on the surface of

S(0,r ), such that

( 13)

Equation (13) entails the following definition of the polarization charges

[2,3] :

with Q the central charge defined by Eq (2).

From Eq (14), the RF potential produced by Qpol(∈) is

( 14)

( 15) 

µ

µ

µ

µ
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The electrostatic interaction energy between the solute (represented by 

the charge distribution Q) and the polarizable medium represented by the

induced charge distribution Q pol(∈) becomes :

and the electrostatic free energy of solvation is obtained from 

( 16)

( 17)

which is the well known Born formula, expressed as a function of the central 

charge Q, and the critical radius r .

For calculational purposes, the basic quantities r , Q and ΦQ(r ) are

obtained as follows : a) From accurate atomic wavefunctions, the electron

density is obtained by numerical integration; (b) with the electron density 

at any point at hand, the r values are obtained by the simple reading

of the distance at which ρ(r) attains the critical value of 0.00872 electron

units and (c) the central charge and the RF potential are readily obtained

in terms of r and ΦQ(r ) via Eqs (11) and (15), respectively.

In spite of the fact that the electrostatic solvation free energy for cations

was derived for an homogeneuos electron gas with a positive background 

charge distribution, i.e. without specifying the sign of the total charge,

it is found that this formalism is not applicable to negatively charged 

monoatomic ions. For instance, in the case of the fluorine ion, even though 

the critical r value is very close to the crystalline ionic radius, we have

found that the corresponding sphere S(0,r ) only contains about 50% of

the electronic charge and as a consequence, only 25% of the electrostatic 

solvation free energy would be accounted for in the fluorine ion within the 

central charge and central potential model. However, if the fluorine ion 

is treated on the basis of the electrostatic potential derived from Poisson 

equation, a good correlation with the experimental value is obtained.

µ

µµ

µ µ

µ

µ

µ
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TABLE 1. - Electrostatic properties of solvated ionsa.

Ion r* ri Q ΦR(r*)

Na+ 1.93 1.79 1.129 -0.321 -117.6 -98.4

Li+ 1.38 1.31 1.110 -0.354 -123.3 -122.1

K+ 2.69 2.51 1.200 -0.288 -108.4 -80.5

Rb+ 3.18 2.80 1.228 -0.270 -103.8 -75.5

F- 2.04 2.17 -1.00 0.350 -109.7 -89.5

CI- 3.08 3.15 -1.00 0.248 -77.9 -76.1

Br- 3.38 3.44 -1.00 0.226 -71.3 -69.2

I- 3.88 3.89 -1.00 0.204 -64.1 -60.3

aPredicted ionic radii r*, experimental ionic radii ri, central charge Q and
RF potential ΦR in atomic units. Electrostatic free energies of solvation,
δFel, in kcal/mol. Experimental values from reference [16]. Electrostatic
potential for anions from reference [19]. For all calculations done, the ef-
fective dielectric constant reported in [16] was used.

Table 1 summarizes the results obtained for the electrostatic properties

of solvated anions and cations using the different electrostatic potential

models discussed above. For cations, a remarkable good agreement be-

tween the predicted ionic radii with those reported in reference [22]. The Q

values suggest that the major part of the electron density (about 90% for 

Li+ and Na+ and 80% K+ and Rb+) is confined within the corresponding

sphere S(0,r ). The quality of the corresponding predicted values of the

solvation free energy, strongly depends on the quality of the representa-

tion of the electron density inside the sphere S(0,r ) : overall, the central

charge model does reproduce the correct trend in the observed solvation 

energies for the series of cations selected. It is also interesting to note that

deviations from experimental values increases with increasing number of 

electrons in the system. This fact may be associated with the quality of

the atomic wavefunctions used to build up the electron density : Hartree-

Fock wavefunctions do incorporate exchange exactly, whereas correlation 

effects are completely ignored. Improvements in the predictions of solva-

tion free energies are expected by incorporating correlation effects within a 

Khon-Sham like scheme of calculation of the electron density. 

For anions, the charge normalization condition given in Eq (7) guaran-

µ

µ

δF el
s δF exp

s
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tees that 100% of the excess electron density is out of the corresponding

sphere S(0, r* ), so that Q = –1.00 for all the series. This fact is consistently

reflected in the values reported in Table 1, which compares better with 

the experimental values as compared to the cation series.

In summary, density functional theory provides reliable and physically

meaningful ionic radii to be used in the calculation of electrostatic solvation 

free energies, for singly positive and negative charged atomic ions. Perhaps 

the most serious shortcoming of this approach lies in the impossibility of 

treating cations and anions within a unic electrostatic effective potential 

model. In spite of this fact, we have shown that in both cases it is possible 

to describe the electrostatic solvation energy within a Born like formulation. 

3. Solvation Energy from Isoelectronic Processes at Nucleus.

3.1 THE CHARGING MODEL.

It is possible to develop a unified model of solvation for anions and cations, 

if the classical Born charging process [8] is replaced by a Noyes like charging 

process [16]. This last model represents the inmersion of a charged atom 

into a liquid solution through a three step hypothetical cycle : a) in gas 

phase, an ion is converted into a neutral isoelectronic species by removing 

or adding a nuclear charge unity, (b) the resulting neutral system is added 

to the liquid solution and (c) the original charged atomic system is restored 

by the opposite process described in (a). If the non electrostatic (cavita-

tion) energy contribution (step b) is neglected, the electrostatic solvation 

energy reduces to the sum of the contributions (a) and (c). 

These succesive isoelectronic processes may be represented, for the in-

mersion of a charged monoatomic ion A+ say, by the cycle described in

Figure 1. Where X is an auxiliary isoelectronic neutral system. According 

to the cycle shown in Figure 1, we may write the insertion energy variation 

as follows: 

δF el
s
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Figure 1. Thermodynamic cycle to achieve the insertion of an arbitrary
ion into a continuum dielectric medium.

Where (Z + 1, Z) represents the total energy variation for the isoelec-

tronic change in vaccum, ∆Eb(Z, Z) represents the total energy variation

associated to the insertion of the neutral isoelectronic species into the po-

lar liquid and ∆Ec (Z, Z + l) denotes the total energy variation for the

opposite isoelectronic process to step (a), in the presence of the polariz-

able medium. This last quantity does not only differ by an opposite sign

to that of (Z + 1, Z) but also contains the polarization effect due to

the electrostatic interaction with the medium. Moreover, if we are inter-

ested only in the electrostatic contributions to ∆Eins (Z + l, Z + 1), the

quantity ∆Eb(Z, Z) representing the work required to form the hole in the

polarizable host where the ion will be embedded, may be neglected to give

( 19) 

in the sense that hereafter ∆Eins will be considered as an electrostatic en-

ergy variation. 

It is then possible, within a Noyes like charging model, to obtain the 

electrostatic component of the insertion energy expressed as a sum of two 

contribution coming from two opposite isoelectronic processes that takes 

∆Eo
a

∆Eo
a
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place in vacuum, and in the presence of an external field respectively. Since 

the energy variations associated to these isoelectronic processes are formu-

lated in terms of a varying nuclear charge, keeping the number of electrons

fixed, it seems then natural to obtain the expressions for (Z + 1, Z)

and ∆Ec(Z, Z + 1) via the differential Hellman – Feynman (HF) theorem

[32] as follows : consider the charged atomic ion as a system containing N 

electrons moving in a local external potential υ(r). The hamiltonian for

such a system is :

( 20)

where T and Vee are the kinetic energy and the electron repulsion potential

operators, respectively, and υ(r) = Σ υ(ri, Z) the external potential rep-

resenting here the nuclear-electron attraction operator. Application of the

HF theorem gives :

( 21) 

with Vo(Z) the electrostatic potential at nucleus, defined in Eq (5). For any

arbitrary variation in the Z variable, Eq (21) may be integrated to give :

( 22) 

Using Eq (22) the contributions (Z + 1, Z ) and ∆Ec (Z, Z + 1) to

solvation energy may be easily evaluated for a model potential Vo(Z). For

instance, for moderated changes in the Z variable (i.e. for ZX = ZA ± 1),

Davis [23] has shown that a linear potential model for Vo(Z) :

( 23) 

→

^ →→

∆Eo
a

∆Eo
a
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provides a reasonably good approximation for the energy variations asso-

ciated to the isoelectronic changes in atoms. It is worth mentioning how-

ever, that the contribution ∆Ec (Z, Z + l) is not simply the opposite of 

(Z + 1, Z ), but it further contains an electronic polarization contri-

bution due to coupling of the whole system with the electrostatic external

perturbation. We will show that such a contribution may be variationally

incorporated into the calculation of ∆Eins.

3.2. VARIATIONAL FORMULATION OF THE INSERTION ENERGY.

Consider the isoelectronic pair (A+
, X) in vaccum, with hamiltonians

and which differ in external potentials In this particular case

(step (a) of Noyes Cycle in Figure 1), and differ in nuclear charges.

For such isoelectronic changes in atoms, Levy [24,25] has proposed the

93

approximate relationship :

where

( 24)

( 25)

is Levy’s average electron density [24], defined in terms of the one elec-

tron densities and represents the difference between

the electron-nuclear attraction operators of the isoelectronic pair (A+, X)
in vaccum.

Since Levy’s expression (24) was derived for an isolated atomic system,

we can inmediately identify it with the first term of Eq (19). 

Consider now the systems A+ and X in the field of a polarizable medium,

with hamiltonians

and

( 26) 

( 27) 

.

∆Eo
a

H
^ o
A

H
^ o
A H

^ o
B

υ^ o (r→)H
^ o
B

ρo
X (r→) ρo

A (r→); δυ^ o(r→)
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where and are the hamiltonians of the isoelectronic pair (A+, X )
in vaccum and the corresponding interaction hamiltonians rep-

resenting the electrostatic interaction with the polarizable environment. 

Using the fact, that and differ in external potentials (i.e.∆H° =

∧

substraction of Eqs (26) and (27) yields: 

and

with

( 28)

( 29) 

( 30) 

If ΨX and ΨA are eigenstates of HX and HA respectively, then by the

variational theorem we obtain from Eqs (28) and (29) :

and

( 31) 

( 32) 

If we neglect, consistently with Eq (19), the interaction of the neutral 

species X with the polarizable environment (i.e < ΨX | ∆H int | ΨX > = 0), 

we obtain the following approximate relationships:

and

( 33) 

( 34) 

An additional comment with regard to Eqs (33) and (34) is worth mak-

ing. These equations are not exact because in addition to the neglect of 

the interaction contribution of the neutral X system with the polarizable 

environment, there are the variational errors δA and δ X associated with the

expectation values EA and EX , respectively. Since we are interested in the

energy difference ∆E = EA – EX and because the error δA and δX are

∧

∧

∧

H
^ o
A H

^ o
X

H
^ int,A H

^ int,X

H
^ o
A H

^ o
X

δυ^ o(r→)),
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always positive, it follows that the errors in the energy difference will in 

general compensate.

Addition of Eqs (33) and (34) yields: 

where

( 35) 

( 36) 

According to Hohenberg-Kohn theorem, δρ(r) given in Eq (36) does

never vanishes because ρA(r) and ρX(r) are determined by different exter-

nal potentials [26]. Moreover, δρ(r) represents the electronic polarization

contribution due to the isoelectronic change under the influence of the ex-

ternal electrostatic field.

On the other hand, substraction of Eqs (33) and (34) yields

( 37) 

where ρav(r) is an average electron density equivalent to that introduced in

Eq (25), but this time defined in terms of the one electron densities of the

isoelectronic pair (A+, X ), in the presence of an external electrostatic field.

Substitution of Eq (35) into Eq (37) yields :

( 38) 

Finally, combination of Eqs (19), (24) and (38) yields the desired gen-

eral expression [27]. Namely, 

( 39)

→

→→

→

→
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4. Formulation of the insertion energy within the Nuclear Tran-
sition State (ZTS) Model.

4.1. DERIVATION OF THE RF EQUATIONS. 

It is interesting to note that Eq (39) may be easily interpreted within the 

frame of reaction field theory [1]. For instance, the second term of Eq (39) 

represents the electronic polarization contribution accounting for the solute 

screening cloud induced by the external (reaction) field: it may be inter-

preted as the response of electrons moving under the influence of an effective 

potential including the reaction field effect [26]. A completely equivalent 

interpretation has been established by Norskov and Lang [28] with regard 

to the second term of Eq (18), from a second order perturbation theory ap-

proach, in the study of atomic impurities in solids. To reinforce the above 

argument, we must show that the first term of Eq (39) corresponds to the 

ion-solvent electrostatic interaction energy.

We shall develop here a simple methodology for the computation of 

∆Eins, in terms of the electrostatic potential at nucleus Vo. Within this

frame, we will show that the first term of Eq (18) represents, in the context 

of the reaction field theory, the ion-solvent interaction energy. 

We start by reminding that the insertion of an atomic ion into a polar 

liquid is being described in terms of succesive isoelectronic processes that 

take place in vaccum and in the presence of a polarizable environment.

Within this model, the energy changes are written as a function of a vary-

ing nuclear charge. It seems then natural to express the energy associated 

to the isoelectronic changes using the Hellmann-Feynman (HF) theorem. 

Consider for instance the energy change from ZA to ZX. Using the inte-

grated form of the HF theorem we obtain [27] :

( 40) 

Application of the mean value theorem yields :
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( 41) 

where ρ(r, Z*) is the electron density for some nuclear charge Z* such that

ZX < Z* < ZA, and

( 42) 

is the electrostatic potential at a nucleus with an intermediate charge be-

tween ZA and ZX. This method for calculating ∆E(ZA, ZX) is called the 

ZTS model [29]. Within this model, the energy variation associated to the

work of removing a nuclear charge unity in an isoelectronic process may be 

directly obtained for atoms, from a SCF wave function computed for the

atomic charge Z* =
1_
2 (ZA + ZX) [30].

Within this frame, it is possible to show that the first term of Eq (39) 

represents the electrostatic ion-solvent interaction energy, in terms of the 

ZTS potential at nucleus Under the approximation :

( 43)

use of definition given in Eq (25) together with Eqs (39), (41) and (42)
allow us to write the first term of Eq (39) in terms of as follows :

( 44) 

which is the reaction field expression of the ion-solvent electrostatic inter-

action energy [27]. It is expressed in terms of and , the electrostatic
     –

potential at nucleus of a pseudoatom having a fractional nuclear charge, in

→

V*o

V*o

V*o V*o



98 R. CONTRERAS ET AL.

vaccum and in the presence of the external electrostatic field, respectively.

As expected, the interaction energy is a functional of the induced electron

density δρ(r).

We shall now show that the insertion energy may be cast into a form

completely equivalent to Born formula. This may be easily done by using 

the well known relationship between the electrostatic ion-solvent interac-

tion energy and the electronic polarization energy [3,14]. Namely 

From Eqs (44) and (45) we get :

( 45) 

( 46) 

Finally, combination of Eqs (39), (44), (45) and (46) yields the desired 

find result. Namely, 

If we define the ZTS reaction field potential :

( 47) 

( 48) 

then, the agreement of ∆Eins with the classical RF expression of Born sol-

vation energy is complete. Namely, 

( 49) 

In summary, a general expression giving the solvation energy of singly 

positive or negative charged atomic ions has been presented. The formula-

tion introduces the electrostatic potential at nucleus, of a nuclear transition 

state system having a fractional nuclear charge Z*. Expression (49) giving

→
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the solvation energy, is completely equivalent to the reaction field version 

of Born formula. However, in the present approach, ∆Eins appears com-

pletely independent of the ionic radii. This aspect of the model is really

important and very promising, since it permits the calculation of the inser-

tion energy without making any reference to the partition of the space into 

a quantum region containing the solute, and a classical region representing 

the solvent. The absence of boundaries in the representation of the solute-

solvent system leads directly to integration over [0,∞], thereby avoiding the 

introduction of empirical ionic radii in the calculation of solvation energies. 

In other words, the polarization of the environment appears naturally into 

the formalism, as a response to the coupling between the solute electron

density and the external electrostatic perturbation. 
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4.2. ZTS ELECTRON DENSITY IN THE PRESENCE OF AN EXTER-

NAL FIELD.

4.2.1. The Kohn – Sham Equations. 

The basic assumption leading to Eq (49) is represented by approximation

(43), which relates Levy's average electron density with the correspond-

ing ZTS electron density. It is important to emphasize that the average 

electron density approximates the transition density in the integral HF 

theorem, which is an exact expression for isoelectronic changes in vacuum
[24]. However, it is not obvious that such approximation still holds for ions 

in the presence of a perturbing external electrostatic field. In order to test 

the quality of approximation (43) for isoelectronic changes in atomic ions 

coupled to an external field, it is necessary to determine the corresponding 

electron density. The Kohn-Sham (KS) formulation of density functional

theory [31] appears as a suitable procedure to achieve this objective.

When an atomic ion is under the influence of an additional external 

spin-independent potential vext(r), produced for instance by a polarizable

environment, the effective energy of the atomic ion becomes:

( 50) 

The E[ρ°(r)] functional is minimized by the ground state density of the

isolated system ρ°(r). The E[ρ(r )] functional is minimized by a new density
→→

→

→
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ρ(r) which differs from °(r) by an amount δρ°(r) by an amount δρ(r) :

Following the KS prescription, the density ρ(r) may be obtained from

a set of electronic orbitals φ i(r) as :

( 52) 

where the summation is done over all the bound states having monoelec-

tronic energies ∈i lower than the chemical potential . The φi(r) orbitals

are solution of the eigenvalue equation (in atomic units) :

( 53) 

where the effective potential veff(r) is also a functional of the density and 

is given by :

( 54) 

The third term of Eq (54) is the electronic Hartree potential, whereas the 

fourth one represents the exchange-correlation potential. This last term 

is usually obtained from a model exchange-correlation energy functional 

∈xc[ρ]. To a first order approximation, the effective KS potential compati-

ble with the electron density ρ (r) given in Eq (51) may be written as :

( 55)

where is the sum of the external potential υ(r), the electronic

Hartree potential and the exchange-correlation potential. The quantity 

δveff(r) may be obtained from a RF model, and it will depend, to a first

order approximation, on the induced electron density δρ(r) = ρ (r) – ρ°(r).
If a linear response model [32] is assumed for simplicity, the reaction field

induced electron density becomes :

o

→ → →

→

→

→

→

→

→

→

→ → →

µ

veff(r)
→
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( 56)

This simplified model of electronic polarization may be used within a 

KS like formalism to determine the electron density ρ(r). For instance, if 

we place the model within the Hartree-Fock-Slater X — α approximation 

[33], the exchange-correlation potential reduces to :

with

Combination of Eqs (42) and (54)-(58) yields :

with

and

( 57)

( 58) 

( 59) 

( 60) 

( 61) 

The effective KS like potential , within the X _ α approximation, becomes

( 62) 

Substitution of Eq (62) into Eq (53) yields the set of KS orbitals φ i(r),

which are then used to build up the electron density via Eq (52). 

The procedure to obtain the ZTS electron density in the presence of 

an external electrostatic field, implemented within the X _ α approxima-

tion, was used to test the quality of approximation (43). The comparison 

of the ZTS and Levy’s average electron density was done for the following 

→

→
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systems, using a low dielectric constant value, ε = 2.0, consistent with an

electronic polarization model : the (H_
,  Li +)He isoelectronic pair which in-

volves He as the neutral reference system ( Figure 2a ) and the (F -, Na+)Ne

isoelectronic pair, involving Ne as the neutral reference sytem (Figure 2b).

It may be seen that in all the systems studied, the ZTS electron density

is located midpoint between the corresponding reference densities ρA(r)
and ρX (r). In other words, the nuclear transition state approximation pro-

vides a rather simple protocole to estimate the electron density for atomic

systems coupled to an external electrostatic field, in a form completely

equivalent to that proposed for isolated atoms. With this electron density 

at hand, estimates of solvation energies for atomic ions may be obtained

within a unified reaction field like formalism. 

Another advantage of the present formulation is that the electrostatic 

potential at nucleus is in general described more accurately than total en-

ergies for atoms . As a result, anions and cations may be treated within

a unified formalism. The present model may be easily implemented within 

a DFT formulation for the self consistent calculation of the ion-solvent in-

teractions. Despite the fact that correlations effects are not included, the 

method is not dependent on this approximation, and may be extended to 

include correlation effects upon solvation. On the other hand the limitation 

of considering the polarization of the solute as being completely electronic 

in nature, allowed us to adopt a simple linear response model for the rep-

resentation of the induced electronic polarization. In summary, the model 

considers the polarization of an electron gas, under the influence of an ef-

fective potential including the reaction field effects. This induced electron 

density may be interpreted as the response of electrons moving indepen-

dently under the influence of an external electrostatic perturbation which 

is added to the external potential of the isolated system. The generaliza-

tion of the ZTS model follows from the approximate formulae for the total 

energy in terms of the electrostatic potential at nucleus. The key quantity 

of the ZTS-RF model is the induced electron density. At the ZTS-RF level, 

it has been represented through a simple linear model shown in Eq (56). 

More refined representations for δρ(r) are possible. They will be discused

in detail in Section 5. 

→

→

→
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(a)

(b)

Figure 2. ZTS electron densities for the isoelectronic pairs (a) (H-, Li+)
and (b) (F-, Na+).
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5. Introduction of Local Indices in the Solvation Energy Expres-
sion.

5.1. THE STATIC DENSITY RESPONSE FUNCTION OF DFT.

In the preceding section, a simple model to compute solvation energies has 

been discussed. The basic quantity of this approach is the ZTS reaction

field potential which, according to Eqs (46) and (48), is a func-

tional of the induced electron density δρ(r). In this formulation, a simple

model represented by Eq (56) for δρ(r) was adopted, allowing for an ap-

proximate expression of insertion energy. Despite the fact that Eq (49)

may be easily generalized for molecules using approximate electrostatic po-

tential at nucleus [27], there is an interesting alternative which uses the

natural reactivity indices of DFT. The most popular ones are the chemical
potential µ, the global hardness and softness, η and S, and the molecular
electronegativity χ . All these reactivity indices are formally defined as first

and second derivatives of the electronic energies with respect to the number 

of electrons in the system. They are called global, because they display an 

uniform value in every region of the molecular system [34]. On the other 

hand, the analysis of the variation of these global quantities when the sys-

tem is under the influence of an electrostatic external field induced in the 

surrounding medium, still remains as an open problem. Recently, Pearson 

has proposed a methodology to obtain estimates of ionization potentials 

and electron affinities in solution from free energy of solvation and redox 

potentials data [35]. The most relevant results reported by Pearson were 

that electronegativity remained invariant upon solvation, and that the cor-

responding hardness displayed very little variation upon transfer from gas

to solution phase, making these global quantities unuseful for the analysis 

of chemical reactivity in the liquid phase. These empirical observations 

may be tested by using approximate expression of the global DFT indices. 

For instance, within the Molecular Orbital (MO) theory they are expressed 

in terms of the one-electron energy differences involving the frontier MO/s
[47]. In Figure 3 , gas phase and solution electronegativities as well as 

global hardness, obtained from approximated electron densities (CNDO/2 

and CNDO-SCRF, respectively) are shown. 

Φ*R[δρ(r→)]
→

→
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Figure 3. Comparison between gas and solution phase molecular
electronegativities (a), and global hardness (b). Experimental values (+)
rom reference [35]. Gas phase values (X) from CNDO/2 calculations and 

solution values (*), from SCRF calculations.
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It may be seen that in both cases, the predicted values follow the exper-

imental order. Also, it may be seen that the variation of χ and η with the

reaction field strength is negligeable. Therefore, the introduction of solu-

tion global DFT indices have little utility in the study of solution chemical 

reactivity.

In order to better understand the RF model in terms of the local DFT

indices, let us first consider some fundamental equations for the energy 

change from one ground state to another. Let the first ground state be

characterized by ρo(r), υo(r ), Nº and E° (e.g. the ground state associated

to the isolated solute), whereas the other will be defined by the quantities

ρ(r), υ(r), N and E; and will be considered as the ground state of the 

solute in the field of the solvent. According to the class of problem we

are dealing with, the most suitable representation for the description of 

the RF model is that containing {N, υ(r)} as fundamental variables. For

such a representation, Vela and Gázquez [36] have reported the following

relationship for the energy change :

where [2] :

( 63) 

( 64) 

is the electronic chemical potential for the isolated solute, sº(r) its local 

softness defined by [34] :

( 65) 

which upon integration over space coordinates yields the global softness : 

→ →

→ →

→

→
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The Fukui function f °(r ) is defined by:

and it is a normalized local softness in the sense that :

( 66)

( 67)

( 68) 

Equation (63) was obtained after performing a Taylor series functional

expansion of F[ρ] around F°[ρ°] and retaining terms up to second order [36]. 

The first approximation we shall introduce in our developments is re-

lated to the fact that within the continuum RF model, the change in

energy associated with inserting the solute into the solvent given by Eq(63) 

is being considered as an isoelectronic process (i.e., ∆N = N – N° = 0).

As a result we obtain :

( 69)

where δυ(r) is the change in the external potential associated to the inser-

tion process and δρ(r) = ρ(r) – ρ°(r) is the induced electron density due

to the coupling with the reaction field. It is also worth mentioning that 

δρ(r) will never vanishes because according to the HK theorem, ρ(r) and

ρ°(r) are determined by different external potentials. Another relevant as-

pect concerning Eq (69) is that it will remain valid within the effective
medium representation of the solvent. It will certainly be no longer valid 

in a different model of solvation such as, for instance, the supermolecule 

approach where partial electron transfer between the solute and the solvent 

may occur [37]. 

→

→

→ → →

→

→

→
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We may now proceed to transform Eq (69) into a form closer to the 

more familiar RF picture. Let us first introduce the effective electrostatic 

potential of the solute in the field of the polarized solvent as follows : 

( 70) 

where is an external spin-independent electrostatic perturbation 

produced by the reaction field. The corresponding total electrostatic po-

tential of the isolated solute is : 

Substraction of Eqs (70) and (71) yields : 

From relationship (72), the following identities hold : 

and

Combination of Eqs (69) - (74) gives : 

( 71) 

( 72) 

( 73) 

( 74) 

( 75) 

δϑext(r
→

)
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The following relevant remark concerning Eq (75) is pertinent : the first 

term may be easily recognized as the electrostatic solute-solvent interaction 

energy, as defined in the context of RF theory. Formally speaking, the elec-

trostatic solute-solvent interaction energy as given in the present approach, 

corresponds to a first order perturbation theory correction to E°[ρ°]. The

physical meaning of the second contribution may be easily established after

transforming Eq (75) as follows : addition and substraction of the second 

term in the righ hand side yields :

( 76) 

On the other hand, when the solute is under the influence of the external 

perturbation, the effective energy functional is minimized by a new electron 

density ρ(r), which differs from the ground state electron density of the

isolated solute ρ°(r) by an amount δρ(r). In other words, the effective

energy functional E[ρ] may be written as [38] :

( 77)

Substracting E°[ρ°] from both sides of Eq (77), and using Eq (76) we

obtain :

( 78) 

the solute electronic polarization contribution to δE. Since both Eqs (75)

and (76) are equivalent expresions for δE, we may write using Eq (78) the

following physically meaningful expression for the energy variation :

( 79) 

Where

→

→ →
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( 80)

is an effective electrostatic solute solvent interaction energy. According to 

the RF theory, the solvation energy is obtained after adding to the electro-

static solute solvent interaction contribution and the solute self-polarization

term, the contribution due to the solvent polarization [2,3,7,14].

Namely,

(81)

The solvent polarization contribution (third term of Eq (81)), may be 

obtained from the fundamental theorem of the RF theory, relating the 

electrostatic solute-solvent interaction energy and the solvent polarization 

contribution [2,3,7,14] :

( 82)

Substitution of Eqs (78)- (80) and (82) into Eq (81) yields :

( 83)

The quantity is usually implicitly considered in the variational

calculation of ∆Esolv, when the effect of the RF is self-consistently incor-

porated into the effective hamiltonian of the solute system in the field of 

the solvent. 

Local density functional theory may be introduced within the RF model 

of solvent effects thorugh the induced electron density. The basic quantity 

for such a development is the linear density response function [39] :

∆Epol
S [δρ]

∆Epol
Σ [δρ]
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( 84)

Physically, the quantity represents the change of the electron 

density at any point r produced by the variation of an spin independent ex-

ternal perturbation (for instance, and external applied electric field)

at a different point In the present case, the linear response function 

would represent the variation of the electron density at any point

r produced by the RF potential at Specifically, the induced electron

density δρ(r) required for the calculation of the DFT-RF potential may

be obtained from [40] :

( 85)

The calculation of the induced electron density may be done in the con-

text of the Kohn-Sham approach to density functional theory, because the

response of a KS system to a change in the one particle effective poten-

tial δϑeff (r) corresponds to that of a system of non-interacting electrons. 

Moreover, Berkowitz and Parr [39] have shown that the static density re-

sponse may be expressed in terms of the softness kernel s(r, r /), the global
softness S and the Fukui functions f (r ) as follows :

( 86)

Equation (86) is an exact relationship between the static density re-

sponse and the DFT indices. 

Within a local approximation, the electron density is just a function of 

the modified potential and the induced electron density δρ(r) given by Eq

(85) reduces to [36] :

( 87)

→

→ →

→

→

→

→

→ Φ*R
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Using this expression for the induced electron density, expression (83) 

giving the solvation energy may be transformed as follows : from Eqs (71)

and (72), the first term of Eq (83) may be rewritten as :

( 88)

where φ°(r) is the classical electrostatic potential at r due to the entire 

electron density. The first term of Eq (88) simply give us the nuclear com-

ponent of the solvation energy For a fixed nuclear configuration,

this term will be a constant contribution to ∆Esolv. The second term of

Eq (88) may be however transformed to a more interesting form, by intro-

ducing the local hardness concept of Parr et al [41]. These authors

showed that, within the local density version of the KS theory, the following

approximate relationship holds [10] :

Substitution of Eq (89) into Eq (88) yields :

( 89)

( 90)

We may now proceed to transform the second term of Eq (83). Based 

on the fact that within the RF theory, the external spinless electrostatic

perturbation δϑext(r) may be identified with the RF potential ΦR(r), sub-

stitution of Eqs (87) and (90) into Eq (83) yields the desired result. Namely,

( 91) 

→→

→ →

∆EN
solv .

η–(r→)
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Equation (91) has a quite interesting structure : the first two terms

remain as a long-range electrostatic contribution to the solvation energy, 

whereas the third one introduces the local softness as a multiplicative factor

of the fluctuation of the RF potential. This last term is expected to strongly

depend upon the solute polarizability, since the global softness does [34,36].

On the other hand, Equation (91) may be easily used in conextion with an 

orbital theory with the electron density and the electrostatic potential ob-

tained from a standard SCRF wavefunction. The third term may be also 

evaluated from finite difference approximation formula. The charm of Eq 

(91) comes from the fact that it introduces for the first time, the natural 

reactivity indices of DFT in the expression of the solvation energy. This 

feature should be of great importance for the study of solvation effects in 

chemical reactivity in solution phase. Finally, it is also worth noting that 

Eq (91) is also reminiscent of the well known Frontier Molecular Orbital 

equation of chemical reactivity : the first two terms may be associated to 

the long-range electrostatic [charge control) effects, whereas the third one 

may be associated with short-range (orbital) effects. 

5.2. SELF CONSISTENT FIELD FORMULATION OF THE RF-DFT

MODEL.

According to the HK theorem, the ground state energy of an interacting

inhomogeneus electron gas in a static external potential υ(r) is given by 

[26] : 

( 92)

which simply means that the classical electrostatic part of Vee[ρ] has been

extracted from the universal funtional F[ρ], thereby defining a new univer-

sal functional G[ρ]. This is very convenient for our purposes, since it will 

allow us to treat the long range electrostatic part of the energy functional,

including the effect of the external perturbation explicitly. The remain-

ing term G[ρ] is then assumed to contain the kinetic energy contribution

and the exchange- correlation term, which are expected to be short-ranged.

→
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Our problem is now to obtain ρ(r), to estimate solvation energies via Eq

(83) in a self consistent way. As implicitly assumed in Section 3, ρ(r) may

differ from the ground state electron density of the isolated solute ρº(r) , by

an amount δρ(r) :

( 93) 

Following the KS formalism [31], the density ρ(r) may be obtained from 

a set of electronic orbitals φ i(r) for an effective KS potential similar to that

discussed in Section 4.2. 

On the other hand, the effective KS potential δυeff (r) compatible with

the induced electron density δρ(r) defined in Eq (93) may be also written

as :

with

which yields again (see Section 4.2) :

( 94)

( 95)

( 96) 

where ΦR(r) = Φ(r) – Φº(r) is the RF potential introduced in Section 4.  If 

we set Φ(r ) = Φº(r) /∈r, we obtain :

( 97) 

→

→

→

→

→

→

→

→

→

→

→

→

→
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Equation (96) shows that the effective KS potential may be simply ob-

tained by adding to the standard KS potential of the isolated solute , an

electrostatic correction which turns out to be the RF potential ΦR , and the

exchange- correlation correction δvxc. It is worth mentioning here, that Eq

(96) is formally equivalent to the effective Fock operator correction δϑeff,
defined in the context of the self consistent reaction field (SCRF) theory 

[2,3,14] : within the HF theory, the exchange contribution is exactly self-

contained in ΦR, whereas correlation effects are completely neglected. As

a result, within the HF theory = ΦR, as expected.

On the other hand, the second term of Eq (96) :

( 98) 

representing the variation in the exchange-correlation potential upon solva-

tion may be further simplified if we place the model within the local density 

approximation (LDA). In that case, vxc becomes simply a function of the

density and Eq (95) reduces to :

( 99) 

The simplest linear response model for the RF induced electron density 

compatible with expression (97) of ΦR is :

( 100) 

which allows the exchange-correlation potential variation to be cast into a 

very simple form. 

δvHF
eff
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6. General Discussion.

In the preceeding section, we have shown that density functional theory

provides a natural framework to discuss solvent effects in the context of 

the RF model. The approach was derived from a second order perturba-

tion theory approximation, giving the energy change from one ground state 

representing the isolated solute, to another one describing the ground state 

of the solute under the influence of the electrostatic spin-independent ex-

ternal potential due to the solvent. Within this simplified approach, Eq 

(83) giving the insertion energy was derived. It was shown that within 

the perturbational approach used, the solvation energy expression contains 

the basic ingredients of the classical RF formula. Namely, the electrostatic 

solute-solvent interaction energy, the solvent polarization term and the so- 

lute self-polarization energy. This last quantity appears as a second order 

correction in the perturbational formula. 

The complete treatment of solvation effects, including the solute self-

polarization contribution was developed in the frame of the DFT-KS for-

malism. Within this self consistent field like formulation, the fundamental 

expressions (96) and (97) provide an appropriate scheme for the variational 

treatment of solvent effects in the context of the KS theory. The effective 

KS potential naturally appears as a sum of three contributions : the effec-

tive KS potential of the isolated solute, the electrostatic correction which 

is identified with the RF potential and an exchange-correlation correction. 

Simple formulae for these quantities have been presented within the LDA

approximation. There is however, another alternative to express the solva-

tion energy in a more simple and useful form. 

We start from the first line of Eq (83), and substitute Eq (87) with 

δϑ(r) replaced by the RF potential. We obtain [42]:

( 101) 

Next, introduce definition (67) of the Fukui function to obtain :

→
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Where the following definitions have been used :

and

( 102) 

( 103) 

( 104)

( 105) 

Equation (102), although equivalent to Eq (91), offers the advantage 

of being more useful for the discussion of chemical reactivity in solution. 

The main difference between both expression of the solvation energy, is 

contained in the second order contribution, which represents the electronic 

polarization of the solute through the effective global softness S, and the

fluctuation of the RFP, as electrons are added to the solute system. This 

term is expected to be particularly useful in the study of the solvation en-

ergy variation along a series of atomic and molecular systems, with increas-

ing number of electrons. On the other hand, this second term is expected to 

have a low contribution within an isoelectronic series of solutes. As a result, 

use of Eq (102) may be of great utility when we are interested in the par-

tition of the effective energy in terms of electrostatic and non electrostatic 

contributions. Preliminary applications of Eq (102) to the calculation of 
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solvation energies in the aliphatic amines series reveal a linear dependence

between ∆Esolv and the global softness [42]. This important result was 

reported by Geerlings et al [43], on the basis of a multivariate regression

analysis. Eq(102) is however an analytical relationship between this two

quantities .

7. Concluding Remarks.

The use of electrostatic potentials, defined in the context of DFT, for the 

calculation of ion solvation energies has been reviewed. It has been shown 

that physically meaningful ionic radii may be obtained from this method-

ology. In spite of the fact that the electrostatic potentials for cations and 

anions display a quite different functional dependence with the radial vari-

able, we have shown that it is still possible in both cases to build up a 

procedure consistent with the Born model of ion solvation. 

The use of electrostatic potential at nucleus provides the basis for a uni-

fied theory of ion solvation for singly positive and negative charged atomic 

ions. The polarizable host has been modeled through an effective medium, 

and the ion-solvent interactions treated within the reaction field theory. 

The most relevant aspects of the proposed ZTS-RF model are the following 

: (i) the formalism uses the eletrostatic potential at nucleus as the basic 

property for the description of the ion-solvent interactions. This quantity 

is in general described more accurately than total energies for atoms. As a 

result, anions and cations may be treated within a unified formalism and

the problem of introducing arbitrary empirical ionic radii is avoided and 

replaced by integration in [0,∞]. (ii) The present model may be easily 

implemented within a density functional theory formulation for the self 

consistent treatment of the ion-solvent interactions.

On the other hand, some limitations are present in the proposed formal-

ism. For instance, all the solute polarization is assumed to be electronic in 

nature. Orientational (temperature dependent) effects are not introduced 

in the present formulation of solvation effects. However, this limitation al-

lowed us to adopt a simple linear response model for the representation of 

the induced electronic polarization through the polarization of an electron 
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gas under the effect of an electrostatic external field, This induced electron 

density is to be interpreted as the response of electrons moving indepen-

dently under the influence of an effective potential, including the reaction 

field effect. 

Finally, an alternative derivation of ∆Eins that introduces the static

density response function was outlined. This model offers several advan-

tages with respect to the ZTS-RF formalism. For instance, the effect of 

the polarizable medium is directly expressed in terms of the reactivity in-

dices of DFT which may be determined either from an orbital theory or 

directly from the KS formalism. This aspect of the proposed model is re-

ally relevant and very promising since it provides the theoretical basis for 

the treatment of chemical reactivity in solution, within the framework of a 

modern methodology comparable in quality to the conventional ab initio 
methods, but at a considerably lower computational cost. 

In summary, density functional theory provides a natural framework to 

discuss solvent effects in the context of RF theory. A general expression giv-

ing the insertion energy of an atom or molecule into a polarizable medium 

was derived. This expression given in Eq (83), when treated within a first

order perturbation theory approach (i.e. when the solute self-polarization

contribution is neglected), directly leads to the well known Born formula 

of the solvation energy. Within this framework, accurate solvation energies 

for singly positive and negatively charged atomic ions may be obtained. 

A complete treatment, including the solute self-polarization contribution, 

may be developped in the context of the KS theory. It was shown that 

within the LDA approximation, simple expressions for the effective KS po-

tential may be obtained. 

However, the most promising aspect of the DFT-RF model of solvent 

effects presented here is represented by Eq (102). This expression, derived 

from a model induced electron density, based on the static-density response 

function of DFT, allowed us to obtain a useful expression for the solvation 

energy in terms of the natural reactivity indices of DFT. This aspect of the 

DFT-RF model is really interesting if we consider its potential aplication 

to the study of chemical reactivity in solution. 
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1. Introduction 

Theoretical interpretation of chemical reaction rates has a long history already. Until 

recently, however, only the chemical reactions of systems containing a few atoms in the 

gas phase could be studied using molecular quantum mechanics due to the 

computational expense. So, understanding the effect of the environment on the 

behaviour of chemical reactions in solution has been an outstanding problem. 

Fortunately, the past ten years have seen very important advances in the power of 

computer simulation techniques for chemical reactions in the condensed phase, 

accompanied by an impressive progress in computer speed. Consequently, a clear 

microscopical picture of how solvent influences the rate of chemical reactions is now 

beginning to emerge. Anyway, calculations in this area are still quite difficult and are 

not at all a straightforward extension of the gas-phase methodology to systems 

containing a huge number of degrees of freedom. The goal of this chapter is to present 

a critical discussion of the current state of theoretical methods to microscopically 

simulate chemical reactions in solution and to calculate their rates. Before entering on 

the heart of this topic it is useful to briefly review the habitual treatment applied to gas-

phase systems. 

Transition State Theory [1,4] is the most frequently used theory to calculate rate 

constants for reactions in the gas phase. The two most basic assumptions of this theory 

are the separation of the electronic and nuclear motions (stemming from the Born-

Oppenheimer approximation [5]), and that the reactant internal states are in thermal 

equilibrium with each other (that is, the reactant molecules are distributed among their 

states in accordance with the Maxwell-Boltzmann distribution). In addition, the 

fundamental hypothesis [6] of the Transition State Theory is that the net rate of forward 

reaction at equilibrium is given by the flux of trajectories across a suitable phase space 

surface (rather a hypersurface) in the product direction. This surface divides reactants 

from products and it is called the dividing surface. Wigner [6] showed long time ago

that for reactants in thermal equilibrium, the Transition State expression gives the exact 
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classical rate provided that trajectories that pass through the dividing surface never 

return. In Conventional Transition State Theory [7] the dividing surface is chosen to be 

a configuration-space hypersurface (this way the momenta not being considered) 

centered at the saddle point of the potential energy hypersurface. This fact leads to the 

definition of the transition state structure as the point that fulfils the following four 

conditions [8]: a) it is a stationary point, that is, of zero gradient: b) the force constant 

matrix at the point must have only one negative eigenvalue; c) it must be the highest 

energy point on a continuous line connecting reactants and products: d) it must be the 

lowest energy point that satisfies the above three conditions. The two first mathematical 

conditions characterize the transition state structure as a mathematical saddle point. The 

dividing surface is generally constructed perpendicular to the minimum energy path 

(MEP), which is the path of steepest-descent from the saddle point into the reactant and 

product valleys [9-11]. From now on in this paper we will use the term transition state 

as equivalent to the entire dividing surface, in contrast with the term transition state 

structure that is just a particular point (the saddle point) of the dividing surface. Really 

the rate constant depends on the difference between the free energy corresponding to 

the ensemble of configurations that belongs to the dividing surface and the free energy 

associated to reactants. 

As the non-recrossing assumption is not certain, the one-way equilibrium flux 

through the dividing surface exceeds the equilibrium net forward reaction rate, the 

Transition State Theory leading to an overestimation of the true classical rate constant. 

Then, beyond the Conventional Transition State procedure, in Variational Transition 

State Theory [7,12,13] a set of dividing surfaces is constructed, searching for the one 

that maximizes the free energy barrier, what is equivalent to minimize the one-way

equilibrium flux through it. Consequently, the variational transition state is a dividing 

surface not necessarily passing through the saddle point. 

The location of transition state structures is the first step to calculate gas-phase

reaction rate constants. Then, the MEP is built up. The next step is to perform a 

generalized normal-mode analysis at a sequence of points along the MEP, to obtain the 

free energy increments corresponding to the set of dividing surfaces, as provided by the 

statistical thermodynamic formulae within the ideal gas, rigid rotor and harmonic 

oscillator models (anharmonicity effects can also be incorporated). The maximum value 

of the free energy change determines the variational transition state. 

It is also useful in this point to dedicate a few words to outline the case of the 

clusters, which represent a bridge between the gas phase and the solution situations. In 

clusters, the transition state structure should be rigorously characterized as a point with 

zero gradient, all the coordinates of the system being simultaneously considered. 

However, a cheaper way to treat solvation effects is to suppose that solvent molecules 

always remain in equilibrium with the solute. Then it is assumed that for each fixed 

solute coordinates (particularly, for the gas-phase MEP and, evidently, for the gas-phase

transition state structure forming part of it) all the solvent coordinates are at a minimum 

energy point, with all the solvent gradient components being zero. As no force is acting 

on the solvent in this case, this approximation is known as the solvent equilibrium 

hypothesis [14] (which involves a conceptual partition of the system into two sets of 

degrees of freedom, the solute plus the solvent surrounding it). It has to be emphasized 
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that this hypothesis is not related at all with the above mentioned thermal equilibrium 

basic assumption of the Transition State Theory, which implies equilibrium among the 

states of the whole system. 

As a matter of fact, from a strict point of view, the solvent equilibrium hypothesis 

is always false for a chemical reaction. Although in some cases it can be employed as 

a practical assumption that provides a good enough approximation, for others it is not 

acceptable. So, for instance, in several papers [15-17] we have shown that in an SN2

reaction with reactants solvated by a small number of water molecules, the solvent 

coordinates are significant components of the transition vector. Therefore, the motion 

of the solvent molecules is an important part of the motion of the whole system along 

the reaction coordinate in this case, the solvent equilibrium hypothesis not being valid. 

At this point it should be noted that the whole gradient is zero at a transition state 

structure and, as a consequence, the solvent gradient components are zero too. This fact, 

however, does not imply the solvent equilibrium hypothesis if the solvent coordtnates 

are significant components of the transition vector: the motion of the solvent along the 

reaction coordinate going down from the transition state structure would produce a 

diminution of the potential energy, the solvent coordinates not actually satisfying 

therefore the conditions of a minimum energy point in the complete system. 

As Tucker and Truhlar [14] have emphasized, the Conventional Transition State

Theory is not unambiguously defined in the context of the solvent equilibrium 

hypothesis. They have built up the so-called equilibrium solvated path (ESP) by taking 

the same values as on the gas-phase MEP for the solute coordinates, and optimizing the 

solvent coordinates, for fixed solute coordinates, at each point on that reaction path. The 

problem lies on the fact that there is no true saddle point on the ESP, and, in addition, 

the point on the ESP which corresponds to the gas-phase transition state structure will 

not necessarily be the point of highest potential energy on the ESP. Conversely, 

Variational Transition State Theory can be applied by constructing a set of dividing 

surfaces that intersects the ESP, provided that the dividing surface orientations are 

conveniently chosen. Thus, in the microsolvated reaction Cl-(H2O) + CH3Cl, Tucker and

Truhlar [14] have shown that the solvent equilibrium hypothesis is a good 

approximation to be used in the frame of Variational Transition State Theory. Although 

the validity of this conclusion will probably depend on each particular chemical 

reaction, it seems clear that the inaccuracy introduced by the solvent equilibrium 

hypothesis is lesser when Variational Transition State Theory is used. 

Beyond the clusters, to microscopically model a reaction in solution, we need to 

include a very big number of solvent molecules in the system to represent the bulk. The 

problem stems from the fact that it is computationally impossible, with our current 

capabilities, to locate the transition state structure of the reaction on the complete 

quantum mechanical potential energy hypersurface, if all the degrees of freedom are 

explicitly included. Moreover, the effect of thermal statistical averaging should be 

incorporated. Then, classical mechanical computer simulation techniques (Monte Carlo 

or Molecular Dynamics) appear to be the most suitable procedures to attack the above 

problems. In short, and applied to the computer simulation of chemical reactions in 

solution, the Monte Carlo [18-21] technique is a numerical method in the frame of the 

classical Statistical Mechanics, which allows to generate a set of system configurations 
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with a given probability distribution function, for instance, the canonical Boltzmann 

distribution function. Consequently, the Monte Carlo method is quite well adapted to 

reproduce the thermal equilibrium that is assumed within the Transition State Theory. 

Equilibrium properties are obtained by averaging over millions of geometrical 

configurations of the system that are conveniently selected along the simulation. As a 

matter of fact, a Molecular Dynamics [21] simulation can be used for the same purpose. 

In this case, the classical equations of motion (for instance, Newton's equations) for the 

system are integrated numerically in the phase space. From the solution of these 

equations, the atomic positions and velocities as a function of time are obtained, and the 

equilibrium properties are determined by performing time averages. 

In this chapter we will focus on the Monte Carlo simulations, although many of the 

described points would also be applicable to Molecular Dynamics simulations. We 

begin, in section 2, with a summary of the basic methodological features of the Monte 

Carlo method. This is followed, in section 3, by a discussion of the meaning of the 

solvation of the gas-phase stationary points. In section 4, we outline the main methods 

to calculate free energy changes. In section 5, Variational Transition State Theory is 

applied to a chemical reaction in solution. In section 6, we discuss how the potential 

energy of each configuration can be calculated. We conclude, in section 7, with a 

survey of the most recent theoretical developments, and a list of the most promising 

perspectives for further advances. 

2. Basis of the Monte Carlo Method 

In this chapter we will briefly review the main aspects of the Monte Carlo methodology 

when it is applied to the treatement of liquid state and solutions. In this kind of studies 

the Monte Carlo method [18-21] consists of an algorithm to perform a random walk 

through the configuration space, in such a way that after a given number of 

equilibration steps, the generated configurations are distributed according with a 

previously chosen probability density Π (q(N)) where:

(1)

is the position of the vector of a point in the configurational space for a N-particle 

system, being qγ the configurational coordinates of the particle γ .

Presently Monte Carlo calculations are based on the technique proposed by 

Metropolis [22] in 1953 which involves selecting the successive configurations in such 

a way that they build up a Markov chain [23]. The one-step transition probabilities pij
are defined as the probability that beginning from the i configuration with qi

(N), the

configuration j with qj
(N) is reached in one step. These probabilities are the elements of

the one-step probability matrix associated to the Markov chain and they must fulfill the

following conditions: 

→

→

→

→
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(2)

If the n-steps transition probability elements are defined as the probability to reach the

configuration j in n steps beginning from the configuration i and Πj, = Π (qj
(N)), then it 

can be demonstrated that if the Markov chain is ergodic (the ergodicity condition states 

that if i and j are two possible configurations with Πi≠ 0 and Πj ≠ 0, for some finite 

n, pij
(n) ≠ 0 ) and aperiodic (the chain of configurations do not form a sequence of

events that repeats itself), the limits 

(3)

do exist, they are independent of the configuration i and they are uniquely given as the 

solution of the steady-state equations 

subject to the conditions: 

(4)

(5)

The existence of the limit (3) guarantees that, after a large enough number of steps, the 

different configurations are generated following a probability density Π . Then it is said

that a distribution of stationary probability or situation of static equilibrium has been 

reached. If Π has been previously chosen, the method consists of selecting pij so that

the conditions (2) and (4) are fulfilled. We must stress the fact that the condition of 

microscopic reversibility: 

(6)

(normalization condition)

→
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plus the normalization condition are sufficient for (4) to be satisfied. 

distribution function is chosen: 

Usually when closed, isothermal systems (N,V,T) are studied, the canonical 

(7)

where U(q(N)) is the potential energy of the system, k the Boltzmann constant , T the 

absolute temperature and Z(N,V,T) the configuration integral: 

(8)

In this case, once the statistical equilibrium has been reached, the Markov chain 

generates a trajectory through configuration space that samples configurations in accord 

with the canonical Boltzmann distribution of configurations. Averages over these 

statistical trajectories correspond to equilibrium canonical ensemble averages In this 

way the mean value of any mechanical property M of the system, which depends only 

on the configuration coordinates, 

simply reduces to the sum: 

(9)

(10)

which is calculated only over the configurations obtained from the situation of statistical 

equilibrium.

Any selection of pij that fulfills conditions (2) and (6) leads through an infinitely

long chain to the stationary distribution given by (3). Actually the chain must be of 

finite size so that one of the main difficulties in the Monte Carlo method consists of, 

by using a reasonable amount of computer time, to guarantee the convergence to the 

equilibrium situation given by (3) and to achieve a run over the configurational space 

→
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large enough so that 〈M〉 can be evaluated with sufficient accuracy using the expression 

(10) with n finite. 

The convergence and statistical error bounds of the calculations are usually 

monitored [24,25] by partitioning the chain into several nonoverlapping blocks of equal 

lenght. Then the mean value 〈M〉b of a magnitude M (usually the potential energy) over 

each block b of configurations is calculated. It is considered that the statistical 

equilibrium has been reached when these mean values 〈M〉b fluctuate around a stable 

mean value 〈M〉. When the simulation has ended, supposing that the mean values 〈M〉b
are independent and are normally distributed, and that the Markov chain is ergodic, the 

error bound for the property M within a 95% of confidence are ±2σ where:

(11)

and the sum is over K blocks. 

The problem with convergence is particularly important when dealing with solutions 

[24,26]. The configurational means in a pure liquid are calculated by averaging over all 

the configurations and also, given the fact that all the particles are identical, by 

averaging over the N particles of the system. However, in simulating a solution there 

is one solute particle and N-1 solvent molecules. In the evaluation of configurational 

means with respect to the solute, such as the solute-solvent radial distribution functions, 

the statistics is reduced by a factor of 1/N with respect to the pure liquid. Thus, longer 

chains must be generated or, alternatively, methods that accelerate the convergence have 

to be devised so that the study of solutions can reach a degree of accuracy similar to 

the one obtained for pure liquids. The latter point can be achieved by conveniently 

choosing the pij elements of the transition matrix. This way, in section 2.1 the 

Metropolis algorithm is described whereas section 2.2 presents an example of alternative 

method suggested in order to accelerate the convergence of the Monte Carlo 

calculations.

Once the statistical equilibrium has been reached, the numerical data corresponding 

to the successive Markov chain configurations must be stored on a magnetic tape or 

disk. There are millions of real numbers, generally stored within a binary code that need 

a considerable volume of memory and contain a huge mount of information about the 

solution properties. The process to extract these data is quite complex and the kind and 

quantity of structural and energetic properties depend on the studied systems as well as 

on the imagination and the skill of the programmer. We must take into account that the 

program that produces the configurations as well as the ones that analyze them must be 

rewritten or, at least, adjusted for each studied system. A portion of the information 

obtained from the simulation can be readily compared with experimental data whereas 

another part consists of results not experimentally attainable. 

Up to this point and in the following sections and as long as the contrary is not 

specified, all the discussion will refer to the study of closed, isothermal systems 

(N,V,T). Though in the applications of Monte Carlo method to the study of solutions 
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it is customary to make use of the canonical ensemble, the Markov chains can be 

similary generated for any ensemble. Monte Carlo calculations in the isothermal-isobaric

ensemble are discussed in section 2.3. 

The difference between the canonical (N,V,T) and the isothermal-isobaric ensemble 

(N,P,T) is that in the latter the thermodynamic pressure is kept constant throughout the 

simulation instead of the volume of the system. In both ensembles though, simulations 

at different temperatures are carried out in order to analyze the effect of thermal 

agitation on the energetic and structural characteristics of the generated configurations. 

In both ensembles too, the number of solvent molecules that can be explicitly simulated 

by means of the Monte Carlo method is obviously quite superior to what can be done 

with any quantum discrete methodology like the supermolecule approach. In any case, 

that statistical number is still too small compared with the Avogadro number. The

attempt to infer the behaviour for large systems from calculations with a few hundred 

molecules clearly constitutes one of the most serious approximations involved in the 

application of the Monte Carlo method, and one which needs careful consideration. 

In order to simulate as closely as possible the behaviour of an infinite system, it is

customary to use the so-called "periodic boundary conditions". The mathematical 

treatement of those "periodic boundary conditions" was due to Metropolis. Basically, 

the method consists in locating the N-particle system under study in a central box 

(basic cell) that is surrounded by translational symmetry by an infinite set of identical 

boxes. The volume V of the system is chosen to have a shape which by the usual 

translational replication fills v-dimensional space completely (v = 3 in physical

systems). Computationally it is usually convenient to choose V as a cube or a 

rectangular parallelepiped. With each configuration of the N molecules in V is 

associated the same configuration in each replica of V, thereby obtaining for each such 

configuration a corresponding periodic configuration of an infinite system. Molecules 

from different boxes may interact in such a way that surface effects are eliminated. 

As it will be explained in section 6, the usual way to evaluate the potential energy 

of a system simulated by Monte Carlo techniques, makes use of the pair potential 

approximation (although, as it will also be reviewed, several works have already 

appeared where nonadditivity corrections to the interaction potential have been 

included). In the pair potential approximation only two body interactions are taken into 

account. We will briefly explain here how to apply this approximation for the 

calculation of the potential energy, to the periodic system just described. The interaction 

potential energy under the pair potential approximation can be written as: 

(12)

where the indexes α, β refer to the different molecules of the system and the summation

extends over all the possible doublets (α , β) . V(2) is the so-called pair potential, the

interaction energy of a pair of molecules. 

In a periodic system the expression of the interaction energy under the pair potential 

approach would be the following (assuming, for instance, the special case in which the 
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pair potential depends only upon the distance between any pair of particles):

(13)

where V(2) depends only upon the distance qαβ = | qβ - qα | between particles α and β,

the prime on the first summation of the second term of equation indicates that the

addition is done over all boxes except the central one, L is the edge of the cubic box,

and υ stands for the position vector of a box versus the origin (0,0,0) where the basic 

cell is usually centered. 

The infinite summation represented by equation (13) cannot be performed except 

if the interaction potential between pairs of particles cancels further on some particular 

distance, like it happens, for instance, with the hard-sphere potential. Then, some kind

of approximation must be done in those systems that interact by means of a soft and 

continuum potential when trying to evaluate the potential energy of an infinite system 

from calculations on configurations with a small number of particles. Several 

approximations based on the methodology of truncated intermolecular forces have 

appeared in the literature. One of the most popular is the minimum image convention. 

According to this methodology, a molecule of the central box only interacts with the 

closest periodic image of each one of the other N-1 molecules in the same box. This 

is equivalent to truncate the intermolecular potential at the limits of a box identical to 

the original one but now centered at the particle for which interactions are being 

evaluated.

2.1. THE METROPOLIS ALGORITHM

The pij elements of the transition matrix can be written as a product of two terms 

(14)

tij depends on how the attempted new configuration j is generated from the i

configuration in only one step. αij is the probability that the trial move is accepted. In

the Metropolis algorithm: 

So that: 

(15)

(16)

→ → →

→
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It is clear that the pij elements defined by (16) fulfil the conditions (2) and (6). 

Although theoretically it would be possible to go from one configuration to 

another through the global motion of the N system particles, actually the probability that 

it were accepted would be very small. Therefore motions are normally restricted to only 

one particle per step, randomly or sequentially chosen. This way the configuration 

coordinates i and j are related by: 

where:

(17)

(18)

and δγ is a displacement vector for the particle γ selected for the move. In the case of 

polyatomic rigid molecules:

(19)

where δXCM, δYCM , δZCM, are the displacements of the center of mass and δφ is the 

rotation around a chosen axis ξ passing through the center of mass of the molecule γ .

In the Metropolis algorithm the components of the displacement vector δγ are

obtained by uniformly sampling from the domain D, centered in the coordinates of the

molecule γ in the i configuration, and defined by the maximum allowed displacement

δMAX and maximum allowed rotation δφMAX parameters (convergence celerity greatly 

depends on the values used for these two parameters). That is, all the positions inside 

domain D have the same probability to be chosen as new trial configurations. Thus:

→

→
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(20)

Two methods are commonly used in order to select the rotation axis ξ. In the 

method of Barker and Watts [27,28] ξ is chosen by uniformly sampling between the

axis x,y and z in a fixed frame of reference. The second method makes use of the Euler 

angles [29]. 

From the expressions (20), equation (16) for the Metropolis algorithm can be 

written as :

(21)

Expression (21) tells us that if Π is the canonical distribution function (7), given that

pij depends on the quotient Πj, / Πi, the calculation of the configurational integral

Z(N,V,T) is avoided. The change in potential energy of the system due to the trial move

determines if the attempted new configuration is accepted. 

2.2. CONVERGENCE ACCELERATION: PREFERENTIAL SAMPLING 

This method [24,26,30] is specifically suited for simulating solutions. A great deal of

the more interesting properties of solutions are essentially determined by the solute-

solvent and solvent-solvent interactions close the solute. This fact suggests that the 

convergence of many solution properties can be accelerated by mainly sampling in the 

vicinity of the solute in contrast with the Metropolis method that samples among all the 

solvent molecules with identical probability. 

The main idea of the method is to assign a weight function wi(γ) to each solvent

molecule γ of the configuration i so that the probability that a given γ is chosen for the

trial move is: 

(22)

This manner, if γ is the solvent molecule selected for the move:
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(23)

obviously now tij ≠ tij because

(24)

In order the microscopic reversibility condition (6) be fulfilled, pij must be expressed

as:

(25)

wi(γ) can be a function of the solute-solvent interaction energy, the orientation, the

distance, etc. wi(γ) is usually chosen as an inverted power of the distance r between the

solute and the g solvent molecule: 1/r, 1/r2 or even 1/(r2+ C), C being a given constant 

[31].

Solute motions follow a quite different pattern. The solute is perturbed after a given 

number of motions of the solvent. Hypothetically, the solute could remain motionless, 

which would correspond to place the system of coordinates in the solute molecule. 

However, from a statistical point of view it is better to allow some motion given the 

fact that if a solvent molecule is displaced, only one solute-solvent interaction is 

perturbed whereas if it is the solute that moves all the solute solvent interactions are 

modified.

2.3. ISOTHERMAL-ISOBARIC MONTE CARLO

The isothermal-isobaric ensemble (N,P,T) allows the simulation of chemical

systems at a constant temperature and pressure, such as 298 K and 1 at. which are the 

most usual experimental conditions. At a given set of (N,P,T) the probability density 

is not only dependent of q(N) but also of the volume V:

(26)

→
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where P is the pressure of the system and Z(N,P,T) the configuration integral in this 

ensemble

(27)

The essential changes with respect to the canonical ensemble is the substitution of 

The mean value of a mechanic magnitude M which is only function of q(N) and V 

the internal energy U by the enthalpy H = U + PV in equations (7) and (8). 

is given by: 

(28)

Monte Carlo method within this ensemble [29,30,32,33] differs from the canonical 

ensemble (N,V,T) in that the configuration variables are q(N) and V so that in the 

successive steps of the Markov chain not only q(N) must be perturbed but also the 

volume. For computational reasons it is convenient to introduce scaled coordinates: 

(29)

where L is the cell side length of the cubic lattice, being the coordinates yγ

dimensionless. Then, the sampling must be done over the variables (y(N),L). When one 

step of the Markov chain involves a change of L (and so of V) all the inter-particle

distances are scaled. Volume is not changed at every step. The more convenient 

frequency is empirically calculated. If it is too high, it is too much time consuming; if 

it is too low, a poor convergence of magnitudes related to V is found. 

The main drawback with the application of Monte Carlo method in this ensemble 

lies in the fact that, due to the perturbation [34] that must be applied to the volume, it 

takes approximately 15% more of computing time than in the canonical (N,V,T) 

ensemble. Another possible problem is that some interaction potentials may lead to 

unreasonable densities in the calculation. 

→

→

→

→

→

→
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3. Solvation of the Gas-Phase Stationary Points

In order to apply the Monte Carlo method to a chemical reaction in solution, two 

general problems immediately appear. Firstly, how do the configurational space have 

to be sampled? That is, which configurations are considered and what kind of chemical 

information can be extracted from them. Second, how is the potential energy of each 

configuration evaluated? The discussion of this last point will be delayed until section 

6.

Regarding the first problem, the most elemental treatment consists of focusing on 

a few points on the gas-phase potential energy hypersurface, namely, the reactants, 

transition state structures and products. As an example, we will mention the work 

[35,36] that was done on the Meyer-Schuster reaction, an acid catalyzed rearrangement 

of α-acetylenic secondary and tertiary alcohols to α,β-unsaturated carbonyl compounds, 

in which the solvent plays an active role. This reaction comprises four steps. In the first, 

a rapid protonation takes place at the hydroxyl group. The second, which is the rate 

limiting step, is an apparent 1 ,3-shift of the protonated hydroxyl group from carbon C1

to carbon C3. The third step is presumably a rapid allenol deprotonation, followed by

a keto-enol equilibrium that leads to the final product. 

For the rate limiting step in an aqueous acid medium, the intermolecular mechanism 

of Edens et al. [37] postulated a reaction path through a transition state structure 

involving the attack of one solvent water to the C3 center, while the protonated hydroxyl 

group leaves the C1 center and becomes a free water solvent. Such a transition state

structure was found on the 4-31G potential energy hypersurface, along with the 

corresponding reactant and product, for a gas-phase system consisting of an oxygen-

protonated methylbutynol plus one water molecule. Those gas-phase stationary 

structures were then taken as rigid solutes, and Monte Carlo (with the canonical 

distribution function) simulations at 300 K including 125 water molecules as solvent 

were carried out to reproduce the solvation effects. 

Because such a treatment implies that the solvent configurations are generated 

around frozen gas-phase geometries of the solute, it is evident that the solvent 

equilibrium hypothesis has been used, although in a way slightly different from the case 

of the clusters. In clusters, it is first assumed that solvent coordinates are at a minimum 

energy point for each fixed solute coordinates. Then, if necessary, the contribution of 

the remaining structures (arising from quantized vibrations) of each dividing surface 

(defined in a suitable orientation) is implicitly taken into account by means of the above 

mentioned statistical thermodynamic formulae. On the other hand, in a Monte Carlo 

simulation of a chemical reaction in solution the different classical configurations 

belonging to each dividing surface are explicitly generated. 

If only the solvation of the gas-phase stationary points are studied, we are working 

within the frame of the Conventional Transition State Theory, whose problems when 

used along with the solvent equilibrium hypothesis have already been explained above. 

Thus, the set of Monte Carlo solvent configurations generated around the gas-phase

transition state structure does not probably contain the real saddle point of the whole 

system, this way not being a correct representation of the conventional transition state 

of the chemical reaction in solution. However, in spite of that this elemental treatment 
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is not able to afford a quantitative estimation of the reaction rate, the detailed analysis 

of the solvent configurations can supply a lot of interesting qualitative information about 

the reaction mechanism. 

Turning back to the rate limiting step of the Meyer-Schuster reaction, a close look

of the inner solvation shells shows water arrangements that provide an useful molecular 

knowledge about the mechanism. At the reactant, the oxygen radial distribution function 

around the C3 center presents a very large peak. This fact, along with the 

characterization of the more significant structures, indicates that there are several water 

molecules in the solution correctly oriented so as to initiate a nucleophilic attack onto 

C3. The bulk supports these water molecules in the adequate position to produce the 

reaction, this way giving rise to a solvent caging effect. On the other hand, the solvation 

structure around the gas-phase transition state structure reveals the existence of some 

configurations in which "holes" (water occupation defaults) appear in the neighbourhood 

of the protonated hydroxyl group attached to the C1 center. These holes in the solvation 

shell make possible an outgoing channel to eject the water molecule bonded to C1, thus 

aiding the progress of the reaction. Finally, the protonated hydroxyl groups for the three 

gas-phase stationary points are seen to be fully solvated. The solvent water molecules 

in their neighbourhood are so orientated as to make possible hydrogen bondings with

them. Networks of hydrogen bonds are found which connect the reactive sites of the 

solutes.

4. Calculation of free energy differences 

Free energy is the key quantity that is required to determine the rate of a chemical

reaction. Within the Conventional Transition State Theory, the rate constant depends on

the free energy barrier imposed by the conventional transition state. On the other hand,

in the frame of the Variational Transition State Theory, the free energy is the magnitude

that allows the location of the variational transition state. Then, it is clear that the

evaluation of the free energy is a cornerstone (and an important challenge) in the

simulation of the chemical reactions in solution.

In order to fix ideas, we will consider in this section a canonical ensemble [38]. In

this ensemble, the Helmholtz free energy is straightforwardly related with the canonical 

partition function through

(30)

For a classical system of N point particles enclosed in a volume V,at a temperature T,

the canonical partition function can be decomposed in two factors. The first one (Qt)
comes from the integration over the space of momenta of the kinetic term of the

classical Hamiltonian, which represents the free motion of noninteracting particles. The

second one, which introduces the interactions between the particles and involves

integration over the positions, is the configuration integral. This way, equation (30)



140 A. GONZÁLEZ-LAFONT ET AL.

gives

(31)

The difficulty arises from the fact that the one-step transition probabilities of the 

Markov chain involve only ratios of probability densities, in which Z(N,V,T) cancels 

out. This way, the Metropolis Markov chain procedure intentionally avoids the 

calculation of the configurational integral, the Monte Carlo method not being able to 

directly apply equation (31). 

As a matter of fact, we are rather interested in free energy differences between

dividing surfaces. Then, if S# and SR stand for the dividing surfaces associated to the 

transition state and the reactants, respectively, taking into account that Qt is not

dependent of the dividing surface, the free energy barrier (∆F#) is written as

(32)

where each integral is just spanned over the set of configurations belonging to each 

dividing surface, respectively. The problem lies again on the fact that both integrals are 

just configuration integrals, although now they are confined in particular zones of the 

configurational space, their calculation not being possible in a Monte Carlo simulation. 

An equivalent way to envisage this problem is through the consideration that the 

probability of appearance of a configuration belonging to a S dividing surface is 

proportional to the corresponding configurational integral extended just over S. Thus, 

the free energy barrier could be obtained by means of 

(33)

where n(S#) and n(SR) represent the number of times a configuration belonging to S# or

SR, respectively, appears along a Monte Carlo run. In a straightforward Monte Carlo 

simulation, one would count the number of times configurations of a given dividing 

surface (S# in the present case) are visited during the course of a Monte Carlo run, in 

comparison with the number of times SR is populated. The quotient between both 

numbers yields a good estimation of the free energy barrier, provided that the run is 

long enough. 

However an important difficulty immediately arises when one realizes that we are 
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interested in a relatively rare event. The free energy barriers for chemical reactions in 

solution typically range from a few to many tens of kilocalories per mol. For example, 

if ∆F# ≈ 20 kcal/mol, at T = 298 K on average the transition state is reached only once

for each 1015 configurations corresponding to the reactants. The generation of such a 

number of configurations is completely impractical because it would require thousands

of years of computer time in a very fast machine. Even in this scale of time, a relatively 

poor statistics would be acquired for the transition state. Then, how are we to obtain 

meaningful statistics for these very infrequent events without wasting time populating 

irrelevant though accessible configurations? 

To circumvent this problem avoiding such inefficient exploration of the 

configurational space, several methods have emerged. Two particularly useful

approaches are the Umbrella Sampling and the Statistical Perturbation Theory. Both 

methods can be used either with Monte Carlo or with Molecular Dynamics simulations. 

4.1. UMBRELLA SAMPLING

Let us suppose that a transformation path along a suitable reaction coordinate r 

connecting SR and S# is defined. This is equivalent to define a set of dividing surfaces, 

each one formed by the ensemble of configurations that has a particular value of r. If 

the r coordinate is allowed to vary during the Monte Carlo simulation just like any other 

variable, the most straightforward (although quite inefficient) procedure is direct 

sampling of r according a Boltzmann distribution. The frequency of occurrence of 

different values of r during the simulation can be accumulated in the distribution 

function g(r), which is simply related to the relative free energy (or potential of mean 

force) of the system as a function of r by 

This way, the free energy barrier is given by 

(34)

(35)

where r# and rR are, respectively, the values of the reaction coordinate that define S# and

Unfortunately, as it has been above emphasized, the range of r values that can be 

reasonably sampled along a simulation is very limited. Umbrella Sampling [39-42] can 

sometimes provide a solution by using an artificial biasing potential energy function 

which is added to the potential energy U. It can constrain the simulation to sample a 

particular range of r values or flatten the energy barriers. Then, the Monte Carlo random 

walk is generated in the usual manner, but the configurations are selected with a non-

Boltzmann probability density 

SR.
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(36)

where U'(r) is the biasing umbrella potential. After such simulations, the effects of non-

Boltzmann sampling can be removed. Thus, the true distribution function, g(r), is 

recovered through 

(37)

where g'(r) is the biased distribution function and < >U+U' refers to a canonical average

in the biased system (that is, taking equation (36) as the probability density of the 

configurations).

If the entire range of the r reaction coordinate is still not spanned in a single 

simulation, importance sampling has to be used. That is, multiple simulations are 

performed with biasing umbrella potentials that center the sampling in different, 

overlapping regions of r (windows). The number of windows is chosen in order to cover 

the total range of r. Within each window the configurations are scanned to determine 

g(r). After the full range of r is studied in this way, the full g(r), and thus W(r), are 

found by requiring that these functions are continuous functions from one window to 

the next. Actually, the W(r) mean force potential is determined in each window to 

within an additive constant, which is a consequence of the fact that the g(r) distribution 

function is obtained in each window to within a normalization constant. Since windows 

are chosen in such a way that they have points in common with their neighbours, the 

g(r) values for each window have to be spliced together (i.e. the normalization constant 

must be adjusted from one window to the next) to obtain the overall g(r). 

The main difficulties of Umbrella Sampling are the choice of the biasing umbrella 

potentials and the verification of complete sampling for each window. 

4.2. STATISTICAL, PERTURBATION THEORY 

Free energy perturbation calculations [38,43-47] are based on a relationship easily 

derived from equation (31) 

(38)
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Here the free energy difference, ∆F, between states 1 (the perturbed state, with the U, 

potential energy) and 0 (the unperturbed state, with the U0 potential energy) is obtained

by a canonical average, < >0, evaluated by sampling based on the unperturbed state. If 

the perturbation is large, the average in equation (38) will converge very slowly.

Therefore, some care must be exercised to avoid overly large perturbations. In these 

cases the total change has to be broken into a series of small changes, in such a way 

that multiple simulations over intermediate states between 0 and 1 are carried out. Then,

the total free energy difference between the fully perturbed state, 1, and the unperturbed

state, 0, is obtained as the sum of the partial differences between two consecutive 

intermediate states. 

Many times it is convenient to define a coupling parameter, λ, that allows the 

smooth conversion of system 0 to 1. Then for many possible features ξ of the states, 

including geometrical and potential function parameters, equation (37) can be used to
represent the mutation of state 0 to 1 as λ goes from 0 to 1

(39)

The λ coupling parameter defines a set of intermediate hybrid states between the

unperturbed and the fully perturbed states. Then, the total change in the free energy is 

(40)

where U(λi) is the potential energy associated with the state defined by λ=λi, and

< >u(λi) indicates a canonical average evaluated by sampling over the intermediate state

The main advantages over umbrella sampling are the lack of need for biasing

functions and the complete control in choosing the sampled regime via the λ values.

However, the choice of λ values for optimal convergence of ∆F values requires some

testing. Depending on the way in which λ is changed, several implementations of the

free energy perturbation method are possible [48,49]: 

a) Window growth. In this procedure, the range 0 → 1 of λ is divided up into several

equally spaced intervals (windows), i.e., δλi = λi+1 - λi  = constant. For each value of 

λ, a Monte Carlo simulation is run firstly to equilibrate the system using the potential

appropriate for that value of λ, and then additional configurations are generated to

evaluate the corresponding ensemble average. 

In order to check the self-consistency, the simulations can be run in both directions,

i.e., λi → λi+1 and λi+1 → λi  except at the two end points.  This  is  known  as  double-ended

sampling [50]. It is facilitated by using double wide sampling, i.e., the free energy

λi.
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differences for λi → λi+1 and λi → λi-1 can be  obtained simultaneously since both  require 

sampling based on the λ i state. It is known [51] that the errors tend to cancel out when

the results of the two λ paths in opposite directions are averaged.

b) Slow growth. This procedure is the limiting case of window growth when δλ is very

small. It is assumed that if δλ is very small, at each window the system remains in near

equilibrium and the ensemble average can be approximated by its instantaneous value.

Thus, equation (40) leads to

(41)

each λi intermediate state being changed an infinitesimal amount over each step of the 

simulation.

c) Dynamically modified windows. This method is similar to window growth, except

that the width of each window δλ i is determined by the slope of the free energy versus

λ for recent windows.

5.   Variational Transition State Simulations for Chemical Reactions in Solution

The first microscopical computation of a free energy curve for a chemical reaction in 

solution was performed by the Jorgensen's group [41,52,53] ten years ago. They studied 

the degenerate SN2 reaction of chloride anion with methyl chloride in gas phase, in 

aqueous solution and in dimethylformamide (DMF): 

where C1' stands for the leaving chlorine. The interest for this kind of reactions arises

from the fact that the rates of SN2 reactions involving anions and polar molecules 

diminish up to 20 orders of magnitude on going from the gas phase to polar, specially 

protic, solvents. 

The basic procedure of the Jorgensen's approach (that we will outline along with 

the SN2 results) involves the following three steps: 

a) Determination of the gas-phase reaction path. 

6-31G(d) ab initio calculations were carried out to obtain the energies and geometries 

of the [ClCH3Cl']- cluster at a number of representative points on the gas-phase potential

energy surface. Both chloride anions and the methyl carbon were assumed to remain

collinear throughout the reaction. For fixed values of the CCl distance (rCCI), the

remaining geometric parameters were optimized in C3v symmetry. After the 

corresponding structures had been obtained, the reaction coordinate was defined as 

which reflects the symmetry of the reaction (this way, the gas-phase transition state 

rC = rCCI' - rCCI
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structure appears at rc = 0). The typical gas-phase double-well energy profile was 

obtained, in which the two minima corresponding to stable ion-dipole complexes (C1-

... CH3CI' or ClCH3 ... Cl1-) flanks the central barrier imposed by the symmetric

transition state structure. The calculated energy of the ion-dipole complex relative to the 

reactants (-10.3 kcal/mol) as well as the energy of the transition state structure relative

to the ion-dipole complex (13.9 kcal/mol) are in accord with the experimental 

complexation enthalpy (8.6 kcal/mol) and the estimated intrinsic barrier (11.6 kcal/mol 

± 1.8 kcal/mol). 

Since the statistical mechanics simulation requires a knowledge of the features of 

the solute along the reaction coordinate, the calculated geometric parameters and the 

energy were fitted into analytical functions of rc. However, the absolute magnitude of 

the variation of rCH was so small that this parameter was held constant in the 

simulations.

b) Development of the intermolecular potential energy functions. 

The potential energy of each configuration is obtained by adding three kinds of pairwise 

additive potential energy functions: the solute internal potential energy (i.e. the potential 

corresponding to the gas-phase reaction), the solvent-solvent interaction and the solute-

solvent interaction. These last two kinds of interactions were described through 

Coulomb (r-1) and Lennard-Jones (r-6 and r-12) terms, acting between various sites on 

the monomers. For water, the TIP4P model [54] was chosen. The interaction sites for 

the solute were located on its atoms. It has to be emphasized that the charges and 

Lennard-Jones terms for the solute atoms vary along the reaction coordinate. These 

parameters and their dependence on rc were determined from 6-31G(d) ab initio 

calculations on a large number of geometries of the CICH3Cl'- ... H2O cluster spanning 

the reaction coordinate. For the simulation in DMF, the same solute parameters as in 

the case of water, and the parameters previously obtained for DMF were adopted. 

c) Monte Carlo simulations of the reaction in solution. 

Monte Carlo simulations were carried out to determine the free energy curve for the 

reaction in solution. The simulations were executed for the solute surrounded by 250 

water molecules (or 180 DMF molecules) in the isothermal-isobaric ensemble at 25 °C 

and 1 atm, including periodic boundary conditions. As a consequence, the Gibbs free 

energy is obtained in this case. There is sufficient solvent to adequately represent the 

bulk participation in the chemical reaction. 

Umbrella Sampling simulations were carried out over six windows for water (seven 

for DMF), corresponding to biasing umbrella potentials centered at different ri values 

of the reaction coordinate (rc)

(42)

The system is constrained within limited ranges of rc by imposing a harmonic force. The 

force constants, ki were chosen to be progressively smaller when going from the gas-

phase transition state structure region to the reactants region, reflecting the expected 

steepness of the energy profile. The exponential function is added to ensure uniform 
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sampling, specially near the gas-phase transition state structure. 

Once the mean force potential was obtained, the free energy curve was built up, and 

the free energy barrier and the variational transition state were identified. The most

striking feature of the results was the almost unimodal nature of the free energy curve 

in water in contrast to the double-well profile in the gas phase. This is a consequence 

of the flattening of the ion-dipole minima, due to the partial desolvation of the chloride 

anion. The calculated free energy barrier in water (26.3 ± 0.5 kcal/mol) is in

quantitative agreement with the experimental value (26.6 kcal/mol), the enhancement 

of the free energy barrier in aqueous solution being due to the fact that the transition 

state with a disperse charge distribution forms weaker hydrogen bonds to water than the 

reactants. On the other hand, when the solvent is DMF, whose anion solvating ability 

is slower than that of water, the free energy curve was found to be intermediate between 

those for the reaction in gas phase and in aqueous solution, with the ion-dipole

complexes still appearing as free energy minima. The calculated free energy barrier in 

DMF turns out to be 19.3 ± 0.5 kcal/mol, the corresponding experimental value being 

22.7 kcal/mol. 

In both solvents, the variational transition state (associated with the free energy 

maximum) corresponds, within the numerical errors, to the dividing surface located at 

rc = 0. It has to be underlined that this fact is not a previous hypothesis (which would 

rather correspond to the Conventional Transition State Theory), but it arises, in this 

particular case, from the Umbrella Sampling calculations. However, there is no 

information about which is the location of the actual transition state structure in 

solution. Anyway, the definition of this saddle point has no relevance at all, because the 

Monte Carlo simulation provides directly the free energy barrier, the determination of 

the transition state structure requiring additional work and being unnecessary and 

unuseful.

Since for each dividing surface characterized by a particular value of rc the

remaining solute degrees of freedom are kept frozen (they take the values coming from 

the analytical functions), some kind of solute-solvent separation is still introduced. Then, 

solvent equilibrium hypothesis is used again. Only when the free motion of all degrees 

of freedom (excepting the one that defines the reaction coordinate) is allowed within 

each dividing surface, we can assure that no partition of the system is considered, the 

thermal equilibrium basic assumption of the Transition State Theory then being the 

unique hypothesis adopted. 

A similar methodology was applied by Madura and Jorgensen [55] to the 

nucleophilic addition of hydroxide anion (OH-) to formaldehyde (H2C=O) in aqueous 

solution. In this case, the reaction coordinate was defined as the distance between the

hydroxyl oxygen and the carbonyl carbon (rco). At each value of the reaction 

coordinate, complete 6-31+G(d) ab initio optimization was carried out for all other 

geometrical variables within Cs symmetry. The energy and the geometrical variations

along the reaction path were fitted into continuous functions through the use of cubic

spline interpolations [56]. In short, this procedure involves calculating the coefficients 

for a cubic polynomial for an interval between two points, at the same time smoothly 

splicing the intervals together, giving as the final result a continuous function. The 

reaction proceeds without energy barrier (there is no transition state structure) into a 
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deep well (35.2 kcal/mol) for the tetrahedral complex (rCO = 1.47 Å) in the gas phase.

Conversely, Umbrella Sampling (including the solute plus 269 water molecules at 25 

ºC and 1 atm) shows that an important free energy barrier (24-28 kcal/mol) is 

introduced by hydration with the transition state occurring at rCO = 2.05 Å. In contrast

to the SN2 reaction, the free energy barrier for the nucleophilic addition reaction in 

solution is nearly entirely solvent-induced. For both reactions, the principal source of 

this solvent-induced free energy barriers in water was found to be weakening of solute-

water hydrogen bonds on going from the charge-localized reactants to the more charge 

delocalized transition states. It is noteworthy that for this nucleophilic reaction a 

variational transition state appears in aqueous solution despite that no gas-phase saddle 

point exists. 

In the recent few years Statistical Perturbation Theory has become the most used 

method to calculate free energy changes. Thus, Jorgensen et al. began with the study 

of the effect of the hydration on the transition state for the SN2 chloride exchange 

reaction Cl- + CH3CI [57], and the SN1 reaction of t-ButCl in water to yield t-butyl

cation and chloride anion [45]. The free energy for this last system, including the solute 

plus 250 water molecules at 25 ºC and 1 atm, was determined as a function of the 

central carbon-chlorine distance, with the chloride anion maintained on the C3 axis of 

the t-butyl cation. The Statistical Perturbation Theory was applied by sequentially 

perturbing along the C-CI reaction coordinate in steps of 0.125 or 0.25 Å. In all 15 

Monte Carlo simulations were carried out to cover C-CI distances between 2.5 and 8.0

Å. Each value of the C-CI reaction coordinate defines the corresponding dividing 

surface. The difference in the ion pair-water interaction potential energies through 

equation (40) (taking into account that this simulation is done in the isothermal-isobaric

ensemble, the volume has to be periodically changed and the Gibbs free energy is 

obtained) gives the changes in free energy of hydration, ∆Ghyd. The total free energy

change, ∆Gtot, is then given by the sum of ∆Ghyd and the difference in interionic energies

(i.e., the solute internal potential energies) for the perturbation. The latter quantity is 

constant for a given perturbation since the chloride anion was kept on the C3 axis of the

t-butyl cation. The Monte Carlo simulations predict the occurrence of a contact ion pair 

at a C-CI distance of 2.9 Å, and the onset of the solvent-separated ion-pair regime near 

5.5 Å, the free energy barrier for conversion of the contact to the solvent-separated ion 

pair being 2.1 kcal/mol. 

Very recently the Jorgensen's group has updated his methodology in order to 

investigate the solvent effect in several pericyclic reactions [58]. The experimental 

problem stems from the observation that simple Diels-Alder reactions could show rate 

accelerations by factors of 102 to 104 in aqueous solution over hydrocarbon solvents. 

Comparable solvent dependence for the rates of Claisen rearrangements is reflected in 

the literature. Firstly, they have calculated the changes in free energy of solvation, ∆Gsol,

during the reaction of cyclopentadiene with methyl vinyl ketone in liquid propane, 

methanol and water [59]. The gas-phase ab initio MEP (that is, the intrinsic reaction

path) was determined going downhill from the transition state structure to reactants and 

product. A movie containing 65 frames (or solute structures) was obtained covering

reaction coordinate (defined as the average of the lengths of the two forming C-C

bonds) values from 1.5 to 8.2 Å. The Monte Carlo simulations were carried out in cells 
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containing 260 propane, 260 methanol or 500 water molecules plus the solute in the 

isothermal-isobaric ensemble. The system was perturbed between adjacent frames (43 

of the 65 frames were used, spaced roughly 0.15 Å apart) and the changes in free 

energy of solvation were computed via Statistical Perturbation Theory. A similar 

procedure was applied to the Claisen rearrangement of allyl vinyl ether [60], for which 

143 frames along the gas-phase MEP were generated. In this case, 59 of the 143 frames 

were used along the perturbation procedure, and 838 water molecules were introduced 

around the solute. From the analysis of the results of the simulations, it can be 

concluded that the enhanced rate for the Claisen rearrangement in water comes from 

both an increase in the strength and number of hydrogen bonds on progressing to the 

transition state, while for the Diels-Alder reaction of cyclopentadiene with methyl vinyl 

ketone the acceleration comes primarily from just an increase in hydrogen-bond

strengths.

Using the sequence of gas-phase MEP frames each dividing surface is defined by 

the set of solvent configurations that are generated around the frozen solute structure 

of each frame. Then, some kind of solute-solvent separation is assumed again. 

A case that deserves special attention is the corresponding to electron transfer 

reactions. These kind of reactions are processes of fundamental importance in physics, 

chemistry and biology. Computer simulations of a variety of electron transfer systems 

are of considemble current interest. Assuming a classical frame [61-63], the 

radiationless electron transfer occurs when a structure in which the precursor and 

successor diabatic potential energies are equal (the intersection region), is reached as 

a result of random thermal fluctuations in the nuclear configurations (involving both the 

solute and the solvent coordinates) of the precursor complex. The appearance of the 

proper fluctuations costs free energy. It is this free energy that determines the rate of

the reaction. The electronic coupling integral between both diabatic states is supposed 

to be large enough for the reactants to be converted into products with unit probability 

in the intersection region, but small enough to be neglected in calculating the amount 

of internal energy required to arrive to that region. 

Several authors [64-71] have shown that a convenient microscopic level choice 

of reaction coordinate for the computer simulations of electron transfer reactions is the 

nongeometrical parameter ∆E=Hss-Hpp, that is, the difference between the diabatic

potential energy hypersurfaces corresponding to the successor (Hss) and the precursor 

(Hpp) complexes, respectively. Using this nongeometrical variable, the transition state 

of the electron transfer reaction is considered to be the ensemble of isoenergetic 

structures, that is, the S* intersection region of the two diabatic potential energy 

hypersurfaces. However, this is a point of view corresponding to Conventional 

Transition State Theory. Within the frame of the Variational Transition State Theory, 

it is not obvious that S* is the best choice to define the transition state. Then, in order 

to study electron transfer reactions in solution, two main questions emerge. Firstly, is 

the ∆E parameter the most convenient choice to define the reaction path and, therefore, 

the set of dividing surfaces? Secondly, if ∆E is used as reaction coordinate, is S* the

bottleneck of the reaction? To illustrate these points we will focus [72,73] on the 

electrochemical reduction of methyl chloride in water, to give methyl radical and 

chloride anion, a dissociative electron transfer reaction. 
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To describe the electron transfer we have used a diabatic two-state model 

consisting of the methyl chloride surrounded by the solvent plus an electron inside an 

electrode (precursor complex), and the methyl chloride anion immersed in the solvent, 

once the electron has already shifted from the electrode (successor complex). For the 

sake of simplicity, the methyl group has been modeled by a unique interaction center, 

in such a way that the dC-Cl parameter is enough to specify the solute geometry. The 

energies of the Hpp and Hss diabatic potential energy hypersurfaces have been obtained 

by adding three kinds of pairwise additive potential energy functions: the solute internal

potential energy (which only depends on the dCCl parameter), the solute-water

interaction, and the water-water interaction. The first one is the potential corresponding 

to the gas phase reaction and merits some comments. In the absence of the solvent, the 

precursor complex consists of the methyl chloride plus an electron inside an electrode. 

Its energy is calculated as the sum of the methyl chloride energy and a constant value 

that represents the Fermi's energy level of the electrode. This Fermi's energy level has 

been chosen as the value that makes the reaction energy equal to zero in gas phase. As 

for the successor complex in gas phase, it is considered to be the methyl chloride anion 

in the electronic state that leads to the diabatic dissociation in chloride anion and methyl 

radical.

Thermal fluctuations have been generated [72] by means of the Monte Carlo

method in a canonical system that includes the solute and 200 water molecules at T =

298 K. For each generated configuration the value ∆E=Hss - Hpp has been calculated. 

The configuration space was partitioned in different subsets S, each one being

associated with a particular ∆Es value of the reaction coordinate ∆E (that is, each value

of ∆Es defines the corresponding S dividing surface). For practical purposes, the

criterion |∆E-∆Es| ≤ 5 kJ/mol has been adopted in order to classify a given

configuration as belonging to a S dividing surface. We have identified the reactants'

region (SR) with the most populated interval when the Hpp potential is used. Conversely,

the products' region (Sp) is the most populated interval corresponding to the Hss

potential. The intersection region S* corresponds to the interval centred at the value of 

∆Es =0 kJ/mol. Thus, the free energy barrier ∆F# corresponds to the evolution from SR

to S* .
Due to the high value of ∆F# for our reactions, the complete sampling of the

configuration space in order to obtain the diabatic free energy curves as a function of 

∆Es would require an extremely long simulation. unless Statistical Perturbation Theory

is used. However, there is no way to generate only configurations associated with a 

particular ∆Es value in each perturbational step. Then, a modification of the standard

Statistical Perturbation Theory due to Warshel's group [74-76] has to be used. A

mapping potential energy hypersurface of the form Hm=(1-λm)Hpp+λmHss is defined, Hpp

and Hss being calculated from the potential energy functions above mentioned. The 

parameter lm changes from 0 to 1 on movement from the precursor to the successor

states. With the Hm potential corresponding to λm=0 the most populated subspace is SR.

As λm increases, the system is forced to evolve towards the intersection region S*. With 

the Hm potential corresponding to λm=1 the most populated subspace is Sp. Now the

diabatic free energies corresponding to the precursor and the successor complexes along

the reaction coordinate are obtained by using the following expressions [72,74] as a
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function of ∆E s:

(43)

(44)

The last term of equations (43) and (44) involves ratios of partition functions. So, 

the factor is the probability that, using the Hm potential, the configurations

generated belong to the S dividing surface. The ratio in the equation (43) 

represents the probability that, using the Hpp diabatic potential, the configurations 

generated belong to the reactants’ dividing surface, SR. Analogously, the factor 

in the equation (44) represents the probability that, using the Hss diabatic potential, the

configurations generated belong to the products’ dividing surface, Sp.

The values ∆F0→ m and ∆F1→ m have been calculated by using standard

Statistical Perturbation Theory. Thus, equation (45) expresses the free energy difference 

between systems with mapping potentials Hj and Hj by

(45)

The average is for sampling based on the potential Hj, so the Hj potential corresponds

to a perturbed system. Therefore 

(46)

To transform the potential smoothly and to avoid large perturbations, λj has

been increased in small steps from 0 to 1. To evaluate numerically ∆F(∆Es) with

equations (43) and (44), we have used in each case the mapping potential Hm for which 

the most populated S subset is the one centred at ∆Es. Following this procedure, each

calculation converges very fast. 

On the other hand, the unique solute internal coordinate of the system, that is, the 

q(S)
m /Qm

q(SR)
pp /Qpp

q(Sp)
ss /Qss
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carbon-chlorine distance (dC-Cl), can be adopted [73] as an alternative choice to define

the reaction coordinate. This is a logical choice, because it corresponds to the

geometrical parameter that will be broken during the process. In this case each dividing 

surface along the reaction path consists of the set of configurations associated with a 

given value of the dC-Cl parameter. Two configurations belonging to the same dividing

surface only differ on the solvent coordinates. Thus, with dC-Cl = di, water molecules

have been moved to generate the configurations corresponding to the i dividing surface. 

For each generated configuration the potential energy has been evaluated as the 

min {Hpp,Hss}. The standard Statistical Perturbation Theory has been used to obtain the 

free energy change between the dividing surfaces, by sequentially perturbing along the

reaction coordinate in small steps of dC-Cl.

Note that the definition of the dividing surface (and even the definition of reactants 

and products) depends on the choice of the reaction coordinate. If ∆E is taken as a

reaction coordinate, each dividing surface consists of the set of configurations that has 

the same value of ∆E. This way, two configurations belonging to a given dividing

surface differ on the value of the dC-Cl parameter and/or the solvent coordinates, but all

of them correspond either to the precursor or to the successor complexes. The S*

intersection region is a special case of this kind of dividing surfaces. On the other hand, 

if the reaction coordinate is dC-Cl each dividing surface contains the ensemble of

configurations that has the same value of dC-Cl, but different solvent coordinates. This

way, in principle, some configurations of a given dividing surface could be associated

with the precursor complex and other configurations in the same dividing surface could 

correspond to the successor complex. 

Analysis of the both kinds of Monte Carlo simulations shows some differences

between the two reaction coordinates. The dC-Cl transition state (in the variational sense,

that is, the dividing surface that maximizes the free energy) appears at dC-Cl=2.11 Å,

imposing a free energy barrier of ∆F# = 91.4 kJ/mol, and involving a wide dispersion

of ∆Es values. It has to be mentioned that the gas phase transition state structure,

obtained as the crossing point between the two diabatic solute internal potential energy 

curves, appears at dC-Cl=2.28 Å. It is clear that the transition state in water had to appear

at lower dC-Cl values than the gas phasc transition state structure, because in water the

successor diabatic solute internal potential energy curve (that is derived from a charged

species) is noticeably stabilized due to the interaction with the polar solvent.

On the other hand, when the parameter ∆E is taken to define the reaction

coordinate, the variational ∆E transition state that maximizes the free energy change

turns out to be the S* dividing surface, that is, the same transition state that would be

expected within the Conventional Transition State Theory. Anyway, it has to be noted 

that the statistical noise is probably much too large for slight displacement away from

S* of the transition state along the ∆E reaction coordinate being detected. A scanning

of the configurations belonging to the S* transition state shows a spread of C-Cl

distances (centred about 1.90 Å) that clearly appears at lower dC-Cl values than the gas

phase transition state structure and the dC-Cl transition state as well. The first fact, due

to the solvent effect, was expected, but the second one rather introduces a discrepancy

between the two simulations. It has to be remarked that the important dispersion of ∆Es

values and the dC-Cl values at the dC-Cl transition state and the ∆E transition state,
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respectively, in solution is completely analogous to the appearance of many structures 

of the dividing surface arising from vibrations orthogonal to the Minimum Energy Path 

for a normal reaction in gas phase.

The transition states arising from each reaction coordinate are a logical consequence 

of different ways to cut (or classify) the configuration space. The ∆E parameter as a

reaction coordinate provides a free energy barrier of 82.2 kJ/mol, a value 10% lower 

than the one that arises from the dC-Cl reaction coordinate. Although the relative 

difference in free energy is not excessively big, it is clear that each reaction coordinate 

leads to a distinct kinetic description of the reaction. We feel that the nongeometrical 

parameter ∆E, which involves a suitable combination of the dC-Cl and the solvent

coordinates, is the best choice as reaction coordinate for dissociative electron transfer 

reactions in solution and, probably, for whatever kind of electron transfer reactions in 

solution, because permits a best sampling within each dividing surface defined in the 

configurational space.

6. Potential Energy Calculation

In this section we will briefly review some of the main different approaches that have 

been used up to now in order to evaluate the potential energy of each configuration in 

a Monte Carlo run. As we have already stated, the force fields that describe intra- and

intermolecular interactions are at the heart of such statistical calculations because the 

free energy differences that we want to evaluate are directly dependent on the changes 

of those interactions. In fact, the important advances of the last ten years in the power 

of computer techniques for chemical reactions in the condensed phase, that we have 

mentioned in the Introduction, have been due, to a great extent, to the continual 

evolution in force fields, with added complexity and improved performance. 

Most usually, the performance of those potential energy functions has been carefully 

tested at the same time that the new force fields were coming up and their applications 

were being published. It can be said that testing the functions in the prediction of well 

characterized experimental observables can never be overdone; however, it may receive 

inadequate attention in the rush toward the latest challenging application on complex 

molecular systems. The statistical mechanical equations that are the basis for the 

evaluation of the free energy differences (Section 2) are exact and the source of any 

errors that result from the computational implementation of these is due to the 

description of the Hamiltonian (reduced to the potential energy in a Monte Carlo 

calculation) and the ability to sufficiently sample the relevant microstates. Since the 

latter is also related to accuracies in the Hamiltonian, the success of the free energy 

methods, in general, and their broader application is dependent of accurate descriptions 

of the potential energy functions. 

A rigourous way to evaluate the total interaction potential energy, would 

be the formulation and resolution of the Schrodinger equation for the whole system at 

each configuration. However, given the size of the samples where the statistical 

simulations are performed, this method is impracticable. 

Alternatively, for a system of N interacting molecules, in a given 
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configuration, defined as the difference between the energy of the system and that of

the separate components at infinite distance: 

(47)

can be expanded in a series of n-body separate terms [77,78] 

(48)

where the indexes α, β, γ refer to the different molecules of the system and the 

summation extends over all the possible doublets (α, β), triplets (α, β, γ), and so on. 

We have already introduced, in Section 2 , the pair potential function V(2) as the

interaction energy of a pair of molecules 

(49)

The higher order n-body functions V(3), V(4),... can be obtained recursively considering 

sets of three, four, ... molecules and applying equation (48) successively. Thus, one can 

write

(50)

The U values are always calculated according to equation (47) (taking the adequate N 

value in each case) and the required energies E can be obtained from standard quantum 
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mechanical methods. 

Most of statistical-mechanical computer simulations are based upon the assumption 

of pairwise additivity for the total interaction energy, what means to truncate the right 

side of equation (48) up to the two-body term. The remaining terms of the series, which 

are neglected in this approach, are often known as the nonadditive corrections. 

Assuming the hypothesis of additivity of the interaction energies, inter- and intra-

molecular pair potentials V(2) have to be developed in order to obtain values of

through equation (12). 

In a statistical Monte Carlo simulation the pair potentials are introduced by means 

of analytical functions. In the election of that analytical form for the pair potential, it 

must be considered that when a Monte Carlo calculation is performed, the more time

consuming step is the evaluation of the energy for the different configurations. Given 

that this calculation must be done millions of times, the chosen analytic functions must 

be of enough accuracy and flexibility but also they must be fastly computed. In this way 

it is wise to avoid exponential terms and to minimize the number of interatomic 

distances to be calculated at each configuration which depends on the quantity of 

interaction centers chosen for each molecule. A very commonly used function consists 

of a sum of r-n terms, r being the distance between the different interaction centers,

usually. situated at the nuclei. In particular, non-bonded interactions are usually 

represented by an atom-atom centered monopole expression (Coulomb term) plus a 

Lennard-Jones 6-12 term, as indicated in equation (51). 

(51)

In this expression, i and j are the interaction centers in α and β molecules, respectively,

Aij and Cij are adjustable parameters that describe the interaction between i and j, qj and

qj are the charges associated with centers i and j and, finally, rij is the distance between 

i and j. The parameters, of whom pair potentials depend on, can be fitted to reproduce 

theoretical results, experimental data or a combination of both. 

The first option involves the obtainement of an analytic function that reproduces the 

interaction energy between couples of molecules which has been calculated by solving 

the Schrodinger equation usually by means of an ab initio method. The advantge of this 

possibility is that information about any potential energy hypersurface point can be

obtained from the calculation whereas experimentally this is not always possible. The 

practical procedure in order to build up an ab initio pair potential for the interaction 

between two molecules α and β can be divided in four steps.

a) By keeping fixed the α molecule, a wide span of orientations and

distances of the β molecule with respect to the α molecule, have to be selected so that

all the configurational space for the (α, β) pair is represented. It is of special importance

to well decribe the low energy zones of the hypersurface. As α and β become bigger

and have less symmetry more configurations will be needed in order to consider the

U(q
→ (N))
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whole space.

b) Evaluation of the interaction energy U for each configuration. 

When choosing the level of calculation it must be taken into account that it will be 

usually necessary to compute a huge number of configurations. If a very extended basis 

set is used and a Configuration Interaction scheme (CI) is performed in order to 

incorporate the correlation energy, the computation time needed can be unattainable. On 

the other hand a minimal basis set may not be enough and require corrections due to 

the superposition basis set error. 

c) Election of an analytic form for the pair potential. We have already 

mentioned the most widely used analytical expression (Coulomb + Lennard-Jones

terms). However, a great deal of examples of other type of potentials can be found in 

the literature [79-90]. 

d) The potential parameters are fitted, in the best possible way, to the 

interaction energies calculated for the different configurations. Normally the least square 

method is used. Once the function has been obtained some additional tests must be run 

in order to guarantee the reliability of the potential. Sometimes it is convenient to 

introduce a weight function in the fitting process so that the role of some regions of the 

hypersurface-those of low energy in particular-is enforced [91,92]. 

The obtainment of pair potentials through the fitting to theoretical results have some 

drawbacks: a) the computer time needed if a relatively high level calculation is used; 

b) the difficulty to correctly evaluate the dispersion energy; c) obviously, the obtained 

pair potentials do not include any n-body corrections. 

The question of the importance of nonadditive corrections has been largely 

discussed and a growing body of results shows that many body effects can affect 

properties (specially for solutions of multivalent ions) in non-negligible ways [93- 104].

In fact, in the failure of pairwise additivity for cation-water potentials, there are two 

aspects of the problem to be considered. The first one concerns the long-range

behaviour of the ground state potential of M(H2O)q+ systems, with q ≥ 2. In most cases

(exceptions are Mq+= Ca2+,Sr2+,Ba2+) the electron affinity of Mq+, i.e. the qth ionization

potential (IP) of M, is larger than the first IP of water. Therefore, at large M - (H2O)

distances, the ground state of the system is represented by the charge-transfer (CT) 

configuration M(q-1)+ (H2O)+ and the long-range potential is repulsive. The presence of

an avoided crossing between CT and non-CT states can be important in vacuo but it is 

quite irrelevant in solution because the +q charge of the cation is strongly stabilised by

the solvent. This problem is not considered when constructing ab initio potentials for 

simulations. In fact, the restricted Hartree-Fock cation-water wave functions yield 

necessarily the Mq+ - (H2O) dissociation, at least for closed shell cations. This is 

qualitatively adequate for the study of the liquid phase although not correct in vacuo. 

In this sense some ab initio potentials should be considered as "effective" potentials.

The second problem concerns the strength of the binding between a cation and the 

second, third and following water molecules in a complex. Induction and charge-transfer

energy terms, important at short distances, are clearly nonadditive. Simulations based 

on uncorrected pair potentials that do not incorporate such effects, have consistently 

overestimated the binding properties of cation-water complexes. For that reason, 

hydration numbers estracted from Monte Carlo or Molecular Dynamics correlation 
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functions are often greater than experimental results and enthalpies and free energies of 

hydration are clearly overestimated for monocations as well as dications 

[51,84,99,103,105].

The problem of nonadditivity can be attacked in several ways. The most rigourous 

approach is to include the many-body terms in the potential energy function. The main 

practical difficulty in order to include the nonadditivity corrections is the calculation of 

energies E of equation (47). In addition, in some cases the series (48) slowly converges

and the successive steps have alternate signs. When used, three body potentials have 

been found to reproduce correctly hydration numbers and free energies [106]. Other 

authors [107] have computed the interaction pair potential between a water molecule 

and the M(H2O)n
q+ complex as a whole. Those two approaches, though, increase the

cost and complexity of the calculations. A different possibility, that we will further 

discuss, consists of defining "effective" pair potentials that represent the average 

interaction of a water molecule with a cation already solvated by other molecules. 

These "effective" pair potentials can be derived from experimental data or from 

calculations on cation-water clusters. Recently, Tomasi and col. [108] have presented 

an "effective" pair potential based on the Polarizable Continuum Model (PCM) of the 

solvent. Molecular Dynamics simulations performed with their effective potential were 

succesful in predicting the correct hydration number for Fe2+ and Fe3+.

Nonadditivity corrections have also been shown to play a non-negligible role in the 

formation of hydrogen bonds in polar liquids such as water. In the development of 

pairwise additive energy functions, derived from quantum mechanical calculations, for 

describing water properties, the work of Clementi et al. [109] is one of the major recent 

efforts in this direction. Obviously, these potentials correctly describe the water dimer 

in the gas phase but the description of the liquid is rather poor from a quantitative point 

of view. In order to get accurate values for a wide spectrum of liquid water properties, 

it is essential to include many-body effects, which are mainly due to polarization and 

charge transfer. Three- and four-body corrections [97,110] to the MCY potential have 

been proposed by Clementi's group and applications of this potential have confirmed the 

previous conclusion for static and dynamics properties as well. Recently, a new 

potential, NCC [111], has been derived from the MCY potential which explicitly 

incorporates many-body effects due to polarization. Finally, other authors [112,113] 

have also proposed a model of polarizable molecules in which the induced dipole 

moment on each molecule is treated as a separate degree of freedom, fixing the 

permanent dipole moment at the gas phase. 

The second option in the development of pair potentials is the use of "effective"

two-body functions, whose parameters are derived by requiring a fit to a number of 

liquid properties. The key assumption in "effective" two-body potentials is that many-

body interaction energies can be incorporated into the parameters that are evaluated as 

two-body interaction energies. For water, this leads to partial charges on the oxygen 

and hydrogen atoms that correspond to a dipole moment of the water molecule of about 

2.4 D [54], considerably enhanced over the gas phase value of 1.85 D. Then the study 

of the water dimer using such "effective" potentials leads to equilibrium geometries with 

too short intermolecular distances and too overestimated stabilization energies. The 

classic work by Rahman and Stillinger [114] describes the first application of an 
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"effective" potential (ST2) to water using Molecular Dynamics, and the potentials SPC 

[115], TIPS3 [116], TIPS2 [117], TIP3P [54] and TIP4P [54] are refined versions of

this approach. All of the potentials mentioned, assume a fixed geometry of the water 

molecule. The cooperative effect between water molecules implies the nonadditivity of 

the pairwise potentials because of the many-body effects but due to the strengthening 

of the hydrogen bonds it also implies modifications of the intramolecular OH distances. 

Two type of flexible water-water potentials, that go beyond the rigid water 

approximation, have been employed (the BJH [118] and the MCYL [119] potentials).

Jorgensen and col. extended their TIPS (Transferable Intermolecular Potentials for 

Simulations) [120- 122] to several organic liquids. More recently, they developed a new 

generation of "effective" potentials, which received the denomination of OPLS 

(Optimized Potentials for Liquid Simulations) [123-127]. The standard OPLS philosophy 

can be summarized in the following three points: 1) to keep the form of the potentials 

simply and easy to evaluate, 2) to include as few new parameters as possible, 3) to 

produce structural and thermodynamic properties in reasonable accord with experiment. 

The OPLS model is an example of pair potential where non-bonded interactions are 

represented through Coulomb and Lennard-Jones terms interacting between sites centred 

on nuclei (equation (51). Within this model, each atomic nucleus has an interaction site, 

except CHn groups that are treated as united atoms centered on the carbon. It is 

important to note that no special functions were found to be needed to describe

hydrogen bonding and there are no additional interaction sites for lone pairs. Another 

important point is that standard combining rules are used for the Lennard-Jones

interactions such that Aij = (Aii Ajj )1/2 and Cij = (Cij Cij)1/2. The A and C parameters 

may also be expressed in terms of Lennard-Jones σ's and ε's as Aii = 4εi σi
12

 and Cii

The OPLS parameters (charges and Lennard-Jones terms) were obtained primarily

via Monte Carlo simulations with particular emphasis on reproducing the experimental 

densities and heats of vaporization of liquids. Those simulations were performed 

iteratively as part of the parametrization, so better agreement with experiment is 

obtained than in previous studies where the simulations were usually carried out after 

the parametrization. Once the OPLS parametrization was completed, further simulations 

were also performed in order to test the new set of parameters in the calculation of 

other thermodynamic and structural properties of the system, besides its density and 

its heat of vaporization. Parameters have now been generated, among others, for water, 

alkanes, alkenes, alcohols, amides, alkyl chlorides, amines, carboxylic esters and acids, 

various sulfur and nitrogen compounds, and nitriles. A protein force field has been 

established as well. 

In view of the simplicity of the functional form, the accord with the experimental 

data is remarkable. The average deviation between the experimental data and the 

theoretical results is less than 3%. For instance, average errors of 1-3 % are obtained 

[128] for the computed densities and heats of vaporization of alkyl ethers, including 

results for tetrahydrofuran at pressures up to 5000 atm. This last result provides further 

evidence of the robustness of the potential functions under a variety of conditions. In 

the same work, Jorgensen and col. show how the experimental trend of linearity of 

∆H vap with increasing length of the molecule for the acyclic series of ethers: dimethyl

=4εi σi
6.
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ether, ethyl methyl ether, diethyl ether, and tetrahidrofuran, is reproduced by the OPLS 

potentials and that is primarily attributable to increasing Lennard-Jones attraction. 

In Monte Carlo simulations carried out for parametrization, standard geometries, 

with fixed bond lengths and bond angles, were used for the different molecules although 

torsional motion was usually included. For instance [128], for ethyl methyl ether and 

diethyl ether, rotations were allowed around the central C-O bonds. The form of the 

torsional potential for ethyl methyl ether, which has only one dihedral angle, is given 

by a Fourier expansion. In general, then, the expression for the analytical function is 

augmented by a term of the form: 

(52)

For molecules that have two dihedral angles, like diethyl ether, the Fourier series needs 

to be augmented by a Lennard-Jones potential. The coefficients of those Fourier 

expansions were obtained from a fit to molecular mechanics (MM2) calculations. The 

present torsional potential gives a gauche-trans energy difference of 1.51 kcal/mol for 

ethyl methyl ether, that compares well with a value of 1.5± 0.2 kcal/mol reported from 

an electron diffraction study. However, energy barriers evaluated from IR and Raman 

studies imply a gauche-trans energy difference of 1.13 kcal/mol. 

In order to provide a complete energetic description of biomolecular systems, the 

intramolecular terms for bond length and bond angle variations as well as the torsions 

and non-bonded terms need to be included. Since substantial work had been done on 

the former items by others, Jorgensen et al. [127] decided to merge the OPLS non-

bonded potential functions and the local vibration and torsional functions from another 

force field. AMBER [129] was chosen because it is widely used and because its 

documented success in comparison with other force fields. The resulting potential was 

called OPLS/AMBER model. The bond stretch an angle bend terms in AMBER are 

quadratic , while the torsional potentials consist of a cosine term plus the 1,4-non-

bonded interaction, both Coulombic and Lennard-Jones. Jorgensen et al. [127] reported 

parameters for 25 peptide residues as well as the common neutral and charged terminal 

groups. The parameters were obtained and tested primarily in conjuction with Monte 

Carlo statistical mechanics simulations of 36 pure organic liquids and numerous aqueous 

solutions of organic ions representative of subunits in the side chains and backbones of 

proteins.
From a structural point of view the OPLS results for liquids have also shown to be 

in accord with available experimental data, including vibrational spectroscopy and 

diffraction data on, for Instance, formamide, dimethylformamide, methanol, ethanol, 1-

propanol, 2-methyl-2-propanol, methane, ethane and neopentane. The hydrogen bonding 

in alcohols, thiols and amides is well represented by the OPLS potential functions. The 

average root-mean-square deviation from the X-ray structures of the crystals for four 

cyclic hexapeptides and a cyclic pentapeptide optimized with the OPLS/AMBER model, 

was only 0.17 Å for the atomic positions and 3% for the unit cell volumes. 
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As we have already noted, in the development of the OPLS potentials the 

introduction of new parameters has been kept to a minimum. For instance, only 12 

different CHn groups are used to describe all alkanes, alkenes, and benzene, and, for 

exemple, the parameters for the OH groups in all alcohols and the carbonyl groups in 

all amides are the same. Also, standard alkyl group parameters were used in ethers for

those groups that are at least one atom removed from the ether oxygen. It has been 

established that Lennard-Jones parameters, ε and σ, are in general transferable to larger

molecules from their components, while the choice of partial charges for a new 

molecule is the main problem. As we have already explained, the OPLS partial charges

were optimized typically through iterative fluid simulations to reproduce experimental 

results. However, another remarkably simple approach was also considered and then 

supported by the subsequent simulations of aqueous systems and pure liquids. We refer 

to the study of substituted benzenes [130]. In that case the parameters for benzene and 

the substituents were simply merged. These intermolecular potential functions, besides 

their simplicity, have shown to exhibit good success in reproducing experimental 

densities and heats of vaporization of pure liquids. Although in the case of aniline some 

readjustement in the charge distribution had to be done. 

The OPLS charge distributions and the adopted standard geometries can be 

combined to yield calculated dipole moments. For instance, the OPLS dipole moments 

for aliphatic ethers and alcohols are greater than experimental values for isolated

molecules by 0.5 - 0.6 D [ 130]. For substituted benzenes those differences range from 

0.12 D in toluene to 0.66 D in benzonitrile. For aromatic ethers and alcohols the OPLS 

dipole moments are higher than the experimental values, similar to the situation with 

the aliphatic analogs, while the OPLS dipole moments in the nitrogen-containing

systems are lower than the experimental ones. The authors of the OPLS model assert 

that coincidence between experimental and OPLS dipole moments is not sought in view 

of the limitations of the partial point-charge model and the desire of the OPLS 

potentials to focus on reproducing liquid-state properties. An interesting test of the 

OPLS potentials was carried out by Jorgensen et al. [131] in calculating the cis-trans
free energy difference for N-methylacetamide (NMA). The authors report ab initio 6-

31G(d) calculations that predict the dipole moment for cis-NMA to be larger than that

for trans-NMA, 4.21 vs 4.04 D. This order is, of course, interesting because, from

classical electrostatics, the isomer with the larger dipole moment is expected to be better

solvated, though this theory simplifies the solvent to structureless dielectric medium. 

These computed dipole moments are consistent with experimental results [132,133] for 

NMA, which range from 3.85 D in benzene to 4.22 D in 1,4-dioxane. However, by 

using the OPLS charge distribution derived for trans-NMA for both conformers (i.e.,

assuming that charges are independent of conformation) and standard geometries, 

Jorgensen et al. [131] obtained dipole moments of 3.86 and 4.23 D for cis- and trans-
NMA, respectively. This incorrect order was also attributed by the authors to the 

inadequacies of computing dipole moments from point charge distributions, particularly 

when atoms, that formally have lone-pairs of electrons, lire present . However, it turns 

out that the order can be reversed by an all-atom model for the CH3 group on nitrogen 

or by the use of slightly different charge distributions for the cis and trans form.

The parametrization of the OPLS potentials also entailed the careful consideration 
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of the interaction between organic molecules and a water molecule. The water model 

used in conjunction with the OPLS potentials was TIP4P, though the TP3P or SPC

models yield very similar results. For most purposes these three alternatives may be 

interchangeable, though the slightly more complicated TIP4P model gives a better 

description of the angular variation of hydrogen bond energies. Complexes of a water 

molecule with amides, ethers, esters, alcohols, thiols, sulfides, azoles, and azines, for 

exemple, were studied with the OPLS potentials as well as ab initio molecular orbital 

calculations primarily with the 6-31G(d) basis set. The trends in the ab initio findings 

for the hydrogen bond strengths and geometries are well reproduced by the OPLS 

results [124,126,134,135]. For instance, Nagy et al carried out theoretical studies on the 

hydration of pyrrole, imidazole and protonated imidazole in the gas phase and in 

aqueous solution [136]. In this case, they found that the OPLS geometric parameters 

and relative energies for the monohydrates are closer to values obtained in the MP2/6- 

31G(d) calculations than the HF/6-31G(d) results. Gas phase monohydrates optimized 

at the HF level have hydrogen bond distances longer by about 0.18, than the MP2 

values. Using the OPLS interaction potential the bond distances were shorter than the 

MP2 values by 0.02-0.17 Å, but follow the tendency found in the ab initio calculations. 

The hydrogen bond angles from all three methods are close. The only remarkable

difference between the OPLS and MP2 results were found for the imidazole hydration

at its N3 site. The OPLS potential favors out-of-plane hydration over the in-plane one, 

in contrast to the ab initio results. Relative dimerization energies with the OPLS 

potential are close to the BSSE corrected MP2/6-31G(d) values. The only remarkable 

exception is again the hydration of the neutral imidazole at the N3 site.

Furthermore, Monte Carlo simulations [125,130,137] were carried out for dilute 

aqueous solutions of formamide, NMA, dimethylformamide (DMF), methanol, seven 

alkanes, substituted benzenes, among others. For the amides, experimental structural 

data are limited; however, the computed numbers of amide - water hydrogen bonds are 

reasonable and the computed heats of hydration, ca. -20 kcal/mol, are in the correct 

range. Similarly, the hydration of methanol appears reasonable and the computed 

difference in free energies of hydration for methanol and ethane, 6.75 ± 0.2 kcal/mol, 

is in excellent accord with the experimental value 6.93 kcal/mol. Taking into account 

the uncertainties in the data, experimental as well as theoretical, the accord between the 

Monte Carlo and measured absolute free energies of hydration for substituted benzenes 

compared by Jorgensen et al., is nearly perfect. The accord is particularly notable given 

the simple origin of the OPLS parameters for the substituted benzenes and the 

significant range of free energies of hydration. The worst discrepancies are for 

hydroquinone (1.3± 0.5 kcal/mol) and possibly benzonitrile (1.3 ca ±1 kcal/mol). In 

general, then, the OPLS model has proven to be accurate in its calculation of solvation 

free energies. This is because the model is inherently well-balanced due to the kind of 

parametrization undertaken by their authors. 

In the study of reactivity, Jorgensen and col. have normally used both, the OPLS 

model and potential functions derived from ab initio calculations. As we have already 

indicated, when intermolecular pair potentials are applied to the study of a chemical 

process, the evolution of charges, as well as the Lennard-Jones terms, along the reaction 

coordinate, has to be considered. For the SN2 reaction in water between chloride anion 
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and methyl chloride, that we discussed in Section 5, Jorgensen and col. [41,52] used a 

simple functional form of the reaction coordinate for the potential function parameters 

describing the solute-solvent interaction. The TIP4P model was assumed for water 

monomers. Since all the geometric parameters showed the same qualitative variation 

along the reaction, Jorgensen and col. adopted the same kind of function for the q, A 
and C terms for the four distinct sites, Cl, Cl', C and H, of the solute. Those parameters

for reactants and the transition state structure were determined based on ab initio 

interaction energies and geometries of Cl-(H2O), CH3Cl(H2O) and several structures of 

the monohydrated transition state structure. The q, A and C parameters were determined 

from these data via non-linear least-squares procedure. The mean error in comparing the 

predicted interaction energies of 71 solvated structures with the corresponding 6-31G(d)

values is only 0.78 kcal/mol for energies which cover a range of 22 kcal/mol. Further, 

the simple potential function correctly describes all the key features of the solute-solvent

interaction in the system, in particular, hydrogen bonding. It may be noted that the 

Lennard-Jones terms for C and H as well as the A parameter for Cl were kept constant 

over the entire reaction, as they showed negligible variation. Also, the charge on the 

hydrogen atoms was forced to yield a net unit negative charge for the solute during the 

simulations.

As mentioned above, for the simulation in dimethylformamide (DMF) of the same 

reaction [53], the parameters for the substrate were not changed from the 

parametrization in water. For DMF the parameters were adopted from the OPLS 

parametrization of the pure liquid. The transferability was tested in part by performing 

a Monte Carlo simulation for CI- plus 128 DMF molecules and evaluating the heat of 

solution for the chloride ion. The obtained value compares favorably with the 

experimental estimate. It is important to remark here that when potentials are used to 

simulate different solutions to the ones used in the parametrization process, they no 

longer are "effective" potentials. This fact becomes more evident in the simulation of 

solutions of small ions with localized charge that polarizes the neighboring solvent 

molecules. In this case it is convenient to consider the n-body corrections. 

An interesting application of the OPLS potentials along areaction coordinate is the 

study by Jorgensen and col. of solvent effects on the barrier to isomerization for a 

tertiary amide as N,N-dimethylacetamide (DMA) [138]. Solute-solvent potential 

functions were refined by fitting to results of 6-31G(d) calculations for the ground and 

transition state structures interacting with a water molecule in 17 low energy 

orientations. The only parameters that were varied to reproduce the ab initio complex 

energies and structures were the partial charges for DMA. For a balanced fit to the 6-

31G(d) data, minor variations to the OPLS charges for the ground states were made and 

one charge set sufficed for the transition state structures. These potentials were used in 

Monte Carlo simulations that yielded the changes in free energies of solvation in TIP4P 

water and the OPLS model of carbon tetrachloride. Two difficulties arose in the fitting. 

It was not possible to reproduce the 6-31G(d) ordering for two of the eight ground 

states considered. Thus, the ab initio calculations indicate a 0.7 kcal/mol preference for 

the complex with the water anti to the nitrogen, while the fitted potentials favor the 

water syn to the nitrogen by 0.8 kcal/mol. Many different charge distributions were tried 

with both united-atom and all-atom models without success in reproducing the ab initio 
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order. The authors [138] observe that it would be desirable to confirm the 6-31G(d)

order with higher level optimizations including correlation corrections because the 

potential functions reflect some correlation effects through the Lennard-Jones terms. The 

only other notable discrepancy was for two ground states with the C=O...H—OH 

fragment collinear. The interaction is uniformly too attractive with the potential 

functions, probably owing to the inadequacies of the simple point charge description for 

the electron density on the oxygen. The geometrical results from the potential functions 

compare well with the 6-31G(d) predictions. The average difference for the bond angles 

is 11° and the intermolecular distances are uniformly 0.1-0.2 Å shorter from the

potential functions. The latter feature is normal and comes from the use of Lennard-

Jones s's that are appropiate for yielding correct liquid densities.

In the calculations [45] of the free energy profiles for the separation of tert-butyl

cation and chloride anion in dilute aqueous solution, the necessary carbenium ion-water

potential functions were obtained from ab initio molecular orbital calculations with the 

6-31G(d) basis set. In fact, only the charge and the Lennard-Jones σ's were varied since

the ε's were assigned from experience with other systems and are not very important

in comparison with the dominant Coulombic interactions. The TIP4P model was

assumed for water along with previously reported parameters for Cl' that had been 

tested in Monte Carlo simulations for Cl- in TIP4P water. In these calculations for the 

ion pair region in the hydrolysis of t-BuC1, Jorgensen et al. assumed that complete

ionization had occurred, i.e., t-Bu+ and Cl- have unit charges at all separations. Thus, the

charge separation for the contact ion pair should be essentially complete since it is 

further along the reaction coordinate. This assumption simplified the potential functions 

since the charge distributions and Lennard-Jones parameters could be taken as invariant 

along the reaction coordinate. In the study of the effect of hydration on the Cl- + CH3Cl

SN2 transition state structure, Jorgensen et al. [57] used again the TIP4P model to 

describe water-water interactions while the potential functions for the water-transition

state structure interactions were derived from ab initio 6-31G(d) calculations on 

monohydrated complexes. The Lennard-Jones parameters for the transition state 

structure were kept fixed for all values of the reaction coordinate, the distance between 

C and Cl (rCCl). The key item was then the alterations in the charges. 6-31G(d)

calculations were executed for the transition state structure varying rccl and optimizing 

the remaining variable rCH. A linear variation of the Mulliken populations with the 

reaction coordinate was observed over the entire range of C-Cl distances. This linear 

dependency was then analytically introduced in the statistical simulations by means of

three equations that expressed the changes in qc, qH, and qcl as a function of rCCl. In

the study of the SN1 process as well as in this last work on a SN2 reaction, Jorgensen

et al. point out that the lack of polarization is especially a concern and probably the 

chief source of potential error in the last mentioned study. However, the authors also 

indicate that for the hydrolysis of t-BuCl the nature of the perturbation is such that

some compensation of errors for the reference and perturbed system is probable and that 

the same seems to be true for small errors in the balance between the interionic and ion-

solvent interactions. The results for the monohydrated transition state structure of the 

SN2 chloride exchange reaction suggest that the effect of hydration on the charge 

distribution for the solute is comparatively minor. Nevertheless, the polarization of the
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first shell water molecules appears to be of greater importance. This polarization is not 

accommodated in TIP4P potential function because, although being an "effective" pair

potential, it maintains fixed charges. A more subtle point concerns the charge variations 

along the reaction coordinate, that we have mentioned above. Though the shifts are in 

accord with expectations for aqueous solution, the actual variations are undoubtedly 

affected by the use of a single determinant wave function. 

In their study of the water dimer in liquid water, Bertran et al. [139] indicate that 

their results justify the use of a dipole moment value substantially higher than the gas 

phase value, in simulations of the liquid state by means of "effective" pair potentials. 

However, the authors state that allowing variation of both intramolecular and 

intermolecular geometry parameters and atomic charges (and, hence, multipole 

moments) would be necessary in order to get a more sophisticated description of water 

in the liquid state. This indicates the trends which should be considered for deriving a 

more sophisticated water-water potential to be used in liquid water simulations. From 

their study it appears that the minimum requirements for such a potential are an 

accurate description of the electrostatic and the induction energies. These requirements 

are quite realistic owing to the recent advances in these fields, such as the representation 

of a molecule by means of distributed multipoles and distributed polarizabilities. 

Nevertheless, when those potentials are introduced in a statistical simulation and in the 

interest of speed, truncated expansions must be employed and simple atom-centered

monopole models are still the most widely used. The monopole model has the 

advantage that it provides an intuitive way to think about the charge distribution within 

a molecule. In order to improve then, the description of the electrostatic term, many 

techniques have been proposed over the years to accurately reproduce a molecular 

charge distribution. These techniques range from empirical approaches (i.e., fitting 

charges to experimental data, like in the OPLS model) or the determination of charges 

from experiment, to theoretical methodologies like fitting charges to reproduce quantum 

mechanical results, using Mulliken population analysis or using electrostatic potential 

surface (EPS) fitting by means of ab initio or semiempirical techniques. 

As an aid in understanding the properties of a molecule, the concept of atomic 

charge is not a magnitude which can be directly determined from the Hartree-Fock

wave function. Some scheme must be adopted to divide the total electronic charge 

among the atoms in a molecule. 

The most widely used procedure is the population analysis proposed by Mulliken, 

the popularity of this method being due to its simplicity, but the poor performance of 

Mulliken charges to reproduce the essential features of electrostatic potential maps is 

well established. Mulliken populations often yield rather different multipole moments 

for the molecule than those calculated from the actual wave function. Such Mulliken 

populations are also very basis-set dependent, In recent years, though, a number of other 

methods have been developed which alocate charge to a molecule's atoms based on 

physical criterions rather than simply by the equal partitioning method of Mulliken 

population analysis. Electrostatic charges reported by those methodologies are obtained 

by fitting the rigourously defined quantum mechanical and the point-charge electrostatic 

potentials. Both Williams [140] and Cox and Williams [141] have described methods 

for calculating point-charge models from ab initio wavefunctions which use regular 
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grids of points in their fitting procedures, while Kollman and Singh [142] and Chirlian 

and Francl [143] use point selection routines which are based upon atom-centered shells 

of points. The CHELP (CHarges from Electrostatic Potentials) routine, by Chirlian and 

Francl [143], chooses 14 points for each concentric shell surrounding the molecule 

(±x,±y,±z, and in the center of each octant) and uses the method of Lagrange multipliers 

to fit the charges. The Lagrange multiplier technique has the advantage of being fast 

and noniterative. The public version of the CHELP program has a built-in 1.0 Å 

increment between concentric shells. All of the routines use approximately 200-400

points in each fit, with point spacings of 0.8-1.0 Å. When each of these methods are 

used with appropiate wave functions, they yield "atomic charges" which reproduce 

certain molecular properties, such as the dipole moment, reasonable well. However, 

Breneman and Wiberg [144] found that CHELP was inappropiate for use in 

conformational analysis because of its rotational variance. As a result of this random 

variation, CHELP analysis of internal rotation pathways is severely limited. The two 

authors developed then a new approach, called CHELPG (Charges form Electrostatic 

Potentials Grid-oriented), which has shown to be considerably less dependent upon 

molecular orientation. The principal difference between the CHELPG method and the 

older CHELP program is that the CHELPG procedure employs a point-selection

algorithm based upon regularly spaced points. Following the point selection procedure, 

the electrostatic potential at each of the sample points is calculated analytically from the 

wave function and geometry data contained in the corresponding checkpoint files. These 

data are then used as input for the Lagrange least-squares routine, which has been 

constrained to fit the exact molecular charge. The computed best-fit charges reproduce 

the restricted Hartree-Fock molecular dipole moments reasonably well. 

In the original work of Chirlian and Francl [143], a comparison of the electrostatic 

potentials and charges obtained with different basis sets was reported. Reasonable 

correlation was obtained for all basis sets when comparing results with 6-31G(d,p)

calculations for a series of molecules at their experimental geometries. If the 

experimental geometry for a molecule is not available, good charges may still be 

obtained by using an optimized structure. For this case, calculations using the 6-31G(d)

or 6-31G(d,p) basis sets and geometries optimized at the same level give results which 

reproduce the charges obtained with the experimental geometry and the 6-31G(d) basis 

set. The charges given by CHELP reproduce the dipole moments of the molecules 

calculated at the same level of theory while the Mulliken dipoles are notably erratic. 

The dipoles calculated at 6-31G(d,p) level have the best correlation with the 

expenmentiilly measured values. 

More recently, studies carried out by several authors converged on partial charges 

obtained from fitting to the electrostatic potential surface of ab initio 6-31G(d)

calculations as a de facto standard [145-148]. Support for this choice has noted: 1) 

Dipole moments are overestimated by 10-20 % with 6-31G(d) calculations, which is 

desirable to compensate for the neglect of polarization effects with fixed-charged

models; 2) EPS charges are relatively insensitive to extension of the basis set beyond 

6-31G(d) and inclusion of electron correlation; and 3) 6-31G(d) EPS charges correlate 

well (r=0.93) with OPLS charges for organic molecules, which have been derived to 

reproduce fluid properties. 
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Kollman and col. have long advocated the use of electrostatic potential derived 

charges as being simple to derive, transferable, and not subject to bias. In fact, they 

have validated their effectiveness in nucleic acid-base interactions and simple 

associations between crown ethers and polar molecules [149]. In a recent paper [147] 

they presented free energy perturbation calculations on the relative solvation free energy 

of cis- and trans-NMA, previously reported by Jorgensen et al. [131]. Experimentally, 

the solvation free energy difference has been found to be near zero. Using the 6-31G(d)

charges derived for the trans conformation for both the cis and trans models leads to

a solvation free energy difference of 0.9 ± 0.1 kcal/mol, compared to the value of 2.2 

kcal/mol determined for the OPLS model for trans-NMA. Furthermore, when using the 

trans electrostatic potential based charges for trans-NMA and cis charges for the cis-
NMA, the calculated solvation free energy difference of ca. 0.1 kcal/mol is in excellent 

agreement with experiment. 

The viability of the 6-31G(d) EPS charges in fluid simulations was tested by 

Carlson et al. [150] by computing free energies of hydration for 13 diverse organic 

molecules. Both Mulliken charges and charges fit to the EPS were considered in 

conjunction with OPLS Lennard-Jones parameters for the organic molecules and the 

TIP4P model of water. Monte Carlo simulations with statistical perturbation theory 

yielded relative free energies of hydration. These were converted to absolute quantities 

through perturbations to reference molecules for which absolute free energies of 

hydration had been obtained previously in TlP4P water. The average errors in the 

computed absolute free energies of hydration are 1.1 kcal/mol for the 6-31G(d) EPS 

charges and 4.0 kcal/mol for the Mulliken charges. A principal problem was traced to 

the Mulliken charge distribution for methyl groups attached to hydrogen-bonding

functionality, which could be largely relieved in a united-atom format. Aromatic C-H

bonds are found to be too polarized with Mulliken charges. Further, EPS charges were 

found to yield reasonable predictions in the number of hydrogen bonds between the 

organic solutes and water. Though the results with the EPS charge are impressive, the 

authors advise on their use for biochemical applications in view of the individual errors 

of 3-4 kcal/mol for acetamide and 1-2 kcal/mol for ethane. The authors state that a 

combination of, for example, OPLS and 6-31G(d) EPS charges might be a viable 

alternative for rapid derivation of partial charges for new applications. Scaling of the 

6-31G(d) EPS charges could also be an alternative, though uniform scaling is unlikely 

to be fruitful in view of the good accord that already exists between many of the 

predicted free energies of hydration and the experimental values. 

The CHELPG model has been used by Jorgensen and col. in several of their 

reactivity studies. For instance, in the investigation of solvent effects in peryciclic 

reactions undertaken by the authors, the intermolecular interactions were represented by 

Coulomb and Lennard-Jones terms with all atoms explicit. The TIP4P was adopted for 

water, while standard OPLS Lennard-Jones parameters were adopted for the solute and 

scaled as the hybridation changed. The partial charges for the solute were obtained by 

fitting to the 6-31G(d) electrostatic potential surfaces via CHELPG calculations on 

several solute structures along the MEP. Namely, the 6-31G(d) CHELPG charges were 

used for the solutes in the dimerization of cyclopentadiene (CP) and in the dimerization 

of cyclopentadiene with methyl vinyl ketone (MVK) in water [58]. The stabilization by 
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water for the MVK + CP reaction was predicted to be of -3.2 ± 0.4 kcal/mol. This is 

somewhat less pronunced than the value of -4.2 kcal/mol that was obtained from the full 

energy profile for the MVK + CP reaction with the 6-31G(d) Mulliken charges [59]. In 

that previous study, Blake and Jorgensen still used Mulliken population analysis 

because, as they indicated, a better correlation (r=0.99) exists between 6-31G(d)

Mulliken charges and the OPLS charges, for neutral molecules with first row atoms, 

than for 6-31G(d) EPS charges (r=0.93). The last results with the CHELPG charges 

suggest a more even balance between the contributions from the hydrogen bonding and 

hydrophobic effects to the acceleration of the MVK + CP reaction in water. 

CHELPG charges were again used for a reacting system along with standard 

Lennard-Jones parameters for the Claisen rearrangement of allyl vinyl ether [60]. 

Mulliken charges were also considered; however, they showed more variation in going 

to the 6-31+G (d,p) basis set and computed dipole moments with the Mulliken charges 

deviated significantly (0.5 - 1.4 D) from the 6-31G(d) and the CHELPG values. In that 

work, the authors report results for the free energy of activation in water versus gas 

phase with several SCRF (Self Consistent Reaction Field) methods considered with the 

6-31G(d) structures and the CHELPG charges. The SCRF results are all qualitatively 

correct; however, the predicted rate accelerations are all too small. With the Monte 

Carlo approach and the associated two-body potential functions with 6-31G(d) CHELPG 

charges, the obtained values, for the stabilization by water, are much closer to 

experiment. The realiability of the charges is undoubtedly the dominant element in 

getting correct relative free energies of hydration. This approach can be critized for 

ignoring solute polarization by the solvent since the partial charges are fixed from the 

CHELPG calculations. However, these results seem to confirm that polarization is 

included to some extent in an average way owing to overestimation of the polarity of 

molecules at the 6-31G(d) level. 

Very recently, Jorgensen and col. [151] have studied the solvent effects on the ring 

opening of cyclopropanones to oxyallyls. Geometries for the cyclopropanones, the 

transition state structure for the rearrangement of cyclopropanone, and the oxyallyls 

were obtained from ab initio CASSCF calculations with the 6-31G(d) basis set. For each 

geometry, CHELPG and Mulliken charges were determined for the use in the fluid 

simulations. The modest computed solvent effects are in good accord with experimental 

data [152]. Their results support the intermediacy of oxyallyls in cyclopropanone 

stereomutations, indicate the proximity of the oxyallyls to the transition state structures 

for the ring openings, and confirm the principally diradical rather than zwitterionic 

nature of the oxyallyls. In this case, the results from the two charge models are quite 

similar; the somewhat larger effects from the Mulliken charges are consistent with the 

correspondingly larger changes in dipole moments. The authors state that this accord 

is rather surprising in view of the significantly poorer results that are obtained for free 

energies of hydration with 6-31G(d) Mulliken charges, though the previous comparisons 

[150] involved far more diverse structures than those represented by the present 

mutations. In order to assess to which extent the structures and charge distributions of 

the different molecules studied might be medium dependent with an anticipated 

tendency toward more zwitterionic character in more polar solvents, Jorgensen and col. 

[151] carried out calculations in the presence of a reaction field. SCRF theory was used 
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with a dielectric constant of 36 (acetonitrile) for calculations of cyclopropane, the 

transition state structure and oxyallyl to recompute Mulliken and CHELPG charges in

the presence of the reaction field. Reoptimization of the geometry of the oxyallyl 

resulted in very small geometrical changes. The computed dipole moments for 

cyclopropanone and oxyallyl with the CHELPG charges are 2.79 and 3.47 D in the gas 

phase and 3.09 and 3.86 D for ε = 36 without geometry reoptimization. From these

results, the authors conclude that use of SCRF charges would have little impact on the 

differences in free energies of solvation already obtained 

7. Recent Theoretical Developments

As seen above, the evaluation of the potential energy of each generated 

configuration is a key point in the Monte Carlo (or Molecular Dynamics) simulation of 

a chemical reaction in solution. The understanding of chemical processes in solution 

depends on the availability of intermolecular potential energy functions that can properly 

describe the molecular interactions. So far, pairwise additive potentials whose 

parametrization process is very laborious have been employed. However, this kind of 

potential is not suited for describing polarization effects. An alternative approach is to 

use a combined quantum mechanical and classical procedure [153-157], in which the 

reacting system is treated explicitly by a quantum mechanical (QM) method, while the 

surrounding solvent (the most computational time-consuming part) is approximated by 

a standard molecular-mechanics (MM) force field. This recent strategy avoids the 

difficult development of the potential energy functions along the reaction path and is 

able to introduce the solute polarization effects. 

In this hybrid QM/MM model the molecular system is divided into two parts: 1) 

a QM region consisting of 2N electrons (assuming closed-shell molecules) and M nuclei 

belonging to the reacting solute molecules, which is described by Hartree-Fock

molecular orbital theory; 2) an interaction-site MM region containing the environmental 

solvent, which is described by molecular mechanical potential energy functions. This 

way, the total effective Hamiltonian of the whole system is 

(53)

where
∧

H0
QM is the Hamiltonian for the isolated QM solute, HMM is the molecular 

mechanical solvent-solvent interaction energy, and HQM/MM is the solute-solvent

interaction Hamiltonian, which depends on the partial charges and positions of the 

solvent interaction sites and is given by

∧

∧



168 A. GONZÁLEZ-LAFONTETAL.

(54)

where e is the charge of electrons, qs and Zm are charges on the solvent and solute 

nuclei, S and M are the corresponding total numbers of interaction sites, and rsi and Rsm

are the distances of the solute electrons and nuclei from the solvent sites, respectively. 

The Lennard-Jones term includes the dispersion interaction between the QM and MM 

regions, and contains the only adjustable parameters for the solute (εs m and σsm) in the

present approach. It is noteworthy that the terms added to in equation (53) only

affect the one-electron part in the Fock matrix. 

The total potential energy of the system in the combined QM/MM force field is 

calculated from the expectation value of the wave function, φ, over Heff:

(55)

Here Φ is the Hartree-Fock wave function of the solute immersed in the solution, and

the four energy terms of equation (55) come directly from the corresponding

Hamiltonian operators of equations (53) and (54). 

Within this scheme, the polarization energy of the solute, Epol, due to its interaction 

with the solvent is given by 

(56)

where φ0
 is the Hartree-Fock wave function of the isolated solute (i.e. in gas phase).

The polarization energy can be decomposed into two contributions 

where the solute electronic distortion energy, Edist,

(57)

(58)

∧

H0
QM

∧
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is a positive value that gives the energy penalty for reorganizing (or polarizing) the 

solute electronic distribution in solution, and 

(59)

is a net gain in interaction energy between the polarized solute and the bulk solvent 

over that of an unpolarized solute, which compensates the solute electronic distortion 

energy leading to the polarization energy. 

On the other hand, electric dipolar moments of the solute molecules can be obtained 

with standard methods in ab initio molecular orbital calculations, whereas the induced 

dipole moments in solution are determined from differences between the values obtained 

in solution and in the gas phase. 

Ab initio molecular orbital methodology or density functional theory [158-160] 

would be suited for this combined QM/MM approach. However, in order to be able to 

compute the QM energies along the Monte Carlo simulation, nowadays a semiempirical 

Hamiltonian, like AM1 [161], is a much more computationally efficient method. Before 

using AM1, the goodness of the semiempirical results in gas phase in comparison with 

the ab initio ones has to be tested. For systems in which the semiempirical results are 

poor, the relation 

(60)

provides the way to use high-level ab initio results to replace AM1 gas-phase energies, 

thus the AM1 Hamiltonian being essentially employed to evaluate the effects of 

solvation.

The combined QM/MM model can be used along with Statistical Perturbation 

Theory to carry out a Monte Carlo simulation of a chemical reaction in solution, with 

the advantage of allowing solute electronic structure relaxation in solution. Particularly, 

the combined AM1/TIP3P force field has recently been applied to simulate several 

chemical processes in solution. We will refer here briefly to the Claisen rearrangement 

and to the Menshutkin reaction. 

The Claisen rearrangement of allyl vinyl ether in aqueous solution was studied by 

Gao et al. [157] by using the gas-phase ab initio MEP determined previously by the 

Jorgensen's group [60]. In this case, 69 of the 143 frames were employed along the 

perturbation procedure in the isothermal-isobaric ensemble at 25 ºC and 1 atm. The 
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hydration effects were found to produce a rate acceleration by a factor of 368, in good 

agreement with both the Monte Carlo results of Jorgensen's group and the experimental 

data. The solvent effects were attributed to an enhancement of the polarization in going 

from the reactant to the transition state, what was mirrored by the behaviour of the 

induced dipole moments. 

A specially interesting case is the Menshutkin reaction in aqueous solution, in which 

a neutral nucleophile attacks to a neutral substrate producing a large charge separation 

during the reaction. In gas phase this reaction is an extremely unfavoured process due 

to Coulombic interactions, with a huge energy barrier (coming from a transition state 

or the products if the transition state does not exist). As a matter of fact, Menshutkin 

reactions have never been reported in the gas phase. However, hydration very 

significantly reduces the energy barrier, the reaction becoming clearly exothermic. 

Furthermore, the solvent effect on the polarization of the reactants is expected to 

enhance the charge separation of the aqueous reaction over that of the gas-phase

reaction. Then, the Menshutkin reaction in water is a very appropriate case to apply the 

combined quantum mechanical and molecular mechanical (QM/MM) Monte Carlo 

simulation approach. This way, Gao et al. [162] studied the Menshutkin reaction in 

aqueous solution 

by using the AM1/TIP3P force field. Due to the symmetry of this reaction, the three 

heavy atoms were constrained to be collinear along the C3 symmetry axis. Dihedral 

variations of H3N and CH3 groups about the C-H bond were allowed during the Monte 

Carlo simulation. The bond length and bond angles associated with the hydrogen atoms 

were optimized at a fixed H-N-C-H dihedral angle sampled in the calculation. Monte 

Carlo calculations were carried out in the isothermal-isobaric ensemble at 25 °C and 1 

atm, in a box containing 265 water molecules. 

To assess the effects of hydration a two-dimensional free energy surface was 

constructed through a grid search method. The two independent coordinates of the map 

were C-N distance (RC-N) and C-Cl distance (RC-Cl) and the Statistical Perturbation 

Theory was used to compute free energy differences between neighbouring grid points. 

First, at a given value of RC-Cl a series of perturbation calculations with ∆RC-N = ± 0.05

Å were carried out to yield a free energy profile as a function of RC-N. Then, the relative 

heights of two such neighbouring profiles (parallel to each other) at an interval of 0.10 

Å were determined by another perturbation calculation with respect to RC-Cl at a fixed

RC-N value. Finally, the free energy surface was anchored relative to the free energy at 

a value of the reaction coordinate (RC) of -2.0 Å. The reaction coordinate was defined 

by
RC = RC-CL - RC-N - RC0

where RC0 is the difference between the C-Cl and C-N separations at the gas-phase

transition state structure. 

Gao et al. located the saddle point of the two-dimensional free energy surface at 

RC-N = 1.96 Å and RC-CI = 2.09 Å, and used this point to define the transition state in

solution. This way, their most striking finding was that on going from the gas phase 
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into aqueous solution the transition state was shifted significantly toward the reactants, 

with a lengthening of the C-N bond by 0.30 Å and a shortening of the C-Cl bond by 

0.15 Å (the AM1 gas-phase saddle point appears at RC-N = 1.66 Å and RC-Cl = 2.24 Å), 

in good accord with the expectation according to Hammond postulate. On the other 

hand, the results show that the solvent effects strongly stabilize the transition state and 

the products. The calculated free energy barrier in water derived from the free energy 

saddle point is 26.3 ± 0.3 kcal/mol, which is in accord with the experimental activation 

energy (23.5 kcal/mol) for a similar reaction between H3N and CH3I in water. Charge 

separation is promoted by the solvent effect, with a charge transfer of more than 65% 

complete at the transition state in water, whereas it is only about 50% in the gas-phase

saddle point. 

It is evident that the construction and detailed analysis of the two-dimensional free 

energy surface provide both qualitative and quantitative new insights into the solvent 

effects on the Menshutkin reaction in water, and promise a viable approach in other 

chemical reactions in solution. However, we have to note that the use of the saddle 

point of the two-dimensional free energy surface to characterize the transition state can 

be confusing and does not strictly correspond to the notion of transition state within the 

frame of the Transition State Theory, which defines the transition state for a system 

containing N atoms as a (3N-1)-dimensional configurational-space hypersurface (the

dividing surface). Since that free energy saddle point is the result of the collection of 

the configurations submitted to two independent constraints (RC-N = 1.96 Å and RC-C1 =

2.09 Å), it represents only a subset of configurations of an actual dividing surface 

(which only has one constraint). 

Along this chapter we have reviewed the present theoretical methods to 

microscopically simulate chemical reactions in solution and we have discussed their 

limitations. Indeed there is a great potential of growth in methodology development. In 

the next years, with the impressive advances in computer speed, we expect to see a 

progressive development and application of new methodologies to simulate chemical 

reactions in solution. Several quite promising new approaches, some of which begin to 

be applied, could be the following: 

1) Extension of the QM region to an increasing number of solvent molecules. 

2) Use of high-level ab initio molecular orbital methods or density functional 

Hamiltonians to simulate the QM region through approximate solutions of the electronic 

Schrodinger equation. 

3) Empirical Valence Bond (EVB) [163,164] simulations as an alternative to Molecular 

Orbital based methods. 

4) The Statistical Perturbation Theory should be applied allowing a complete sampling 

of the solute coordinates (and, if possible, of the solvent coordinates). This way no 

solvent equilibrium hypothesis would be introduced at all. 

5) Different prescriptions to choice the set of dividing surfaces in order to apply the 

Variational Transition State Theory, should be analyzed and compared. 

6) Beyond Transition State Theory (and, therefore, beyond Monte Carlo simulations) 

dynamical effects coming from recrossings should be introduced. Furthermore, 

additional quantum mechanical aspects, like tunneling, should be taken into account in 

some chemical reactions. 
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1. Introduction

The most abundant compound on our planet is water at the liquid state. 

Because of its diffusion and its solvating properties, a large number of 

chemical reactions, important in life and in industrial processes, take place 

in aqueous solution. 

From a computational view point, chemical reactions in solution present 

a yet not solved challenge. On one hand, some of the solvent effects can 

be approximated as if the solute molecule would be in a continuum with

a given dielectric characterization of the liquid, and this view point has 

been pioneered by Born [1], later by Kirkwood [2] and Onsager [3] and

even later by many computational quantum chemists [4-9]. On the other

hand, the continuum model fails totally when one is interested in the specific 
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interactions of the first solvation shell with the solute; clearly if an hydrogen 

rather than an oxygen atom points towards a specific atom of the solute 

molecule, the energetics of the interaction is drastically different. This 

leads to the need to represent the first shell in a detailed way, recognizing 

explicitly the solvent molecules at the atomic level. An extreme case of this 

need is for reactions in acqueous solution, where one of the reactants is a 

molecule of water. 

Unfortunately, as it is well known, in liquid water one water molecule, 

solute or solvent, is characterized by being connected to other molecules of 

water, creating a complex network. It is also known that this network is of 

two main types: clatrate-like or hydrophyllic type. The two have different 

characterizations in the first solvation shell, thus generate a different electric 

field on the solute. 

From the above, it should be clear that the continuum model can sim-

ulate only those aspects of the solvent which are somewhat independent 

from hydrophobicity, hydrophyllicity, in general first solvation shell, and 

specific interactions with the solute. The physical problem is a general one; 

namely, it relates to the validity to use quantities, correctly described and 

defined at the macroscopic level, in the discrete description of matter at 

the atomic level. For such study, one needs explicit consideration of the 

solvent, for example the molecules of water. This can be done either at the 

quantum-mechanical level, as in cluster computations. We recall, in this 

regard, the pioneering ab initio work by E. Clementi and his group [10] 

for systems like water-water, water-ions, water-small molecules. We recall

also the pioneering work at the semiempirical level presented by many, for 

example by Scheraga and his school. Another approach is to simulate the 

system at the Molecular Dynamics (or Monte Carlo) level; these techniques 

allow to consider very large systems and, if one assumes periodic boundary 

conditions, even infinitely large systems. The limitations of the Molecular 

Dynamics are in its classical nature and in the need to make use of force-

fields. The latter can be obtained either semi-empirically, as it is done 

for example in the AMBER, GROMOS, CHARMm computer programs, or

from ab-initio computations as is done in Clementi and co-workers codes. 

The motions of a molecular system, for example a solution, occur on 

many time scales. There are very fast electronic motions, the basic mecha-

nism in chemical reactions; then, the nuclear motions, vibrations, librations, 

rotations, and translations (diffusion). In the Born-Oppenheimer spirit, one 

can consider the electronic motion as separated from the nuclear motions, 

thus one can talk of micro-deformations to be treated quantum mechani-
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cally and macro-deformations, which can be treated classically. This is the

ab-initio approach proposed by Clementi and co-workers for the study of 

papain [11] in the late
,
70. More recently, Car and Parrinello [12] have

suggested to compute the force field in Molecular Dynamics with approxi-

mated quantum mechanics techniques. Since the latter are still expensive

computations, the Car-Parrinello method, and similar ones, can be used 

for systems of moderate size and for relative short simulation time (say no

more than 100 molecules of water, for a few picoseconds at most, and using 

the best computational facilities today available. Alternatively, one can use

semi-empirical approximations, which scale as n2 rather than n3, where n

is the number of basis functions used to describe the electronic orbitals). 

The two avenues above recalled, namely ab-initio computations on clus-

ters and Molecular Dynamics on one hand and continuum model on the

other, are somewhat bridged by those techniques where the solvent is in-

cluded in the hamiltonian at the electrostatic level with a discrete repre-

sentation [13,17]. It is important to stress that quantum-mechanical com-

putations imply a temperature of zero K, whereas Molecular Dynamics

computations do include temperature. As it is well known, this inclusion

is of paramount importance and allows also the consideration of entropic

effects and thus free-energy, essential parameters in any reaction. 

In this paper we shall consider a few systems we have analysed in the last 

few years, attempting to indicate shortcomings and advantages in the above

approaches. We start with the reaction NH3+HCl ↔ NH4Cl, an example

pioneered by Clementi in the mid 60
,
s with all-electron ab-initio compu-

tations. This is a classical calculation, since not only is the first ab-initio

work for a non trivial molecular system, but also because by computations

it attempts to verify the R.S. Mulliken's hypothesis on the existence of

two complexes: an inner-complex H3N . . . H . . . Cl, and an outer-complex

NH+ . . . C1
_

. The computation by Clementi indicated the existence of

only the inner complex. Since it was done at the HF level, the correlation

errors were only estimated, but it was concluded that the overall reaction

would occur on a surface with only one minimum corresponding to the 

H3N - H - Cl complex. The binding energy of the complex was measured 

experimentally few years after the computation and resulted in substantial

agreement with the spread of binding energies proposed by Clementi. Later,

the energy surface of the reaction was analysed by many authors, and this

narrowed down the predicted range of the binding energies, but left unal-

tered the conclusion of the one-minimum only in the reaction hypersurface. 

In this work, we shall include the reaction field model to the computation 

of the reaction hypersurface of the above process and we shall show that

4
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we have two shallow minima, the deepest one corresponds to the outer-

complex proposed by Mulliken. Thus, we can conclude that the solvent

effect, even considered within the limitations of the continuum model, can 

bring about a different reaction product. Parenthetically, this points out

once more the non transferability of reaction mechanism from gas phase to 

solution; unfortunately, many quantum chemical studies of reaction mech-

anism, in current literature, compare computations in the gas phase with 

experimental data in solution. It can be argued that when there is agree-

ment between the two sets of data, there is reasonable doubt for assuming

the latter is obtained somewhat accidentally.

The second example concerns the lithium ion, either considered in a 

cluster of water molecules or in aqueous solution. The idealized solution at 

infinite dilution of a lithium ion (without counter-ion) predicts six molecules 

of water in the first solvation shell if one uses pair-wise 2-body interactions,

but the same type of computation predicts four molecules of water when 

3-body effects are included. The computations were performed at room

temperature. We have performed cluster computations for the Li+(H2O)n

system, with n = 1,2,3,4,5 and 6, using a density functional program de-

veloped in our laboratory. When we compute the most stable configuration

for the pentamer complex Li+( H2O)5, starting from the most stable config-

uration obtained with the 2-body potential, we obtain an energy minimum

for a conformation of 5 water molecules surrounding the Li+ in a first solva-

tion shell. However in a MD simulation of the same system, analysis of the 

trajectories indicated that one water molecule tends to abandon the first

solvation shell, entering in the second solvation shell region. This example

is given to stress that energy minimization for non trivial small systems

must face the multi minima problem, since results are too heavily depen-

dent on the initial condition. Further, recalling that many minima can

occur on a very narrow energetic range, we must be aware that entropic ef-

fects, neglected in general in the energy minimization, can lead to incorrect 

conclusions.

In the third example we shall compare structural details of connectivity

in water, either in clusters or in the liquid. This example is given to warn 

on transferring conclusions obtained from clusters to the liquid. Indeed, we 

shall show that, whereas in the clusters at zero K temperature, closed ring 

or 3D-type structures are the most stable ones, in the liquid, at finite tem-

perature, three-dimensional networks are the predominant configurations. 

In the last example, we move to the general problem of nucleic acid 

simulations. It is abundantly clear that simulations on DNA double helix 
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without considering the solvent are open to very serious criticism, since 

the double helix in vacuo is not stable. In our example we consider the 

stability of the base pairs (A-T and G-C) either in vacuo or with a reaction

field, simulating the solvent. We have concluded that there is a decrease

in the stability for the pair when the solvent is included. We have also

performed vibrational analysis for both the separated bases and the base

pairs (in vacuo and in solution). For the gas phase simulations, the com-

puted IR frequencies are in agreement with available experimental data.

Notable shifts are predicted for the IR frequencies of those atoms involved 

in the hydrogen bridges in the pairs. Laboratory results on the shifts are

important since they provide an additional test on the predictive power of

the simulation approaches we have experimented with. 

2. Comments on the methods used in our simulations 

The methods and the corresponding computer programs we have used, have

been amply documented in the past literature. However, for the sake of 

completeness, we present a few comments, which might be useful to the 

general reader.

Concerning quantum chemical computations, we have used the MOLE-

COLE program [18a], for HF and MP2 type computations. The Molecular

Dynamics simulations with analytical force fields have been performed with

the DINAMICA program [18b]. The MOLECOLE-DFT program [18c]

has been used for both the DFT energy minimization and for the DFT-

Molecular Dynamics.

2.1 DENSITY FUNCTIONAL THEORY IMPLEMENTATION

Here, we discuss in some detail the DFT implementation in our computer

program, since only in the last few years DFT is becoming more familiar to 

the chemists’ community, as opposite to the physicists’ community, where 

it was used routinely for the last thirty years for obtaining structural and 

electronic properties of bulk solids and surfaces [19]. 

For many problems in solid state physics, the computational efficiency 

of the computer programs is the result of using a planewave basis set and 

performing part of the calculation in momentum space through the use of 

Fast Fourier transforms. A planewave basis set is naturally applicable to 

systems with translational symmetry and this is the key of the success of 
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the applications of Density Functional Theory to crystalline solids and sur-

faces. However, the use of planewaves enforces a periodicity not present 

in most molecules and the so called ”supercell approach” must be used in

order to treat aperiodic systems [20]. In this method, the molecule is placed 

at the sites of a three dimensional lattice of points, thereby restoring peri-

odicity. In the limit that the lattice points are very far apart, the molecule

is treated accurately. An alternative formulation consists in using a basis

set of localized functions. This approach offers a more natural way for sim-

ulation of molecular systems, which usually are non-periodic. Techniques 

using numerical basis sets [21-22], Slater type basis sets [23-24] and Gaus-

sian basis sets [22-26] have been developed and used successfully in many

chemical problems [27-29]. In particular the use of Gaussian type basis 

sets permits the utilization of the wealth of experience gained in standard 

ab-initio methods for the evaluation of two electron integrals, derivation

of analytic gradients, etc. Approximate density functional theories for the 

correlation energy evaluation using the exact exchange have been proposed

and used extensively for obtaining the dynamical correlation [30-31]. In

cases in which the near-degeneracy correlation is important, a proper dis-

sociation wave function should be employed [31]. A density functional for 

the exchange and correlation energies will be used in several examples dis-

cuss in the present chapter.

The Density Functional Theory is based on a theorem by Hohenberg

and Kohn [32] which states that the total energy E is a functional of the 

charge density ρ . Essentially the problem of determining the wavefunction,

a function of 3N dimensions, where N is the number of electrons, is reduced 

to finding the density, ρ(r), a function of only 3 dimensions. However, there

are no simple and unique prescriptions for the determination of this density.

Applications of DFT became feasible with the work of Kohn and Sham (KS)

[33]. Assuming that the wavefunction of a system can always be written as

a single Slater-determinant, by minimizing the total energy with respect to

the density

(1)

a set of N one-electron equations is obtained 

with the effective potential, 

(2)

(3)

→
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where nλ is the occupation number of the KS eigenstate whose eigenvector

is denoted by Ψλ (Here, the equations are derived for the unpolarized spin

case, an extension to the spin-polarized case is straightforward). In Eq. (3),

VN(r) is the external potential, specifically the nuclear attraction potential,

the second term is the Coulomb potential and the last term is the exchange-

correlation potential, given by the functional derivative of the exchange- 

correlation energy with respect to the density. 

It has been found that a reasonable approximation for the exchange-

correlation energy can be taken from the solutions of the homogeneous 

electron gas (Local Density Approximation, LDA). The LDA provides a 

reasonable description of exchange-correlation effects when the density is

a slowly varying function of position [34-35]. The correlation energy term

for the homogeneous electron gas has been computed very accurately [36]

and several fits of these results to analytical expressions can be found in

literature [34,35,37]. The exchange-correlation energy in the LDA is written 

as:

(4)

where exc(ρ) represents the exchange-correlation energy per electron in a

gas with density ρ. Since finite systems are often non-homogeneous, more

sophisticated functionals were developed [38-40] containing also the gradi-

ent of the density which is clearly a measure for the inhomogeneity of the 

electronic density. This kind of approximation is usually called non-local

density approximation (NLDA). The use of the NLDA has been shown to

improve considerably the agreement with experiment in the evaluation of

properties of chemical interest [41], for example bond energies, hydrogen

bond interactions, etc. In our implementation the gradient corrections of 

Perdew and Wang [40] and Becke [42] are available for the exchange terms.

For the correlation terms the gradient corrections given by Perdew [39] are 

used, with the Vosko parameterization of the local part.

In the present approach, the KS orbitals are expanded in a set of func-

tions related to atomic orbitals (Linear Combination of Atomic Orbitals, 

LCAO). These functions usually are optimized in atomic calculations. In 

our implementation a basis set of contracted Gaussians {Ψj} is used. The

basis set is in general a truncated (finite) basis set ”reasonably selected”.

Following standard formalism, by expanding the orbitals and the den-

sity matrix in terms of the basis set :

(5)

→
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the total energy can be written as

with J[ρ] term, the Coulomb term, given by

(6)

(7)

Besides the Gaussian basis set for the wavefunction, an additional set of 

nuclear centered Gaussians, {gk}, can be used for expanding the electronic

density [25], which can be written as 

(8)

With this approximation, the evaluation of the Coulomb term scales as

N 2M, in contrast to the standard way, which scales as N4 (N and M are 

the number of primitive functions in the orbital and density basis sets,

respectively). The expansion coefficients of the electronic density in Eq.

(8) are chosen such as to minimize the error in the Coulomb term arising 

from the difference between the real density and the fitted density [25].

Unlike the expansion for the electrostatic density, the fitting of the

exchange-correlation energy requires a least squares fit of the coefficients by

evaluating an auxiliary set of basis functions, {hk}, the exchange-correlation

energy and the potential on a three dimensional grid [25,26,43]. After per-

forming the least-squares fit, two sets of coefficients are obtained, {bj} and

{dj}, for the exchange-correlation energy density and potential, respec-

tively.

(9)

To perform the least-squares fit, the density (and its derivatives if a non-

local density functional is used) has to be evaluated at all points of the grid, 

making this step very time consuming. Many different types of grids have 

been proposed for fitting the exchange-correlation energy and potential. 

In most of the cases these grids are based on the superposition of atomic 

centered grids [44-45]. In our program we implemented the adaptive nuclear

centered grid proposed by Becke [46]. The auxiliary basis, {hk}, needed for

expanding the exchange-correlation energy density exc(ρ), and potential

vxc(ρ) (see Eq.(9)) is usually chosen as a new set of Gaussian functions

[43]. We have implemented a different approach in order to use the same 
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set of two electron integrals for the Coulomb and the exchange-correlation 

terms, the set {hk} is related to the density basis set through the following 

expression :

(10)

Once the coefficients for the expansion of the exchange-correlation term 

have been evaluated, all matrix elements can be calculated analytically. 

The Obara and Saika [47] recursive scheme has been used for the evaluation 

of the one and the two electron integrals. The total energy is therefore 

expressed in terms of the fitting coefficients for the electronic density and 

the exchange-correlation potential.

An alternative procedure consists in using a numerical integration scheme 

to evaluate the exchange-correlation contribution. In this case, no  auxil- 

iary basis set is needed for the exchange-correlation terms, and numerically

more reliable results can be obtained.

In order to solve the electronic structure problem for a single geome- 

try, the energy should be minimized with respect to the coefficients

(see Eq. (5)) subject to the orthogonality constraints. This leads to the 

eigenvalue equation :

(11)

where Tij and Vij are the standard one electron kinetic energy and  nuclear 

attraction matrix elements, Fij is the corresponding Fock matrix element

and the and are function of {ak} and {dk}, the fitting coefficients

for the electronic density and exchange-correlation potential  respectively. 

As it is usual, the Fock matrix is a function of the matrix of coefficients 

therefore the problem is solved iteratively. The matrix of coefficients 

is obtained by solving Eq. (11), which in turn depends on the same

set of coefficients through the Fock matrix dependence on the fitting sets 

{ai} and {di}.

The evaluation of the analytical gradients of the energy with  respect 

to the nuclear coordinates is of importance for searching equilibrium  ge- 

ometries, reaction pathways and for performing first principles Molecular 

Dynamics simulations. In our approach, the evaluation of the nuclear  gra- 

dients requires the computation of the derivatives of the one electron (two 

index) and two electron (three index) integrals. Since only nuclear  cen- 

tered cartesian Gaussian functions are being employed for both orbital and 

N

Vc
ij Vxc

ij

{Cλi },

{Cλi }
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auxiliary basis sets, we can use the property that the derivative of a carte-

sian Gaussian function is a combination of two different Cartesian Gaussian 

functions with angular momentum either lowered or raised by one, respec-

tively.

The calculation of the harmonic vibrational frequencies is performed by 

evaluating the second derivatives of the energy with respect to the nuclear 

positions through a numerical differentiation of the gradients. By using 

a mass weighting procedure followed by a diagonalization, the harmonic 

frequencies and the normal modes are obtained. These frequencies can be 

used in the evaluation of the zero-point energies. Notice that the infrared 

absorption intensities can be calculated by taking the numerical derivatives 

of the dipole moment and by transforming them to the corresponding ones 

with respect to the normal modes [48]. 

2.2 D F T MOLECULAR DYNAMICS

Molecular dynamics simulations, with quantum-mechanically derived en-

ergy and forces, can provide valuable insights into the dynamics and struc-

ture of systems in which electronic excitations or bond breaking processes 

are important. In these cases, conventional techniques with classical an-

alytical potentials, are not appropriate. Since the quantum mechanical 

calculation has to be performed many times, one at each time step, the 

choice of a computationally fast method is crucial. Moreover, the method 

should be able to simulate electronic excitations and breaking or forming of 

bonds, in order to provide a proper treatment of those properties for which 

classical potentials fail. 

Once the energy and forces have been obtained, the nuclear equations 

of motion are integrated using standard methods [49] 

(12)

Since the changes in geometry from one molecular dynamics step to the next 

one are small, usually a few iterations suffice for achieving self-consistency.

An alternative approach was introduced by Car and Parrinello [12], who 

developed a DFT-MD method to study periodic systems using a planewave 

expansion in which the electronic parameters, as well as the nuclear coordi-

nates, are treated as dynamical variables. Following the Car and Parrinello 
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approach, in the LCAO implementation of DFT, a Lagrangian of the form:

(13)

can be constructed for generating the equations of motion for the atomic

nuclei and variational parameters. The Nλ is the number of contracted

Gaussian functions in the expansion of the molecular orbitals, µ is a fic-

titious mass, associated with the expansion coefficients, and the Λλv are

Lagrange multipliers, necessary to enforce orthogonality for the molecular

orbitals.

In order to generate the equations of motion, one needs the gradients

of the energy with respect to the nuclear coordinates and the variational

parameters. The expression for the nuclear gradients are reported in Ref.

[18c], and the derivation of the gradients with respect to the electronic

coefficients is straightforward :

(14)

The nuclear equations of motion are given by Eq. (12) and the correspond-

ing ones for the electronic coefficients are :

(15)

The technique can be used either to perform geometry optimization, by si-

multaneously annealing the wavefunction and the geometry, or to simulate

real dynamics, if the temperature of the fictitious (electronic) parameters

is kept close to zero. A drawback of the method is that small masses must

be chosen for the electronic parameters in order to achieve an adiabatic

separation of the nuclear and the fictitious parameter motions. As a con-

sequence, time steps smaller than MD simulations involving only nuclear

motion, are required.

In our approach, using a standard nuclear centered Gaussian basis set,

we found that, in general, it is computationally more efficient to carry out
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a full self consistent calculation at each time step than to use the Car-

Parrinello approach, since we can use much larger time steps. However,

the Car-Parrinello method offers a convenient and powerful alternative [50]

for those cases in which the variational problem is non-linear, for example

when using a floating Gaussian basis set, where it is not possible to solve

the problem through self-consistent diagonalization.

2.3 THE SELF CONSISTENT REACTION FIELD, SCRF, METHOD 

The Onsager’s reaction field theory [3] has been incorporated into MO

calculations by Tapia and Goscinski [6]. The model has been applied to

different problems using either semiempirical [51] or ab-initio MO theory

[52], or correlated ab-initio techniques [52].

In the Onsager’s SCRF model, the solute is placed in a cavity immersed in

a continuous medium with a dielectric constant ∋. The molecular dipole of

the solute induces a dipole in the solvent, which in turn interacts with the

molecular dipole, leading to a net stabilization effect. 

This electrostatic effect may be represented by an additional term in the

one-electron operator: 

(16)

The reaction field factor g depends on the geometry of the cavity and on

the dielectric permittivity of the solvent.

When one uses a regularly shaped cavity, such an ellipsoid or a sphere,

the reaction field factors are given by analytical expressions [53]. For a

spherical cavity, g is given by:

(17)

The reaction field effects are easily incorporated as an additional term in 

the Kohn-Sham matrix, given by :

(18)

where is the Kohn-Sham matrix eIement given in Eq. (11) and Ψi

and Ψ j are basis functions. After self-consistency is achieved, a solvent

polarization energy 

is added to the total energy. The self-consistent reaction field procedure 

consists of iteratively solving for a consistent dipole moment µ and reaction

(19)

→

∋
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field R. This is done by evaluating the dipole moment µ at each Kohn-Sham

iteration, and iterating until both the density matrix and the reaction field 

are converged.

In the case of charged systems with a total charge Q, a term to account

for the ion-dipole interaction should be added to the total energy. For 

a spherical cavity, this term is a constant, since it does not contribute

variationally to the total energy. 

(20)

The dipole moment of a charged system is not translationally invariant, and 

it must be evaluated with the origin at the center of the electric charge,

in order to be consistent with the spherical cavity assumption. The dipole

moment is therefore computed according to:

(21)

where µnuc and µel are the nuclear and electronic contributions to the to-

tal dipole moment, with respect to an arbitrary origin, and N is the total

number of electrons in the molecule. 

A related methodology that makes use of the calculated surface charges 

at the cavity surface to estimate the interaction with the solvent has been

described in Ref. [54]; in addition, the reaction field model can be ex-

tended to include the effects of higher order multipoles [55]. In the present 

implementation, only dipole effects are considered. 

Unfortunately, the shape of the cavity plays a major role in the model,

and the polarization energy of Eq. (19) is a function of the assumed cav-

ity’s shape. In the case of relatively compact molecules the cavity can be

approximated by a regularly shaped surface such as an ellipsoid, a spheroid 

or a sphere. However, more sophisticated approaches have been proposed, 

defining for example the cavity by an electronic isodensity surface enclosing 

a volume equal to the molecular volume, or to the molecule Van der Waals

surface [54]. Whereas the reaction field factors, in the general case, are 

evaluated numerically by using electrostatic boundary conditions, for the 

simpler geometrical shapes, analytical expressions have been derived [53]. 

Given the approximations involved in the reaction field model, and in order 

to have an efficient program which allows the determination of optimized 

structures, normal modes and molecular dynamics, in our program we have 

implemented only the spherical cavity. This seems to be a reasonable choice 

for the study of relatively compact molecules avoiding the approximations 

involved in the definition of more complicated shapes for the cavity. 

→ →

→→
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In our approach, to estimate the size of the cavity, the solute molecular

volume (Vm) is needed. For a spherical cavity the radius is related to the

molecular volume (which can be evaluated from the experimental density)

according to:

(22)

Alternative methods, at times very complicated, have been proposed 

for estimating the value of a0.

Analytical first derivatives in presence of the reaction field are easily

derived for a fixed cavity size. The expression for the gradients is the same 

as the one given in equation (33) of Ref. [18c], with an extra term for the

reaction field :

(23)

where is the I Cartesian coordinate of atom α, Q is the total charge of

the system, N the number of electrons, Pij a density matrix element, Ψi

and Ψj basis functions, Zα the charge on atom α and µ I the I component 

of the molecular dipole moment. 

The derivatives of the integrals < Ψi | µ |Ψj > are evaluated by using the

recursive scheme of Obara and Saika [47].

By adding the term given in Eq. (23), and keeping the value of a0 fixed,

geometry optimizations can be performed at very little additional cost,

compared to isolated molecule calculations.

In addition, by numerically differentiating the analytical gradients, the har-

monic vibrational frequencies can be obtained.

3. The NH3 + HCl ↔ NH4Cl reaction in vacuo and in solution 

The reaction of ammonia and hydrogen chloride in the gas phase has been 

the subject of several studies in the last 30 years [56-65]. The interest in 

this system is mainly that it represents a simple model for proton transfer

reactions, which are important for many chemical and biological processes. 

Moreover, in the field of atmospheric sciences, this reaction has been con-

sidered as a prototype system for investigation of particle formation from 

volatile species [66,67]. Finally, it is the reaction chosen as a benchmark 

on the ability, of quantum chemical computer simulations, to realistically 

simulate a chemical process, its reaction path and, eventually, its kinetics. 

→

RαI
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Since the first theoretical ab-initio prediction of the existence of a stable

gaseous complex between HCl and NH3, NH3 + HCl ↔ NH4Cl [56], the

interest has been focused on the nature of the stabilization. A number

of theoretical and experimental studies have been carried out in order to

establish the geometry of the equilibrium structure (or structures) of the

complex and hence to define the character of the interaction as either ion-

pair-like or H-bonded-like [56-65].

In 1952, when there was still no experimental evidence of a stable NH4Cl

gaseous complex, Mulliken [68] suggested that two types of stable structures 

should exist: an inner complex and an outer one separated by an energy

barrier. To test these hypotheses, in 1967 Clementi [56,57] performed SCF-

MO calculations and thermodynamical analyses and showed that, within 

the Hartree-Fock approximation, a single bound complex characterizes the 

potential energy curve of the approaching HCl and NH3 without any barrier 

between the separated fragments and the complex. The estimated equilib- 

rium structure resulted to be an H-bonded specie with a limited charge 

transfer character. Although quite advanced for that time, the SCF-MO 

calculations suffered from basis set truncation and neglect of correlation 

effects. Energy estimates related to these limitations were provided, in the 

spirit of the Multi- Configuration-Self-Consistent-Field theory (MC- SCF), 

which at the time was being rediscovered; it was concluded that the con- 

clusion on a single minimum will remain valid even with post-Hartree-Fock 

simulations.

In 1968, Verhaegen and Goldfinger obtained the first experimental ev- 

idence of the complex formation from mass spectroscopic studies [58] and 

proposed a D0 value between 5 - 15 kcal/mol against the value of 10 - 14

kcal/mol derived by Clementi from the computed De and the zero-point

energy estimates. Analysing the IR spectra performed at 15 K in a N2

matrix, Pimentel confirmed the H-bonded nature of the complex and esti-

mated a value for D0 in the range of 10 - 20 kcal/mol [59]. A substantial 

improvement in the theoretical study of this system was presented about 12 

years after Clementi’s work [61,63-65], and the new value of D0 calculated

falls in the range 5 - 9 kcal/mol; the computed complex nature is H-bond 

like. Recently, we have computed [69] the potential energy surface for the 

collinear C3v approach with ab-initio (SCF, MP2, CASSCF, MR-CASSCF,

CC) and DFT methods. All calculations predict a single minimum for the 

complex, corresponding to the hydrogen bonded structure. Inclusion of 

correlation corrections strongly influences the geometrical results; the most 

affected geometrical parameter is the N-Cl distance that ranges from  6.41 

a.u. (CASSCF and SCF) to 5.61 a.u. (DFT-LDA, local density  approxima- 
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tion), while the binding energy varies from 5.2-5.5 kcal/mol (CASSCF and

SCF) to 19.1 kcal/mol (DFT/LDA). The MP2 result provides intermediate 

values for both quantities, namely D0 = 11.6 kcal/mol and 5.91 a.u. for the

N-Cl distance. These data show that the inclusion of correlation corrections

predicts a closer interaction between the fragments and a small lengthening 

of the H-Cl bond. Although the experimental uncertainty is quite large, it 

is still possible to obtain very reliable data from the theoretical predictions; 

for this reason we have carried out Coupled Cluster computations, likely a 

very accurate approach, unfortunately computationally too expensive for 

medium size and for large chemical systems. Indeed the NH3-HCl system 

represents today nearly the upper limit for its size. The Coupled Cluster 

binding energy is D0 = 8.0 kcal/mol and the minimum corresponds to a 

N-Cl distance of 5.91 a.u. and a H-Cl distance of 2.46 a.u.. 

The experimental data by Pimentel were carried out in a Nitrogen ma-

trix, and this calls for an analyses of the reaction with inclusion of envi-

ronment effects. In addition, the system can be present in acqueous solu-

tions. To assess the influence of the environment on the reaction, we have 

performed DFT calculations, using the Onsager’s reaction field approach 

described in Section 2, with a value of ∈=78.5, which corresponds to the 

dielectric constant of water. We have determined the full potential energy

surface and found that the ion pair system becomes more and more stable,

the larger the N-Cl distance. For intermediate N-Cl distances (at R(N-

Cl) ≅ 6 a.u.) the potential energy surface has two minima separated by

a very small barrier. The new minimum corresponds to the Mulliken ”in-

ner complex”, namely in solution, we have the stabilisation of two charged

species NH4 and Cl– . The Mulliken gross population analysis confirms this 

picture. Fig. 1 reports the potential energy surfaces for the two simula-

tions; each curve is a cut of the potential energy surface for a fixed distance 

R(N-Cl), and it is obtained by varying the position of the hydrogen atom

lying between the N and Cl atoms (see the geometrical display given in Fig.

2).

The curves in Fig. 1 correspond to a distance R(N-Cl) of 9.41, 8.41, 7.41,

6.41, 5.91, 5.41, 4.41 a.u., in going, orderly, from right to left. From the

Figure, it can be seen that in the ”solvent” case, the minima for each fixed 

R(N-Cl) distance are obtained for values of the R(N-H) distance smaller 

than the ”vacuum” case. 

+
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Figure 1. Potential energy curves for the reaction NH3 + HCL ↔ NH4C1. Each 

curve, corresponding to a fixed N-CI distance, is obtained by varying the position

of the hydrogen atom lying between the N and Cl atoms. Top: calculations in

vacuo. Bottom: calculations in solvent.

To mark clearly this behavior, in Fig. 2 we report the energy profile for

a single N-Cl distance, fixed at R = 5.91 a.u.. From this figure, it is clear

that for the ”solvent” curve, the minimum occurs at about R(N-H) = 2.0

a.u., which corresponds to the complex NH+Cl–. The strong dependency

from the surrounding of the potential energy surface for this system confirm

a previous study [70] with MP2 reaction field; in that work it is shown that

even a solvent with a low dielectric constant (ciclohexane, with ∈ =2), can

alter substantially the energetics of the NH4Cl system. We refer the reader

to our NH3-HCl paper for full details and for a study of the reaction for 

4
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variation from ∈=0 to ∈ = 100 [69]. Here, we observe only that in the 

interval ∈ = 0 to ∈ = 10, the solvent effect is substantial, as discussed, 

whereas from ∈ = 10 to ∈ = 100 the effect varies more slowly that expected 

in passing from a solvent nearly non polar to a strongly polar one. 

Figure 2. Potential energy curves for the reaction NH3 + HCL ↔ NH4Cl. The 

curves are for fixed N-Cl distance, R(N-Cl) = 5.91 a.u., and variation of the H
positions.

We have performed also a reaction field DFT/Molecular Dynamics sim- 

ulation of this system. We found that after an initial time, when the com-

plex oscillates within the cage at R(N-H) ≈ 2.0 a.u. and R(N-Cl) ≈ 6.0 a.u., 

a small temperature variation is enough for allowing the complex to over- 

come the small energetic barrier and, with time, the distance between Cl-

and the NH
+

fragments starts to increase. Extrapolating to a real solution 

environment, the two fragments will be completely surrounded by water 

molecules, i.e. in a solution at infinite dilution the two ions are fully sol- 

vated.

4

∈
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4. The Li+ ion in solution and in water clusters

Accurate thermodynamical data for the gas phase reaction

(24)

have been determined experimentally for both positive [71] and negative 

[72] ions since 1970. The first effort to describe theoretically the gas phase 

hydration of ions [73] was phenomenological and ignored the detailed na-

ture of molecular interactions by treating the water molecule as a continu-

ous fluid with a uniform dielectric constant, following essentially the Born 

theory [1]. 

In order to account for the behavior of ion-water clusters at a molecular 

level, one can follow different strategies. One strategy would be to use, 

for the water-water and ion-water interactions, potential functions with 

parameters either empirically adjusted to fit the available experimental 

data or adjusted to fit ab-initio data. An alternative strategy would be to 

simulate directly the cluster at the ab-initio level. In 1972, the potential 

energy surface for a single water molecule interacting with a Li+ cation was 

reported [74], and using those data the heat of formation of the ion-water

complex was determined [75]; the computed value, 34.13 kcal/mol, was in 

good agreement with the experimental value [71] of 34.00 kcal/mol. 

After this computer experiment, a great number of papers followed. 

Some of them attempted to simulate with the ab-initio data the properties 

of the ion in solution at room temperature [76,77], others [78] attempted 

to determine, via Monte Carlo simulations, the free energy, enthalpy and 

entropy for the reaction (24). The discrepancy between experimental and 

simulated data was rationalized in terms of the inadequacy of a two-body

potential to represent correctly the n-body system. In addition, the ra-

dial distribution function for the Li+(H2O)6 cluster showed [78] only one 

maximum, pointing out that the six water molecules are in the first hy-

dration shell of the ion. The Monte Carlo simulation [77] for the system 

Li+(H2O)200 predicted five water molecules in the first hydration shell. A 

subsequent MD simulation [79] of a system composed of one Li+ ion and 343 

water molecules at T=298 K, with periodic boundary conditions, yielded 
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the pair correlation functions reported in Fig. 3. 

Figure 3. Li+-O and Li+-H pair correlation function determined from a MD sim-

ulation of a Li+ surrounded by 343 water molecules, at T=298 K, using 2-body 

potentials.

Integration of the Li+-O pair correlation function (see Fig. 4, curve la-

beled 2-body) shows that in the first hydration shell the Li+ is surrounded 

by 6 water molecules. 

Figure 4. Coordination number for the Li+-water solution obtained from a MD 

simulation using 2-body potentials (continuous line), and using 3-body potentials 

(dashed line). 
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The shortcoming of the pair-wise 2-body potential was eliminated by deter-

mining an analytical function which included 3-body corrections for both 

the interactions ion-water-water [80] and water-water-water [81]. A MD 

simulation at T=298 K of a Li+ surrounded by 343 water molecules with 

periodic boundary conditions, with the 3-body corrections included yielded 

the pair correlation functions reported in Fig. 5. The integration of the 

Li+-O pair correlation yields the curve labeled 3-body of Fig. 4, where it 

is evident that the ion has a coordination number of 4 in liquid water, in 

agreement with x-ray experimental data [82]. Recently, we have revisited 

once more the Li+(H2O)n clusters, with n from 1 to 6. Using the 2-body

and the 3-body interaction potentials, we have performed Monte Carlo ge-

ometry optimizations for each cluster, constraining the bond lengths and 

bond angle of the water molecules at the gas phase experimental values. 

The results are summarized in Table I. 

Figure 5. Li+-O and Li+-H pair correlation function, determined from a MD 

simulation of a Li+ surrounded by 343 water molecules, at T=298 K, using 3-

body potentials. 

From the data in Table I it is clear that the potential with the 3-body

corrections yields lower values for the interaction energies, and (not re-

ported) larger ion-water distances. In addition, for n=5 and n=6 we find, 

respectively, one and two water molecules in the second solvation shell, 

whereas the 2-body potential gives one water molecule in the second shell 
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only for n=6. 

TABLE I. Interaction energies (in kcal/mol) per 

water molecule for the clusters Li+(H2O)n.

n 2-body DFT 3-body DFT 

∆E ∆E ∆E ∆E

1 -34.3 -33.9

2 -32.2 -31.3 -31.4 -30.2

3 -30.6 -23.8 -27.9 -24.5

4 -28.5 -21.4 -24.9 -21.4

5 -27.8 -17.8 -22.9 -20.3

6 -25.3 -17.4 -21.0 -18.6

Starting from the Monte Carlo optimized geometries, we have performed 

geometry optimization at the DFT level. Now, by definition, the n-body

corrections are fully taken into account and the systems are ”free” to re-

lax to their closest minimum. Using as starting points the configurations 

obtained with the 2-body potential we obtain, per water molecule, the in-

teraction energies reported in Table I, column 2, whereas, using as starting 

point the minimum configurations from the 3-body potential, we obtained 

the results of Table I, column 4. 

Let us make a comment on the DFT results. As it is known, all mini-

mization techniques are biased by the starting point. Starting from a given 

atomic arrangement, the closest minimum is reached, and this is gener-

ally a local minimum, not the absolute one, since for systems with many 

degrees of freedom it is difficult to overcome energy barriers. The DFT 

results of Table I, clearly point out this shortcomings. The results obtained 

using as starting point the 2-body potential configurations show almost 

an energy degeneracy for the clusters with n=5 and n=6, whereas those 

obtained using as starting point the 3-body potential configurations seem 

more realistic. 

In Table II, we report the enthalpy of formation at T=298 K, for the 

reaction (24). The results obtained with the 3-body potential are in good 

agreement with the experimental data of Ref. [71], whereas those obtained 

with the 2-body potential are only in qualitative agreement (the trend is 
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correct). Notice that, for n=5, the 2-body yields the same enthalpy change

as the 3-body potential, but as pointed out the two potentials do not agree 

with the number of water molecules in the first hydration shell. 
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TABLE II. Enthalpy changes for reaction (24)

(in kcal/mol) at T=298K 

n 2-body 3-body DFT Expt.

1 -33.5 -34.0

2 -31.0 -26.5 -25.8

3 -26.5 -18.9 -20.7

4 -21.8 -14.2 -16.4

5 -12.3 -12.4 -13.9

6 -11.0 -10.2 -12.1

-32.7

-26.4

-9.1

-9.7

The DFT results of Table II (which include the zero point energy correction) 

have been computed by considering the lowest values of the two sets of Table 

I. The results are clearly good for n=l and n=2, but wrong for higher n; a 

clear indication that the minima we have reached are far from being close 

to the absolute ones. Therefore, the question remains whether for n=5, one 

water molecule is in a second hydration shell.

Starting from a Li+ surrounded by 5 water molecules (all in the first

solvation shell), we have started a DFT Molecular Dynamics simulation, 

with a time step of 0.5 femtoseconds. In Fig. 6 we report a plot of the sys-

tem at four different times. To better visualize the evolution of the cluster 

geometry, we have drawn, in Fig. 6, a fictitious bond between the ion and 

the water oxygen, if the distance is below 2.535 Å .

Inset a) refers to the starting configuration, t=0 fs, with the 5 water 

molecules in the first hydration shell. Inset b) refers to t=70 fs; some 

rearrangement starts to occur, especially for the left most water molecule. 

At t=110 fs (inset c)) one ion-water distance is above the threshold value, 

the water starts to leave the first hydration shell. Finally, at t=210 fs, 

one water molecule is in the second hydration shell and the remaining four 
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water molecules assume a tetrahedrical configuration around the ion. 

Figure 6. Four frames of a DFT Molecular Dynamics simulation for Li+(H2O)5,

showing the evolution in time of the system: a) The starting configuration at t =

0. b) The system at t = 70 fs. c) The system at t = 110 fs. d) The system at t = 

210 fs. 

5. The water clusters in vacuo and within the liquid 

Small clusters of water molecules have been the subject of a large number 

of theoretical studies in the last 25 years [83-88]. Since the early ab-initio

computations [83], it was clear that, the larger the cluster, the larger the 

number of energetically closely spaced energy minima. For clusters with

up to six water molecules, the combination of Monte-Carlo minimizations

and ab-initio computations with reliable basis sets, pointed out [83] the ex-

istence of cyclic structures, which were assumed to be either the lowest or 

near to the lowest energy. Later [84], the water clusters were revisited and 

it was confirmed that the cyclic structures correspond to the lowest energy 

minima for small clusters, whereas large clusters have 3-D characteriza-

tion. Today, structural and vibrational determinations of water clusters 

are the object of studies, because of the importance of these systems for 

understanding hydrogen bonding, which in turn plays a key role on many 

chemical and biological problems. Furthermore, additional motivations are 
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either the existence of experimental information based on spectroscopic

studies of clusters [89-91], which complements the theoretical calculations 

through experimental- theoretical feed-back, or the development of models 

of liquid water based on the existence of discrete clusters-like structures in

the bulk [92-93].

As it is now very well known, accurate studies of the water-water inter-

action by means of ab-initio techniques require the use of larger and flexible 

basis sets and methods which consider correlation effects [85,94-96]. Since 

high level ab-initio post-Hartree-Fock calculations are unfeasible because 

of their high computational cost for systems with many degrees of free-

dom, Density Functional Theory, more economical from the computational 

point of view, is being more and more considered as a viable alternative. 

Recently, we have presented [97] results of structural parameters and vibra-

tional frequencies for the water clusters (H2O)n, n=2 to 8, using the DFT

method with gradient corrected density functionals.

The results obtained using the Perdew and Wang [40] functional for 

the exchange and that of Perdew [39] for the correlation, and a good size 

basis set (with three polarization functions on the oxygen and hydrogen 

atom), show good agreement with results obtained with high level ab-initio

approaches, like MP2 and MP4. We have optimized 8 different structures

for the clusters (H2O)n , with n=2 to n=8, obtaining local minima, i.e. each

optimized structure is characterized by not having imaginary frequencies 

in the harmonic vibrational spectrum. For the systems with 1,2,3,4,5 water 

molecules we are confident to have obtained absolute minima. The final

geometries are reported in Fig. 7. 

We observe the following trends, in the cluster’s geometrical param-

eters; the O-O distances decrease as the number of molecules increases, 

from a value of 2.907 Å in the dimer to a value of 2.705 Å in the hexamer. 

On the contrary, O-H bond lengths increase (if the H atom is hydrogen 

bonded) with increasing number of molecules, from 0.981 Å in the dimer 

to 1.000 Å in the hexamer. Both these trends appear to be very near to 

convergence for the hexamer, and thus we expect no further modifications 

for these parameters in larger cyclic water clusters. In all the clusters under 

consideration in this work, the O-H bond length has constantly the value 
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of 0.971 Å, if the H atom is not hydrogen bonded. 

Figure 7. Minimum geometrical configurations for selected water clusters, as re-

sulting from DFT calculations. 

The binding energies, including BSSE and ZPE corrections for all the 

clusters studied, are collected in Table III, along with the average O-O

distances. Since for the clusters with 8 water molecules, the number of 

h-bonds is not constant, information on this is also given. 

As often pointed out, it is apparent from the results that non-additive

effects are very important, since the results deviate strongly from linearity. 

The harmonic vibrational data compare well with experimental anharmonic 

results, when available (see Fig. 8). 
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TABLE III. For each water cluster we report in the

first column the number of hydrogen bonds, in the sec-

ond column the binding energies (in kcal/mol) including

ZPE and BSSE corrections, and in the third column the 

average O-O distance (in Å ).
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h-bonds ∆ H0 R(O-O)

(H2O)2

(H2O)3

(H2O)4

(H2O)5

(H2O)6

(H2O)8 (C1)

(H2O)8 (S4)

(H2O)8 (D2d)

1 -3.53

3 -12.71

4 -24.18

5 -32.13

6 -39.88

12 -64.06

12 -63.51

9 -55.18

2.91

2.78

2.73

2.71

2.70

2.64- 2.79

2.68- 2.79

2.67- 2.83

Figure 8. Computed IR frequencies for the some of the water clusters of Fig. 7. 

The ∇ symbol indicates the position of experimental frequencies.



206 G. CORONGIU ET AL.

Following the trends observed in some geometrical parameters, vibrational 

frequencies show themselves regular shifts, when passing from small to large 

clusters.

The asymmetric stretching mode, v3, calculated to have a frequency equal 

to 3752 cm-1 for the isolated water molecule, shows an increasing red shift, 

with increasing number of molecules, and for the hexamer the average value 

of the six v3 intramolecular modes is 3720 cm-1. Furthermore, this mode

looses, upon clusterization, the character of ”asymmetric stretching”, re-

sulting in a more and more pronounced stretching of the O-Hfree bond

solely. Analogously, the v1 symmetric stretching mode transforms itself in

a O-Hbonded stretching, and reduces its frequency from the value of 3664

cm-1 for the water monomer, to an average value of 3180 cm-1 in the 

hexamer; differently from the v3 modes, the values of the vl stretchings

are spread over a large interval, while the v3 frequencies are restricted to a

much smaller range of values, indicating possibly a different degree of cou-

pling between the vibrations. The bending modes, v2, suffer, upon cyclic

clusterization, a blue shift of several cm-1 and the values cover a range 

wider and wider, up to an interval of ≈ 70 cm-1 for the hexamer. Analo-

gous modifications can be found in the octamers’ vibrational frequencies; in 

addition, the frequencies corresponding to vibrational modes of the double 

hydrogen donor molecules appear. 

Let us now compare with the situation in solution and let us start from 

a single water molecule. In Table IV we summarize gas phase and solu-

tion results. The DFT values show good agreement with the experimental 

data for the dipole moment [98] and frequencies [99-100] (if we compare

computed harmonic values with experimental anharmonic values); regard-

ing the geometry, the value of the bond angle is in excellent agreement

with the experimental data [101], but the computed bond length is 0.015 

Å longer. Let us now comment on the ”solution” results, i.e. the water

molecule within the liquid. If the liquid is simulated with the reaction field 

model, discussed in section 2, we obtain a water molecule which appears 

to be slightly different from the gas phase, but far from the experimental 

molecule in the liquid. Analogous results have been obtained in Ref. [102] 

using, however, the MP2 method. The changes with respect to the gas 

phase are in the DFT approach 0.001 Å for the bond length and -0.9 de-

gree for the bond angle; the MP2 computations [102] report a corresponding 

value of 0.003 Å and -0.25 degree. 



Expt.a

0.9572

104.52

1.855

3657

3832g

3756

3942g

1595

1649g

property DFT 

d(O-H) 0.972 

HOH 104.7 

µ 1.855

Sym. 3664 

Stretching v1
Asym. 3752 

Stretching v3

Bending v2 1613

Expt.

T = 298 K 

0.98c

0.97d

105.5
c

102.8d

2.6e

3400 f

1650 f
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TABLE IV. Properties of the water monomer in gas phase and in 

solution. Distances in Å, angles in degrees, dipole moment, µ, in

Debyes, frequencies in cm-1.
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gas phase liquid phase 

DFT MDb

solvent T = 305 K 

0.973 0.978

103.8 101.1 

2.022 2.66

3653 3626 f

3732 3690 f

1622 1750 f

a) Ref. [98-102]. 

b) The same model potential gives, for the gas phase water molecule, 

d(O-H) = 0.9572, HOH = 104.59, v1 = 3846, v3 = 3955, v2 =

1685 cm-1 (harmonic frequencies). 

c) Ref. [103]. 

d) Ref. [104]. 

e) Ref. [105]. 

f) Ref. [106]. 

g) harmonic values from Ref. [99]. 

The results reported in the column MD have been obtained [107] from 

a Molecular Dynamics simulation at T=305 K using an analytical polar-

izable and flexible potential, parametrized against ab-initio computations. 

Regarding the water geometry in the liquid, two sets of experimental data 

have been proposed [103,104], both report a lengthening of the O-H bond 

length, but Ref. [103] proposes a widening of the bond angle and Ref. 

[104] a narrowing. Our MD simulation predicts a lengthening of the O-H

bond (+0.021 Å ) and a narrowing of the bond angle (-3.4 degrees), whereas
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the DFT-solvent and MP2-solvent [102] results predict smaller changes for

both quantities. The dipole moment of the water molecule within the liq-

uid changes drastically, with respect to the gas phase. The MD simulation 

predicts a value in agreement with the experimental data, whereas the 

DFT-solvent computation predicts a too small change, but in the right di-

rection, as the MP2 method [102], which however gives a too high value 

for the gas phase, an indication of basis set deficiency. Let us now consider 

the stretching and bending modes. Experimentally [106] has been found 

an up shift of 55 cm-1
 for the bending mode (comparing the liquid with 

the gas phase) and a down shift of ≈ 300 cm-1 for the stretching modes 

(experimentally, v1 and v3 are not resolved). The MD simulation [108] pre-

dicts an up shift of ≈ 65 cm-1 for v2 and down shifts of 220 cm-1 and 261 

cm-1 for v1 and v3, respectively. The DFT-solvent model predicts mod-

est down shift for the stretching frequencies (-11 and -20 cm-1 for v1 and

v3, respectively) and modest up shift (+9 cm-1) for the bending. Again

the qualitatively directions of the shifts are correct, but quantitatively the 

results are unsatisfactory. 

We must warn on the fact that in Table IV, we have reported, for the 

liquid experimental and MD results, the frequencies corresponding to the 

maximum positions of the bending and stretching bands, which, because 

of thermal disorder, are quite broaden; in addition the two sets of data

present also librational and translational modes, not discussed here.

Within the liquid, each water molecule is both a ”solvent molecule” 

and a ”solute molecule”; at the same time, each water molecule is part 

of a network. Indeed, we can view the solvation shell as a time-averaged

representation, resulting by considering a given water molecule as fixed 

in space with its neighboring molecules librating around it; the librations 

are, however, motions which are transmitted through the network. In Ref. 

[109] we have focused our attention on specific pathways formed by hy-

drogen bridges, i.e. ”structures” which can be obtained by following a

specific path once some predefined rules and constraints are selected. At

each time step in our simulation, each water molecule belongs to a ”cyclic

structure”, which is defined by the following rules: starting with one of the

two OH bonds, one moves to the nearest hydrogen-bridged water, then to

the next one, satisfying the condition that among different pathways one

selects the one which will close the pathway on the starting water molecule.

Notice that ”by construction” we search for ”cyclic structures” purely on

geometrical grounds, neglecting both energetics and lifetime conditions (for
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this reason, we have used the old notation ”hydrogen bridge” rather than 

”hydrogen bond”). In the above selection rule, the operational definition

for the existence of a hydrogen bridge is that a hydrogen atom must exist 

between two oxygen atoms. In the search and count of the polygons, we 

count all possible closed circuits, eliminating, however, those large polygons 

which contain all the atoms of small ones. 

We have carried out a detailed analysis for studying the abundance 

and stability of the cyclic structures, in function of the temperature [109].

Our study predicts that at all temperatures, the five member rings are 

the most abundant, followed by the 6, 4, 7 and 3 member rings. The

lifetime of these polygons is very short and with almost no temperature

dependence. In addition, if we analyze for the cyclic polymers (H2O)n
the average O-O distance as a function of temperature, we found that the 

trimers have the largest O-O distances, followed by the tetramers and then 

by larger polygons. Whereas for the trimers the distance remains almost

constant for all the temperatures, the O-O distance of the larger polymers

have a strong temperature dependence, which approaches the value of ice.

Comparing these distances with those of the clusters in gas phase (see

Table III), we find for the trimers in the liquid an average O-O distance of

2.90-2.92 Å , of the same order than the gas phase. Larger differences are

found for the other clusters: in the gas phase the distances are in the range

2.63-2.77 Å , in the liquid phase 2.77-2.87 Å .

Let us now analyze the vibrational spectrum. In Fig. 9 we report

(for T=305 K) the density of states for the full liquid water sample (curve 

marked as total) and those belonging to three-, four-, five- and six-member

polygons within the liquid. 9 refer to 

the stretching and bending of the gas phase water molecule. As evident 

from the figure, for all polygons there is a red shift for the stretching fre-

quencies and a blue shift for the bending frequency, but no substantial 

difference from the total sample. In other words, within the liquid, the 

water molecules belonging to a polygon of a given size are equal to those 

belonging to a smaller or larger polygon. This is contrast to the findings of 

Fig. 8. 

The dotted vertical lines in Fig. 

Let us now build up an imaginary liquid formed by the clusters of Fig. 7. 

The IR spectrum of such a system is reported in Fig. 10, where the verti-

cal dotted lines refer to one single molecule for the gas phase. As for the 

data in Fig. 9, we observe a red shift for the stretching frequencies and 



210 G. CORONGIU ETAL.

a blue shift for the bending. Notice that we cannot compare the absolute 

intensities of Figs. 9 and 10, since the former refers to the density of states 

in arbitrary units and the latter to the simulated IR spectrum; with this 

in mind we can only compare the frequency positions. In Fig. 10 a set of 

frequencies fall in the same region as the asymmetric stretching of the gas 

phase water molecule. This feature is absent in tha data of Fig. 9; namely, 

for the cluster in vacuo, there are free hydrogen atoms not present in the 

polygons within the liquid. 

Figure 9. Density of states of a water sample, referring to three-, four-, five- and

six-member polygons and to the total of the sample (from top to bottom), as result-

ing from MD simulation, T=305 K. Dotted lines indicate vibrational frequencies 

for a single water molecule in gas phase. 

We have also analysed the liquid in terms of 3-D clusters, and we 

have found that the most abundant structures, for all the considered tem-

peratures, are those in which one water molecule is hydrogen bonded to 
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four additional water molecules (tetra-coordination), followed by the three-

coordination and penta coordination. The lifetime of the tetra-coordinated

water molecules is the longest (on the order of the picosecond). For these 

3D-clusters we report in Fig. 11 the density of states. Again, the curve 

labeled as total refers to the full sample and the vertical dotted lines to the 

water molecule in gas phase. The curves labelled as 2, 3, 4, and 5 belong to 

water molecules bi-, three-, tetra- and penta-coordinated. Notice that now 

we have differences in the stretching region of these spectra. In particular 

the bi- and three-coordinated water molecules show frequencies close to the 

gas phase value. 
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Figure 10. Simulated IR spectrum of a liquid formed by the water clusters of 

Fig. 7, as resulting from DFT calculations. Dashed lines indicate vibrational fre-

quencies of an isolated water molecule. 

The resulting overall picture of liquid water is that of a very dynamical 

”macromolecular” system, where clusters of different size and structure 

coexist in different subvolumes of the liquid and each has characteristic 

lifetimes and specific temperature dependences. In our opinion, if we would 
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regard the liquid as formed by polygons (equivalent to those most stable 

structures found in the gas phase), then we would have a liquid more static 

in time, the only freedom associated to the individual water molecules 

would be inter- and intra-molecular vibrations and librations, with limited 

translational possibilities. Therefore, by considering water as a liquid, one 

should favor the 3-D clusters, whereas water as a solvent can nicely make 

use of ”polymers” as building blocks, to build cages around the solute. 

Figure 11. Density of states of a water sample, referring to two-, three-, tetra- and

penta-coordinated 3D clusters and to the total of the sample, as resulting from 

MD simulation, T=305 K. Dotted lines indicate vibrational frequencies for a single 

water molecule in gas phase. 
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6. DNA bases and base-pairs 

Intermolecular interactions play a dominant role in the structure and dy-

namics of DNA [110]. Among these intermolecular interactions, the hydro-

gen bonds between base pairs are of interest since represent an intermediate 

step between strong intramolecular bonds and typically weak intermolec-

ular interactions. In addition, even if the stability of the DNA and RNA 

helixes is mainly due to steric, dispersive and electrostatic interactions, the 

hydrogen bonds provide the specificity needed to achieve high levels of fi-

delity during replication and transcription. Therefore, the understanding 

of these interactions is most important [111-113]. It is very well known that 

quantitative determination of the structure and binding energies of the pair 

bases are computationally very demanding [114-116], since high level elec-

tron correlation corrections, associated with basis sets of good quality, are 

required to obtain a proper description of both the structure and binding 

energies of these systems. The use of correlated methods has been often 

limited to single point calculations of structures optimized at a lower level 

of theory, i.e HF. However, it is well known that the Hartree-Fock geome-

tries can deviate considerably from experimental results in gas phase; it 

is necessary to perform post-Hartree-Fock geometry optimizations to ob-

tain niore satisfactory agreement with the experimental structures [117]. 

Here, we report simulations obtained with the DFT for the study of the 

structure, binding energy and infrared spectrum of the C-G and A-T DNA 

base pairs, and we compare these results with those obtained with ab-initio

calculations (HF and MP2) and with available experimental data. 

6.1 GEOMETRIES AND BINDING ENERGIES 

Full geometry optimizations have been carried out for the 9-methyladenine

(A), 1-methylthymine (T), 1-methylcytosine (C), and 9-methylguanine (G)

bases at both the HF and the DFT levels, using double zeta quality ba-

sis sets augmented with polarization functions for all the atoms. The two 

methods yield similar results: the main difference is in the heteroatom-

hydrogen bond lengths, which are systematically longer in the DFT calcu-

lations. In addition, computations with the reaction field method have been 

done at the DFT level. All the DFT calculations have been performed both 

with the Perdew and Wang exchange functional [40] and with the Becke 
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exchange functional [42], (in both case, the Perdew correlation functional 

[39] has been used). Since the two functionals yielded essentially the same 

range of values, in the Tables we report only the values obtained with the 

Becke exchange functional. 

The geometry optimization of the complexes AT and CG (depicted in 

Fig. 12), reflects a more delicate issue than the single bases; a reliable de-

termination requires performing the optimization with methods which take 

into account the correlation energy. 

Figure 12. Methyladenine - Methylthymine (AT) and Methylcytosine - Methyl-

guanine (CG) base pairs. The dipole moments of the isolated bases and of the 

base pairs are also shown. 

A comparison of the hydrogen bond lengths obtained from the DFT 

and HF methods, and from X rays experimental data [118-119] is reported 

in Table V. 
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TABLE V. Optimized hydrogen bonds distances for the AT and CG com-

plexes (Å) 

Base pair Bond length HF DFT DFT-solvent Expt.a

2.95

2.82

2.91

2.95

2.86

AT

CG

r(N6O4)

r(N1N3)

r (O6N4)

r(N1N3)

r (N2O2)

3.08

2.99

2.92

3.05

3.00

3.00

2.92

2.83

2.99

2.91

3.01

2.92

2.84

2.98

2.90

a Ref. [118]. 

It can be seen that the DFT method, which includes the correlation 

energy contribution in the optimization processes, yields an optimized ge-

ometry closer to the experimental values than the HF optimization. The 

solvent effect has a minor influence on these geometrical parameters, at 

least in the reaction field approach; the computations do not evidence any 

significative effect on the hydrogen bond lengths, the only observable change 

is in a slight shortening of two hydrogen bonds in the CG pair. 

The interaction energies for the AT and CG complexes have been eval-

uated at the HF level using the HF optimized geometry, at the MP2 level 

rising the HF and the DFT optimized geometry and at the DFT-reaction

field optimized geometries. The interaction energy has been evaluated as 

the difference in the energies of the optimized complex and individual bases, 

i.e.

(25 ) 

The corrections for basis set superposition errors (BSSE) with the coun-

terpoise correction are still a controversial issue [120-122]. However, some 

type of correction is needed for calculations on systems with weak inter-

actions. It has been proved that only considering the BSSE meaningful 

results can be obtained on large systems [122]. Of course, by using good 

quality basis sets the BSSE is less troublesome and the results obtained 

can be accepted, readily, as reliable. The BSSE in DFT calculations is 

less important than in conventional ab-initio calculations. We compute the 

counterpoise correction as: 
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BSSE = E(X) + E(Y ) – E[X(Y)] – E[Y(X)] (26)

where E(X) and E[X(Y)] represent the energies of molecule X at the 
geometry of the optimized complex, computed with its own basis set and
the basis set of the whole complex, respectively. The corrected interaction
energy can be written as:

(27)

In order to compare the computed results with those obtained from 
the experiment, the interaction enthalpy a t 0 K has to be evaluated. The
interaction enthalpy, ∆H, differs from the ∆E by the change in the zero 
point energies, ∆ZPE, between the complex and the isolated subsystems. 

(28)

A summary of our results is given in Table VI. At the HF optimized
geometries, the CG interaction energy corrected by BSSE and ∆ZPE is 
close t o the experimental value, while the AT result is too low. The MP2
results for both pairs are very good, however this must be considered a
fortunate coincidence, since we found inconsistent intermediate results: a)
negative reorganization energies for G and T (the reorganization energy is 
defined as the difference in energy between the base in the geometry of the
base pair and of the isolated base) and b) energies a t the D F T geometry
lower than at the HF geometry, an indication that the HF geometry is not
a minimum for MP2. These two observations indicate clearly that the MP2
lowest energy configurations are far from the HF ones and closer to the DFT
geometries. Performing MP2 calculations a t HF optimized geometries is a
very common procedure, but in this case our calculations point out that
even if the results appear as good, the validity of the whole procedure must
be analyzed critically.

Let us now consider the reaction field results; it can be seen that the
solvent effect on the energetics is to reduce the strength of the bonding,
for both the base pairs. The binding energies for AT is reduced by 1.5
kcal/mol. More pronounced is the change for CG binding energy, which is 
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reduced by 7.5 kcal/mol. These changes are due to the different solvation 

energies exhibited by the isolated bases and by the pairs, that is, the sol-

vation energy of a pair is smaller than the sum of the solvation energies of 

the isolated bases. 
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TABLE VI. Interaction energies for the AT and CG complexes 

evaluated with different techniques (in kcal/mol). 

Method AT CG 

HF/HFa

HF/HFb

HF/HFc

MP2/HFa

MP2/HFb

MP2/HFC

MP2/DFTa

MP2/DFTb

MP2/DFTc

DFT/DFTa

DFT/DFTb

DFT/DFTc

DFT solv/DFT solva

Expt. d

11.7

9.5

6.6

17.5

15.5

12.6

17.8

12.3

9.4

14.1

13.1

10.2

12.6

13.0

26.1

23.5

19.5

31.8

25.7

21.7

32.1

25.3

21.3

26.5

26.4

22.2

19.0

21.0

a Results obtained using optimized fragment energies (Eq. 1). 
b Results obtained including BSSE (Eq. 2). 
c

change in zero point energies given in Ref. [114]. 
d Refs. [118-119]. 

Results obtained including BSSE and the estimation of the 

Since one major component of the base pair interactions is of electro-

static nature, dipole moments were calculated at the HF and DFT levels for 

the isolated fragments and the complexes (Table VII). By proceeding from 

the isolated bases to the base pairs there is a change in the magnitude and 

direction of the resultant dipole moment. The HF results point out that for 

the CG pair, there is an increment of 1.42 D (27.6 %) and a rotation of 11.1º, 
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whereas for the AT pair, a decrement of 0.49 D (18.6 %) and a rotation of 

20.5° are observed, The DFT computations yield equivalent magnitudes. 

The magnitude changes cannot be accounted by charge transfer effects. In 

fact the Mulliken population analysis shows that upon formation of the

CG pair, there is a net charge transfer of only 0.024 e_
from cytosine to

guanine. In the AT pair the charge transfer is 0.003 e
_

from adenine to

thymine. According to the differences in the dipole moment orientations

(Fig. 12) from the individual bases to the complexes it can be seen that 

the binding energy is not determined simply by dipole-dipole interactions, 

but also by induced dipoles - induced dipoles interactions, therefore polar-

ization effects seem to play an important role in the base pairing. 

Inclusion of the reaction field method gives the same picture; indeed, 

the dipole moments are simply enhanced in magnitude, but their orienta-

tion is not changed, neither in the isolated bases nor in the pairs. 

TABLE VII. Calculated dipole moments for the in-

dividual bases and the AT and CG complexes (in 

Debyes).

Molecule HF DFT DFT-solvent

Adenine (A) 

Thymine (T) 

AT

Cytosine (C) 

Guanine (G) 

CG

2.54

4.88

2.15

6.76

7.41

6.55

2.68

4.79

1.61

6.21

7.33

6.34

3.62

6.08

2.31

8.00

9.85

9.63

6.2 VIBRATIONAL ANALYSIS

The harmonic vibrational infrared spectrum of the four bases, as well as of 

the two base pairs, has been calculated at the DFT and DFT-solvent level 

of theory by finite differentiation of the forces acting on atoms along the 

normal coordinates. In the following, we briefly analize the results, which 
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are partially sketched in Figs. 13-16.

Figure 13. Selected frequency assignments for methyladenine, both in complex 

(top) and isolated (bottom). The values of the shift due to complexation are also 

given.

In general, we did found some difficulties in the assignments of the 

modes, particularly of the low-frequency ones. 

For the isolated 9-methyladenine (see Fig. 13), largely recognizable are 

the stretching and bending modes of the amino group, while modes of the 

CH3 group are usually coupled with other vibrations. The comparison with 

values obtained with spectroscopic measurements of infrared spectrum in 

Argon matrix [123] shows substantial agreement for all the frequencies. 

Major discrepancies between calculated and experimental values are found 

for the asymmetric stretching frequency of the amino group, 3636 cm-1

(calc.) 3557 cm-1 (expt.), possibly due to matrix effects, and for 

some low frequency modes, whose assignment is particularly difficult and 

for which the harmonic approximation has a limited validity. Qualitative

vs.
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agreement is found also for the relative intensities. 

Figure 14. Selected frequency assignments for methylthymine, both in complex 

(top) and isolated (bottom). The values of the shift due to complexation are also 

given.

Also for the isolated 1-methylthymine (see Fig. 14) substantial agree-

ment with experimental results [124,125] is found. 

The vibrational spectrum of the methyladenine-methylthymine (AT) 

base-pair consists of 102 normal modes frequencies; many of the intramolec-

ular modes of the two isolated molecules are recognizable in the complex. 

It is therefore easy to report the shifts suffered by these modes in the com-

plex formation. Here we mention only some of the shifts of modes belonging 

to atoms involved in the h-bonding of the complex. The NH2 stretching

modes of adenine show a red shift and an increase in intensity, whereas the 

frequencies related to the NH2 bendings change little both in position and 

intensity. As it is clear from Fig. 13, all the modes involving displacements 

of the amino-group are affected by complexation effects. A sharp red shift, 

from 515 cm-1 to 359 cm-1, is evident for a ring deformation mode, which 
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clearly regards displacement of the N1 atom involved in h-bonding.

For thymine, the most pronounced shift belongs to the NH stretching 

mode, whose frequency position is lowered by 700 cm-1 upon complexa- 

tion and whose intensity increases by a factor of 40. The C40 stretching 

(coupled with the NH bending) is red-shifted from 1678 to 1651 cm-1 while

the NH bending is notably blue shifted (+126 cm-1) with an increase in 

intensity; the same trend is evident whenever the NH bending is coupled 

with other modes. A pictorial view of these shifts is reported in Fig. 14. 

Although very well resolved experimental infrared spectra are available 

for the methylguanine molecule, it is difficult to make a comparison with 

our calculations, since two different tautomers of 9-methylguanine exist, 

and their frequencies are mixed in the experimental spectra [126]. However, 

in general we can state that the agreement is good, even for the relative 

intensities. The spectrum is partially reported in Fig. 15. 

The available experimental data [127] for the 1-methylcytosine base 

agree with our results. The spectrum of the isolated base is partially re-

ported in Fig. 16. 

The vibrational spectrum of methylguanine-methylcytosine (GC) com-

plex consists of 99 normal modes frequencies. Differently from the AT base 

pair, in the GC complex the normal modes of the two bases are coupled 

together, thus an analysis of the shift relatively to the isolated bases is 

extremely complicated. This stronger coupling can possibly he ascribed 

to the presence of three h-bonds, rather than two as in AT. However, we 

tentatively discuss some significant shifts. 

In guanine, the amino-group asymmetric and symmetric stretchings ex-

hibit red shifts and increase in intensity. The shift is more pronounced for 

the symmetric stretching, which is coupled, as in in the isolated base, with 

the NH stretching. The CO stretching, which occurs at the same frequency 

as the NH bending, shows a moderate red shift, while the NH bending 

associated with NH2 bending exhibit a blue shift. 

Also for cytosine, red shifts are detected in the NH2 stretching and 

bending modes. Ring stretchings and deformations, involving the CO vi-

bration, suffer little changes with respect to the isolated base (see Fig. 16). 

In the overall, the computed frequency shifts are in agreement with the 
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available experimental [128] observations.

Figure 15. Selected frequency assignments for methylguanine, both in complex 

(top) and isolated (bottom). The values of the shift due to complexation are also 

given.

Let us now comment on the results obtained when including solvent 

effects. The geometrical arrangements of the isolated bases are not heavily 

affected upon solvation, thus we can expect a slight modification of the

potential energy surface and therefore of the vibrational behavior for these 

systems. Indeed, it appears that only some stretching modes exhibit sig-

nificant shifts, particularly when they involve movements of the peripheral 

atoms.

For the isolated methyladenine, we observe blue shifts for the stretching 

modes of the amino-group (+25 cm-1 for the asymmetric stretching, +46

cm-1 for the symmetric stretching), and also for the stretching mode of

the C8O (+56 cm-1) and for an asymmetric stretching mode of the methyl 

group (+89 cm-1). For the isolated methylthimine, the changes are more 

modest than for methyladenine, resulting in a slight blue shift for some 
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stretching modes of the two methyl groups and of the C6H bond.

Figure 16. Selected frequency assignments for methylcytosine, both in complex 

(top) and isolated (bottom). The values of the shift due to complexation are also

given.

Isolated methylguanine exhibits red shifts in the frequencies of some 

stretching modes, rather than blue shifts; the C8H stretching mode exhibit 

a red shift of 29 cm-1,  and the symmetric stretching mode of the methyl 

group is red shifted in frequencies by 18 cm-1. A red shift is also evident 

for the C6O stretching and N1H bending, with its frequency lowered by 

39 cm-1. Methylcytosine differs from the other bases; indeed, the solvent 

effect induces strong modifications in the normal vibrational frequencies. 

The amino group symmetric stretching exhibit a blue shift of 90 cm-1, and 

the C5H bond increases its stretching frequency of 100 cm-1, while the 

methyl group shows a blue shift of 92 cm-1 in its symmetric stretching 

mode. A red shift of 32 cm-1 is suffered by the C2O stretching mode. 

As previously noted, we are of the opinion that, in the overall, the shifts 

induced by the solvent are in the correct directions, but we must be cau-
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tious in trying conclusions from their absolute values. 
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1. Introduction 

In this chapter, we give a brief account of two related aspects of chemical 

reactions in solution: the so-called "stochastic" theoretical approach to the rates of 

reactions and related features, and Molecular Dynamics (MD) computer simulations 

designed to test such theories and to otherwise provide insight on the reaction

dynamics.

By the term "stochastic" we mean here that the reaction description is at a 

reduced level, that is, in terms of a dynamical equation(s) of motion for only one 

variable i.e., the solute reactive coordinate – or perhaps two – the solute reactive

coordinate and a coupled, collective solvent coordinate. Such equations have a 

probabilistic or stochastic aspect due to the fluctuations arising from the remaining 

and not explicitly followed degrees of freedom (of the order of a multiple of 

Avogadro's number in number!), MD simulations, on the other hand, treat explicitly

albeit numerically all the system degrees of freedom (classically) in full detail. 

The latter tells us all there is to know (with the very important caveats that the

interaction forces are known – a focus of much of the rest of this book and that 

classical mechanics is a sufficiently accurate description). The stochastic approach 

has the more modest goals of providing a simpler – and in favorable cases – analytic

description of limited but critical aspects such as the reaction rate constant and 

reaction pathways; this is an especially attractive feature in connection with the 

interpretation of experiments and – more philosophically – in bringing order and 

generality into the vast and rich array of chemical reaction dynamics for specific

reaction systems. 

In the limited space available, we make no pretense of providing a compre-
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hensive coverage, and indeed we give a very focussed discussion, largely focussed

on Grote-Hynes (GH) theory [1,2] and MD simulations connected with it. In addition 

to the obvious rationale of our familiarity with these topics, we can offer the 

justification that Grote-Hynes theory is the most successful theory for solution 

reaction rates, as judged objectively by its confirmation in a very considerable 

number of simulations for a very wide array of chemical reaction types and examples 

[3-12], with experimental support as well [13-16]. Those interested in a broader 

overview and alternate approaches may consult a number of reviews [1,3,17,18]. We

also focus exclusively on charge transfer reactions, where there is often a strong 

electrostatic coupling between the reactering solute and the surrounding polar solvent. 

Of course, GH theory has important antecedents. The first is the well known 

Transition State Theory for solution reaction rate constants kTST [ 1,191. With its

exponential activation free energy factor, kTST is the starting point, and indeed is the 

sine qua non, of reaction rate theory – it gives most of the answer. GH theory

addresses the proper prefactor for kTST, or alternately stated, the transmission

coefficient, which accounts for solvent dynamical effects responsible for reducing the 

actual rate constant from its kTST approximation. The first – and for many years the 

only stochastic approach to this factor is Kramers Theory [20], which employs a 

simple Langevin equation description involving a friction constant to account for the 

dynamical solvent rate influence. GH theory generalizes this to a Generalized 

Langevin Equation description, and is properly focussed on the key short molecular 

time scale in which the system is crossing the transition state. Another theme of this 

chapter is that of nonequilibrium solvation – the feature that the solvent is out of 

equilibrium with the reacting solute during the Transition State passage, an aspect not

included in conventional Transition State Theory. Various model elaborations 

focussed on nonequilibrium solvation and related to GH theory have been developed 

[21,22] to more completely characterize important detailed aspects of what is

happening to the solute and solvent during the reaction. These efforts received an 

important initial encouragement from the work of Kurz and Kurz [23]. 

The outline of the chapter is the following. In Sec. 2, we give an overview of 

GH theory and various important limits, as well as an overview of its applications to 

assorted charge transfer reaction classes. In Sec. 3, we sketch a model development 

that is quite useful in comprehending the meaning of GH theory. Various MD

simulation studies on reaction dynamics are described in Sec. 4. from the perspective 

of the preceding sections. Sec. 5 sketches some other related developments, while 

concluding remarks are offered in Sec. 6. 

The reader interested in a further discussion of connections of reaction rates 

to the topic of solvation dynamics an arena of intense activity is directed to Ref. 

24, upon which the present chapter is partly based. 

2. Stochastic Reaction Rate Formulation

2.1. CLASSICAL PARTICLE CHARGE TRANSFER-GROTE-HYNES THEORY

We begin by giving a brief account of Grote-Hynes Theory [1,2] for reaction 
rate constants. This theory has been verified for a very wide range of solution 
reactions via computer simulation [3-12] and has also proved useful in comparison 

–

– –
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with experimental rate studies [13 - 16].

GH Theory was originally developed to describe chemical reactions in 

solution involving a classical nuclear solute reactive coordinate x. The identity of x
will depend of course on the reaction type, i.e., it will be a separation coordinate in 

an SN1 unimolecular ionization and an asymmetric stretch in anSN2 displacement

reaction. To begin our considerations, we can picture a reaction free energy profile 

in the solute reactive coordinate x calculated via the potential of mean force Geq(x) –
the system free energy when the system is equilibrated at each fixed value of x, which

would be the output of e.g. equilibrium Monte Carlo or Molecular Dynamics

calculations [25] or equilibrium integral equation methods [26]. Attention then 

focusses on the barrier top in this profile, located at x‡.

In the GH theory, it is assumed that the reaction barrier is parabolic in the

neighborhood of x‡ and that the solute reactive coordinate satisfies a generalized

Langevin equation (GLE),

(2.1)

where a random force term which is not essential for our purposes has been ignored. 

It is convenient – and we have in fact already assumed this in (2.1) – to take the

barrier top location x‡ to be x‡=0. The square equilibrium barrier frequency is

governed by the mean potential curvature 

(2.2)

The time dependent friction coefficient, per solute mass µ, is related to the 

fluctuating forces exerted by the solvent on the solute coordinate x through their time 

correlation function: 

(2.3)

The GLE accounts for the crucial fact that the time scale of these forces is finite, and 

in particular, finite on the relevant time scale for the barrier crossing. This is an 

important point to which we return presently. 

We should stress that the friction in (2.3) is that relevant to the barrier top 

vicinity, and indeed the entire description is assumed to be valid in just that vicinity. 

This is not at all inconsistent with, and indeed it recognizes, the fact that this friction 

can be different from the corresponding frictions relevant for reactants and products; 

for charge transfer reactions, this is most obviously a consequence of the fact that the 
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solute charge distributions are different in the three locations. 

With the assumptions detailed above, the reaction transmission coefficient, 

(2.4)

i.e., the ratio of the actual rate constant to its Transition State Theory (TST) value, is 

found to be the ratio of the reactive frequency λ and the mean barrier frequency [1,2]

This self-consistent equation has a simple message: the relevant friction for 

the reaction is determined by the (Laplace) frequency component of the time

dependent friction at the reactive frequency λ. This frequency sets the basic time

scale for the microscopic events affecting κ.

There is a simple route to the middle equation for λ in (2.5) which helps to

understand λ. We look for a solution to the GLE (2.1) of the form x(t) ~ exp (λt)

(2.5)

reflecting the longer time divergence of a trajectory away from the unstable barrier 

top. Insertion of this into (2.1) gives just the desired result for asymptotic times. 

The TST rate constant in (2.4) refers to the conventional solution application 

of TST in which it is imagined that – even if it is not explicity stated – equilibrium
solvation conditions hold [1,2,21,22]. This is equivalent, although perhaps not 

obviously, to picturing the reaction as passage over the equilibrated barrier in x,
without any recrossing. (2.1) indicates that these equilibrium conditions will apply 

when the x coordinate velocity is so low, and the generalized friction due to the 

coupling of x to the solvent is so small, that the solvent can adjust sufficiently rapidly, 

i.e., adiabatically, to the x motion to provide the equilibrium solvation that is 

incorporated in the equilibrium barrier frequency, but with no further effect. In the 

perspective of (2.5), the reactive frequency λ would then be the equilibrium barrier

frequency wbeq. Whether these conditions are actually met, so that the relations k =

kTST and thus κ=1 will hold, will depend on the time scale of the solvation dynamics

and the coupling of the solvent to the reactive solute coordinate x.
To appreciate this latter point, we consider four important limits for the GH 

theory [1,21,221. First, if the adjustment of the solvent is rapid on the time scale of 

λ-1, then the frequency dependence of can be safely ignored, and the GH

equations reduce to the famous Kramers Theory result [20] 
ζ
^

(λ)
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(2.6)

in which the zero frequency friction, or simply the friction constant, is 

(2.7)

If the magnitude of the solute coupling to the solvent is large, gauged in the Kramers

picture by / ωbeq >> 1, the transmission coefficient will be low – K ~ ωbeq / This is

caused by extensive recrossing of the barrier induced by the solvent friction. 

Equivalently stated, there is extensive spatial nonequilibrium departure from 

equilibrium solvation conditions. In this limit, the reaction can be described as a 

spatial diffusion-controlled passage over the barrier – the Smoluchowski spatial

diffusion limit – and the full zero frequency solvent dynamics are required  for its 

accurate description. (One frequently sees in the literature the confusing terminology

"spatial diffusion limit" instead applied to, e.g., (2.6). This is clearly wrong; for 

example, (2.6) contains the TST limit κ=1, where no spatial diffusion is involved).

A second important limit is attained if the solvent dynamics are slow on the

reactive time scale λ-1, that is to say there is nonadiabatic solvation. Then we can

put λ-1 in (2.5), and the GH equations reduce to [21,22]

(2.8)

In this nonadiabatic solvation limi which is favored by a sharp reaction barrier the

reaction can be viewed as x motion on a nonadiabatic barrier, whose frequency is the 

nonadiabatic value ωbna. (The situation when ω2
bna is negative represents another limit, 

described below). This can be seen directly from the GLE (2.1) by ignoring the time

dependence of performing the time integral for short times, and remembering 

that x(t=0)=0. This frequency ωbna is less then the corresponding equilibrium value

ωbeq, since the passage is occuring for fixed solvent configurations, and the solvent

cannot respond to provide the equilibrium solvation that is incorporated in ωbeq. Once

again, there is no equilibrium solvation and κ<1. In the neighborhood of, but not

exactly in, this limit, some information about the solvation dynamics is required, but 

is limited to the very early time behavior of 

– –

ζ ζ.

ζ(t=0)ζ
^

(λ)

ζ (λ),

ζ (λ).
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One should take careful note of the fact that in the nonadiabatic solvation, or 

“frozen solvent" limit, it is the absence of solvation dynamics that is important. But 

is just this lack that is responsible for the deviation from equilibrium solvation, which 

instead assumes the dynamics are effective in always maintaining equilibrium. 

We now consider the polarization cage limit favored by a more broad 

reaction barrier [1,21,22]
On short time scales where the solvent has not moved while the solute 

coordinate x crosses the barrier, (2.9) indicates, with (2.1), that the x motion is 

(2.9)

temporarily trapped, or "caged". The initial friction ζ(t=0) is simply too great to 

allow the reaction to proceed. No net passage on to the product side of the barrier can 

occur unless and until there is solvent motion to relax this cage and free the motion 

along the reaction coordinate. Thus in this limit the solvent dynamics is absolutely 

essential for the reaction to occur; the transmission coefficient reflects this, 

decreasing more and more as the solvent relaxation time lengthens. The associated 

multiple recrossing of the reaction barrier is particularly pronounced when the x
coordinate motion is overdamped as well [22]; an average trajectory can oscillate 

several times before ultimately passing to the product region. 

The polarization cage limit just discussed will apply when there is a relatively 

broad barrier in the mean potential (small wbeq) and at the same time there is strong 

solute-solvent electrostatic coupling [(large ζ(t=0))]. If conditions are such that the 

reactive frequency is so low as to be small compared to the time scale of the friction, 

then the polarization cage regime predictions for κ will coincide with the Kramers

limit. Otherwise, one must simply solve the GH (2.5). Here something more than the 

initial time behavior of ζ(t) will be required to characterize the influence of the 

solvation dynamics on the reaction rate. 

One should appreciate that in all of these limits, both the solvent time scale 

and the magnitude of the coupling of the solvent to the x coordinate are critical in the 

consequences for the reaction rate of any nonequilibrium solvation conditions. The 

former will not lead to any departure from the TST equilibrium solvation rate if the

solvent coupling is weak. For example, in the nonadiabatic limit, if the coupling is

weak – as gauged by /ω2
beq <<1, then K→ 1 and k → kTST. It is certainly not the 

case that the equilibrium solvation conditions are satisfied – indeed they are not, since

the slow solvent cannot equilibrate to the reactive solute motion. Instead, it is the case 

that the coupling is so weak that the barrier crossing in x and thus the transmission 

coefficient are largely insenstive to the surrounding solvent: it simply does not matter 

that the solvent is out of equilibrium. This is the fourth and final limit that we discuss

here, the weak solvation limit [21,22]. 

ζ (t=0)
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2.2. QUANTUM PARTICLE CHARGE TRANSFER REACTIONS

We now turn to charge transfer reactions involving a quantum particle, an

electron or a proton. At first glance, these might seem strange applications of GH

theory, since the coordinate of the reactant is quantum, and not classical as in Sec.

2.1. But as described below, the actual reactive coordinate for these reaction classes

is classical.

We first consider outer sphere transfer (ET) reactions, e.g. D  + A →  D + A ,-
a donor-acceptor electron transfer without significant coupled internal reorganization 

of the D and A species [27,29,30]. A hallmark of such reactions, which has been long

appreciated [27], is that the reactive coordinate is itself a many-body collective 

solvent variable (and is not the coordinate of the electron itself). In particular, if R 

and P stand for the reactant and product, then the reactive coordinate is 

(2.10)

This is the difference in interaction energy, for the solvent molecules in given 

positions, of the solvent with the reactant and product [31]. In the simplest case of no 

geometric size changes accompanying the ET, ∆E will be exclusively determinated

by the Coulombic interactions between the solute and the solvent molecules. We will 

assume this to be the case in all that follows. We make the further restriction that the 

solute intramolecular vibrations play no key role. 

For electronically adiabatic ET, the electronic coupling between the R and P 

diabatic states is sufficiently large that there is a continuous change in electronic 

character in passage over a reaction barrier in the ∆E coordinate. Again, one can

apply GH Theory to this by assuming a GLE in the barrier top neighborhood, but now 

for the solvent coordinate δ∆E(t) = ∆E(t) - ∆E‡, where ∆E‡ locates the reaction

barrier top in the equilibrium free energy Geq (∆E):

(2.11)

Here and refer to the equilibrium barrier frequency and the time

dependent friction for the solvent coordinate δ∆E; note the contrast with (2.1), which

refers to the corresponding quantities for a solute reactive coordinate.

The TST rate constant for electronically adiabatic ET reactions is the well-

known Marcus rate constant [27-29]. In the language of this chapter, solvent 

dynamical effects can alter the actual rate from this limit due to the friction ζET

influence. The corresponding GH equations for κET = kET / are strictly analogous

to (2.4) and (2.5), and so we do not write them out explicitly here. 

We should briefly mention the electronically nonadiabatic ET situation. Here 

the electronic coupling is sufficiently weak that the intrinsic electronic passage from 

-

ωET
beq ζ ‡

ET(t)

kTST
ET

kTST
ET
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R to P is slow, even when the isoenergetic conditions in the solvent allow the ET via 

the Franck-Condon principle. The TST rate for this case contains in its prefactor an 

electronic transmission coefficient κel, which is proportional to the square of the small

electronic coupling [28]. But as first described by Zusman [32], if the solvation 

dynamics are sufficiently slow, the passage up to (and down from [33]) the

nonadiabatic curve intersection can influence the rate. This has to do with solvent 

dynamics in the solvent wells (this is opposed to the barrier top description given

above). We say no more about this here [8,11,32-36]. 

The situation for quantum proton transfer (PT) e.g. AH + B →  A- + HB+
 is

more complicated than for ET, in part due to the importance of the A-B separation

coordinate (which would play no important role in the analogous short range ET 

processes D + A → D+ + A-). We do not dwell on this here though. There are two

important regimes for PT. The first is the nonadiabatic regime [37,38] in which

reaction occurs by quantum proton tunnelling under its potential barrier. That barrier

is itself modulated by the solvent, and in analogy to ET, the reaction barrier is in the 

solvent coordinate. In the proton adiabatic regime [39-42], the rapid proton 

adiabatically follows the slower solvent, and at the transition state of the solvent 

coordinate, is described by a bound quantized vibration above the barrier in its own 

coordinate (this is nothing at all like the classical motion of the proton over its

barrier). Again the reactive coordinate is in the solvent. 

We will only consider the adiabatic PT case here. In this situation, the free

energy in the solvent coordinate will have a barrier, and the GH-GLE discussion 

above for ET in the solvent coordinate ∆E will also apply to the PT case.

3. Analytical Model

Prior to addressing the results of simulations on the issues exposed in the last 

section, we will now develop in this section a simple model perspective [5c,21,22,43]. 

Its purpose is both to shed light on the interpretation in terms of solvation of those 

results and to emphasize the interconnections (and differences) that may exist. The 

development given below is suitable for charge transfer reaction systems, which have 

pronounced solute-solvent electrostatic coupling; it is not appropiate for, e.g., neutral 

reactions in which the solvent influence is mainly of a collisional character. 

(Although we do not pursue it here, the various frequencies that arise in the model 

can be easily evaluated by dielectric continuum methods [21,431). 

We consider the reactive solute system with coordinate x and its associated 

mass µ, in the neighborhood of the barrier top, located at x=x‡=0, and in the presence 

of the solvent. We characterize the latter by the single coordinate s, with an associated

mass µs. If the solvent were equilibrated to x in the barrier passage, so that there is 

equilibrium solvation and s = seq(x), the potential for x is just -1/2 µωbeq
2X2, whereωbeq

is the equilibrium barrier frequency [cf. (2.2)]. To this potential we add a locally

harmonic restoring potential for the solvent coordinate to account for deviations from

this equilibrium state of affairs:
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(3.1)

Here ωs is the solvent frequency and we have assumed the solvent’s equilibrium 

position to vary linearly with the solute coordinate x in the neighborhood of the 

barrier top: 

(3.2)

This dependence of seq(X) on x has its origin most importantly in charge transfer

problems from the variation of the solute charge distribution with x, e.g., in an SN1

ionization of RX, the ionic character of RX depends on the internuclear RX 

separation since the solute electronic structure is changing [7,43]. Even in a simple 

dipolar isomerization involving no electronic structure change, there will be such a

dependence because the solute’s dipole moment is changing with orientation [22]. We 

emphasize that the linear behavior (3.2) is only being assumed in the neighborhood 

of the barrier top (in general, seq(x) will have an S-shape in the full range from

reactants to products). Note also that at this stage, the precise identity of the solvent 

coordinate has not been specified. We will return to this question in Section 4. 

With the above description, the Hamiltonian becomes

(3.3)

It is convenient to now convert to mass-weighted coordinates x = µ1/2x
and s = (and then drop the overbars hereafter), so that the Hamiltonian is

(3.4)

Here the square nonadiabatic frequency is given by 
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(3.5)

while the x - s coupling square frequency – which measures the coupling strength –
has the definition 

(3.6)

The nonadiabatic frequency governs the initial force experienced by x when the 

solvent coordinate is frozen at its saddle point value s = s
eq

(x‡) = 0. In general, the

coupled equations of motion for the (x,s) system are 

(3.7)

If the solvent were to adjust rapidly (adiabatically) and equilibrate to the solute 

coordinate x so that there is no force on s, then we would have the equilibrium 

condition

(3.8)

When this condition is inserted into the first member of (3.7), it gives the simple 

equation of motion 

(3.9)

where we have used (3.5); this is just the description x motion on an equilibrated 
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We will later further analyze the members of (3.7) as they stand, but it is 

useful for our subsequent discussion to now simply add a generalized dissipative term

to the solvent equation of motion to obtain the stochastic equation of motion set 

(3.10)

where ζs(t) is the solvent time dependent friction coefficient (per unit mass µs). These

two equations can be cast into the form of a GLE (2.1) for the reactive solute 

coordinate by Laplace transformation and insertion of the formal solution of the 

second equation into the first. The Laplace transform of the solute time dependent 

friction coefficient (per unit mass µ) in the resulting GLE is found to be [22] 

(3.11)

where the initial time value of the friction is connected to the coupling and solvent 

frequencies by the relation 

(3.12)

The content of (3.11) can be clarified by considering the time correlation 

function of the solvent coordinate itself, when the solute coordinate is fixed at its 

Transition State value x=0. It is then a straighforward exercise to show from (3.10)

that

(3.13)

(recall that s is mass-weighted) from which we can deduce the relationships 
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(3.14)

where ∆ ‡(t) is the normalized equilibrium tcf of the solvent coordinate

(3.15)

(3.14) is a key relation which connects the time dependent friction on the reactive

solute coordinate to the solvation dynamics. 

It is useful, for later reference, to consider the friction (3.14) in several limits.

The first example we consider is that when the frequency dependence of is 

ignored – – and the solvent acceleration is ignored as well i.e., an

overdamped solvent; then one has 

(3.16)

or in time language there is exponential decay of the solute friction 

(3.17)

This approximation requires that ζs >> ωs. This behavior in fact follows from a Debye 

dielectric continuum model of the solvent when it is coupled to the solute nuclear

motion [21,22] and then τs would be proportional to the longitudinal dielectric

relaxation time of the solvent; indeed, in the context of time dependent fluorescence 

(TDF), the Debye model leads to such an exponential dependence of the analogue 

–ζ^ (ε)≈ζs

ζs

^
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there of ∆ ‡(t) [44]. While (3.17) is a useful broad characterization and was used in

initial studies [21,22], we will see in Sec. 4 that it often does not capture the critical 

microscopic aspects of the friction revealed in MD studies. 

Another limit of interest is that when only short times are of importance. In

this case, the time dependence of the solvent coordinate tcf ∆ ‡(t) can be ignored. Then

one has ζ(t) = ζ(t=0), which by (3.12), is a measure of the solute-solvent coupling

frequency. This is particularly relevant for the nonadiabatic limit (2.8), where it is 

only the initial friction value that is relevant for the reaction. 

So far, the solvent coordinate has not been defined. As noted at the beginning

of this Section, the time dependent friction is to be found for the reacting solute fixed 

at the transition state value x‡ of x. By (3.14), its dynamics were related to those of 

an (unspecified) solvent coordinate s. One strategy to identify the solvent coordinate, 

its frequency, friction, etc., would be to derive an equation of motion for the relevant 

fluctuating force δF there. To this end, one can use a double-membered projection

technique in terms of δF and δF. In particular, we define the projection operator

(3.18)

which projects onto the fluctuating force and its "velocity". One quickly finds [54] 

where the associated square frequency is 

and the time dependent friction for δF, per δF mass,

involves the projection operator (PO)-modified dynamical tcf of the generalized force 

(3.19)

(3.20)

(3.21)

(3.22)
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Averages fixed at the transition state are to be understood in all of these equations. 

Let us make some connections to the results which came from the previous 

model development. First, if we compare (3.19)-(3.22) with (3.11)-(3.15), a natural 

identification of the solvent coordinate s in Sec. 3 is in fact just the fluctuating force 

δF on x at the transition state. (Note especially that this choice associates the solvent

coordinate with a direct measure of the relevant solute-solvent interaction.) The 

solvent mass, force constant and frequencies in Sec. 3 would then be given molecular

expressions via (3.19)-(3.21), while the solvent friction ζs(t) of Sec. 3 would be the

friction per mass for δf (3.22),

(3.23)

in which the dagger denotes PO-modified dynamics. The final conjunction of the two 

descriptions consists of the (consistent) identification of the square solute-solvent

coupling frequency ω2

c in (3.6) by 

(3.24)

Thus, everything maps in a one to one fashion. 

In fact, this sort of identification of the solvent coordinate s with the 

fluctuating force δF was first noticed in [5b], but its generality had not been pursued

until Ref 45. It is important to remark that this force δF is a very highly nonlinear
function of the coordinates of the solvent molecules, referenced to the solute location 

[5b]; one should not at all think (as some evidently do) that the intermolecular forces 

can be untenably linearized. 

Even the simplest approximation to this system – that of totally ignoring the

friction ζδF gives a Gaussian behavior for the solute friction at short times [1,2],

(3.25)

–
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which at least captures the initial behavior we will find to be evident in the examples 

to be discussed in Sec. 4.1. Since, as noted there, only the short time behavior of the 

time dependent solute friction is often of importance for the rate, (3.25) could prove 

useful.

This model perspective can also be used to characterize the reaction 

coordinate, i.e., the appropriate combination of solute and solvent coordinates along 

which reactive trajectories move [1,5c,22,43]. This amounts to finding the two normal 

modes of the equations of motion (3.7). The reactive or unstable mode is the reaction 

coordinate, while the stable, transverse mode is the nonreactive coordinate. There is 

even a tcf expression for the reaction coordinate [22]. In this new, rotated coordinate

system, TST is exact, for the given model description. Thus when such a simplified 

description is possible, the generalized frictional reduction of the transmission 

coefficient via GH theory can also be understood as a TST result in a new reaction

coordinate that differs from the simple solute coordinate choice x – thus the rate

constant is not the equilibrium solvation TST result. This observation has been

subsequently made, and further developed, by others [46]. (We repeat, however, our 

note above that one cannot linearize the intermolecular forces themselves.) We also 

note that the simple model normal mode analysis is a special case of a more general 

solution reaction path analysis [43], which is the generalization to solution, of the gas 

phase Fukui approach [47]. We do not review this here, but simply give a few 

representative references on its development, applications and generalizations 

[43,48].

4. Simulation Studies

In this section, we give the highlights of a few case studies of the dynamics 

of chemical reactions. We begin with a brief survey of heavy particle charge transfer 

reactions, followed by a few words about electron transfer reactions and proton 

transfer reactions. 

4.1. HEAVY PARTICLE CHARGE TRANSFER REACTIONS

For many chemical reactions with high sharp barriers, the required time 

dependent friction on the reactive coordinate can be usefully approximated as the tcf

of the force with the reacting solute fixed at the transition state. That is to say, no

motion of the reactive solute is permitted in the evaluation of (2.3). This restriction 

has its rationale in the physical idea [1,2] that recrossing trajectories which influence 

the rate and the transmission coefficient occur on a quite short time scale. The results 

of many MD simulations for a very wide variety of different reaction types [3-12] 

show that this condition is satisfied; it can be valid even where it is most suspect, i.e., 

for low barrier reactions of the ion pair interconversion class [6]. 

What does this time dependent friction look like? To answer this, we describe 

the MD calculated results [5c] for ζ(t) for the reactive asymmetric stretch coordinate

for the Cl
-

+ CH3Cl SN2 system in H2O solvent, and its associated Fourier spectrum. 

The latter is particularly illuminating, since it displays peaks clearly identifiable from 

the spectrum of the same pure H2O liquid. Thus contributions from the H2O bends and 
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symmetric and antisymmetric stretches are apparent at frequencies above ~ 1,500 cm-
1. At the lower frequency range 300 cm-1

 - 1,000 cm-1
 appear the hindered rotational, 

i.e., librational, contributions of water. A further noteworthy point is that the higher

frequency motions (bends, stretches) have a diminished amplitude in the friction as 

compared to the spectrum, i.e., they are not so strongly coupled to the reactive solute

as are the water librations. This illustrates the simultaneous importance of the time 

scales of solvent motions and their coupling strength to the solute reaction coordinate.

Turning the focus to the time perspective, a fairly rapid initial decay is apparent,

followed by a substantial and much longer lived tail. The initial decay is well 

described by the Gaussian (3.25). The tail makes a significant contribution to the 

large friction constant, i.e., the zero frequency friction [cf.(2.7)]. A very similar sort 

of behavior of ζ(t), in time and in frequency, is observed in an MD simulation for a

model of the SN1 ionization of tert-butyl chloride in water [7]. If we exploit the 

perspective ofthe model (3.14), it is apparent that the solvation dynamics is decidedly

nonexponential for these problems. It is simply not going to be very useful to describe 

the time dependence of ζ(t) for the reaction problem via the exponential Debye-type

expression of Sec. 2. On the other hand, as discussed below, the SN2 reaction is in the 

nonadiabatic limit, and the time dependence of ζ(t) is irrelevant.

A second example of ζ(t) is available for an ion pair fixed at the transition

state separation in a model dipolar solvent [6a]. Here the unusual feature is a rapid

initial drop to negative values, followed by a long positive tail. (Prior to this, an initial

Gaussian time decay applies). Such quasi-oscillatory behavior is highly suggestive 

of some sort of collective solvent cage motion. Once again, the long tail is a 

significant contributor to the friction constant. This same overall behavior has been 

observed for various ion pair combinations for Na+ and Cl- in water solvent [6b], and

appears to be fairly characteristic for ion pair systems. Again, if we exploit the 

perspective of (3.14), the solvation dynamics is decidedly nonexponential. 

Typical chemical reactions are characterized by sharp reaction barriers, often 

arising in part from the existence of a reaction barrier in the gas phase. Thus, even 

though the magnitude of the reactive solute-solvent coupling is strong [large ζ(t=0)],

the intrinsic barrier is of such high frequency that the nonadiabatic solvation limit

(4.1)

discussed in Sec. 2.1 is often an excellent guide to the microscopic mechanism of the 

barrier passage. The Cl- - CH3CI SN2 system in H2O provides a clear illustration of 

this [7], for which the nonadiabatic frequency is very high, ~ 500 cm-1, along the 

antisymmetric stretch solute reactive coordinate. GH theory is found to agree with 

the MD results for the basic reaction system, as well as for many variants of the 

system [5]. The reaction transmission coefficient is found to be accurately given by 

the nonadiabatic value (2.8). As mentioned in Sec. 2.1, in the nonadiabatic solvation 
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limit the solvent is effectively frozen during the short time scale during which the fate 

of a trajectory, reactive or otherwise, is decided – this time is ~ 20 fs in the SN2

example, very short indeed. The solvation dynamics per se are then irrelevant on this
short timescale. Instead, one can picture a static distribution of barriers in x faced by

the reactive solute coordinate x, whose location and height depend on the solvent 

coordinate s. These barriers arise from the different solvation patterns that exist in

equilibrium with the solute at its transition state configuration x‡ = 0. The SN2 solute

transition state structure is symmetric – , but the distribution of

equilibrium solvent configurations has contributions in which there is asymmetric

solvation, i.e., better solvation of one Cl or another by the water molecules. Indeed, 

the model Hamiltonian (3.4) can be rewritten [5c] in the form 

(4.2)

which is quite instructive. This gives a representation in terms of a sequence of 

solvation dependent barriers ∆V(s) for the x motion, located along the line ∆x(s).

These barriers arise from precisely the asymmetric solvation patterns mentioned 

above [5a]. Calculation of the rate constant from this perspective gives [5b] just the 

nonadiabatic solvation result (2.8). Indeed, this model succeeds even in accounting 

for whether trajectories are or are not reactive, depending on the kinetic energy in the

solute SN2 coordinate, as follows. For given H2O solvation configurations, there is a

solvent barrier ∆V(x) along x, and a trajectory will be unsuccessful if the kinetic

energy Kx in the antisymmetric stretch – the solute reactive coordinate – is less that

∆V(x), and it will be successful if it exceeds it. This picture is precisely confirmed in

the simulation results. This kind of detail about the microscopic aspects of a reaction 

begins to approach that considered in state-resolved gas phase chemistry. Finally, the 

solvent coordinate s can in fact be identified for this system in terms of a microscopic 

force [5b]; this was referred to in Sec. 3. 

In this nonadiabatic limit, the transmission coefficient is determined, via 

(2.8) by the ratio of the nonadiabatic and equilibrium barrier frequencies, and is in 

full agreement with the MD results [5a-5c]. (By contrast, the Kramers theory 

prediction based on the zero frequency friction constant is far too low. Recall that we

emphasized for example the importance of the tail to the full time area of the SN2 ζ(t).

In the language of (3.14), the solvation time τs is not directly relevant in determining

Clδ–CH3
δ+Clδ–

247
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κ.) In favorable cases, these frequencies can be calculated by solution phase integral

equation technology [26]. This is important, since it provides a prediction route, via 

GH theory, which avoids an MD simulation.

Even for cases where the reaction transmission coefficient is independent of

the solvent dynamics per se, those dynamics can still (and indeed must) play a crucial

role in the overall reactive process. This can be illustrated by the results of an MD

simulation of how the SN2 system C1- + CH3C1 in H2O actually reaches (and leaves)

the transition state [5d]. We first recall, from the discussion above, that the solute has 

a symmetric charge distribution in the transition state. Examination

of the barrier climbing process, starting from an ion-dipole complex C1-. CH3Cl,
during the 500 fs of its duration reveals the following phenomena. The changes in the

solvent energy and the solvent-reagent interchange potential energy are gradual over 

most of the 500 fs time span of relevance to the climb. These changes are smooth, 

implying that the corresponding change in the solvation of the reaction complex is 

also smooth and gradual. But the change of the charge distribution in the reagents is 

not at all gradual over this same 500 fs period. Instead, the transition from an ion- 

dipole to a symmetric charge distribution occurs almost entirely over the last 50 fs 

prior to the arrival of the system at the transition state [5d]. 

These results show that a major portion of the solvent reorganization to a 

state appropriate to solvating the symmetric charge distribution of the reagents at the 

barrier top takes place well before the reagent charge distribution begins to change. 

The solvation is unable to adiabatically follow the rapid change in the distribution of 

the negative charge among the reagents [5d]. (Actually, this is already implicit in the 

frozen solvent, nonadiabatic solvation results of Ref 5a-5c.) This prior solvent 

reorganization is a necessary condition for the reagents to reach the transition state; 

the requisite solvation at the transition state has begun to develop well before any 

change in the reagents charge distribution. Together with the results of [5a-5c], this 

shows very clearly for this SN2 system that one cannot picture the progress of a 

chemical reaction as a calm progression along the potential of mean force curve – a

chemical reaction is intrinsically a dynamic, and not an equilibrium event. 

(Incidentally, in our opinion it would be worthwhile to subject other reaction class

examples to this kind of analysis.) 

Of related interest are results for water response to an instantaneous change 

in the dipole of a solute [44a], for the time scale of the solvent response for several 

charge-transfer reactions in water, including the SN2 reaction [49], and for a similar 

response for Fe2+ - Fe3+ in water [44b]. The time scales found in those studies for the

water solvent relaxation - and that originally found in [5] for time-dependent friction 

on the SN2 transition state - are similar to those observed for the prior reorganization 

of the solvent H2O.

The polarization cage limit described in Sec. 2.1 will characterize the reaction 

when there is a relatively broad barrier in the mean potential (small ωbeq) and there

is strong solute-solvent electrostatic coupling [large ζ(t=0)]. This regime has been

observed in an MD simulation of ion pair recombination dynamics in a polar solvent 

[6a], whose friction was described above. This reaction class is especially interesting, 

in that its reaction barrier is entirely solvent-induced; it does not exist in the vacuum. 

Again, agreement with GH theory predictions within the error bars of the simulation 

is found [6a]. The nature of the dynamics is involved in crossing the transition state 

is instructive, and we give some discussion of it. The contact ion pair (CIP), located 

Clδ–CH3
δ+Clδ–
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at a separation of ~ 3.3 Å, is characterized by an average solvation shell whose key 

feature is a ring of four solvent molecules, at ~ 4 Å from the CIP axis with their 

dipoles antiparallel to that of the CIP. For the solvent separated ion pair (SSIP), at 

separation ~ 7.5 Å, the average solvation shell is contracted to ~ 2.5 Å, due to the 

increased dipole moment of the SSIP, and contains only three solvent molecules. The 

solvation shell at the transition state, which is located at an ion pair separation of ~ 

5.5 Å, has a structure intermediate between these. The solvation dynamics at the 

transition state which allow, e.g., the formation of the SSIP, consist of a solvation 

shell contraction, with inward motion of three of its members. For passage to the CIP 

on the other hand, an expansion of the solvation shell is necessary. Without the 

occurence of these motions, the system is trapped in the transition state neighborhood, 

the hallmark of the polarization cage regime. It is also instructive to note that the 

solvent molecule motions appear to be much more translational than reorientational 

in character. It is also difficult to conceive that the dielectric relaxation time of the 

solvent has much direct relevance for such dynamics. 

4.2. ELECTRON AND PROTON TRANSFER REACTIONS

We now turn to the electronically adiabatic ET reaction problem (cf. Sec.

2.2). There has been a spate oftheoretical papers [8,11,,28,33,35,36,50] dealing with

the possible role of solvent dynamics in causing departures from the standard Marcus 

TST rate theory [27,28] (although many of these deal with nonadiabatic 

reactions). The ET reaction considered is a simplified symmetric model, A-1/2

A1/2 → A1/2 A-1/2, in a model solvent similar to CH3Cl. The technical and computational

rationales for this somewhat artificial fractional charge model are given in [8]; 

however, the model is sufficiently realistic to explicitly address the key dynamical 

issues.

The MD reaction simulation is effected via the electronically adiabatic 

Hamiltonian [8] 

(4.3)

where HR(P) is the system Hamiltonian when the solute has the R(P) charge

distribution and β is the invariant electronic coupling. This is appropriate as

representative for many adiabatic ET reactions; in addition, solvent dynamical effects 

are expected to be most pronounced in the electronically adiabatic limit [33]. With 

this Hamiltonian, the reacting solute is always in its ground elelctronic state whatever 

the configurations of the solvent molecules may be. The barrier is traversed as ∆E

progresses from values appropriate to the neighborhood of equilibrium with R to 

those similary appropriate to P. The solute electronic charge evolves smoothly from 

that of R, through the transition state distribution A0 A0 – which is a neutral pair, on
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to the P charge distribution. 

measures the departure 

of the rate constant from its Marcus, TST value and can be directly computed, for

different choices of the electronic coupling β, in an MD simulation for the ET

reaction [8]. The first important point is that for β = 1 kcal/mol, κ is quite close to

unity; there are few recrossings of the barrier and the Marcus TST Theory is thus an 

excellent approximation. 

When the coupling is increased to β = 5 kcal/mol and the barrier becomes

more rounded, the transmission coefficient is smaller (κ ET ≈ 0.6) and there are

noticeable departures from the Marcus TST theory, although they are not enormous.

The the barrier recrossings are found to be restricted to the immediate vicinity of the 

reaction barrier top. 

The GH theory can be applied for such dynamical rate effects and the

transmission coefficient is given by (2.5), rewritten here as

The transmission coefficient 

(4.4)

In the present context, GH theory relies on the assumption that the GLE (cf. Sec. 2.2) 

(4.5)

holds in the vicinity of the barrier top ∆E = ∆E‡ = 0 [8,33]. The barrier frequency

can be estimated [8] from the fomuIa ,where

ωR is the frequency of the reactant solvent well. The friction z‡(t) appropriate for the

transition state can be approximated [8] by the time dependent friction for the 

reference situation of a neutral pair. This approximate identification follows from the 

observation, mentioned above, that in the ET reaction, the transition state charge

distribution is that of a neutral pair. The neutral pair friction ζNP(t) can be extracted

[8] from studies of time dependent flurorescence dynamics, and with the 

approximation can be estimated via (4.4) for the ET reaction. 

The results agree to within the error bars with the MD simulation values [8,11].

Actually, all of the above results are in contradiction to the currently

conventional view [32-35] that solvent dynamical effects for electronically adiabatic

ET reactions are determined by solvent dynamics in the R and P wells, and not the

barrier top region. This misses the correct picture, even for fairly cusped barrier. 

Instead, it is the solvent dynamics occurring near the barrier top, and the associated

time dependent friction, that are the crucial aspects. It could however be thought 

possible that, for cusped barrier adiabatic ET reactions in much more slowly relaxing 

solvents, the well dynamics could begin to play a significant role. However, MD

simulations have now been carried out for the same ET solute in a solvent where the 

κ - kET  / kTST
ET

ωET
beq ωET

beq = ωR [( 2∆G‡ / β) - 1 ]1/2

ζET(t) - ζNP(t) , κGH
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solvent molecule internuclear separation is increased [11b]. This lengthening slows 

down the solvent molecule motion and causes it to be quite strongly overdamped –
the ratio of is of order 10. Yet once again it is found [11b] that the 

transmission coefficient is determined by trajectories near the barrier top and that the

conventional well relaxation picture for the reaction is not valid. 

The above discussion was for ET reactions with modest ot high barriers, 

where the barrier frequency is reasonably high. A quite different situation can arise 

for reactions with low barriers; here there is no obvious intrinsic bias favoring short 

time solvent dynamical effects in influencing the reaction rate. Some striking 

illustrations of this are given in [50] where it is found that various portions of the 

solvation dynamics can influence the ET rate for several low barrier exothermic ET 

reactions in methanol, depending on the detailed character of the free energy surface. 

This underlines the important point that what solvation dynamics are relevant for a 

reaction is very much a function of the reaction being considered. 

Finally, for the PT problem, dynamical friction effects have been examined

for a model for a phenol-amine acid-base reaction in methyl chloride solvent [12]. 

With the quantization of the proton and the O-N vibration, the problem can be 

reduced to a one-dimensional solvent coordinate problem, similar to the ET case. 

Again, GH theory is found to agree with the MD results to within the error bars of the 

computer simulation. 

5. Other Applications

Another arena for the application of stochastic frictional approaches is the 

influence of ionic atmosphere relaxation on the rates of reactions in electrolyte 

solutions [19]. To gain perspective on this, we first recall the early and often quoted 

triumph of TST for the prediction of salt effects, in connection with Debye-Hückel 

theory, for reaction rates: In kTST varies linearly with the square root of the solution

ionic strength I, with a sign depending on whether the charge distribution of the

transition state is stabilized or destabilized by the ionic atmosphere compared to the

reactants.

But the entire conception here is that of equilibrium solvation of the transition

state by the Debye ionic atmosphere, and closer inspection [51] indicates that this 

assumption can hardly be justified; indeed, time scale considerations reveal that it

will nearly always be violated. The characteristic time for the system to cross the 

reaction barrier is ~ 0.1 ps say. On the other hand, the time required for 

equilibration of the atmosphere is something like the time for an ion to diffuse over 

the atmosphere dimension, the Debye length κ -1; this time is ≈ 1 ns for a salt

concentration C= 0.1M and only drops to 10ps for C ≈ 1M. Thus the ionic atmosphere

is perforce out of equilibrium during the barrier passage, and in analogy with ionic 

transport problems, there should be an ionic atmosphere friction operative on the 

reaction coordinate which can influence the reaction rate. 

These aspects were examined in a study [51] which employed a generalized 

Debye-Falkenhagen description for the ionic atmosphere dynamical friction and GH

theory for the rate. It was found that, while indeed the atmosphere is almost never 

equilibrated during the barrier passage and to a large extent is frozen on this time 

scale, the atmosphere frictional derivations from the equilibrium solvation TST result

ζδ∆e / 2 ωδ∆E

ω-1
beq
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is often small. The reason for this is that, during the critical transit over the barrier 

top, there will not be an enormous charge shift and the ensuing electrostatic 

interaction force with the diffuse atmosphere is not large. This is thus an example of 

the weak solvation regime discussed in Sec. 2.1: the environment of the reacting 

solute is completely out of equilibrium, but the coupling to the solute is sufficiently 

weak that the system reacts despite the nonequilibrium conditions, and negligible 

frictional impact on the equilibrium solvation kTST result ensues.

Nonetheless, there can be nonnegligible atmosphere frictional reduction of 

the rate constant when the electrolyte concentration is sufficiently high that the

coupling force magnitude is important [51] (this reduction requires GH theory for its 

description; the zero frequency friction Kramers prediction can give an order of 

magnitude too large a reduction in the rate). 

These predictions await experimental and simulation confirmation. It is worth 

pointing out that the continuum ion atmosphere approach is being pushed to its limits 

at the electrolyte concentrations high enough to cause the predicted dynamical effects 

on the rate, and it may be that a more molecular description is required to provide an 

accurate account of dynamic salt effects on reaction rates [52]. For example, it is clear 

that ion pairing effects are paramount in low dielectric constant solvents [53], which 

were excluded in the study of Ref. 51, and these may prove to be important even in 

high polarity solvents. The entire area needs further study, as does for example the 

closely related area of charge transfer reactions at electrodes occuring in the presence 

of an electrical double layer [54]. We mention that frictional effects on rates are 

beginning to be examined in other interfacial problems [55]. Finally, we observe that 

GH theory could be extended to reactions in enzymes and in solids, but evidently this 

remains to be done. 

6. Concluding Remarks

We have reviewed above the GH approach to reaction rate constants in 

solution, together with simple models that give a deeper perspective on the reaction 

dynamics and various aspects of the generalized frictional influence on the rates. The 

fact that the theory has always been found to agree with Molecular Dynamics 

computer simulation results for realistic models of many and varied reaction types 

gives confidence that it may be used to analyze real experimental results. 

It may be that in the future some cases may show noticeable deviations from 

GH theory and some further generalizations [56] may be necessary. In our view, this 

is most likely to happen for broad, low barrier reactions, where one should probably 

use a generalized spatial diffusional Smoluchowski approach instead, However, it 

seems most profitable to instead now focus effort on constructing useful theories for 

the reaction barrier heights – which, after all, are the most important features in 

determining the reaction rate constant – and more generally, reaction free energy 

surfaces. For this goal, one must face the problem of describing solute electronic 

structure in solution, under the nonequilibrium solvation conditions that have been 

stressed throughout this chapter. Some aspects of this are described in the article with

Roberto Bianco in this volume. 
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1. Introduction

In this contribution, we describe and illustrate the latest generalizations and

developments[1]-[3] of a theory of recent formulation[4]-[6] for the study of

chemical reactions in solution. This theory combines the powerful inter-

pretive framework of Valence Bond (VB) theory[7] — so well known to 

chemists — with a dielectric continuum description of the solvent. The 

latter includes the quantization of the solvent electronic polarization[5, 6] 

and also accounts for nonequilibrium solvation effects. Compared to earlier, 

related efforts[4]-[6], [8]-[10], the theory [1]-[3] includes the boundary condi-

tions on the solute cavity in a fashion related to that of Tomasi[11] for

equilibrium problems, and can be applied to reaction systems which require

more than two VB states for their description, namely: bimolecular SN2 re-

actions[7],[8](b),[12],[13] X- + RY → XR + Y , acid ionizations[8](a),[14] 

H A + B → A + H B +, and Menschutkin reactions[7](b), among other re-

actions. Compared to the various reaction field theories in use[11],[15]-[21]

(some of which are discussed in the present volume), the theory is distin-

guished by its quantization of the solvent electronic polarization (which in 

general leads to deviations from a Self-consistent limiting behavior), the in-

clusion of nonequilibrium solvation — so important for chemical reactions, 

and the VB perspective. Further historical perspective and discussion of

connections to other work may be found in Ref.[1]. 

The outline of this review is as follows. In Sec.2, we highlight the funda-

mental equations and structure of the theory: Sec.2.1 motivates the choice 

€or the functional form of the solute wave function; Sec.2.2 explains the

equation for the free energy of the solute plus solvent system in the nonequi-

librium solvation regime; Sec.2.3 discusses the corresponding Schrödinger
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equation. The details of the formulation can be found in Ref.[1] (hereafter

referred to as BH-I). In Sec.3, guided by a flow chart which summarizes 

our computational strategy, we describe the application of this formalism to

the dissociation of I2 in acetonitrile in a two VB state framework reported

in Ref.[2] (hereafter referred to as BH-II), and focus on several practical

aspects concerning the implementation procedure. To broaden the perspec-

tive, the possible applications of our formalism in a two and three VB state

framework respectively are sketched for both the tert-butylchloride SN1 re-

action system (Sec.4) and the Cl + CH3Cl SN2 reaction system (Sec.5).

We offer concluding remarks in Sec.6. 

2. Theory

2.1. SOLUTE WAVEFUNCTION

The system wave function ansatz is the linear combination 

(2.1)

where the orthonormal are solute diabatic electronic states, and the 

are coherent states for the solvent electronic polarization[6]. By 

taking the functional derivative of the system free energy with respect to 

the coherent states
,

eigenvalues , one obtains the effective solute wave

function with equilibrated solvent electronic polarization in the simpler 

form

(2.2)

(Henceforth all summations of indices i and j span the range [1, Ns].) The

wave function (2.2) is normalized, i.e. and its configu-

ration interaction (CI) functional form describes best the idea of a solute 

system represented by a set of VB resonance structures.

In this context, the term diabatic means that the character of the charge

distribution of each state — representative of a well-defined solute reso-

nance structure — is conserved throughout the reaction. Indeed, the elec-

tronic structure of the components is assumed not to be changed by 

the interaction with the solvent: the solvent effects are exclusively reflected 

by the variation of the coefficients {ci}, which is to say that the solvent can

polarize the solute electronic structure over its VB states. 

The advantage of the wave function (2.2) over e.g. the choice of a more 

familiar Hartree-Fock (HF) wave function is its ease of interpretability, as 

we now illustrate for the tert-butylchloride (BuCl) SN1 reaction system[10].

-

-

{|P(i)
e 〉}

{P(i)
e }

〈Ψ|Ψ〉 = Σi c
2
i  = 1,

{|i〉}

{|i〉}
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The wave function for this system can be written as a linear combination of

two VB states, which represent the ionic Bu+C1 and the covalent Bu –C1 

resonance structures, namely 

(2.3)

The values of cion and ccov determine the weights of the respective com-

ponents, and reflect the relative stabilization of the VB states in solution:

e.g. a polar solvent is expected to stabilize the ionic relative to

the covalent |ΨBu–Cl〉. By contrast, the HF wave function for BuCl is the 

(normalized) Slater determinant[22] 

(2.4)

where N = 50 is the number of electrons, = and = are

molecular spinorbitals — α and β are the spin-up and spin-down functions,

respectively — and is a molecular orbital expressed 

as a linear combination of atomic orbitals In this framework, the 

solvent would affect BuCl via the coefficients {cji}, (N/2)2 in number, while

the atomic orbitals are frozen components corresponding to the {|i〉}
in (2.2). The interpretive simplicity of (2.2) compared to (2.4) is apparent. 

This occurs at the cost, however, of a relative lack of polarizability on the 

part of (2.2), since neither of and can be internally 

polarized by the solvent. But in fact, the VB states are in general linear 

combinations of Slater determinants like (2.4), and their quality is thus 

higher than |ΦBuCl〉 — for the same choice of the orbital basis set — since

account is given, to some degree, of electron correlation. 

Here we do not concern ourselves with the array of methodologies for 

the calculation of diabatic states, and refer the reader to the recent review 

by Sidis[23]. We mention, however, a few procedures which seem especially 

apt to provide diabatic states in a form most suitable to our framework: 

the Diatomics-in-Molecules method [24, 25] — adopted in BH-II — where

only few valence electrons need to be treated explicitly, due to the use of 

parametric core potentials; the unitary transformation of a set of ab initio 
adiabatic (ground plus excited) states — obtainable from current quantum 

chemistry packages — to a set of diabatic states with the required charge 

character to describe the reaction[26]-[29]; and finally, the straightforward 

(but computationally expensive) ab initio VB approach[30]. A complemen-

tary option for obtaining diabatic states via ab initio techniques is the use 

of the natural orbitals resulting from the analysis of the electronic charge 

density of a standard HF wave function[31]. Further references are provided 

in the brief survey in BH-I.

-

|ΨBu+Cl–〉

φMO
i  = ΣN/2

j=1 cjiχAO
j

{X AO
j }.

{X AO
j }.

|ΨBu+Cl–〉 |ΨBu–Cl〉
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The solute charge distribution derived from (2.2), which governs the 

interaction with the solvent, is expressed as 

(2.5)

where the weights {ωm} — henceforth all summations of indices m, n, and

p span the range [1, M] are calculated from the wave function coefficients

according to the mapping 

(2.6)

with 1 ≤ i ≤ Ns, i ≤ j ≤ Ns, and δij the Kronecker delta. The charge
^

distribution components ρm are the matrix elements ρm ≡ 〈i|ρ|j〉 of the

charge density operator ρ ≡ ρe + ρnuc, with ρe and ρnuc the electronic

and nuclear components, respectively (the scalar ρnuc only contributes for i
equal to j because of the orthonormality of the {|i〉} set). Derived quantities

such as the solute electric potential φo and the electric field Eo = -∇φo
are equivalently partitioned as 

(2.7)

with the obvious definition For instance, in 

the two state description of BuCl, the solute charge distribution is 

To conclude this sub-section, we note that the CI form of the wave 

function (2.2) leads, via the mapping (2.6) from the coefficients {ci} to

the charge distribution weights {wm}, to a computationally advantageous

matrix formulation of the free energy of the solute plus solvent system, 

which we present next. 

2.2. REACTION SYSTEM NONEQUILIBRIUM FREE ENERGY

The solvent medium is characterized by its static and optical dielectric 

constants, ∈ and ∈∞, respectively, and its polarization is assumed to be the

sum of two components 

where Pe is the electronic (fast) solvent polarization described in a quantum

mechanical fashion[6], whereas Por is the solvent polarization component

P=Pe+Por , (2.9)

—

^ ^ ^

φm
o (r) = ∫dr'ρm(r')/|r – r'|.
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due to the nuclear (slow) motions of the solvent. The solute is embedded

in a van der Waals cavity — a smooth assembly of spheres centered on the

solute nuclei — carved into the dielectric continuum[11]. The cavity surface, 

closely matching the solute’s molecular shape, constitutes a convenient two

dimensional domain in which to recast the formulas which account for the

solute-solvent interactions expressed in terms of three dimensional integrals.

In this context, the solvent polarization P is enters via the surface charge

density

(2.10)

where is the local inward normal to the cavity surface. In this partitioning,

reminiscent of (2.9), σe,ρ is an electronic polarization contribution which

depends solely on the bare solute electric field Eo, whereas σor comprises

all the interactions of the orientational polarization with the solute charge

distribution. Both σe,p and σor are expressed, corresponding to the solute

charge distribution partitioning (2.5), as 

(2.11)

where the components and are equilibrium quantities, in the

sense that they are equilibrated to the corresponding solute charge distri-

bution components ρm. For σor, this amounts to assuming that an arbitrary

nonequilibrium orientational polarization Por can be expressed as a linear

combination of equilibrium components Σm pm Por,eq. Consistent with the

character of the frozen internal electronic structure for the diabatic states,

once and have been calculated for a given nuclear geometry, their

values remain constant, both in the equilibrium and the nonequilibrium

regimes of solvation: the {wm} reflect the changes in the solute electronic

structure, while the {pm} — whose values are in principle arbitrary — carry

the information about any deviation from equilibrium solvation. They only 

become equal to the {wm} when full equilibrium solvation holds; it is only

then that the solvent orientational polarization is that appropriate for the 

solute electronic charge distribution. 

Having defined the basic quantities, we can now quote the expression of 

the free energy in the nonequilibrium solvation regime: 

(2.12)

The dimensions of the vectors (lower case) and matrices (upper case) are 

M and M × M, respectively. The first term has the structure of the vacuum

∼

∼

σm
e,ρ σ∼m

or,eq

σ∼m
or,eqσm

e,ρ
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Hamiltonian contribution 〈Ψ|Ho|Ψ〉 — the energy of the solute in the gas

'

phase, i.e. the usual output of a quantum chemistry calculation — since

w . h = [cf. (2.6) for the mapping of to hm] with

the weights w determined from the wave function coefficients modified by

the solution environment. The final two, explicitly s-dependent terms are

related to the nonequilibrium solvation and the associated solvent coordi-

nates s, and will be discussed below. The second term, in brackets, is asso-

ciated with the quantized solvent electronic polarization, and can describe

the three possible situations where the time scale of the solvent electronic 

motions is (a) much longer than, (b) much shorter than, or (c) comparable 

to the time scale of the solute electronic motions[6]. Case (a) corresponds 

to the Self-Consistent (SC) limit, while case (b) corresponds to the Born-

Oppenheimer (BO) limit[5, 6, 32], with the solvent electronic polarization 

equilibrated, respectively, to the average solute charge distribution ρ (SC)

or to its components ρm (BO) [cf. (2.5)]. The relative measure of the time

  -
scales is gauged by λ[3], a function of the wave function coefficients and

of the ratios ρij = –2Hij/hωel, in which Hij = 〈i|Ho|j〉 is the solvent

renormalized electronic coupling matrix element. The ρij compare the fre-

quency of the resonant interconversion between the diabatic states |i〉 and

|j〉, namely 2|Hij|/h, versus the frequency of the solvent electronic polar-

ization ωel (the peak frequency in the solvent UV absorption spectrum)[33]. 

It suffices here to say that when λ → 1 in G(2.12), the SC limit free energy 

(2.13)

is recovered. On the other hand, for λ → 0, G(2.12) tends to the BO limit

free energy 

(2.14)

In its equilibrium form, GSC is the free energy limit most frequently in-

terfaced to ab initio quantum chemistry packages[34], while GBO is more

common in outer sphere electron transfer studies[35]. 

The difference between GBO and GSC resides in their second terms,

which comprise the interaction free energy between the solute charge dis-

tribution and the solvent electronic polarization. In particular, the matrix 

elements of Ie are the cavity surface integrals 

(2.15)

with the elements of the vector ie defined in terms of (2.15) as 

(2.16)

Σij cicj〈i|Ho|j〉 〈i|Ho|j〉

^

^ ^

^'

'   -
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The various M-space indices displayed here — and in the equations which

follow — are calculated via the wave function charge distribution mapping

(2.6) from the appropriate Ns-space indices (see BH-I for details). The

regime intermediate between the SC and the BO limits requires the solvent 

electronic polarization matrix [cf. (2.12)] 

(2.17)

where the elements of the second rank tensor Λe(ij) are defined as 

(2.18)

with the polarizability matrix elements α ij and the term α functions of
_

both the factors pij and the coefficients {ci}, and the solvent electronic

susceptibility χe defined by ∈∞ = 1 + 4πχe. (BH-I should be consulted for

a detailed discussion of αij, which connects orientational polarization and

electric field components.) 

Finally, the last two terms in G(2.12) account for the effects of the

solvent orientational polarization in the nonequilibrium solvation. The ma-

trix Kor is the inverse of the solvent orientational polarization interaction

energy matrix Ior whose elements are defined, analogously to by

(2.19)

(We note in passing that both Ie and Ior are symmetric.) The collective 

solvent coordinates s are defined by the scalar product 

s = Ior
.p , (2.20)

such that each solvent coordinate has the form 

(2.21)

In words, sn describes the interaction of the solute charge distribution com-

ponent ρn with the arbitrary solvent orientational polarization mediated by

the cavity surface. The arbitrary weights {pm}, previously defined by (2.11),

enter accordingly the definition of the solvent coordinates, and reduce, in 

the equilibrium solvation regime, to the weights {wm}, such that the sol-

vent coordinates are no longer arbitrary, but instead depend on the solute 

nuclear geometry and assume the form seq = Ior . w eq. In equilibrium, the

solvent coordinates are correlated to the actual electronic structure of the

solute, while out of equilibrium they are not. 

I e
mn ,
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To calculate G (2.12), in addition to the various matrices and vectors 

we have described, we need the weights {wm} derived from the coefficients

{ci} of the wave function in solution: the latter are obtained by solving the

appropriate eigenvalue equation, discussed in the next Section. 

2.3. SCHRÖDINGER EQUATION IN MATRIX FORM

The coefficients {ci} in solution correspond to the global minimum of the

free energy (note that this is not the equilibrium solvation condition), and 

satisfy the system of equations

(2.22)

with E the Lagrange multiplier for the wave function normalization condi-

tion, which leads to the eigenvalue equation

HC = EC, (2.23)

where H is the Hamiltonian matrix obtained by taking the derivative of 

the nonequilibrium free energy (2.12) with respect to the wave function 

coefficients, E is the diagonal matrix of the energy eigenvalues of the system 

in solution, and C is the matrix of the eigenvectors. The lowest eigenvalue 

is the adiabatic ground state energy of the solvated solute — distinguished

from the total free energy, since the self-interaction term of the solvent 

polarization is absent from E. The matrix elements of H are

(2.24)

— with the mapping m ↔ (i, j). Here and are SC and BO

Hamiltonian matrix elements, respectively, while whose expression is 

somewhat complicated, originates from the derivative of the terms λ and

w . Λe . w in (2.12) with respect to the wave function coefficients. We

trace the origin of the various terms in and by examining the

expressions for GSC (2.13) and GBO (2.14): hm derives from w . h and the

arbitrary solvent coordinate sm derives from the s-containing terms in the

free energy. Finally, the terms containing and derive from the solvent 

electronic polarization interaction, and are distinctive for the SC and BO 

limits, respectively. The limiting behavior of Hij for either λ → 1 or λ → 0

HSC
ij HBO

ij
H∆

ij ,

HSC
ij HBO

ij

Ie
mn ie

m
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mirrors that of G (2.12) [cf. (2.13) and (2.14)]. In general, the Schrödinger

equation is nonlinear, since the interaction with the solute depends on the 

solute charge distribution, which itself depends on the solvent.

The solution procedure of the (generally nonlinear) eigenvalue equation 

(2.23) is similar to that for the HF equations in vacuo: at a chosen solute 

geometry, one fixes the values of the solvent coordinates {sm}; assigns guess

values for the {ci} and constructs the weights {ωm}; then uses Ie, ie, etc., to

calculate the inatrix elements and and finally diagonalizes

the matrix H. The eigenvector of coefficients {ci} corresponding to the

lowest eigenvalue E is used as the new guess, and the cycle is repeated

until convergence. 

Although in principle one could choose a set of arbitrary values for the 

solvent coordinates {sm}, solve the eigenvalue equation (2.23), and com-

pute the free energy (2.12), in practice a preliminary aquaintance with

the equilibrium solvation picture for the target reaction system serves as a 

computationally convenient doorway for the calculations in the nonequilib-

rium solvation regime. We show this below in the section dedicated to an 

illustration of the method for a two state case reported in BH-II. 

3. → I + I- in acetonitrile

The system has been investigated experimentally, theoretically, and com-

putationally by several groups, as a prototype for the study of dissoci-

ation and recombination dynamics influenced by the interactions with a 

surrounding solvent or cluster of solvent molecules[9],[36]-[41]. The system 

can be effectively modelled by two VB states[9],[41], which allows a focus 

on several key aspects of the implementation of the theory, without being 

hindered by the complexity of a multistate calculation. The implementa-

tion steps are conveniently collected in the flow chart in Table 1, to which 

the reader is referred to for a comprehensive overview of our strategy. All 

the details of the calculation are reported in BH-II. The effective wave 

function for the reaction system can be written as 

(3.1)

which corresponds to representing by the two resonance structures II
_

and
_

II. For the sake of simplicity, we skip over the details of the calcula-

tion of the diabatic states energies and electronic resonance coupling, and 

consider here and henceforth both |ΨII–〉 and |Ψ–II〉 as orthonormal di-

abatic states, by referring to them as |1〉 and |2〉, respectively. It suffices 

to say that their charge character is highly representative of the resonance 

structures II
_

and
_

II.

HSC
ij , HBO

ij , H∆
ij ;

I–
2

I–2

I–2

I–2
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TABLE 1. Algorithm flow chart

GAS PHASE CALCULATION

1.

2 .
3.
4.

selection of the diabatic states {|Φi〉}

Hamiltonian matrix in the orthogonalized basis 〈i|H |j〉^

charge distribution components ρm ≡ 〈i|ρ|j〉, m ↔ (i,j) mapping

symmetric orthogonalization {|Φi〉} → S–1/2 → {|i〉}; Sij = 〈Φi|Φj〉

SOLUTE-SOLVENT INTERACTION ENERGY MATRICES 

5.

6.

surface charge density components

interaction energy matrices Ie , ie , Ior , Kor

EQUILIBRIUM SOLVATION REGIME

7.

8.

9.

10.

11.

12.

equilibrium Schrödinger equation Heq
[R]Ceq

= Eeq
[R]Ceq → weq, seq

equilibrium free energy surface Geq[R]

natural solvent coordinates s = T . s- -  
- -  -

-

 

-
harmonic approximation Gh

= Geq + (s - seq) . K. (s - seq)/2

combined analysis of {ci}, {sm}, and {Kmm} along the ESP
 - 

-  -

 -

 -
-

selection of the relevant natural solvent coordinates {sm}

NONEQUILIBRIUM SOLVATION REGIME

13. s→s

14.

15. s → s

16.

nonequilibrium Schrödinger equation H[R, s]C = E[R, s]C

nonequilibrium free energy surface G[R, s]

Concerning the three charge distribution components resulting from |1〉
and |2〉, here we only need to recall that ρ1 = 〈1|ρ|1〉 and ρ3 = 〈2|ρ|2〉 are

symmetrically related along the I–
2 bond direction, and that the exchange

charge distribution ρ2 = 〈1|ρ|2〉 is on average much smallr in modulo

than both ρ1 and ρ3. The electronic resonance coupling β = –〈1|Ho|2〉 =

–〈2|Ho|1〉 and the degenerate diabatic states’ energy α = 〈1|Ho|1〉 =

〈2|Ho|2〉 are reported in Fig.1 together with the overlap S = 〈Φ1|Φ2〉 for

the original, nonorthogonal, charge-localized VB states |Φ1〉 and |Φ2〉 —
obtained by a semiempirical method[25] — from which |1〉 and |2〉 were

derived. The vacuum adiabatic ground state energy for the wave function 

(3.1) is simply E = α – β. The stabilization displayed by E with respect to

α is due to the electron delocalizing effect of the resonance coupling β. As

the nuclear separation R increases, β  decreases, and E ~ α. The quantities 

α, β, ρ1, ρ2, and ρ3 provide all the necessary ingredients to initiate the

•

•

•

•

σm
e,ρ , σm

eq  , σm
or,eq  = σm

eq  – σm
e,ρ

^ ^

^

^

^^

^
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Figure 1. vacuum energies, overlap and coupling. E, electronically adiabatic ground 

state energy; α, orthonormal diabatic states' energy; β, electronic resonance coupling; S,
charge-localized, diabatic states' overlap, versus nuclear separation R

calculation in solution. 

To calculate the surface charge densities and [cf. (2.11)], one

has to solve numerically the integral equations on the solute cavity surface 

domain[11]

(3.2)

at the center sj of each cavity tessera, with n the inward normal in sj
to the cavity. While results directly from the solution of the integral

^

equation (3.2) with ω = is not itself associated with a cor-

responding equilibrium condition, and is obtained by first solving (3.2) for 

the fully equilibrated component (ω = χ/∈), and then taking the dif-

ference The surface integrals (2.15) and (2.19) 

are then numerically approximated by the summations 

(3.3)

where Nσ is the total number of tesserae tiling the cavity, and Aj is the

area of the tessera centered in s j. From Ie and Ior one then calculates ie

I
–
2

σm
e,ρ σ~m

or,eq

σm
e,ρ

χe/∈∞, σm
or,eq

~

σm
or,eq = σm

eq – σm
e,ρ .

σm
eq

Ie
mn Ior

mn
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(2.16), Λe (2.17), and Kor
= (Ior)-1 : all the matrices and vectors need to

be calculated only once at each nuclear geometry.
In the equilibrium solvation regime, the M solvent coordinates are not

arbitrary, but are functions of the solute nuclear geometry, since the solvent 

orientational polarization is equilibrated to the solute electronic structure 

at each such geometry. Our strategy is to exploit this property to gain an 

insight on the solvent coordinates’ ability to couple to the solute electronic

structure, and then select only the sensitive ones, in such a way to reduce the 

solvent coordinates’ manifold for the nonequilibrium calculation without

sacrifice of accuracy or content. Operationally, we approximate the free 

energy (2.12) in the neighborhood of the equilibrium solvation path (ESP) 

— along which s = seq — by its Taylor expansion 

with the solvent force constant matrix K with elements 

(3.4)

(3.5)

Due to the invariance of the free energy (3.4) — and also (2.12) — to an 

orthogonal transformation of its constituent matrices and vectors, we are 

allowed to carry out this analysis in a more convenient solvent coordinates 

framework.

The transformation T we adopt is induced by the wave function nor-

malization condition which, in terms of the weights, reads w1 + w3 = 1.

From (3.5), it is apparent that if T sends the {wm} set into a new set

{w m} with w1 = w1 + w3 = 1 as one of its elements, then both the first 

row and the first column of the transformed polarization component of the
solvent force constant matrix Kpol = T . Kpol . T (T-1

 = T) are zero, since
_

the derivatives of w1 are zero. Given the normalization condition and the

orthogonality requirement — with the latter conserving the original gauge 

of the solvent coordinates framework — one can calculate T for any number

of diabatic states[42]. The transformation for the two state case is 

and it yields the natural solvent coordinates 

(3.6)

(3.7)

~~

_
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Figure 2. in acetonitrile. Nonequilibrium free energy surface. Contours in kcal mol
-1

,

with the gas phase energy of the separated I and I - species as a reference. The line 

cutting across the contours represents the ESP. 

The terminology natural here and henceforth refers to the use of the wave 

function normalization condition inspiring the construction of the rotation 

matrix.

T combines only the solvent coordinates corresponding to the diago-

nal components of the charge distributions: in fact, the positions of the 

elements Tmn strictly match the labelling of the charge distribution com-

ponents {ρm}. In general, the off-diagonal solvent coordinates are relatively

less important, and can even he neglected in a first approximation[9]. The 

rationale for their exclusion is the minor contribution of the off-diagonal

charge distribution components relative to the diagonal ones: the larger 

on average the charge distribution, the stronger the interaction with the 

solvent polarization, and the more important the corresponding solvent

coordinate.

The next step is the analysis of the behaviour of the wave function coeffi-

cients {ci}, the natural solvent coordinates s = T.s, and the corresponding

diagonal elements of the transformed solvent force constant matrix {Kmm}
_

_

along the ESP. For perspective, the ESP is reported in Fig.2, superimposed

on the full nonequilibrium free energy surface for the reaction system in 

acetonitrile (the justification for the coordinates’ choice R and s3 will be

given below). 

We start by recalling that the framework of diahatic states depicts a 

competition in solution between the electronic resonance coupling β —

which tends to delocalize the solute electronic charge — and the solvent 

polarization — which tries to localize it, to better solvate the reaction sys-

_

I
–
2

I–2



272 R. BIANCO AND J. T. HYNES

tem. Along the ESP, as the internuclear separation increases from ca.

3.2 Å, the equilibrium bond length in the gas phase [cf. Fig.1], β decreases.

The electronic structure remains delocalized up to ca. 3.4 Å, 

when |2〉 starts being sharply stabilized, as indicated by the increase of the 

value of while the contribution of |1〉 to the wave function decreases 

together with the value of [Fig.3(a)]. (Obviously, the reverse picture 

is possible, due to the symmetry of the reaction, with states |1〉 and |2〉
exchanging their roles.) At the same bond length, the natural solvent co-

ordinate , related to displays a sharp variation 

[Fig.3(b)] — while both and pass through that bifurcation point 

unaffected in their monotonic behaviour — and K33 reaches its minimum

value [Fig.3(c)]. It is this concurrent variation of and K33

that points out s3 as the sole important solvent coordinate, due to its sensi-
tivity, to describe nonequilibrium solvation effects, and justifies the choice
of coordinates for Fig.2. The insensitive solvent coordinates s1 and s2 are

fixed at their equilibrium values for each given R. (Of course, one might

anticipate this conclusion ahead of time[9]. The present analysis provides

a systematic basis for the decision, which will be indispensable for multi-

ple VB state systems. But even for two state systems, the simplification 

possible for will not always hold[6].) 

We now give the rationales for the behavior of and and

their associated solvent force constants K11, K22, and K33 .
and K11 turn out to be insensitive to the variations in and 

because T has removed every dependence on the charge distribution weights

from the matrix elements K1m and Km1; these then only carry the effects of

the solute cavity geometry on the free energy via the Kor matrix elements

at a fixed total charge, and this is not a strongly varying effect.

The reason for the insensitivity of and K22 apparent in Fig.3 is to 

be found in the weak interaction of the exchange charge distribution p2 —
vanishing for large internuclear separations — with the solvent polarization:

this is also responsible for the very large value of K22, implying that the

solute electronic structure cannot evolve along s2.

We now focus on the behaviour of K33 . On approaching the internu-

clear separation of 3.4 Å, from below, the delocalizing electronic resonance

coupling β is quickly decreasing, and is no longer able to prevent the local-

ization of the extra electron by the solvent polarization, corresponding to

the attainment of the minimum in K33 , the indication that the evolution

of the system along s3 is no longer restrained by a restoring force. After

the transition, the weights of the two VB states vary more steeply, and 

which is attuned to the difference charge distribution ρ1 – ρ3, varies 

accordingly. The increase in K33 past 3.4 Å is the indication that the elec-

tronic structure is being constrained in its new, charge-localized state
_

II

_

_

_

_

__

_

__

_ _

_

_

_
_

_

_
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Figure 3. in acetonitrile. ESP analysis for the selection of the solvent coordinates.

(a) Wave function coefficients and (b) Natural solvent coordinates. (c) Diagonal 

elements of the solvent force constant tensor K.

by a restoring force. At about 4.5 Å, and K33 attain an asymp-

totic behaviour, whose onset involves the quasi-completion of the charge 

localization on one of the iodines. 

BH-II can he consulted for a discussion of the numerical importance of 

the quantum treatment of the solvent electronic polarization. It suffices to 

_

_

I
–
2

ceq
1 ceq

2

ceq
1 ,  ceq

2 , seq
3 ,
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note here that an SC treatment has the interesting qualitative failure that

it incorrectly predicts that has a localized electronic structure at the

equilibrium geometry. 

Finally, it is very important to stress that the ESP is different from 

the solution reaction path (SRP) for the reaction system[9], which is

a much more faithful indicator of the reaction dynamics. The SRP is for 

example critical in understanding the vibrational relaxation behavior of 

the system[9],[41]. The ESP only finds its use, illustrated above, in help-

ing decide which solvent coordinates should be considered as independent 

variables in the nonequilibriurn calculation, and which solvent coordinates 

should instead be fixed at their equilibrium values. 

4. The (CH 3) 3 C-C1 → (CH 3)3 C+ + C1 SN1 reaction system

In this Section, we sketch how the methodology of the previous section 

could also be applied to the two state BuCl reaction system we introduced 

in Sec.2.1. (Ref.[10] should be consulted for a history of the problem and 

an account of the unconventional conclusions that result from a VB anal-

ysis.) The BuCl wave function can be written as the linear combination of 

orthonornial states [cf. (2.3)] 

with the correspondence

(4.1)

(4.2)

For the gas phase part of the calculation, one has to calculate, at each 

solute nuclear geometry, three elements of the symmetric Hamiltonian ma-

trix, namely 〈1|Ho|1〉, 〈1|Ho|2〉, and 〈2|Ho|2〉, with the diagonal elements 
^

corresponding to the diabatic energies of |ΨBu+Cl–〉 and |ΨBu–Cl〉, respec-

tively, while the off-diagonal one to their electronic resonance coupling. 

Accordingly, the two states give rise to sets of three different charge distri-

butions, weights, and solvent coordinates, reported below in array form to 

stress their association [cf. (2.6)]: 

(4.3)

The calculation of the matrices Ie and Ior — and their derivatives — follows

the procedure detailed in Sec.3, and is thus skipped here to dedicate more 

space to the natural solvent coordinates issue.

In the gas phase, BuCl would undergo acid elimination[10], but in po-

lar solution the Bu+ and Cl
-

ions are produced in a heterolytic fash-

ion. This reflects the strong solvent stabilization of the ionic state 

_

I–
2

I–
2

^ ^
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Hence, one should expect that, along the ESP at large inter-

nuclear separation, the solvent will overcome the delocalizing effects of the

electronic resonance coupling, and localize the solute charge distribution

ρ = w1ρ1 + w2ρ 2 + w3ρ3 to ρ = ρ1

The two state orthogonal transformation (3.6) yields the natural solvent

coordinates s1 = (s1+s3)/√2, s2 = s2, s3 = (s1–s3)/√2. By assuming that

the off-diagonal charge distribution component ρ2 is far less important than

the diagonal components ρ1, and ρ3 , we disregard the off-diagonal, natural

solvent coordinate s2, and focus instead on the diagonal ones, which we

now discuss. 

The transformed weight corresponding to s1 is the wave function (4.1)

normalization condition w1 = w1 + w3 = 1. Thus, the solvent force con-

stant matrix elements Km1 and K1m , m = [1,3], bear no dependence on

the solute electronic structure, since their components and are

zero [cf. (3.5)]. Then, s1 cannot couple to the solute electronic structure,

and is unable to monitor any rearrangement — due to the variation of the

coefficients c1 and c2 — of the solute total charge distribution ρ. By con-

trast, s3 is associated with and is therefore

sensitive to the relative change of the weights of the states |1〉 and |2〉.
With these insights on the meaning of s3, we now outline a possible

outcome of the ESP analysis for the two VB state picture of the BuCl SN1
dissociation. Let us imagine following the reaction from the solute equilib-

rium geometry, where the BuCl system is largely electronically localized in 

the covalent state |2〉. It is reasonable to expect that the product of the 

reaction will be well represented by the single resonance structure Bu+C1-.

Thus we predict |2〉 ~ |ΨBu–Cl〉 to rise in energy — and its weight to 

decrease — as the dissociation progresses. In the neighborhood of the tran-

sition state, the system will be described by a resonance mixture of both 

|2〉 and the ionic state |1〉 ~ |ΨBu+Cl–〉. Subsequent to this, the solvent

polarization should overcome, along the ESP, the delocalizing effect of the 

electronic coupling 〈1|Ho|2〉 — which ensures a contribution of |2〉 to the 
^

wave function, and the system will be described solely by the ionic state. 

In view of the above discussion, there should be a dip in K33, and a 

sharp variation in s3, in the neighborhood of the transition state, where 

there is approximately, although not exactly, a 50-50 mixture of |ΨBu+Cl–〉

Hence, we conclude that the nonequilibrium solvation free energy sur-

face for the BuCl SN1 reaction system in a two VB state framework would

be well described as a function of the bond length C-Cl (assuming the

geometry of the Bu group is fixed) and of the natural solvent coordinates 

s3. The natural solvent coordinates s1 and s2, on the other hand, would 

assume their equilibrium value at the given nuclear configuration. Indeed, 

and |ΨBu–Cl〉 [10].

_

_

_

_
__

_

_

_

_

_

_ _

_

Kpol
m1 Kpol

1m

_ _

Kpol
33

 = –∂s3, w3 ~ c2
1
 – c2

2
,

– – –

sufficiently
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this was assumed in the empirical two VB state approach of Ref.[10].

5. The C1 + CH3Cl' → ClCH3 + Cl'- SN2 reaction system

In this section, we sketch the nature of the three VB state framework as a

template to describe bimolecular nucleophilic substitutions (SN2)[7, 12, 13].

Although it remains to be seen if three VB states are sufficient to describe 

the title reaction system in solution, this is still a useful additional exercise 

to expose the reasoning underlying the practical application of our theory. 

The wave function to describe the SN2 reaction

C1 + CH3 Cl' → ClCH3 + Cl' (5.1)

can be written as 

(5.2)

with the association among the VB states, the resonance structures, and 

the other related quantities 

(5.3)

where the bar means “no bond”. 

In Ref.[8](b), an approximate two state description of this SN2 reaction

was given, in which the triple ion state |1〉 was excluded (and inciden-

tally, it was found that there could be quite large deviations from either an 

SC or BO picture of the ESP). As it was pointed out there, while it was 

not strictly necessary to invoke the involvement of state |1〉, available vac-

uum adiabatic calculations[44] of the evolving charge distribution pointed 

strongly to its involvement in the reaction transition state region, where 

the positive charge on the carbon is larger with respect to its value for the 

reactants.

The three state orthogonal transformation to the space of natural sol-

vent coordinates is the 6 × 6 matrix (see BH-I)

(5.4)

_

__
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By assuming that the off-diagonal charge distribution components ρ2, ρ3,

and ρ5 are far less important than the diagonal components ρ1, ρ4, and ρ6,

we disregard the off-diagonal, natural solvent coordinates s2, s3, and s5 —

left equal by T to the starting solvent coordinates s2, s3, and s5 — and

focus instead on the diagonal ones, resulting in the linear combinations of 

the original solvent coordinates

(5.5)

which we now discuss. 

The natural solvent coordinate s1  corresponds to is the normalization 

condition w1 = w1 + w4 + w6 = 1 for the wave function (5.2), and is

unable to monitor variations in the solute electronic structure for the rea-

sons discussed in the previous section. By contrast, s4 is associated with 

and is therefore sensitive to the rela- 

tive change of the weights of the states |2〉 ~ Cl– / CH3Cl' and |3〉 ~

ClCH3 / Cl'-. On the same basis, we can ascribe to s6 the monitoring of 

the charge distribution rearrangements which involve the triple ion state

|1〉 ~ Cl– / CH+
3 / Cl'– via the weights’ differences w1 – w4 and w1 – w6.

It is important to notice that the assigned ordering of the VB states in

(5.3) matches the symmetry of the natural solvent coordinates (5.5).

The first question to be answered in the above three state framework 

by an ESP analysis along the lines of that in Secs. 3 and 4 is the following. 

In the neighborhood of the reaction transition state, where by symmetry 

the contributions of the single ion states |2〉 and |3〉 must be equal, are the 

relative energies of |1〉, |2〉, and |3〉 and their mutual resonance couplings, 

such that there is a significant mixing of |1〉 into the transition state elec-

tronic structure ? The most extreme manifestation of this would arise in 

the event that at the transition state, where the VB states |2〉 and |3〉 are

degenerate, the free energy of |1〉 lies below those degenerate values: then 

an intermediate well could arise. The answer to this and other questions 

should be available in the near future[13]. 

6. Concluding remarks 

We have given some highlights of a theory which combines the familiar mul-

tistate VB picture of a molecular system with a dielectric continuum model 

for the solvent which accounts for the solute's boundary effects — due to 

the presence of a van der Waals cavity which displays the solute's shape 

— and includes a quantum model for the electronic solvent polarization. 

__

_

_

_

_

Kpol
44  = –∂w4/∂s4, w4 ~ c2

2  – c2
3 ,
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The theory is capable of describing both the regimes of equilibrium and

nonequilibrium solvation: for the latter we have developed a framework of

natural solvent coordinates which greatly helps the analysis of the reaction

system along the ESP, and displays the ability to reduce considerably the

burden of the calculation of the free energy surface in the nonequilibrium

solvation regime. While much remains to be done in practical implementa-

tions for various reactions, the theory should prove to be a very useful and

practical description of reactions in solution. 

The nonequilibrium free energy surface obtained along the lines de-

scribed above can be used to analyze reaction paths and to calculate re-

action rate constants[8]-[10],[43]. For this purpose, a further aspect has to 

be included: the provision of the kinetic energy of the system, encompass-

ing the relevant solute nuclear coordinates and the solvent coordinates. In

general, this is best accomplished by an appropriate scaling of the solvent

coordinates so that the kinetic energy is diagonal, or nearly so. As a result,

there is no kinetic coupling between the various momenta and the equations 

of motion are most simple[9],[10, 43, 45]. Together with the free energy hy-

persurface, this provides the Solution Reaction Path (SRP)[8]-[10],[43] —

the solution phase generalization of the gas phase reaction path due to 

Fukui[46].

If one wishes instead to follow the explicit time dependent dynamics of 

a reaction system on the global multidimensional nonequilibrium free en-

ergy surface[47], an additional ingredient is necessary. This aspect derives 

from the fact that the present nonequilibrium free energy description is a 

nondissipative treatment of the solvent[6, 43]. That is to say that together 

with the kinetic energy mentioned above, (2.12) for G provides a dynamic,
although nondissipative, Hamiltonian description for the solute nuclei and 

the solvent coordinates[43]; but no frictional damping of the solvent coor-

clinates is included. For many chemical reactions involving modest to high 

barriers, this is an excellent description for reaction rate constants[48], since 

reaction transmission coefficients depend only on short time dynamics and 

friction on the solvent coordinate does not contribute (see the contribu-

tion by Hynes in this volume). It is also a completely adequate description 

for obtaining the SRP referred to above. But for very low barrier reac-

tions[49] and for examination of explicit dynamics over the entire surface, 

one requires explicit introduction of a generalized friction for each solvent 

coordinate[50] . This generally complex procedure is best discussed in the 

contest of specific reaction cases, and is a topic for future developments. 
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1. Introduction

In this chapter a quantum mechanical approach encompassing solvent effects and 

chemical reactions is sketched and discussed. The theory of solvent effects on the 

electronic structure of a given solute leads to a representation of the sub-system 

embedded in a larger one with the help of effective Hamiltonians, wave functions and 

eigenvalues. Since the whole electronic system is quantum mechanical in nature, and in 

principle non-separable, the theory for the ground electronic state permits defining under 

which conditions the solute and solvent separability is an acceptable hypothesis. This 

problem has been extensively addressed in previous work from our group [1-6] and by 

many others [7-13]. In order to set up the stage for a quantum mechanical analysis of 

solvent effects and chemical reactions, in Section 2 is summarized the theory of n- 

electrons and m-nuclei with special emphasis on possible shortcomings of the Born- 

Oppenheimer framework. Time dependent phenomena is highligthed. In Section 3, we 

go a step beyond previous wave mechanical treatments of solvent effects by explicitly 

including a time-dependent approach to solvent dynamics and solute-solvent coupling. 

Solvent fluctuation effects on the solute reactive properties can thence be discussed in a 

more natural framework which includes, as especial cases, most of the 1-dimensional

models currently available. The approach to thermal equilibrium is examined from this 

perspective. Time dependent effects are also introduced in Section 4 where a quantum 

mechanical theory of chemical interconversions is described. 

The separation of a reactant system (solute) from its environment with the 

consequent concept of solvent or surrounding medium effect on the electronic properties

of a given subsystem of interest as general as the quantum separability theorem can be. 

With its intrinsic limitations, the approach applies to the description of specific reacting 

subsystems in their particular active sites as they can be found in condensed phase and in 

media including the rather specific environments provided by enzymes, catalytic 

antibodies, zeolites, clusters or the less structured ones found in non-aqueous and mixed 

solvents [1, 3, 6, 8, 11, 12, 14-30]. 

Before considering the analysis of solvent effects on chemical reactions, some of the 

shortcomings of potential energy hypersurfaces as a tool to describe chemical process are 
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discussed in section 4. A chemical reaction is viewed there as a fundamental quantum 

mechanical change of state. It is convenient to distinguish between the exact (global) 

Hamiltonian H and the molecular Hamiltonian Hc. The latter is obtained from the Born- 

Oppenheimer approach, which for a system having a minimum energy with respect to 

variations of the nuclear variables, leads to models for the electro-nuclear fluctuations 

around the stationary point. There are configurational points for which the electronuclear 

fluctuations sustain only excited states. These are saddle points of any index with respect 

to variations of nuclear coordinates. No ground state can be assigned to a saddle point of 

index n>0 (SPi-n). The overlooked fact is that all quantum states of Hc (with and 

without local ground states) are, in prnciple, eigen states of the global Hamiltonian H. 

It will be around this latter Hamiltonian that the theory is built, while the practical 

calculations are made with the molecular Hamiltonians Hc. The passage from the spectra 

of one molecular Hamiltonian to another may or may not be mediated by an 

intermediate molecular transition Hamiltonian (SPi-n), but the essence of the problem is 

the finite lifetime of the excited states of the molecular Hamiltonians where the quantum 

jumps are mediated by the photon field present in the reactant system. These matters are 

discussed in Section 4. 

We distinguish passive from active solvent effects on chemical reactions. Passive

solvent effects do not change the quantum nature of the interconversion step, while it 

may change the relative energies of the corresponding spectra. The active solvent effects 

involve a specific action of the solvent in the chemical interconversion step leading to a 

change of mechanism or to a surrogate mechanism. This may include general/specific 

acid or base catalysis by the solvent molecules. For a chemical reaction having different 

mechanism to accomplish the chemistry, a passive solvent may change the relative 

probabilities between channels but not the actual mechanisms. From the computational 

viewpoint, in the supermolecule approach, such a distintion is seldom retained. Small 

solvent clusters treated at any level of electronic theory cannot be expected to provide an 

adequate description of the characteristic many-body effects [31]. Active solvent effects 

can be treated as a passive one if by including a minimal (critical) number of solvent 

molecules the interconversion step is correctly described as a supermolecule, the 

remaining solvent can be considered as passive. It is to this type of system that the 

theory would apply. 

A well defined theory of chemical reactions is required before analyzing solvent 

effects on this special type of solute. The transition state theory has had an enormous 

influence in the development of modern chemistry [32-37]. Quantum mechanical 

theories that go beyond the classical statistical mechanics theory of absolute rate have 

been developed by several authors [36, 38, 39]. However, there are still compelling 

motivations to formulate an alternate approach to the quantum theory that goes beyond a 

theory of reaction rates. In this paper, a particular theory of chemical reactions is 

elaborated. In this theoretical scheme, solvent effects at the thermodynamic and quantum 

mechanical level can be treated with a fair degree of generality. The theory can be related 

to modern versions of the Marcus theory of electron transfer [19, 40, 41] but there is no 
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reaction coodinate in the classical sense. The present theory gives a different definition 

of catalysis by separating necessary and sufficient conditions for the phenomenon to 

appear, and subsidiary conditions leading to an increase of the efficacy of the whole

process. For interconversion steps going through an intermediate molecular 

Hamiltonian, the saddle points associated to the adiabatic solution of the electronic wave 

function define geometries to which the reactants should tend to adopt in order to open 

the interconversion channel. The invariance of such saddle point geometries is an 

essential element of the theory allowing for an understanding of catalysis in the sense

given by Pauling[42], this time it has a general content in so far surrounding media are

concerned. All these matters are discussed in Section 4, and for an early formulation of 

these ideas see ref.[43]. 

Contemporary computer assisted molecular simulation methods and modern 

computer technology have contributed to the actual numerical calculation of solvent 

effects on chemical reactions and molecular equilibria. Classical statistical mechanics 

and quantum mechanics are basic pillars on which practical approaches are based. On top 

of these, numerical methods borrowed from different fields of physics and engineering 

and computer graphics techniques have been integrated into computer programs running 

in graphics workstations and modern supercomputers. Recent results are overviewed in 

Section 6. In Section 7 a general discussion pointing towards recent trends is presented. 

2. Theory

From a quantum mechanical perspective, physical and chemical processes can be 

described on equal basis. These processes are the result of changes among quantum states 

(discrete and/or continuum) and one of the tasks of the theory is to identify those states 

that are relevant to their description. A reactant system in a gas phase or in solution can 

be characterized as a set of electrons and nuclei. At a given temperature the system may 

change the populations od the quantum state via emission and absorption of energy 

quanta (photons, optical phonons). The system may change its quantum states if work 

is exerted on it (or exerted by the system on the surroundings) or it can change the 

population distribution (entropic change) via energy exchange with a thermal bath. 

Thermodynamic equilibrium is attained for a system weakly coupled to a thermal bath if 

the coupling has been on for a long time, and if all the fast processes have happened and 

all the slow ones not [44]. The first problem is the calculation of the relevant quantum 

states of the system. The chemical phenomena requires of an electrodynamics description 

[45, 46] as the charged particles constituting normal matter interacts via electromagnetic 

fields. The change of quantum states are prompted by the coupling between the matter 

and radiation fields. In the approach herein described the classical mechanical view of a 

chemical process taking place on an energy hypersurface fades away. The Born- 

Oppenheimer framework is thence used in a more restrictive fashion. 

In what follows, standard quantum chemical approach is summarized. The 

modifications required to describe chemical processes by using an energy basis are 
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described and discussed.

2.1. TECHNICAL SEPARABILITY

The solute-solvent system, from the physical point of view, is nothing but a system 

that can be decomposed in a determined collection of electrons and nuclei. In the many- 

body representation, in principle, solving the global time-dependent Schrödinger

equation with appropriate boundary conditions would yield a complete description for all 

measurable properties [47]. This equation requires a definition of the total Hamiltonian

in coordinate representation H(r,X), where r is the position vector operator for all

electrons in the sample, and X is the position vector operator of the nuclei. In molecular

quantum mechanics, as it is used in this section, H(r,X) is the Coulomb

Hamiltonian[46] . The global wave function Λ(r,X,t) is obtained as a solution of the

equation:

(1)

To define the language and comment on some limitations usually overlooked in the 

theoretical chemical literature, let us outline the standard procedure leading to a formal 

solution for such an equation.

In the present analysis, the Hamiltonian does not explicitly depends upon time. 

The conditions defining a microcanonical ensemble are fulfilled [48], namely, one has a

total constant energy E. 

Applying the method of the separation of variables the total wave function can be 

cast as a product Λ(r,X,t) = Φ(r,X)ζ(t) that, once introduced in Eq.(1), gives the

customary separation of time from space coordinates:

and (2)

These are the equations on which a number of approximations are carried out to obtain 

approximate model solutions. In particular, the Born-Oppenheimer (BO) frame allows 

for a useful separation between nuclear and electronic motion [49-52]. See also Park's 

book where some interesting elementary examples are analyzed concerning electro- 

nuclear coupling effects[53].

Technically, the time-independent Schrodingcr equation (2) is solved for clamped 

nuclei. The Hamiltonian is broken into its electronic part, He, including the nuclear 

Coulomb repulsion energy, and the nuclear Hamiltonian HN. At this level, mass 

polarization effects are usually neglected. The wave function is therefore factorized as 

usual: Φ(r,X)= Ψ(r;X)ξ(X). Formally, the electronic wave function Ψ(r;X) and total

electronic energy, E(X), are obtained after solving the equation for each value of X:

He Ψi(r;X) = Ei(X) Ψi(r;X) (3)
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Once this equation is solved for all relevant regions of the nuclear configuration

space, in the BO framework, the nuclear motion can be treated either via a classical 

mechanical analysis with the help of computer simulations [6], or it can be treated 

quantum mechanically for simple models [54]. In the latter scheme, the nuclear

Schrödinger equation must be solved:

(4)

Thus, the approximate total wave function Φik(r,X) = Ψi(rs,rm;X) ξ ik(X) is taken as 

the solution of the time-independent equation (2) with energy levels Eik. The time- 

dependent equation can be cast in terms of this energy so that: ζ ik (t) = exp(-iEik

An arbitrary quantum state can be expanded on the basis of the Φik(r,X)exp(-iEik

as:

(5)

with Cik(t)=Cik exp(-iEik For a recent analysis of time-dependent theoretical

treatments of the dynamics of electrons and nuclei in molecular systems the reader is

referred to Öhrn’s and coworkers paper [55].

Before proceding ant further, it is worth reminding that general quantum mechanics

is coordinate free. The wave function represented in (5), Ψ(r,X,t)= <r,X|Ψ>,

corresponds to a general quantum state |Ψ> projected (modelled) on the coordinate basis 

|r,X>. The time evolution of this general quantum state is driven by a Schrödinger-like

equation with a general (global) Hamiltonian operator [47]. A coordinate projection 

corresponds to the well known time dependent Schrödinger equation (1) with a model 

Coulomb Hamiltonian H((r,X) representing the molecular system of interest. It is well

known that the molecular systems have stationary Xo configurations in the sense that

E(Xo) is stationary with respect to nuclear coordinate variations around Xo. The

Hamiltonian can now be expanded around this point. These will be the molecular 

Hamiltonians Hc. We consider then a general formulation of quantum mechanics, where 

H is the global Hamiltonian and use the coordinate-projected Hamiltonian as practical 

computing device to determine the Hc and thereby all the stationary states of the 

molecular system around a particular geometry in the nuclear configuration space. The 

approximate quantum states related to the stationary Hamiltonians are assumed to be 

models of the exact quantum states. This aspect of the quantum theory should be beared

in mind when thinking about chemical reactions. 

In coordinate representation, there exists alternative base representations, adiabatic 

and diabatic. Both representations are equivalent if the basis are complete. For a 

thorough discussion on adiabatic-diabatic electronic state transformations the reader is

referred to the work by Baer [49, 50], see also the work by Chapuisat et al. [51] In this 
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section, the adiabatic approach is retained without loss of generality. The state wave 

function obtained in this frame is a model of the quantum state of a material system.

Such a system is one of qualities, not an event or string of events. As the interest will 

be focussed on physical processes, their representation corresponds to changes of the 

quantum material state of the system under study. 

All this ismore or less well known[55]. What is less well acknowledged is the fact 

that the coordinate type of approximation can be justified under relatively restrictive 

conditions. As is common practice, the nuclear Hamiltonian appearing in Eq.(4) can be 

further separated in order to treat the molecular rotation motion and spectra [50, 51, 56].

To illustrate such conditions, let us take a simple harmonic model for the fluctuation

pattern of the particles, then ω= √ (k/m), and k is the harmonic restitution (force)

constant and m the reduced mass for that mode. After analysis, one gets the following

relations for the ratio between electronic and vibrational (nuclear) energies: Ev/Ee ≈ 
ωn/ωe ≈ δrn

2/δre2 ≈ √(me/mn) = κ2. Nuclear fluctuations are represented by δrn with

a similar form for the electron displacement. From the perturbation analysis carried out 

by Born and Oppenheimer, the separability of the nuclear and electronic fluctuations 

stems from the fact that me<<mn and that Ev ≈ κ2Ee. Although seldom emphasized,

these relationships imply that the fluctuations are taken around stationary points of the

(numerical) potential energy hypersurface Ei(X). In what follows, the electronic

Hamiltonian evaluated at a given stationary point of Ei(X) is taken as a stationary

Hamiltonian, and Taylor expansions in terms of fluctuation nuclear coordinates lead

to different models allowing for practical calculation of models for the vibration and

rotation spectra. The use of the numericaly calculated Ei(X) in eq.(4) provides another

model to practically obtain these spectra. For diatomics, the empirical method relating 

the vibrational levels to a classical anharmonic potential energy curve uses the Rees- 

Klein-Rydberg (RKR) method. This procedure provides a classical model for the nuclear 

fluctuation spectra which has been numerically reproduced by solving Eq.(3) with ab
initio post Hartree-Fock methods to a high degree of numerical accuracy. The picture of 

a diatomic molecule as if it were a spring arose from this type of analysis. But, when 

describing physical changes of state, the quantum states and the associated quantum 

jumps of the molecular system are the physically meaningful elements of the theory. 

The classical picture acts as a language. 

The scheme described above, reconforted by the post-HF calculations [57] where the 

coordinate representing the distance between the nuclei in the diatomic molecule (or any 

bond in polyatomic molecules), lead to the pervading picture of a diatom connected 

adiabatically with two non-interacting atoms at infinite distance. From a compuational 

point of view, this picture is quite useful and widely employed. 

Quantum mechanically, however, the diatomic molecule and the separated atoms at 

infinite distance are two distinct quantum systems having their own quantum states. The 

physical dissociation cannot be seen as a continuous process of extending a classical 

spring as nearly all textbooks in chemistry, physical chemistry and quantum chemistry 

suggest. This is quite contrary to the fundamentals of quantum mechanics itself. Before 

δrn
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tackling this point in section 3, let us first examine the quantum physical picture and

complete the decription of the quantum theory of solvent effects.

2.2. A QUANTUM PHYSICAL PICTURE

The technical picture described above must be supplemented with a photon field in order 

to enforce the quantum mechanical nature of the physical processes. The Coulomb 

Hamiltonian is useful to numerically calculate model quantum states. Charged systems 

interact among themselves via real and virtual photons [45]. A quantum system changes 

its state by quantum jumps and energy is conserved via absorption or emission of 

photons. For a system in equilibrium, the relative number of molecules per cubic 

centimeter in two quantum states having a frequency matching Bohr’s rule (Ek-Ej) =

hυkj = with is given according to statistical mechanics by the Boltzmann

ratio Nk/Nj = /kT). Under these conditions, the number of molecules going 

from state j to k per unit time by absorption of photons must equal the number of

photons emitted from k to j. If there are nw photons of frequency ω per cubic

centimeter, then Nj nω = Nk (nω +1) and after introducing the Boltzmann ratio for

Nk/Nj one gets the famous Planck’s black-body distribution law: nω = 1/ kT) -
1]. The interaction between photons and matter causes the number of photons to change

by ±1.

In a complete description, the photon and matter fields must be included with their 

interactions in the sense that charged particles interacts via the electromagnetic field. The

Hamiltonian can be written in different gauges. Here, and as it is common practice in 

quantum chemistry, it is written in the Coulomb gauge [46, 58]. The Hamiltonian of 

equation (1) has an instantaneous Coulomb interaction between all charges, the quantum 

states of Eq.(2) are considered as non perturbed bound states that interact via perturbation 

terms coupling the charges with transverse waves representing the electromagnetic 

vector potential A. For example, putting the system in a box of volume V, the vector 

potential at a point x in the box is given by:

(6)

where ê is a polarization unit vector, and exp(+iK.x) is a plane running wave. The

normalization was chosen so as to correspond to unit probability per cubic centimeter of

finding the photon, and the average energy density becomes Under these conditions, 

the amplitude that an atomic system will absorb a photon during the process of jumping 

from one state to another has been made equivalent to the amplitude that the same 

transition will occur under the influence of a potential equal to that of a classical 

electromagnetic wave representing that photon (Eq.(6)) and provided that only first order 

terms in the potential act in perturbation [45]. 

The total Hamiltonian in the Coulomb gauge (Cf.sect.2.7) has the momentum 
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operators replaced by: p-(e/c)A for a particle of charge e. As the photon field is

transversal and only first order terms in A should appear, one ends up with the Coulomb

Hamiltonian form as the one appearing in Eq.(1) and a perturbation potential of the form

U(x)=(e/mc) A(x,t).p. For further analysis see section 2.7. So that at the end, the

probability of a transition per second depends upon the coupling between the molecular 

system and the radiation field:

(7)

After some algebra, the probability of jumping from one state to the other becomes 

proportional to the square modulus of the matrix element of the dipole moment between 

the bare quantum states k and j (if different from zero, or to any multipole moment

having non-zero matrix elements between these two states).

With this digression closed, let us come back to the analysis and consequences 

derived from Eq.(3). 

2.3. THE CLASSICAL MECHANICAL PICTURE

It is common practice to treat the nuclear configurational space X as a classical object. 

In this approach the forces on the nuclei are needed. The Hellman-Feynman formula for 

the force acting on the k-th nuclei (position coordinate Xk) is given by:

(8)

the total energy Ei playing the role of a potential energy function for the nuclei: V(X)=

Ei(X).

The equations of motion for the nuclei are obtained from Hamilton's least action

principle. The nuclei total kinetic energy, K, is given by the sum of individual nucleus 

kinetic energy, (1/2)Mk(dXk/dt) 2. The time integral of the Lagrangian L(X,dX /dt,t) =

K-V is the action S of the system. For different paths (X=X(t)) the action has different

numerical values. 

(9)

For a family of trajectories all starting at the value X(to) and at t=t all arriving at X(t),

there is one trajectory that renders the action stationary. The classical mechanical 

trajectory of a given dynamical system is the one for which δS=0, i.e. the action

becomes stationary. The equation of motion is obtained from this variational principle

[59]. The corresponding Euler-Lagrange equations are obtained: d(∂L/∂vk)/dt = ∂L/∂Xk.

In Cartesian coordinates these equations become Newton's equations of motion for each 

nucleus of mass Mk:
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(10)

This set of equations provides the basis for a number of so called combined 

quantum/classical mechanics methods [22, 60-62]. The force is calculated on the flight 

as the coordinates are updated by using the molecular dynamics algorithms. Periodic 
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untenable. In this connection, it is instructive to read Herring's critique to the Heitler-

London method used to calculate spin couplings at large distances [81, 82]. The

potential energy hypersurface Ei(X) is an invaluable computing device, as is shown by

the successful representation provided, for instance, by the RKR procedure of fitting

vibrational levels to a potential energy curve. 

The separability between electron and nuclear fluctuations makes theoretical sense 

for domains around the stationary points of Ei(X) where the properties of the system can

be characterized by computing high order derivatives that leads to a number of model

representations for the nuclear dynamics [83]. At such a stationary point, non adiabatic 

effects on the vibrational spectra, for instance of the hydrogen molecule, are negligible. 

At saddle points of the BO potential energy, separability is conventionally agreed. The 

description of a chemical interconversion as a passage over this saddle point yields a

computational device that help calculate the rate at which the model system moves away 

from the reactant valley entering the product valley. It is accepted that a passage through

a given separating surface defines completion of that step. As early noted by Wigner, 

this is a classical mechanics picture [33]. Most, if not all, the computational quantum 

dynamical models are based, in one way or another, on potential energy hypersurfaces. 

Öhrn and coworkers [55] are among the first that have developed an electronuclear model

avoiding the use of such hypersurfaces which, incidentally, shows that there is no

exigency in using such a concept in describing quantum processes. 

The usefulness of potential energy hypersurfaces in describing reaction dynamics and 

chemical reactivity is well illustrated by Levine and Bernstein [84] and Shaik et al. [85]

books. See also the fundamental paper of Hase [86]. This success does not assure that 

the coordinate representation of quantum system is necessarily truthful. It goes without 

saying, the coordinate representation is an extremely useful mathematical model. 

However, from recent inelastic neutron scattering experiments on hydrogen bonded 

system, the idea that the BO approximation may be inadequate has been advanced by 

Kearley and coworkers[87]. 

The pictures derived from the adiabatic approach are certainly pedagogically useful 

but they are not necessarily a faithful view of quantum reactive systems. Now, since the 

adiabatic transition state theory provides the bottom line to describe reaction rates, it is 

necessary to implement some caveats in order to get a quantum mechanical theory of 

chemical reactions. 

2.5. STATIONARY HAMILTONIANS

The theoretical view advocated here focus attention on the quantum states relevant to 

the description of particular phenomena. The concept of stationary Hamiltonians follows 

from the coordinate representation and leads to a numerical determination of relevant 

quantum states. Hc will denote this class of Hamiltonians. Thus, given a system that 

can be decomposed into n-electrons and m-nuclei in different dispositions, the set of Hc

=Σa(1/ma)[pa]2+VCoul are written in terms of fluctuation coordinates around particular
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nuclear configurations: they may define a system having bound states (molecules, atoms 

and ions) with excited states having finite lifetimes, or they can display quantum states 

all having finite lifetimes. These latter are, on the BO hypersurface, saddle points of any 

index. It is now appropriate to label the stationary Hamiltonians as Hc(i) where each

label relates to a given catchment region in the sense defined by Mezey [88, 89]. Each

one of them would be associated with a Schrodinger equation: Hc(i) Ψiv = εiv Ψiv.

Hc built in the coodinate representation is always an approximate model of the full

Hamiltonian of the system. The exact Hamiltonian can be constructed if one knows the 

complete spectra, eqs.(53) or (68) illustrate the form of such Hamiltonians. In what 

follows we will refer to this type of Hamiltonian as Ho, that is, the exact molecular

Hamiltonian for the system embedded in a radiation field. While the spectra of the full 

Hamiltonian Ho contains the spectra of the molecular Hamiltonians {Hc(i)], there is no

reason to believe that the set formed by all these eigenfunctions may be complete with 

respect to the eigenfunctions of the global Hamiltonian, Ho. The very existence of 

entangled states [90, 91] will put a limitation to completeness. We observe that the 

general symmetries (invariances) of the total Hamitonian H can be spontaneously 

broken when the system is trapped in one of the states belonging to a molecular 

Hamiltonian Hc. Such is one of the origins of L and D isomers. 

From the present stand point, the physical processes are described as quantum 

transitions among stationary states obtained from the adequate Ho. The coupling with 

the electromagnetic transversal field is the necessary cause producing changes among the 

states. Thus, seen from the viewpoint of the global system, the molecular system is not 

made of stationary states. 

3. Solvent Effects

3.1. THE CHEMICAL PICTURE

In the chemical picture, the system is formed by molecules, atoms and/or ions. Each 

one of them has well defined properties. For such systems, a separability hypothesis is 

introduced in the physical picture. The different steps leading to effective equations for 

the subsystems have already been discussed by several authors. Here, we outline the 

important points; for detailed discussions we refer the reader to our original papers [1-3, 

6].

3.1 .l. Energy and Effective Schrödinger Equations for Separable Subsystems

arbitrary subsystems:

The total Coulomb Hamiltonian can always be written as a sum of terms describing

(11)

with X=(Rs,Rm) representing the nuclear coordinates of the subsystems. The solute is

designated by the subindex s; the surrounding medium or solvent is indicated with the
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subindex m.

The interaction operator Vsm= V(rs,rm,Rs,Rm)is defined in terms of the 

Coulomb interaction operator 1/|r-r'| = T(r-r') and the charge density operators of the

solute Ws (r) and the surrounding medium Ω m(r'):

where

with a similar expression for the solvent charge density operator Ω m(r).
In the chemical approach it is assumed that the wave functions for the solute, 

Ψ
s
(r

s
;R

s
,R

m
), and surrounding medium, Ψm(r

m
;Rm,Rs), are known at a given

instant t and with a given nuclear configuration X(t), and that an approximation to the

total wave function can be written down as an antisymmetrized product: 

(14)

Asm is an antisymmetrizer operator between electrons from these two groups s and m

which is usually expressed as a sum of the identity operator (1) and normalized 

permuting operator Pms : Asm =1+Pms . The total Hamiltonian is symmetric to any

electron permutation. The interaction energy Vsm can be cast in terms of a direct

Coulomb interaction and an exchange Coulomb interaction:

(15)

The ansatz used above for the wave function does not contain intergroup electron 

correlation and charge transfer effects among both subsystems. The former are second 

order effects that may or may not be included after solving for the effective subsystem, 

while the latter are of first order in perturbation theory language thereby deserving a 

special treatment if they are present. If inter group electron correlation is included, van 

der Waals forces result [7, 92]. In the construction of effective Schrödinger equations

both are neglected [6], but they can be taken into account, for instance, with the use of a 

supermolecule scheme to allow for charge transfer effects if selected solvent molecules 

are included in the subsystem of interest. Charge transfer can be treated as a post local 

field effect. 

3.1.1.1. Effective Hamiltonian. In this framework it is possible to define an effective 
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Hamiltonian Hs by neglecting the exchange interactions and intergroup electron

correlations and by taking the quantum average over Ψm(rm;Rm,R
s
) of the total

Hamiltonian H and neglecting the self energy of the surrounding medium:

(16)

The interaction between both subsystems is cast into a form where the physical 

charge density of the surrounding medium Γm(r';X) = <Ψm| Ω m(r')|Ψm> appears

explicitly, and the interaction Hamiltonian describes now the coupling of the solute

charge density operator with the electrostatic potential created by the surroundings at

fixed X: Vm(r;X)=∫dr' <Ψm|T(r-r') Ωm(r')|Ψm>=∫dr' T(r-r')Γm(r';X). The poitential

Vm(r;X) fulfils the classical electrostatic Poisson's equation [6]. For each nuclear

configuration, the solute wave function Ψs and the effective energy Es(X) are obtained

as a solution of the effective Schrödinger equation:

(17)

The surrounding medium system (the m-system) can also formally be represented

with an effective Schrödinger equation having the same form as Eq.(17).

The Hamiltonian of eq.(17) contains the in vacuum Hamiltonian Hs(rs,Rs). The

stationary Hamiltonians of the in vacuum system usually go over the effective

(solvated) system. We have calculated a number of cases related to saddle points of index

one [93-98] as well as sadle points where the model system is increased in size, the 

invariance of the stationary point has been numerically established either with respect to 

models and in some other occassions with respect to the level of computing [99]. As the 

index of the saddle point can be obtained via the calculation of the Hessian in the BO 

scheme, if the solvent-solute off-diagonal matrix elements do not spoil the negative 

eigenvalue defined by the active subspace [100-102] one would expect a geometric and 

transition vector invariance when the in vacuum system is embedded in a pasive solvent. 

An analysis of the minimal subspace defining a SPi-1 has been given in references 

[101-103]. Note that the spectra of the composed system may be richer than the isolated

species: solvent to solute and solute to solvent charge transfer states may appear in the 

spsctra. The more apparent effect of solvent in the spectra of stable solutes is the 

broadening of the spectra (band instead of line spectra) as well as changes in the 

transition moments. 

3.1.1.2. Electrostatic energy. The calculation of the total electrostatic energy, starting

from the effective energies, requires some qualification. It is not a simple sum of

effective energies εs(X) and εm(X), for the simple reason that the interaction energy is

counted twice. Thus, for each subsystem a "polarization work" has to be withdrawn in 
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order to get the correct final Coulomb energy. The Coulomb energy for each subsystem 

is given by: 

with a similar expression for the m-system: 

(18)

(19)

The interesting point with these definitions is that the total Coulomb energy is 

correctly obtained as the sum of two independent terms: 

Es+m(X) = Gc s (X) + Gc m(X) (20)

These two quasi independent systems are, however, coupled via the quantum mechanical 

exchange effects. In fact, the expectation value of the total Hamiltonian with respect to 

the selfconsistent solution of the solute and solvent is given by: 

(21)

where one takes advantage of the fact that the total Hamiltonian commutes with the 

antisymmetrizer operator Asm. Now, introducing the effective group Coulomb energies, 

the total energy can be written as: 

(22)

The first two terms describe each subsystem dressed with the interaction of each other. It 

is now apparent that exchange forces between the two subsystems have to be included in 

order to get the total force acting on the nuclei. This latter force is usually mimicked 

with a repulsive short range potential. A pseudo potential method can also be used in a 

microscopic approach to the surrounding medium effects [104,105]. 

Now, one can proceed to define a functional form for each (coupled) subsystem, by 

dividing the exchange contribution among them, so that one obtains an effective energy 

functional for the subsystem of interest: 

(23)

with a similar expression for the solvent functional. 

The last term in eq(23) in the ground electronic state contributes with repulsive 

effects that results from the Pauli exclusion principle. It is common practice to include 

them in many approximate treatments via a 1/R12 repulsive term in the potential energy 
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function describing atom-atom interactions. In this case, there is no direct wave function 

modulation due to this exchange term. Formally, if the exchange effects can be 

mimicked, for instance, with a repulsive pseudopotential, the functional Gs depends 

upon the solute and the solvent wave functions as well as the global nuclear 

configuration.

It is worth noticing that a statistical mecjhanical averaging of eq.(23) would lead to 

a free energy formulation. This problem has been thoroughly discussed in refs.[1,3].

3.1.2. Self consistent reaction field theory. The objective of the generalized

selfconsistent reaction field theories is to replace the solvent wave function dependency 

with a particular model of charge density representing it in the presence of the solute. 

The polarization charge density Γ '(r)= ∇ r.p(r) is given by the divergence of the

polarization vector p(r) so that in atomic units the total charge density of the solvent is

given by: 

(24)

where ∇r is the gradient operator at r. Note that the polarization density p at the

boundaries and outside the macroscopic volume occupied by the solvent is zero. A great 

number of computational procedures only retain the first term in Eq.(24), namely 

Γmº(r) describing a surrounding medium charge density without polarization. The

polarization density is set up by the solute electric field on the polarizable solvent or 

surrounding medium. This term may be extremely important when describing spatial 

charge separation processes such as hydride transfer and proton transfer reactions [2, 73] 

or stabilization of carbonium ions in biological systems [14]. 

The polarization density is a functional of the solute charge density Γ s(r)=
<Ψs|Ω s(r)|Ψs>. The effective Hamiltonian Eq.(16) acquires a non-linear structure via

the polarization density term, i.e. the effective Hamiltonian a functional dependence of 

the wave function: 

(25)

where ∇rT(r-r') is a unit electric field at r' produced by a unit charge at r.
The reaction field potential corresponds to the last term in Eq.(25) and will be

designated by ∏(r) in what follows. Vmº(r) is the electrostatic potential acting on the

quantum system that is generated by the surrounding medium charge density, Γmº(r).
For a recent overview on classical electrostatics in biology and chemistry see the paper 

written by Honig and Nicholls [106]. Note that the solute can be taken as a classical 

external electrostatic source to the surrounding medium. For this approximation to be 

accurate, the solute wave function must be fairly well localized in the volume assigned

to the solute system; overlap with the surrounding medium must be minimal. 
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A Rayleigh-Schrödinger-type perturbation theory has recently been developed by

Angyan [107]. The consideration of external perturbations, like electric fields, permits 

the calculation of response functions for solvated species.

3.2. PRACTICAL AB INITIO QUANTUM CHEMICAL APPROACHES

Note that the effective Schrodinger equation (17) is the Euler-Lagrange equation 

obtained from the variational principle applied to the functional Gcs . The surrounding 

medium effect, in the present approximation, is a functional of the solute density. The 

operator appearing in Eq.(16) shows such a dependence in a clear manner. It is then a 

one-electron-type operator according to the definition given in Eq.(13). This property is 

important since, in the practical ab initio quantum chemical approach at post Hartree -
Fock level of theory, the so called double and higher excitations do not couple to the 

ground state via this operator [108]. All the effects are included at the HF level via 

orbital polarization effects. 

3.2.1. Hartree-Fock level
Let us consider the HF level of theory. The functional corresponding to Eq.(18) in

conjunction with Eq.(16) or (25) and a one determinant wave function Ψ used for the

solute can now be written as: 

(26)

where Γ(Ψ) is the electronic density calculated with the one determinant wave function 

Ψ. Vm°(r') is the external potential with which the solvent is represented; the factor 2

in front of it is due to the common practice consisting of carrying out the calculation of

the solute system only. The first term, once the variational procedure is applied, leads to 

the standard Hartree-Fock equations for the orbitals used to construct the determinant for

the system in vacuum. The orbitals are perturbed both by the potential Vm°(r'), which

can be calculated if the solvent structure is known or a model is built to represent it,

and by the reaction field potential which depends upon the density. Thus, the reaction

field incorporates a second source of non-linearity in the orbital’s HF equation besides 

the exchange term produced by the bi-electronic operator appearing in H
s
(r

s
,R

s
). For a

closed shell system, for instance, one gets for the space orbitals φj(r) the Hartree-Fock

one-electron equation: 

(27)

where the first term is the one electron kinetic energy operator in atomic units, V(r) is
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the electron-nuclei interaction operator for the solute system, Ji(r) is the Coulomb

operator created by the i-th orbital density at the configurational point r, and Ki(r) is the

exchange operator that takes into account the fermion nature of the electron states; the

sum is carried out from 1 to N/2. For a system of N electrons, the density Γ (Ψ) is

given by: 

(28)

and the sum is carried out over the HF manifold (occupied orbitals). In Eq.(27), it is the 

reaction field potential ∏(r) which depends upon this density.

Computational studies with different solvent-solute coupling models continuously 

appear in the literature [13, 61, 109]. Solvent effects on molecular geometries and 

isomerization processes have been reported by Rivail and coworkers [110] as well as 

studies on the geometrical structures of hexahydrate metallic cations [111]. Jansen and 

coworkers have recently reported a mixed quantum-classical computer study on the water 

molecule in the liquid phase designed to examine the influence of a polarizable 

environment on its electronic properties [61]. This is the more advanced computer 

simulation carried out so far in the spirit of the selfconsistent reaction field theory. 

Solvent effects on the Menshutkin reaction have been studied by Karelson and coworkers 

[112] as well as the effects of solvation on chromophores, where a SCRF-SCF

calculation was followed by configuration interaction to generate excited states in the 

presence of a dielectric continuum [113]; the method was later extended to a multicavity 

reaction field and applied to study the effect of solvent on flexible molecular systems. 

The method presented by these authors is based on a gauge-independent partitioning of 

the molecule total reaction field in the polarizable medium into partial reaction fields 

which belong to the rotationally or inversionally groups in the molecule [114]. 

From the ab initio quantum chemistry coupled with a molecular dynamics 

treatment of the surrounding media, Zhao and Cuckier have reported a study of a proton 

coupled electron transfer reaction [115]. 

3.2.2. Density functional approach
The density functional model states that the total energy of a many-electron system

can be cast as a functional E[Γ ] of the total electronic density Γ (r) where the energy is a

minimum for the ground-state density. Thus, minimizing the energy functional, 

subjected to charge normalization, would lead to the ground-state and energy of the 

system [116]. The method has been discussed in this book by R.Contreras. Here, we 

will make some comments in order to link the preceding treatment of solvent effects 

with the density functional model. 

A simple way to connect Eq.(27) with a density functional approach is to make the 

exchange term a functional of Γ (Ψ). Thus, integrating Eq.(27) and summing the orbital

energies, it is not difficult to see that the energy appears as a functional of a density Γ 
such that the integral over the whole space available is equal to 2N. The solvent is in 
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some cases represented as a bare external potential Vm°(r); in some other approaches, a

reaction field potential ∏(r) is added, which is, by its very nature, a functional of the

electron density Γ (Ψ). Thus, the solute-solvent coupling term can always be considered

a functional of the density plus an external potential. 

In the HF equation, the Coulomb term Σi2Ji(r) can be written with the help of

eqs.( 13) and (28) as: 

(29)

Thus, rewriting the exchange term -Σ i Ki(r) as a functional G(Γ (r')) of the density:

one gets for an orbital equation the form: 

(30)

(31)

where Eq.(31) is to be used to calculate all the density dependent terms. A more 

complete analysis should start from the functional form given by Eq.(22). Applying the 

process as a supermolecule to this functional one ends up with equations equivalent to 

the frozen density functional. If you want to use functional (23), then the exchange term

must be approximated by a functional of the solvent density. The orbital equations (29) 

are now modified by adding to the existing exchange potential another term related to the 

solvent coupling. This latter approach corresponds, although it is not equivalent, to the 

frozen density functional developed by Warshel and coworkers [105]. 

The scheme analyzed so far is, in a way, a simplification of the Hartree-Fock 

scheme. As such, it is only a model approximation. The most serious drawback is the 

replacement of a fundamentally quantum mechanical term, whose very nature is to be 

non local, by a local approximation. Of course, when the system is in an electronic 

degenerate state, or when the BO approximation is no longer valid, the density 

functional method cannot be applied. For a discussion of this and other limitations the 

reader is referred to the paper by Bersuker [117]. 

The density functional (DF) method has been successful and quite useful in 

correlating experimental results when model densities are used in the calculations. In 

fact, the equations characteristic of the DF method can be derived from a variational 

approach as Kohn and Sham showed some time ago. In this approach, when model 

densities are introduced, it is not always possible to relate such densities to 

corresponding wave functions: this is the N-representability problem. Fortunately, for 

any normalized well behaved density there exists a Slater single determinant; this type of 

density is then N-representable. The problem of approximately N-representable density 

functional density matrices has been recently discussed by Soirat et al. [118]. In spite 
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of some theoretical limitations, the numerical procedures therefrom derived have been 

extremely useful. A couple of striking examples have recently been reported by 

Parrinello and coworkers [62, 119]. For the protein superoxide dismutase, they present a 

theoretical description of the interactions between the copper(II) ion in the active site and 

the substrate of superoxide dismutase, using ab initio density functional theory 

calculations and model energy functional calculations. In the same spirit, an ab initio 

molecular dynamics method was used to study the solvation and dynamics of an excess 

proton and a proton hole in liquid water [120, 121]. The results obtained are extremely 

useful to understand proton transfer in solution. As pointed out by these authors, it 

would be the dynamic fluctuation between specific solvation complexes around the 

hydronium ion which result in a proton transfer, and the rate-limiting step for the 

migration of the excess proton appears to be the concerted dynamics of the second 

solvation shell hydrogen bonded to the ligand water molecules [120]. This is quite in 

agreement with the tenets of the structural diffusion model where it is the solvation 

structure that migrates rather than the particles themselves. 

Notwithstanding the beatiful results obtained with the DF method, this one appears 

to be much less successful in calculating transition states and barriers for hydrogen 

exchange and abstraction reactions [122]. Parrinello and coworkers have voiced concerns 

about the accuracy of DF theory with respect to chemical reactions in solution [121]. 

The quantum/classical procedures recover the nuclear fluctuation properties of the 

surrounding medium via the Monte Carlo statistical approach or by using molecular 

dynamics simulations. In the following section we examine the problem of energy 

exchange between solute and solvent from a quantum dynamical viewpoint. 

3.3. SOLUTE-SOLVENT NUCLEAR FLUCTUATION COUPLING 

Once the quantum states for the effective solute have been determined with the self 

consistent reaction field equations, the next step to close the description of the complete 

system is to set up the equations driving the nuclear configuration dynamics. These 

equations are the translation of Eq.(4). 

Computational procedures following a classical mechanical picture, as it was 

outlined in section 2.3, can be and have been implemented by a number of people. The 

quantum/classical schemes belong to this family [6, 123]. At a semi empirical level of 

electronic theory, Warshel and coworkers’ approach is the most complete from the 

statistical mechanical viewpoint. For early references and recent developments see 

ref.[31, 124]. Simplified schemes have been used to study chemical events in enzymes 

and solution [16, 60, 109, 125, 126]. 

The treatment of the solute-solvent system with the classical Generalized Langevin 

equation formalism [127], with especial attention to the present problem, has been 

examined by us [6]; a wealth of information can be found in references [128-131]. 
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3.3.1 Quantum Fluctuation Scheme
The nuclear motion (fluctuations) have to be treated now even if at first sight such a 

task may appear hopeless. A relatively simple scheme can be worked out which 

describes some aspects of the dynamical coupling between solute and solvent 

subsystems. This is based on the idea of transient solvent structures around which the 

set of nuclei can be fluctuating. This idea, earlier suggested by Yomosa was extensively 

used by us in connection with the theory of solvent effects [3] where statistical 

mechanical aspects were analyzed. See also a recent review by Straat [132]. Here, we 

extend the study to the dynamical aspects introducing a second quantization approach. 

This formalism is useful to describe quantized energy exchange processes. 

Let us consider the ground electronic state and transient structures represented by 

Rs(n) and Rm(n); this assumption means that the electro-nuclear system can be found

fluctuating around such average global configurations with finite lifetimes. If we adopt 

as total energy Ei(X) the sum of terms expressed in Eq.(23) for the solute with a similar

expression for the surrounding medium, the nuclear Hamiltonian (including the kinetic

energy operator, HN=Σa(1/2ma)[pa]2) can be written as a sum of terms belonging to each 

separate subsystem: 

(32)

Observe that separability is only formal as the potential energy terms, Gs(X)+Gm(X),

depend upon the configuration of all nuclei in the sample (we have neglected exchange 

terms for the time being). To simplify notations, quantum index i in the potential 

energy terms is avoided. Unless otherwise stated, we assume that everything is occurring 

at the electronic ground state both of the solute and solvent. The analysis of this

equation can be made by first expanding the energies around transient structure Rs(n) and

Rm(n). Note that the time scale of the motions associated with these transient structures

is significantly slower than the nuclear vibrations δRs and δRm around the molecular

equilibrium configurations. In many situations, Rs(n) can be a stationary geometry

obtained from a quantum chemical calculation. For the surrounding medium, Rm(n)

may be one of the thermally accessible global geometric configurations for the set of

rigid molecular solvent molecules (it can be a zeolite or a protein model). If the

surrounding medium is provided by a protein, then the X-ray structure may be a good

representative of Rm(n). Thus, expanding Gs(X)=Gs(Rs,Rm) in a formal Taylor series

of two vector variables, one gets an expression in terms of fluctuations for the solute: 

(33)

with : indicating a tensor product between the dyad δRs δRs and the matrix of second

derivatives. A similar equation holds for the solvent or surrounding medium,
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(34)

The partial solution of Eq.(27) for the configurational space can be conceived as a

stepwise process. The fluctuations around the transient configuration X(n) = (Rs(n),

Rm (n)) contain—pell-mell— vibrations driven by the intramolecular force field,

librations and cage vibration modes of molecules as a whole. The transient configuration 

evolving in a different time scale contains diffusion terms for liquid environments. 

In order to introduce some simplification we first look at solvent fluctuations. The 

linear term (∂Gm(X)/∂Rm)(n)) δRm can be neglected. This would mean that the solvent

molecules are at their (transient) equilibrium conformation in the solvent, while the 

cross linear term (∂Gm(X)/∂Rs)(n), dRs survives. The objective now is to construct a

simple model for the vibration of the solvent molecules. This is done in the harmonic

approximation. To construct such a simple model system, consider the quadratic term of

the nuclear Hamiltonian, i.e. (1/2)(∂2 Gm(X)/∂Rm2)(n): δRm δRm and the kinetic energy

term, HNm of Eq.(32). Let us assume that the normal mode problem is solved so as to

get a simple harmonic Hamiltonian. Using xi to represent the fluctuation variable of

the i-th mode (that for atomic solvents can be thought of as fluctuations of a solvent 

atom at its cage position) and p i the canonically conjugated moment, one may write a

model Hamiltonian operator for the solvent as: 

(35)

where is the square of the characteristic oscillation frequency of the k-th mode

(atom) of the medium system and µmk is the effective mass of the given mode. 

For the solute a similar expression can be worked out (note that for complex 

molecules it can be computed with present software technology): 

(36)

Implicit in the treatment is the existence of unitary transformations allowing for the 

diagonalization of the isolated quadratic Hamiltonians. 

Now, let us consider the bilinear terms: (∂2Gm(X)/∂Rs∂Rm)(n): δRs δRm and 

(∂2Gs(X)/∂Rs∂Rm)(n): δRs δRm. They have to be transformed to the fluctuation

frame. The former term contributes to couple solvent modes with the solute, the latter 

describes the coupling of the solute modes with the bath. For the time being, we will 

only retain the solute-solvent coupling. Applying (in principle) the unitary 

transformations allowing for partial diagonalization of the solvent and solute quadratic

models to the bilinear term, the following form obtains: 
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(37)

As is shown below for the solute, the linear term can be included in the quadratic term

by redefining the fluctuation operator. G(m;s) is a rectangular matrix obtained from the

second cross-derivatives coupling the solute to the solvent; l(s;m) is a vector obtained

by similar procedures from the (∂Gm(X)/∂Rs)(n) linear coupling. How to actually

perfonn such operation is not directly important now. We assume that, in principle,

such operations are feasible.

The model Hamiltonian (37) obtained from Eq.(32) contains solute oscillators

linearly perturbed by its coupling with the solvent as well as bilinear terms that break

down a total separability between solute and solvent:

(38)

The linear effect of the solvent on the solute Σ j l(m;s)j q'j— can be represented

as a shift of the j-th mode origin by (l(m;s)j)2/ msjwo
sj

2. This operation trivially 

consists of completing the square for the q'-variables. Defining the new shifted

coordinate as: qj = q'j+l(m;s)j/msjwo
sj

2, the term (1/2)(l(m;s)j2/ msjwo
sj

2  is to be

substracted from the total Hamiltonian and included in an effective solute Hamiltonian

Hseff.

(39)

The solvent oscillators could have been normalized in a similar manner which explains

why the linear term was not incorporated from the beginning. Note that the terms added 

do not affect the dynamics; they are constant quantities that might be different for the

different transient configurations. The linear term introduced by the solute on to the

solvent can be altogether neglected. The model fluctuation Hamiltonian can be written

now as:

(40)

to within a constant. Using now a second quantization approach for the oscillators,

namely [47]:

—
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for the creation and anhilation operators and for the solvent: 
(41a)

(41b)

the Hamiltonian (40) including Eq.(39) reads now for a solute and solvent (including the

zero point enegy in H and other constant terms): 

(42)

ωs and ωm are diagonal matrices containing the frequencies of each mode for the

solvent and medium, respectively. The operator bk† (bk) creates (destroys) a bath

excitation of k-type and energy Similarly, aj (aj†) destroys (creates) an

excitation in the solute. As excitations corresponds to vibration-like systems, they are 

called phonons. Note that for each transient configuration X(n) there would be a

Hamiltonian of this type so that a statistical average must also be carried out over the 

solvent spectra (although if computationally this is not an easy task). In what follows,

we assume that the sums include all oscillators corresponding to independent transient 

configurations whenever statistical averages are involved. The commutation relation for 

these operators are: [aj,aj'†]=δjj'. For solvent operators similar rules hold, and solute

and solvent operators commute among them. 

The Hamiltonian given by Eq.(42) corresponds to a fully coupled oscillator model 

[133]. The total Hamiltonian is cast then as a sum of a solute Hamiltonian, Hs,

surrounding media Hamiltonian, Hm, and the bilinear coupling operator, Hms. A crystal 

environment is a limit case that is implicit in the present approach. Adopting the 

Ianguage used there, one may distinguish acoustic and optical modes. Note that phonons 

are not coupled with electron motion at this stage. The effective electron wave function 

would act as a sort of “vacuum”. Electron excitations have finite lifetimes which depend 

upon the interactions with the surrounding medium. It is at this level where dynamical 

aspects would enter the description of solute-solvent modulation. In crystals the 

anharmonic perturbation terms determine thermal expansion phenomena as well as 

equilibrium thermal distribution of phonons[134]. These excitation modes are 

responsible for thermal conductivity properties. Properties analogous to these are found 

in other surrounding media. For an interesting application to the phenomenon of proton 

transfer in benzoic acid crystals, the reader is referred to the paper by Skinner and 

Trommsdorf [135]. 

In the above sense, the system may be considered as a thermodynamically closed 

system that will attain equilibrium if a non-equilibrium fluctuation were produced by 

some external means. 

It is worth noticing that energy exchange between quantum states belonging to the 



306 O. TAPIA ET AL.

solute and solvent are ensured in this framework by the bilinear terms (and all other 

terms deriving from the Taylor expansion eqs.(33) and (34). In this representation, the 

excited molecules act as sourcs of the electromagnetic field. Thus, for a system having a 

given amount of energy at disposal, all quantum states that are energetically accessible 

will be populated. The time required to do it would depend upon particular kinetic 

aspects.

In order to proceed now to a statistical mechanical description of the corresponding 

relaxation process, it is convenient to solve the equation of motion for the creation and 

destruction operators and cast them in a form ressembling a Generalized Langevin 

equation. We will only sketch the procedure. 

The problem now is to find out the time evolution of these operators. The equation 

of motion for these operators are [47, 136]: 

da(t)/dt = [H,a] and db(t)/dt = [H,b] (43)

The components can be formally solved. For the present case one gets for the time 

evolution of the solute operators the equation: 

(44)

The solute-solvent system is coupled via solvent operators (b+b†)k so that the

equation of motion for the solvent operator is to be solved first. Using the commutation 

relations one gets for the linear term components the equation :

(45)

The matrix element Gjk (that can be taken as real) measures the coupling strength 

between the solute and the solvent modes. To get other formulations found in the 

literature, it is useful to introduce a real coupling parameter λj for each solute mode via

the relationship: Gjk = -λj Wjk. With this convention one gets for the solute equations 

of motion: 

(46)



QUANTUM THEORY OF SOLVENT EFFECTS AND CHEMICAL REACTIONS 307

where the effective solvent Hamiltonian appearing above is given by: 

(47)

A more compact form can be given to Eq.(45) that would ressemble a Langevin equation 

and is obtained by introducing the kernel 

and

(48)

Replacing in equation (45) one gets 

(50)

The set of equations (50) can be formally considered as generalized Langevin equations if 

the operator Fj(t) can be interpreted as a stochastic quantity in the statistical mechanical 

sense. If the memory function does not correlate different solute modes, namely, if 

Kjj' =δjj'Kj, then a Langevin-type equation follows for each mode:

(51)

In absence of the operators Kj and Fj, the solute operator evolves under the action of 

the effective Hamiltonian Hseff. This is the type of equation analogous to the effective

electronic functional Eq.(18). 

The terms coupling to the bath in Eq.(51) allowing for energy exchange between 

both subsystems are given by the “friction” integral operator, while Fj would look like 

a random (possibly Gaussian) force. Note the similarity between this equation and 

equations (76 or 80) from our earlier paper [6], whilst the fundamental difference resides

in the quantum nature of the exchange. See also our paper [4]. 

The next step is to introduce temperature by averaging out the bath operators 

appearing in the time dependent terms of Eq.(51) [137] over an adequate ensemble. To

this end, the partial trace (or sum of the diagonal elements) over the surrounding

subsystem has to be taken. For the system in interaction, the effective Hamiltonian of

the solvent Hmeff must be defined in such a way that the sum of Hseff + Hmeff leads to the
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starting (to within constant factors not affecting the dynamics). By defining scaled

solvent operators in the following form:

the effective solvent Hamiltonian is given now as: 

(52)

(53)

so that the adequate solvent statistical density matrix according to Lindenberg and 

coworkers [54, 133] is given by: 

ρm = Qm-1 exp(-Hmeff /kT) (54)

where k is Boltzmann constant, T absolute temperature and Qm the partition function of 

the solvent medium: Qm = trace exp( -Hmeff /kT).

There are two mechanisms, at least, that couple the solute internal modes. One is 

represented by the last term in Eq.(50). For Eq.(51), since the cubic terms in the solute-

solvent coupling terms were neglected in the Taylor expansion, the solute modes are 

uncoupled among themselves, and they are one by one coupled to the surrounding 

medium oscillators, so that such a mode coupling can be introduced by retaining cubic 

and quartic terms. Of course, one can assume that the exact vibration-rotation spectra of 

the solute has been previously determined and proceed the analysis with the “actual” 

quantum states. The couplings with the solvent are not changed in their essence. 

3.3.2. Simple models
We have presented here the quasi harmonic approximation epitomized by Eq.(51) to 

show one way to represent the dynamics of nuclear motions in a quantum mechanical 

scheme. A general solution for these equations cannot be obtained. However, a number

of particular cases exist for which solutions have been worked out in the literature. 

For a solute single mode, Lindenberg and coworkers [54, 133] have presented a 

detailed analysis of the simplified resulting solution of Eq.(51). For two-level systems

and a dimer in a heat bath, thorough analyses also exist [138]. Model chemical reactions 

in condensed media using bilinear couplings have been discussed by Christov [139] 

using a two-level model to represent a reacting system, see also the interesting work by 

Pollak [70, 140]. The different forms of coupling operators used in this model are 

special cases of our general analysis. In fact, when the Taylor expansion is stopped at 

cubic terms, then solute solvent couplings of the form: Gijk(a+a†)i (a+a†)j (b+b†)k

will appear in the solute-solvent couplings. Simplified forms have been used to model 

energy transfer in condensed media, exciton confined to a dimer and polaron formation in 

a deformable medium [44, 138, 141-143].
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3.3.2.1. Linear oscillator example. The general equations can now be specialized to the

case on one linear oscillator coupled to a thermal bath. We will closely follow the

analysis given by Lindenberg and West so that the details and derivations can be 

consulted in that paper [133].

The total Hamiltonian of Eq.(42) contains one oscillator, j=1, with energy = 

ωS; the subindex j is dropped in all equations. The behavior of the quantum oscillator

is characterized by: i) the natural frequency = ωS; ii) the coupling strength λE

between the oscillator and the bath; iii) the memory time τc= l/γ of the dissipation of

oscillator energy by the heat bath; and iv) the bath's temperatute T. The equation of

motion is given by Eq.(51) without subindex j. 

The operators Fk(t) defined in Eq.(49) are taken as fluctuations based on the idea that 

at t=0 the initial values of the bath operators are uncertain. Ensemble averages over 

initial conditions allow for a definite specification of statistical properties. The 

statistical average of the stochastic forces Fk(t) is calculated over the solvent effective 

ensemble by taking the trace of the operator product ρmFk (this is equivalent to sum

over the diagonal matrix elements of this product), so that <Fk(t)> = Trace(ρmFk) is

identically zero (Fjk(t)=Fk(t) in this particular case). The non-zero correlation functions 

of the fluctuations are solvent statistical averages over products of operator forces, 

(55)

with = Tr(ρm Bk† Bk). 

dissipation relation yields 

The kernel K(t-τ) is related to the dissipation process. The quantum fluctuation-

To get a classical limit, the symmetrized correlation function is represented by :

By taking the limit in Eq.(56) one gets the classical limit 

K(t-τ) = (1/2kT) Σk Φk(t-τ) = (1/2kT) Φ(t-τ)

(56)

(57)

(58)

where the dissipation, represented by K and the fluctuations described by Φ are related 

via the classical fluctuation-dissipation theorem, whose mathematical expression is 

Eq.(58)[127].

To make the transition from the level of theory to experiment, the fluctuation- 
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dissipation relation is assumed to hold. For simple model systems, it was shown in 

[133] that the actual quantum relation has not the same form as the classical one. In the

high-temperature limit the classical form obtains. This model can be derived from

Eq.(51) by rewriting the sum over modes in Eq.(48) specialized to one solute mode as an

integral over bath frequencies represented with a density of states D(ω). Note the

correlation between this mode bands with the assumption made to derive the equations,

namely, the existence of collective vibrations in the solvent. To go a step further, a

particular model for the density of states can be introduced which amounts to take

equal to the expression (1/π) γ2/(γ2+ω2). Integrating from frequency

zero up to infinite, one gets the empirical formula K(t-τ)= γ exp(-γ |t-τ|). Here,

1/γ represents the memory time of the dissipation and is essentially the inverse of the

phonon bandwidth of the heat bath excitations that can be coupled to the oscillator. It

reduces to a delta function when y->infinite. The correlation function Φ(t-t), in this

model is [133] 

(59)

using the same integration limits (0,∞) and nw = kT) -1).

Lindenberg and West conclude, after analysis of Eq.(59) at low temperatures where 

that the correlation function decays on a time scale kT rather than 1/γ .

Thus, the bath can dissipate excitations whose energies lie in the range while 

the spontaneous fluctuations occur only in the range (0,kT) if kT< The correlation 

time of the fluctuations is therefore the longer of / kT and 1/γ . The idea advanced by

these authors is that fluctuations and dissipation can have quite distinct time scales 

[133]. This is important if the two quantum states of the system of interest correspond 

to chemical interconverting states [139, 144, 145]. 

To complete the description and get the connection with the solute emission and

absorption spectra, there is need of the correlation functions of the dipole operator µj= 

(a(t)+a†(t))j and, consequently, the differential equation for the one solute mode has to

be solved. The reader is referred to [133] for detailed analysis of this point as well as the 

equations controlling the relaxation to equilibrium population. The energy absorption

and emission properties of the above model are determined by the two-time correlation

functions:

Cabs(τ) = limt->∞ < µ(t)µ(t+τ)>
Cem(τ) = limt->∞ < µ(t+τ)µ(t)> (60)

The Fourier transform of the correlation functions Cem(τ) and Cabs(τ) are the emission

(Sem) and absorption (Sabs) spectra, respectively: Sem = ∫dτCem(τ)exp(-iωτ);the

integration limits are (-∞,+∞).

Experimental probing of the detailed solute-solvent dynamical mechanisms can be 
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obtained with contemporary femtosecond spectroscopy [146].

Femtosecond solvation dynamics experiments in water [147] clearly hint at the

existence of a bimodal response of the solvent to a change in solute charge density that 

is produced by photon absorption for instance. Water appears to show an ultrafast 

component in the kT timescalc and a slow component due to diffusive motions

whose timescale would be in the 1/γ range.

The need for quantum mechanical treatment of solute-solute and solute-solvent 

interactions is illustrated by recent NMR experiments of imaging with intermolecular 

multiple-quantum coherences in solution. Correlations between spins in different 

molecules were detected by magnetic-field gradient pulses [148]. The separation range 

can bc tuned from less than 10 µm to more than 1 mm. A theoretical analysis of these

effects was reported by Warren and coworkers [149]. They noticed that the intermolecular 

cross peaks are not due to radiation damping but are induced by a mechanism that is 

local in nature. For chemically activated systems, Skrebkov [150] has developed a 

finite-difference equations of diffusional type to study vibrational relaxation processes in 

binary gas mixtures of quantum oscillators mimicking diatomic molecules. An 

interesting overview is given there of the Russian contributions to the theoretical study 

of electronic excitation and ionization, equilibrium approach to the molecular 

translational degrees of freedom, rotational-translational relaxation, etc. 

The reader can see now that experimental conditions are progressing in such a way 

that would allow for verifications of the quantum theories of solvent effects. The 

important theoretical fact is the possibility of recasting the standard theory of solvent

effects, based upon classical statistical mechanics, into a more complete quantum 

mechanical approach. 

3.3.3. Quantum Chemical Framework
The analysis of the time dependent Schrödinger equation can bc made by using standard

quantum chemical procedures in the Born-Oppenheimer approximation. Let us consider a 

system prepared in the n-th quantum state of a solute molecule which is coupled to a

surrounding medium acting as an energy sink. The surrounding medium is represented 

by a set of quantum states whose energy bandwidth overlaps the discrete solute quantum 

level. The objective is the determination of the equation of motion for the probability 

amplitude of finding the system in the n-th state after a time t when at t=0 it was 

prcparcd in that state. Actually, one would be looking after the energy relaxation from 

the quantum n-state towards the m-states of the surrounding medium, a situation already 

analyzed with. second quantization formalism in the preceding section. The analysis can 

also be done by starting from equations (1) to (4). Instead of equation (5), the total wave 

function will be written as: 

(61)

where Φk(r,X) fulfills Eq.(3) with eigenvalue Ek(X) and χk(X,t) is a solution of the
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time dependent Schrödinger equation:

and a set of equations for the solvent states:

(62)

(63)

Bearing in mind how the system was prepared, namely, χm(X,0)=0 for all m≠n, one

gets for the solvent modes:

(64)

Now, Eq.(64) is to be replaced in Eq.(62). Before doing this, it is convenient to extract 

the term m' = n in the summation above. It is this term which will respond for a direct

coupling between the solute quantum state and the states around it provided by the 

solvent. All other solvent states are not correlated, to first order, with the solute n-state. 

Thus, Eq.(62) can now be written as: 

(65)

the exponential term becomes a slowly varying function if (HN +En(X)) χn(X,τ) is

nearly always equal to En(X), so that one can neglect the n-dependence in the

exponential. Furthermore, assuming that the matrix elements HNnm are independent of

m in the manifold coupled to the n-state, and defining an energy density of states ρ(E) to

ensure numerical equality, then Eq.(65) can be given the form: 

(66)

This equation has been used by Sundström and coworkers [151] and adapted to the 

analysis of femtosecond spectral evolution as monitored by the bond-twisting events in

barrierless isomerization in solution. The theoretical derivation of Åberg et al.

establishes a link between the Smoluchowski equation with a sink and the Schrödinger

equation of a solute coupled to a thermal bath. The reader is referred to this important 

work for further theoretical details and a thorough description of the experimental set up. 

It is sufficient to say here that the classical link is established via the Hamilton-Jacobi

equation formalism. By using the standard ansatz n(X,t)= where

S(X,t) is the action of the dynamical system, and neglecting terms in once this

χ
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ansatz is entered in Eq.(66), the action must fulfil the Hamilton-Jacobi equation. The

problem is now shifted to the calculation of those trajectories rendering stationary the

action of the system. The Hamilton-equation for the classical variables [151] follows

from this.

From the analyses presented in this section, it can be seen that, at least in principle,

the enormous complexity of a solute surrounded by a solvent can be reduced to problems

of smaller complexity. The interesting point is that these relatively simple model 

situations have been most useful to correlate experimental results derived from 

femtosecond spectroscopy. 

3.4. MOLECULAR HAMILTONIAN IN AN ELECTROMAGNETIC FIELD

Physics and chemistry are carried out in laboratory frames using coordinate systems 

to set up experimental devices. Before discussing quantum mechanical processes let us 

recall the form of the total Hamiltonian for a set of particles having charges qa and

masses ma interacting with an electromagnetic field A. This Hamiltonian is given by:

(67)

where and ra are the momentum and position vector operators of the particle

a, A(r) is the vector potential in the Coulomb gauge (it has only transversal

components Cf.[152]); Sa is the spin operator and B(ra) the magnetic field component

of the radiation field evaluated at the position of the a-th particle, ga is the Landé's
factor; VCoul represents the Coulomb energy of the set of charged particles including 

their self-energy ; finally, the radiation Hamiltonian Hrad is expressed in terms of

transverse electric (E^) and magnetic (B) fields. The radiation Hamiltonian can be

expressed in terms of destruction and creation aj and aj† operators of a photon in the

j-th field mode defined by the wave vector kj, polarization ej and frequency ωj = ckj

(kj=|kj|, c= speed of light) [45, 153, 154]:

(68)

Note that dra(t)/dt = [H,ra]=(1/ma)[pa-qaA(ra)] and, consequently, the first term in 

(69) represents the kinetic energy of the system of particles in the presence of the 

transverse electromagnetic field. Note the analogy between this representation and the 

dynamical solute-solvent coupling of section 2.6 where the optical phonons are 

equivalent to electromagnetic photons of low frequency (the acoustical phonons are 

related to sound waves). 

It is now appropriate to cast Hamiltonian (53) as follows: 
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(69)

where H1(S,B) describes the coupling of the molecular spin operator with the external

magnetic field and Hk with k=2 or 3 corresponds to interactions between the charges and

the electromagnetic field; H2 is linear while H3 is quadratic in A. Note that H2

corresponds to U(x)=(e/mc) A(x,t).p discussed in Section 2.2.

There are two ways the Hamiltonian (55) can be used to analyze physical problems. 

In one of them, the system does not have bound states and the zero-order Hamiltonian 

Ho is made of the p2-terms and Hrad describing the set of charged particles and a non-

interacting radiation field. The couplings between the particles among themselves (V) 

and with the transverse field (any or all of the Hks) are treated as perturbations.

Compton scattering and bremsstrahlung radiation are phenomena treated in this

framework [58, 153]. 

A second type of problems can be treated by defining a zero order Hamiltonian with 

the first two terms, Ho= Σa (1/ma)[pa]2 + VCoul. This corresponds to the Coulomb

Hamiltonian in our equation (1) where the self energy is left out. This partitioning 

permits assembling the system into bound (sub)systems representing atoms, molecules, 

isomers, etc. These latter structures can numerically be identified via the coordinate 

representation of the Hamiltonian by calculating the stationary values with respect to 

the slow motion coordinates X. For the minima, this procedure leads to characteristic 

fluctuations around defined regions in configurational space for each bound quantum 

state (ground state), while for stationary Hamiltonians corresponding to saddle points

along particular directions in the X-space one gets a reduced set of quantum states

having all of them finite lifetimes in the the photon (phonon) field. 

4. Quantum Theory of a Chemical Interconversion Step 

A chemical reaction is a complex process. Besides thermodynamic factors, the process 

has two other distinct aspects: kinetic and molecular mechanistic ones. With the 

development of modern technology, more and more complex kinetic schemes can be 

determined by using sufficient experimental information and fairly general computer 

programs [155]. In order to proceed, it is useful to define what we mean by a theory of 

chemical reactions in the first place. 

In a molecular mechanism there is always at least one step at which the system 

changes its initial identity, as it were, to acquire a different one. This is called here the 

chemical interconversion step. Following the viewpoint developed in our paper [43], the 

interconversion takes place unimolecular complex where the system jumps between 

quantum states having different stationary Hamiltonians. A simple reaction scheme is 

then one having only one such interconversion step. Chemical reactions proceeding with 

multiple interconversion steps can be treated along lines similar to the one step process 

as far as the quantum aspects are concerned. 

It is worth noticing that the chemical interconversion step may not be the rate- 
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limiting step of the overall reaction. But, if this step does not happen, there would be

no reaction at all. It is in this sense that a theory of reaction rates is seldom a general 

theory, and it is thereby preferable to talk of the theory of chemical interconversion. 

Two classes of reactions are distinguished differing by the nature of the

interconversion step. The first class contains those systems for which the change of

spectra from Hc(i) to Hc(j) is carried out between two subsets of quantum states

belonging to these Hamiltonians. The second class contains those system requiring an

intermediate stationary Hamiltonian Hc(ij); this Hamiltonian does not have a ground 

state, namely, all its quantum states have finite lifetime and defines species related to an 

activated complex. To the first class belong the unimolecular reactions. To the second 

one belong, for instance, the bimolecular thermally activated as well as thermally non- 

activated processes. 

4.1. A SIMPLE QUANTUM MODEL TO BOND DISSOCIATION PROCESSES

There is an alternative way of describing the simple bond dissociation process in a

typical diatomic such as, for example, the hydrogen molecule. The interatomic 

parameter r makes sense for two colliding beams of hydrogen atoms. It is a laboratory 

controlled coordinate, since one can prepare two crossing atom jets. They have different 

electronuclear fluctuation regimes (for example, changes of these states can be sensed by 

the Balmer series for the atoms, electronic and vibrational spectra of H2, etc.). The

definition of an appropriate reference frame is required to plot different quantum 

fluctuation regimes that otherwise appear to cross in the standard plots using for 

instance r. The interconversion between these two systems may occur for an excited 

(vibrational) quantum state of H2. In the present understanding, this state is (nearly)

degenerated to a quantum state representing two entangled hydrogen atoms. This latter 

state is experimentally found to be unbound beyond a given energy threshold and could 

be measured as two spin correlated hydrogen atoms at large r.
Thus, to help discuss chemical reactions, it is advisable to define an auxiliary axis 

where the interconversion process is highlighted; this is graphically shown in Figure 1, 

This axis serves the purpose of differentiating the fluctuation regimes associated with 

the two quantum states when they are approximated as many-body wave functions. In 

the example above, both quantum states have different electronic fluctuation patterns. 

Following the pictorial description, the interconversion process of H2 into 2H is

decomposed in several moments: 1) excitation, from ground to excited ro-vibrational 

state of H2 (eventually electronic excited state); this latter system may be in a defined

quantum rotational state; 2) “horizontal” jump along the interconversion coordinate from 

the excited ro-vibrational state towards the virtual state (resonance) of two entangled 

hydrogen atoms with correlated spins. Such quantum states are always there since they 

belong to the spectra of the global Hamiltonian. This is a pure quantum mechanical 

property. A time-dependent field is required to couple the quasi degenerate states or to 

provide for an energy gap. This interconversion does not define, by itself, the rate since 
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3) the virtual state may either return to the ro-vibrational quantum state of the hydrogen 

molecule (which it does since a coherent quantum state can develop at the 

interconversion region) or 4) it may relax by its coupling to the translational continuum 

of two hydrogen atoms that will lead to products, i.e. it gets trapped into the quantum 

states of another stationary Hamiltonian. All these states are coupled by photon 

exchanges as in normal quantum electrodynamics processes [45, 46]. Thus, the 

chemical interconversion process can be seen as a fundamental quantum mechanical 

process. The motion at the saddle cannot be seen as a free translational motion, although 

crossings of the potential energy may provide a zero order description for the counting of 

events in a classical statistical mechanical frame. 

The recombination process follows a similar pattern if the hydrogen atom states are 

spin correlated. In real situations this is not necessarily the case. They become correlated 

by forming an entangled state of two hydrogen atoms as they interact. Thereafter, there 

is a finite probability that, having formed the entangled state of two hydrogen atoms, 

this system jumps into one of the excited vibrational-rotationaI states of the hydrogen 

molecule. These states exist as states of the global Hamiltonian. The probability 

amplitude is related to the matrix element of the transition dipole between the two 

states. This type of phenomenon can be reflected as resonances in the scattering cross 

section [84]. Formation of H2 would occur if relaxation channels are available to bring 

the system to a lower energy vibrational-rotational quantum state. 

It is worth noticing that the energy range required to onset dissociation of H2 into

two atoms in the gas phase does not suffice to produce an heterolytic (di-ionic) break. 

The di-ionic form belongs to a different stationary Hamiltonian (proton plus hydride ion) 

and its energy is located at a much higher level than the energy required to break the 

covalent bond. In Figure 1, the coordinate on the interconversion axis of such a quantum 

state is just opposite to the one occupied by two hydrogen atoms. Solvent (cage) effects 

may change the energy of this highly polar state bringing it down on the energy scale. 

This is what we showed in 1974 for the di-ionic species in a water dimer [156]. If the 

effective Hamiltonians still represent the same species, albeit solvated, the discussion 

presented so far holds. In a polarizable medium, di-ionic states are energy stabilized to a 

great extent. In condensed (polarizable) phases, one would expect the di-ionic species to 

have resonance conditions with the excited vibrational states of the hydrogen molecule at 

nuclear distances larger than that which is characteristic of two entangled hydrogen 

atoms. Solvent effects are also expected to modulate the transition moment. Thus, for 

instance in solid molecular hydrogen, the di-ionic channel would be accessible if 

sufficient energy is provided, or if the packing put two H-atoms belonging to nearest 

neighbor molecules within a distance where the quantum dynamical process of jumping 

to the di-ionic state is made more likely to occur. Experimentally, such an effect has 

been detected albeit described along more quantum chemical lines (charge transfer) [157]. 

One can see the advantage of using the interconversion coordinate when describing 

different quantum states. This coordinate replaces the reaction coordinate which in this 
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theory has no place (the interconversion is not seen as a classical mechanics process in

the sense that the motion of the system along the standard reaction coordinate is treated 

as free translational motion [37]). As with any other coordinate set, the interconversion 

coordinate is useful as a mediating language. While we can describe the processes as

changes in the quantum fluctuations of the particles used to build the molecular model,

what is physically meaningful is the quantum jump between states and what is

physically measurable corresponds to the quantum transition probabilities [158].

4.1.1. Quantum mechanics of the intercoversion step
Let us consider a model case for a single bond dissociation process where there is no 

need to call for an intermediate Hamiltonian in the sense discussed above. The

discussion presented in 2.8 applies. Here, some formal aspects are discussed. 

Figure 1. Definition of the quantum interconversion coordinate for a two-electron case

epitomized by the hydrogen molecule. The quantum states are indicated in the kets with their 

corresponding collective χ- value.

The kets |Ψik> and |Ψjn > are two eigenstates, one associated to the Hamiltonians

Hc(i) and the other related with Hc(j). They describe different regimes of electro-nuclear

fluctuations. The labels i and j are there to indicate that by spontaneous or/and induced

emission processes, there is a subset of corresponding excited states that would relax 
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towards the (lower) energy bound states associated with the Hamiltonians H(i) and H(j),

respectively. The former might be describing the vibrationally-rotationally excited state

of the pseudo diatomics, while the other may be related to the electronic state of two

fragments at infinite distance and each one in an electron spin doublet state. Such

processes can be modeled with adiabatic methods. A second subset of quantum states can

be found about at a given distance (call it R-region) which have finite matrix elements 

between i- and j-states for the radiation-molecule coupling operator. This can be called 

the activated state set. For complex molecules undergoing a dissociation process, the

structure would certainly move into a critical configuration or activated precursor so that

the R-region involves a particular geometric set up (see sect.4.2 for discussions).

Note that chemistry forces the introduction of two different Hamiltonians, while the

total number of charged particles is invariant. In the case of a hydrogen molecule, 

operationally, one can identify the hydrogen molecule with all the required quantum 

numbers. It requires a different experiment to identify the hydrogen atoms with their set 

of quantum numbers. Two hydrogen atoms can be interconverted into one hydrogen 

molecule if the spin states are entangled into a global singlet state and an inter-

conversion process takes place. In turn, a hydrogen molecule can be decomposed into an 

entangled state of two hydrogen atoms via the same interconversion process. The

electro-nuclear fluctuation pattern, measured as the expectation value of the

interconversion coordinate χ-( 1,2) defined in Figure 1, is totally different for both states.

For the R-region, about which there is energy degeneracy or quasi-degeneracy, the state

of electronuclear fluctuation can jump into the electronuclear fluctuation of the other

state, both being different but have finite transition dipole amplitudes to form coherent

quantum states under an appropriate external electromagnetic excitation. This inter-

conversion process can be formalized by using standard time dependent perturbation

theory where the unperturbed Hamiltonian is Ho and the perturbing potential is for 

instance H2(p,A). Models for the quantum states oh Ho are obtained with the help of

the stationary Hamiltonians Hc. 

The system is prepared at t=0 in the quantum state |Ψik> and the question is: how

to calculate the probability that at a later time t the system is in the state |Ψjn>. By

construction, these quantum states are solutions of molecular Hamiltonian in absence of

the radiation field, Hc->Ho: Ho|Ψik > = eik |Ψik > and Ho|Ψj n> = εjn |Ψjn>. The

states are orthogonal. The perturbation driving the jumps between these two states is

taken to be H2(p,A )= D exp(iωt), where ω is the frequency of the incoherent radiation

field and D will be a time independent operator. From standard quantum mechanics, the 

time dependent quantum state is given by:

(70)

then, for a system starting at t=0 in quantum state |Ψik>, the probability of finding it at

time t=t in the state |Ψjn> for the case of near-resonant absorption is given by Rabi's
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equation [47, 154]:

(71)

where ω jn,ik =

The probability of finding the system in the state |Ψjn> has an oscillatory time

dependence. For off-resonance conditions, the system presents a line width at half

maximum equal to 4 This matrix element can be expanded in

a multipolar expansion, the first term being the electric dipole approximation [45, 152, 

154].

A chemical reaction is then described as a two-fold process. The fundamental one is 

the quantum mechanical interconverting process among the states, the second process is 

the interrelated population of the interconverting state and the relaxation process leading 

forward to products or backwards to reactants for a given step. These latter determine the 

rate at which one will measure the products. The standard quantum mechanical scattering 

theory of rate processes melds both aspects in one [21, 159-165]. A qualitative fine 

tuned analysis of the chemical mechanisms enforces a disjointed view (for further 

analysis see below). 

The relaxation towards the product channel may take place via different processes. It 

is a common situation for bond dissociation that there might be a number of n-states

along the j-channel where interconversion may be achieved. In some particular 

situations, the total probability is obtained after summing over the transition 

probabilities Σn |Cjn(t)|2. Introducing the concept of density of final states as the

number of states ρ(E)dE, the sum is transformed into an integral. Then by taking the

limit t → ∞, one arrives at Fermi's golden rule when the time derivative of the total 

probability is sought. We have presented already a discussion of this type of process in 

ref.[43]. For a system at thermal equilibrium, Boltzman weight factors must be included 

for the different quantum states involved in order to get a mathematical expression for 

the rate. 

The states in the R-region for which resonance is allowed are called active precursor 

and successor states (APS and ASS). At equilibrium, there is a symmetry between the 

interconversion viewed from the side of the successor and the precursor states, and this is 

the detailed balancing. The transition rate from the ik-state towards the set {jn} 

multiplied by the density of states for ik should be equal to the transition rate from the 

jn-state towards the set {ik} multiplied by the density of states for jn [47]. 

The basic ideas presented above correspond to an analysis of a typical unimolecular 

process, as for instance, SN1 mechanism where the solvent may have achieved the 

stabilization of the di-ionic quantum state and has favored ionic dissociation as opposed 

to homolytic dissociation. The chemical interconversion appears here to be a quantum 

mechanical change of state where the solvent fluctuations would play the role of 
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bringing the system to near resonance of the quantum subsystem. The theory differs in a 

fundamental way from a valence bond-like and a molecular orbital-like approaches. From 

their very approximate nature, these methods produce couplings between configurations 

that look as models for the exact quantum states. The theory herein discussed is based on 

an exact quantum mechanical approach. The approximate methods, that are adiabatic in 

nature are useful to construct models for reactants, precursor and activated precursor 

geometries entering in the general approach. The quantum interconversion process 

cannot be properly handled with such approximate methods. Notwithstanding, the 

geometries associated with the stationary Hamiltonians can be modelled with advanced 

quantum chemical techniques or semi empirical ones. Models of the spectra (vibrational) 

and relative total energies are also obtained with present day computing techniques. 

4.2. PROCESSES MEDIATED BY INTERMEDIATE HAMILTONIANS 

It is common knowledge that a chemical interconversion process can take place 

when two or more molecules come into a common region to form a complex. This is 

the region corresponding to the activated complex or quantum mechanical bottleneck 

[37, 67, 166]. For gas phase reactions, the reactants are tied up in a much smaller 

volume than predicted by random encounters. The problem lies in the proper 

identification of the activated complex [37, 167]. It has been assumed in some works 

that the molecules are either forming a relatively undistorted species or are in the form 

of strongly bound but decomposing complexes. This point is challenged here as 

complexes approaching the geometric arrangement of the stationary intermediating 

Hamiltonian are those actually opening the interconversion channel [101, 102]. 

A chemical interconversion requiring an intermediate stationary Hamiltonian means 

that the direct passage from states of a Hamiltonian Hc(i) to quantum states related to 

Hc(j) has zero probability. The intermediate stationary Hamiltonian Hc(ij) has no ground 

electronic state. All its quantum states have a finite lifetime in presence of an 

electromagnetic field. These levels can be accessed from particular molecular species 

referred to as active precursor and successor complexes (APC and ASC). All these states 

are accessible since they all belong to the spectra of the total Hamiltonian, so that as 

soon as those quantum states in the active precursor (successor) complex that have a non 

zero electric transition moment matrix element with a quantum state of Hc(ij) these 

latter states will necessarily be populated. The rate at which they are populated is 

another problem (see below). 

It is worthwhile to emphasize that the intermediate Hamiltonian Hc(ij) defines a 

geometry that can be used to construct a model of an activated complex. A portrait of it 

can be obtained at the BO level of theory. For thermally activativated processes, the 

transition state is the analogous of the intermediate Hamiltonian, while for processes 

without thermal activation (a number of reactions taking place in gas phase, such as for 

example, the SN2 reaction between methyl halides and halides ions [168-171] ) the 

quantum states of this Hamiltonian mediate the chemical interconversion. For particular 
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systems, calculated at the BO level, it has been noticed that from all the internal degrees 

of freedom fonning the system, only a few (control space) are essential for defining the

index of saddle point. The remaining degrees of freedom form the complementary space 

and its stereochemistry is strongly determined by the geometry of the control space at

the stationary point [43, 94, 100-102, 172-174]. It has also been computationally found

that among the variables entering the transition vector, there is a minimal subset that is

still able to produce a unique negative eigenvalue representing the reactive fluctuation at 

zero order. This is the so called active subspace. The invariance of the active subspace is 

an important property of stationary Hamiltonians without ground state.

Let us take a simple example, namely a generic SN2 reaction mechanism and

construct the state functions for the active precursor and successor complexes. To 

accomplish this task, it is useful to introduce a coordinate set where an interconversion 

coordinate ( -) can again be defined. This is sketched in Figure 2. The reactant and 

product channels are labelled as Hc(i) and Hc(j), and the chemical interconversion step 

can usually be related to a stationary Hamiltonian Hc(ij) whose characterization, at the 

adiabatic level, corresponds to a saddle point of index one [89, 175]. The stationarity

required for the interconversion Hamiltonian Hc(ij) defines a point (geometry) on the 

configurational space. We assume that the quantum states of the active precursor and 

successor complexes that have non zero transition matrix elements, if they exist, will be 

found in the neighborhood of this point. 

The interconversion is defined here as the “tunneling” of the carbon atom along the

coordinate χ- , the stretching mode of the atoms bonded to carbon with the donor-

acceptor distance frozen at the value found for the stationary Hamiltonian Hc(ij). 

Pictorially speaking, as soon as the C-atom moves away from the plane defined by the

three atoms bound to it, the system would enter the active precursor (AP) in one 

direction and the active successor (AS) domain in the opposite direction. Note the 

difference with respect to the commonly defined interaction complex that sometimes is 

dubbed as precursor complex [176]. This latter is an ion-dipole complex, while in our 

case, a molding process would be required with the geometry of the stationary

intermediate Hamiltonian as template. The two sets of quantum states for the AP an AS

complexes can now be thought of as quantum jumping via the quantum states of the

intermediate stationary Hamiltonian. The jump from the precursor to the intermediate

states is done precisely in the same way as was described above for the bond-breaking

process (see section 4.3 for further discussion). Thus, while the molding process can be

modeled with an adiabatic procedure, the essential interconversion cannot. 

To make the ideas sharper consider the case of two quasi degenerate quantum states 

of the active precursor and successor complexes. The discussion made around equation 

(57) holds true here too. The activated complex will be the place of a coherent electro-

nuclear fluctuation that will go on forever, unless there are quantum states belonging to 

the relaxation channels of Hc(i) and Hc(j). Note that the mechanisms of excitation to get 

into the quantum activated complex and those required to relax therefrom are related to 

the actual rate, while the mechanism of interconversion is closely connected with an 

χ
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electronuclear fluctuation with characteristic frequencies and represents the essence of the

Figure 2. Interconversion coordinate used in generic group exchange reactions. In this 

case a SN2 model is described. The donor and acceptor in the scheme above would correspond 

for instance to an halide ion Y- entering from the right in the APC and the leaving group is 

the halide ion Y-. The central carbon is shetched by the dark circle. The distance R is 

determined by the SPi-1, and the quantum states to the left and the right of the plane formed 

by the 3-substituents linked to the C-atom being different, they cannot physically be reached 

by an adiabatic process as implied in the BO-scheme if quantum mechanics must prevail (two 

different quantum states cannot be linked adiabatically ).
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molecular mechanism. The quantum fluctuations at the activated complex have been

made evident with femtochemistry techniques [146, 177]. It is worth noting that the 

current explanation for those experimental results is different from the one developed

here.

As noted above, the idea of quantum active precursor and successor states, or active 

complexes is rather different from the standard terms used in chemical reactivity. Here,

these states are related to the stationary intermediate Hamiltonian Hc(ij). The geometry 

associated with this stationary point is usually quite different from the geometries of the 

molecules making the encounter complexes. These latter may or may not be specific 

stationary species in the quantum mechanical sense, namely, that they are quantum 

states characterizable by their spectroscopic or other measurable quantum properties. 

Stable charge transfer complexes provide a typical example. The set of complexes 

formed by gas phase reactants in SN2 reactions is another example [168-170]. The gas-

phase X- ... CH3Y ion-molecule complex with X=Y=I has been carefully studied with

extended basis set calculations by Hu and Truhlar [176]. The results show that the 

complex has not proceeded very far in the direction of products. The equilibrium I...C 

distance in the complex is 3.396Å and C-I distance 2.184Å [176] (both calculated at 

MP2/APDZ-level). These distances in the activated precursor complex must be nearly 

equal as the C-atom moves away the stationary Hamiltonian (SPi-1) value only a small 

fraction of an Angström. If the reaction starts from the ground state of the ion-molecule

complex, the quantum active precursor states can be reached therefrom via excitations 

(produced by light or by interaction with a photon field due to surrounding medium 

effects). Pictorially speaking, the geometries of the collision or encounter species must 

be molded into an arrangement resembling the stationary Hamiltonian Hc(ij) geometry 

in order to populate the quantum interconversion states associated with the quantum 

interconversion complex (QIC). It is in this region where field-driven electronuclear 

fluctuations couple states belonging to different chemical Hamiltonians. What is 

essential now is not a wandering on an energy hypersurface (which is a pictorial way to 

describe things) but the population of the interconverting quantum states. For this 

particular class of reaction it is well acknowledged that they exhibit nonstatistical 

behavior in the sense that excitation of some internal modes are much more effective in 

driving the reaction than others [170, 178-180] 

The relationship between the geometry of the saddle point of index one (SPi-1) and 

the accessibility to the quantum transition states cannot be proved, but it can be 

postulated [43, 172]. To some extent, invariance of the geometry associated with the 

SPi-1 would entail an invariance of the quantum states responsible for the 

interconversion. Thus, if a chemical process follows the same mechanism in different 

solvents, the invariance of the geometry of the SPi-1 to solvent effects would ensure the 

mechanistic invariance. This idea has been proposed by us based on computational 

evidence during the study of some enzyme catalyzed reactions [94, 96, 97, 100-102,

A chemical interconversion step has assigned to it an invariant feature: the quantum 

173, 174, 181-184].



324 O. TAPIA ET AL.

interconversion complex (quantum transition complex). One way to model this species

is via the calculation of saddle points of index one. The name of quantum activated

complex can also be used to refer to this special state.

Pictorially speaking, this property permits defining a (static-like) stereochemical 

disposition of the particles constituting the species, thereby providing an inter-

conversion coordinate sufficiently general for a quantum mechanical characterization of

the chemical reaction. 

4.3. CHEMICAL REACTIONS: RATES AND MECHANISM 

For the sake of simplicity, let us consider a reaction scheme where only one step 

corresponds to the chemical interconversion. From reactants R1 and R2 and the products 

that will be measured as species P1 and P2, the following mechanistic scheme covers a 

variety of possibilities: 

(72)

This is a (minimal) model including the formation of the complex R1-R2, the active 

precursor complex APC that interconverts to those states belonging to the active 

successor complex ASC, as discussed in the previous section. The chemical reaction, in 

this model, ends up with the formation of the products P1 and P2. The kinetic 

parameters k+ and k- hide the effects of quantum interconversions via the intermediate 

Hamiltonian Hc(ij). Let us introduce this feature in the kinetic model, so that 

(73)

If we solve the kinetic problem assuming stationary concentration of [QIC], one gets 

the following equations for k+ and k- in terms of the kinetic coefficients appearing in 

eq (73): 

(74)
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Strictly speaking, all steps in the model (72) have a quantum mechanical nature. 

The measured rate is determined by the relative values of the kinetic parameters and a 

number of situations can be envisaged. The rate limiting step for the forward direction, 

defined from left to the right in Eq.(72), may be located at any level depending of course 

on the nature of the species. There is, however, a necessary and sufficient condition for 

the process to occur. This is related to the relaxation time of ASC into quantum states 

of P1-P2. This relaxation time must be finite. 

Figure 3. Schematic view related to eq.(72) acording to the quantum view discussed in the 

text. Observe that k+ and k- are kinetic parameters describing the passage from APC to the 

ASC. We have not indicated all other parameters included in this equation. In eq.(73) the 

quantum states of the QIC are explicitly taken into account. The arrows here indicate the 

forward reaction sense; For a reaction starting from R1+R2 the process going from P1-P2 

towards ASC can be neglected as the concentration of P1+P2 and P1-P2 are negligible at 

initial time. In chemical equilibrium situation, arrows from right to left are implied. Note that 

the apparent activation may become negative for some very strong precursor complexes R1-

R2, and the active precursor complex may well be below the energy for the reference reaction 

R1+R2.

The reactants in equation (72) may be a normal molecule or a photon field, e.g. 

R2=hv, where h is Planck’s constant and v is the frequency of the photon. The complex 

made by the photon and the molecule may or may not activate the interconversion space 

for a given photodissociation process. 

The Lindemann kinetics for unimolecular reactions [185] can be formally recovered 

if one subsumes the formation of a collision complex with the precursor complex steps 

{R1-R2 <---> APC) into one corresponding to the excited reactant R1*. The excited 
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molecule must redistribute its excess energy so as to populate the interconversion states. 

The fundamental interactions between molecular systems is carried out by virtual 

photons. This example is discussed in more detail below. 

The reactant R2 can also be considered to be a solvent molecule. The global kinetics 

become pseudo first order in R1. For a SN1 mechanism, the bond breaking in R1 can be

solvent assisted in the sense that the ionic fluctuation state is stabilized by solvent 

polarization effects and the probability of having an interconversion via heterolytic 

decomposition is facilitated by the solvent. This is actually found when external and/or 

reaction field effects are introduced in the quantum chemical calculation of the energy of 

such species [2]. The kinetics, however, may depend on the process moving the system 

from the contact ionic-pair to a solvent-separated ionic pair, but the interconversion step 

takes place inside the contact ion-pair following the quantum mechanical mechanism 

described in section 4.1. Solvation then should ensure quantum resonance conditions. 

To conclude this elementary discussion, it can be said that the quantum mechanical 

interconversion step is a necessary and sufficient condition for the reaction to happen, 

although the rate is not necessarily determined by this step. It is this aspect which 

leaves any general quantum theory of reaction rates devoid of substance. There can be a 

general quantum theory of the chemical interconversion step only. Thermally activated 

processes form a special category for which quantum theories exist [36, 39, 67, 76]. 

4.3.1 Chemical Reaction Rate 
Let us consider now processes where intermediate stationary Hamiltonians are mediating 

the interconversion. In these processes, there is implicit the assumption that direct 

couplings between the quantum states of the precursor and successor species are 

forbidden. All the information required to accomplish the reaction is embodied in the 

quantum states of the corresponding intermediate Hamiltonian. It is in this sense that 

the transient geometric fluctuation around the saddle point define an invariant property. 

Thermally activated processes belong to the category of mediated interconversion 

processes. It comes as a no surprise that the main factor required for the setting up of 

interconversion is molding the reactant complex into a geometry as proximal as 

possible to the geometry defined by the saddle point. It will be in this region where 

quantum jumps between states representig different electronuclear fluctuations with a 

minimal deformation of the global system become possible. Thus, if sufficient energy 

is available, such states will be populated. The rate of population is akin to the kinetics 

of the given process. It is customary to assume that once such states are populated 

things go fast. This may be so in the great majority of cases. However, one should not 

overlook the fundamental quantum mechanical nature of the processes involved. 

The reaction channel is open as soon as quantum states of the intermediate 

Hamiltonian become populated. By hypothesis, such states have two possible different 

relaxation channels: One back to the reactants, the other forward to product via the 

quantum states of the successor complex. 

Let us consider the non-stationary situation in the neigborhood of the intermediate 
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Hamiltonian quantum states. Two situations can be envisaged. In the first one, the

system moves stepwise from the APC states to the interconversion complex. We 

assume that the i-th state of the active precursor is populated | i †> at a given time to,

and | if †> is intermediate Hamiltonian state that are coupled by the electro-magnetic

field.

Thus, having prepared the system at the initial time t=0 in the state | i † > , the

probability of finding the system in the state | f † > at time t is given, as usual, by

|Cf(t)|2. The Fermi Golden-rule expression (to first order in TDPT) has the form [47]

(75a)

where the i-th quantum state and energy of the active precursor complex are | i †> and

εi†, respectively (Cf.Eq.(69)), and U=H2. In case that the interconversion complex has a

dense spectra in the region of εi†, it is implied then in the equation a density of states.

Then, the interconversion state can be coupled to the ASC states leading to w(if - >f) 

with a formulae similar to eq.(75a). 

The second situation corresponds to an indirect coupling of the APC states with the 

ASC ones via the quantum states of the interconversion states (if). The largest 

contribution comes again from those state being quasi degenerate in the energy scale. 

Thus, to second order in TDPT one gets 

(75b)

Thus, all those quantum states of the interconversion complex (QIC) that are quasi 

degenerate with the APC would contribute to the population rate of the ASC. Note that 

there is no first order contributionsin the present theory since the matrix elements of the 

dipole transition between quantum states belonging to APC and ASC are zero. 

Now, let us discuss the rate equations embodied in eq.(74). To do this, there is need 

of a statistical analysis. If the system is kept coupled to a thermostat at absolute 

temperature T, and assuming that w(i - >if) contains effects to all orders in perturbation 

theory, the rate of this unimolecular process per unit (state) reactant concentration k’+ is 

obtained after summation over the if-index is carried out with Boltzman weight factors 

p(if, T): 

(76a)

and for the depletion of the intermediate quantum states towards the f-th state of the 

successor complex one gets: 

(76b)
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Similar expressions can be written down for k’- and k”-. The rate of production of final 

products for the given interconversion step is determined by the different rates of energy 

relaxation.

Note that the equation (74) for k+ can be recast in terms of the probability P→ for 

the system to continue from the QIC towards products, namely, P→ = k”+ / (k’- +
k’’+), so that k+ = k’+*P→. This equation can be further worked out in order to include

the concept of resonance in a more direct way. To get at the desired result, one has to

calculate the rate at which Ci(t) is changing. The differential equation fulfilled by this

coefficient can bc obtained by using an adiabatic coupling method [47] that, in the limit 

η->0 it is given by

(77)

where the summation is done with m≠i and the dot indicates a time derivative. Note that

the spectra over which one is performing the summation has two distinct components.

One is the spectra of the precursor channel, the other is the spectra of the 

interconversion complex (QIC) which opens the way forward to products. 

The solution to eq.(77) can be cast in the form Ci(t) = exp(-i∆ i where ∆i is

the level shift produced by the perturbation coupling different quantum levels.

Expanding ∆ i in terms of first ∆ i(1) and second ∆ i(2) order contributions, the

imaginary part of ∆ i(2) is equal to /2) Σm≠i w(i -> m) and, after defining Γi/ = -
Im (∆i), one gets |Ci|2 = = exp(-Γ it ). So that the

imaginary part of the energy shift is related to the decay width of f-state belonging to the

activated successor complex. In summary, one can write the rate associated to the i-th

quantum of the active precursor complex as:

Reducing now the spectra to terms found only in the QIC one gets 

and, assuming the existence of only one resonance at εif one gets the equation:

(78a)

(78b)

(79)

where p(if,T) = exp(-ß εif) / Z, with Z representing the partition function of the QIC and

ß=1/kBT ( kB stands for the Boltzman constant). A form similar to equation (79) has
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been used by Lefebvre in a recent treatment of rates as resonance [165]. The resonace 

state approach to quantum transition state theory has been advocated by Zhao and Rice

[186], and Truhlar and Garret [187]. The approach considered here is not based on a

classical reaction coordinate idea, neither on a BO scheme. The interesting point 

suggested by the present work refers to the equivalence of treating the interconversion 

process as a mechanistic quantum mechanical effect with the more widespread and 

elegant quantum scattering approaches. The present theory goes beyond the standard 

transition state theory of reaction rates for thermally activated processess. Even if P→
=1 which would correspond to one of the hypothesis founding the whole TS theory, 

eq.(79) puts in evidence the quantum mechanical nature of the chemical interconversion. 

From the analysis presented above it follows that the chemical interconversion step 

is essentially quantum mechanical. It is not the passage over a barrier the determining 

factor, but the population and coupling of the ingoing channel with the virtual quantum 

mechanical interconversion states. The process is being mediated by the quantum states 

of the intermediate stationary Hamiltonian. 

In the gas phase, the formation of the precursor complex is determined by the 

collision pattern among the reactants [188-190], however, these do not correspond to the 

activated precursor complex (APC) in the present theory. Trajectory simulations of SN2 

reactions compared with experimental data strongly suggest the existence of non-RRKM

(Rice-Ramsperger-Kassel-Marcus) and nontransition state theory effects [191, 192]. Hase 

and coworkers observe two types of central barrier recrossings, for intermediate

recrossings the trajectory appears to linger near the top of the central barrier in what they 

call two variational transition states, while complex recrossings occur when a trajectory

temporarily trapped in the Cl- +CH3C1 complex returns to the central barrier [192].

Experimentally, it is not yet a clearly established the nonstatistical nature of the SN2 

reaction [193, 194]. It is worth noticing that from the perspective presented here, the 

APC, QIC and ASC quantum states would accomplish, when viewed from a classical 

dynamics perspective, what is called intermediate recrossings, while a relaxation and 

reactivation would lead to complex recrossings. To solve the problem of “non-

statiscality” would require a clear time resolution. It is quite possible that it may depend 

upon the particular reactant partners. 

5. Surrounding Medium Effects on Chemical Reactions: Catalysis

At the beginning of this decade, Zewail and coworkers reported a fundamental work 

of solvation effect on a proton transfer reaction [195]. α-naphthol and n-ammonia

molecules were studied in real-time for the reaction dynamics on the number of solvent 

molecules involved in the proton transfer reaction from alcohol towards the ammonia 

base. Nanosecond dynamics was observed for n=l and 2, while no evidence for proton 

transfer was found. For n=3 and 4, proton transfer reaction was measured at pisosecond 

time scale. The nanosecond dynamics appears to be related to the global cluster

behavior. The idea of a critical solvation number required to onset proton transfer 
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dynamics has emerged from this and other studies reported by Zewail's group and others

[146, 177]. 

5.1 .SOLVENT EFFECTS

From a quantum mechanical perspective, the invariance of the quantum transition states 

is only natural. A carbonyl group, a guanidinium, a nicotinamide fragment, etc., have 

their characteristic absorption bands. Solvent effects may shift them, they can be 

broadened, but they are an invariant feature allowing for their identification with 

analytical tools. These spectral characteristics are pictorially associated with stationary 

Hamiltonians (in the sense defined above) leading to geometric characteristic parameters: 

bond lengths, angles, polarizabilities, etc. Solvent effects produce variations in these 

properties, of course, but they continue to be assigned as properties of the corresponding 

functional group or chromophore. Being related to a stationary Hamiltonian, the saddle 

point of index one (SPi-1)defines a geometry around which a particular quantum 

fluctuation takes place. From a BO view, the system is unstable. But we are working at 

a general quantum mechanical level, and accordingly, the fluctuations between precursor 

and successor quantum states may become a quantum coherent state whose lifetime is 

determined, via its coupling with the electromagnetic field, by its coupling with 

relaxation channels leading, in the last resort, to products or back to reactants. 

The existence of critical solvation numbers for a given process to happen is an 

important concept. Quantum chemical calculations using ancillary solvent molecules 

usually produce drastic changes on the electronic nature of saddle points of index one 

(SPi-1) when comparisons are made with those that have been determined in absence of 

such solvent molecules. Such results can not be used to show the lack of invariance of a 

given quantum transition structure without further ado. Solvent cluster calculations 

must be carefully matched with experimental information on such species, they cannot 

be used to represent solvation effects in condensed phases. 

The reactive fluctuations of the activated complex defined by the precursor and active 

successor complexes define the chemical interconversion step. The geometries of these 

complexes are closely related to the geometry of a SPi-1. If we take a simple case for 

the interconversion step, the solvent may affect the process in different manners. One of 

the effects that the condensed medium may have on the QIC is to modulate its lifetime. 

If the solvent fully damps down the fluctuation inside the gas-phase activated complex, 

the reaction cannot proceed any further. Since we are interested in reactions actually 

taking place, we assume that reactive fluctuations are modulated by the solvent but not 

wiped out. A second effect is related to the energy of the QIC with respect to the 

ingoing reactants and the associated molecular complexes. Inside the QIC, the quantum 

states corresponding to the active precursor and successor states may be differentially 

shifted in the energy scale. This would modify the characteristic frequency for the set up 

of the quantum jumps. Another effect would manifest itself in the strength of the 

transition matrix element <i‡|H2|f‡>. This effect is a pure quantum mechanical effect. 
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The quantum mechanical rate k+ depends upon interactions with the solvent.

Statistically averaged interaction effects, including reaction field effects [6] usually result

in a shift in the equilibrium distances r1° and r2° with a change in the vibrational spectra

due to a renormalization of the force constants. The reactive fluctuations of the activated 

complex can be coupled with the field fluctuations of the solvent around their static 

average configurations. Model systems describing such a situation have been proposed 

and studied in the literature [54, 70, 196-200]. These effects may probably affect the rate 

by a factor probably less than ten, while the thermodynamic factor Kr can change the

situation by order of magnitudes (see below). 

Another important solvent effect involves the equilibrium between solvated 

reactants and solvated active precursor and successor complexes. A solvent favoring the 

formation of a precursor complex will increase the reaction rate, all other things being 

equal. In the present view of a chemical reaction in solution, one has to form first a 

complex having a geometry not too far away from the one characterizing the transition 

structure in vacuum. If we call E the environment, S the reactants in chemical 

equilibrium, and E-S the reactants solvated and having a structure similar the one 

characterizing the generic QIC without solvent, the following kinetic scheme describes 

the chemistry: 

~

(80)

~ ~ 
The interconversion step with Si and Sf standing for the active precursor and successor 

complexes reads now: 

and the relaxation towards products is characterized by the kinetic parameter k3

(81)

(82)

The scheme is valid when products are at zero concentration, since back reaction is 

negligible. Note that k+ and k- are given by eq.(74) including eqs.(76a,b) and related 

expressions for k’- and k”-. So that the spectra responsible for the interconversion

remains invariant, although shifted in the energy scale. 

A steady state analysis of these equations produces an expression of the observed

rate constant kobs :

(83)
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From this equation it can be seen that quantum mechanical effects on the observed rate 

will be manifest for k3>>k_ and k2 >>k+, where one has the result: 

(84)

which, incidentally shows, in a clear manner, that the solvent dependency of the 

observed reaction may manifest itself via the equilibrium constant Kr as well as the 

quantum mechanical changes produced by the active precursor and successor complexes 

in their modulation by the solvent and vice-versa. 

In practice, it may happen that the kinetics is fully determined by the association

process, i.e. k2<<k+, and kobs ≈ k1. This type of reaction is fully solvent dependent

but the interconversion step is no longer rate limiting. Still, the heart of the chemistry 

is contained in the interconversion event.

The complexes E-Si and E-Sf have a geometry not very different from the one 

characterizing the saddle point of index 1 for the same interconversion process in 

vacuum [96-98, 172]. This structure enforces a specific stereochemistry. For instance, 

in the hydrolysis of esters groups, the transition structure is almost tetrahedral around 

the carbon-center in the carboxyl moiety; in the reactants, the carboxyl moiety is planar, 

as it is in the product acid. If bulky groups arc hanging to the ester function, they ought 

to reorganize themselves in order to achieve a geometry of the saddle point of index 1. It 

is thcrcfore not surprising that the solvent E may play a central role during the kinetics 

of this process. Implicit in all this discussion is the fact that the environment (solvent) 

structure is influenced by the reacting species [201, 202]. At the interconversion step 

and within the APC-IQC-ASC system, solvent fluctuations may act as trapping devices 

to relax either forward to product or backwards to reactants. The recent work by 

Parrinello illustrate this point quite neatly [120]. Potential of mean force would fail to 

detect such dynamical effects. 

For transition structures involving chiral centers, if the solvent has no chiral 

preferences, the reaction may take any of the chiral TS species [203].

5.2.CATALYSIS AS A SURROUNDING MEDIUM EFFECT

The use of the symbol E in 5.1 for the environment had a double objective. It stands

there for general environments, and it also stands for the enzyme considered as a very

specific environment to the chemical interconversion step [102, 172]. In the theory 

discussed above catalysis is produced if the energy levels of the quantum precursor and 

successor states are shifted below the energy value corresponding to the same species in 

a reference surrounding medium. Both the catalytic environment E and the substrates S
are molded into complementary surface states to form the complex between the active

precursor complex Si and the enzyme structure adapted to it: E--Si. In enzyme catalyzed

reactions the special productive binding has been confussed with the possible 

mechanisms to attain it: lock-key represents a static view; while the induced fit concept 

~ ~

~ ~
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[204] stands for a dynamic description of how the enzyme-substrate system achieves 

complementarity. As discussed in previous sections, the geometry attained by the 

substrate would tend to resemble as much as possible to the geometry characteristic of 

the stationary intermediate Hamiltonian (leading to the QIC). 

In Figure 3 a schematic view is presented of how primary catalysis is achieved. 

Besides this necessary and sufficient condition required to set up catalysis, there may be 

some other factors producing an enhancement of the catalytic event. General acid and 

general base catalytic groups, metal coordination sphere appropriately prepared are 

examples of catalytic subsidiary effects. The pure molding factor is usually achieved by

catalytic antibodies techniques. 

There is also a dynamical factor related to the coupling between the fluctuation

pattern of the partners in the activated complex E--Si. They have to couple in phase so 

that vibrational energy could flow among these subsystems. The enzyme should not 

bind the transition state so tight that the reactive fluctuations can take place. Thus, for 

example, high pressure applied to the structure may deform the protein and perturb the 

surface complementarity. This idea makes sense if the geometry of the saddle point is 

invariant. And such invariance is a key element of the present approach. It is possible 

that with present computing schemes the quantum spectra is not well represented at the 

adiabatic level, but one may expect that the geometry is less sensitive [205] so that one 

get it correctly from quantum chemical calculations of stationary saddle points of index 

one. Fluctuations of electric fields in enzyme active sites have been suggested as an 

efficient source of reaction activation [206]. 

Thus, surface complementarity towards the SPi-1 (calculated in vacuum) is a 

necessary condition to produce catalysis. In many cases it may turn out to be sufficient. 

For instance, the results with a fully mutated Serine protease suggest that the 

enhancement can be about a factor of 103 with respect to the same reaction in solution 

[172] if the mutated protein binds the substrate with a geometry in a neighborhood of 

the characteristic geometry of the QIC of the wildtype. This idea has a counterpart in the 

transition state analogue [204, 207] akin to the standard transition state theory. The 

principal difference resides in the fact that our theory implies a molding of the substrates 

into a geometric setup compatible with the SPi-I. For us, the catalysts bind the 

substrates in specific activated geometries thereby opening the channels towards the 

interconversion quantum states. This process is general for the class of reaction using 

interconversion Hamiltonians. 

The surface complementarity between the quantum activated complex and the 

catalytic surrounding media is the main idea of the present theory. The oscillating 

stereochemical control of the synthesis of thermoplastic elastomeric polypropylene 

recently reported by Coates and Waymouth [208] can be easily interpreted in terms of 

catalyst changing surface complementarity. Hill and Zhang have discovered a molecular 

catalyst that experiences a kinetic and thermodynamic drive for its own reassembly and 

repair under conditions of catalysis [209]. This is basically what an enzyme does when 

moving from the apo-structure towards the catalytically apt conformation. 

~
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In water, there are many reactions that are disfavoured. In terms of our scheme

(Cf.Fig.3) the quantum activated complex may even have an energy above the one 

obtained in vacuum. In order to increase the rate of this process process, an environment

is required that trap the complex with net free energy below the reference reaction (E+S 

in the figure). This is what Shabat et al., have accomplished by using catalytic 

antibodies [210] that help trap the reactants into active precursor-like geometries, 

thereby displacing the equilibrium towards the interconversion region. The reaction is 

not only catalyzed by the interconversion step protected from hydrolysis leading to 

unwanted side reactions otherwise. This is perhaps one of the most spectacular examples 

reported so far that can be interpreted as a trapping of the active precursor-like geometry, 

see also Danishefsky [211]. Lerner and coworkers [212] have provided with an example 

of control and catalysis in cationic cyclization reactions. 

Figure 4 can be used to discuss solvent effects on the SN2 reactions. In the gas 

phase, the complexes may have an energy below the reference state. The reaction takes 

place via excited states of the QIC and active precursor and successor complexes. The 

reactant by passing over the quantum states generated at the bottom by the precursor, 

QIC and successor states must jump (resonance) into the precursor quantum states which 

in turn would open the product channel via the QIC-states. It is then apparent that 

relaxation (by photon emmission for instance) from the precursor and/or successor 

quantum states would produce such complexes in vibrationally excited states. If the 

energy of the product channel is below the entrance channel, the product may collect 

energy in one ot its vibrational states. Solvent effect on this reaction produces a high 

solvation of the ions in the ingoing and outgoing channels, while the species mediating 

the inter-conversion are less well solvated. This has been computationally illustrated in 

several occasions [213-215], and in particular, it was shown that under supercritical 

conditions the barrier is found to be intermediate between ambient water and gas phase 

in the Cl- and CH3Cl system [216]. 

6. Computer Simulations: An Overview 

In the quantum mechanical continuum model, the solute is embedded in a cavity while 

the solvent, treated as a continuous medium having the same dielectric constant as the 

bulk liquid, is incorporated in the solute Hamiltonian as a perturbation. In this reaction 

field approach, which has its origin in Onsager's work, the bulk medium is polarized

by the solute molecules and subsequently back-polarizes the solute, etc. The continuum 

approach has been criticized for its neglect of the molecular structure of the solvent. 

Also, the higher-order moments of the charge distribution, which in general are not 

included in the calculations, may have important effects on the results. Another 

important limitation of the early implementations of this method was the lack of a 

realistic representation of the cavity form and size in relation to the shape of the solute. 

These problems were partially solved through the inclusion of multipole expansions 

in ellipsoidal cavities [23] or through the use of the polarizable continuum method 
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(PCM) [217]. In the latter, the solute molecule is divided into atomic overlapping 

spheres, each of which has the dielectric polarization on its surface due to the 

electrostatic potential on the surface created by the charge distribution on that particular 

atom and the other atoms in the molecule. The electrostatic reaction field in this case is 

obtained by a direct numerical integration. In spite of the known deficiences of the 

continuum methods in many cases, thermo-dynamical properties of solutions, for 

instance ∆Gsol and related quantities, can be conveniently treated by this approach,

both at the ab initio and semiempirical levels, yielding results that are within the 

range of experimental errors [8, 11, 12, 218, 219] 

The alternative theoretical scheme for studying chemical reactivity in solution, the 

supermolecule approach, allows for the investigation of the solvation phenomena at a 

microscopic level. However, it does not enable the characterization of long-range bulk 

solvent forces; moreover, the number of solvent molecules required to properly represent 

bulk solvation for a given solute can be so large that to perform a quantum chemical 

calculation in such a system becomes prohibitively expensive .
Most of the theoretical works concerning dynamical aspects of chemical reactions 

are treated within the adiabatic approximation, which is based on the assumption that 

the solvent instantaneously adjusts itself to any change in the solute charge distribution. 

However, in certain conditions, such as sudden perturbations or long solvent relaxation 

times, the total polarization of the solvent is no longer equilibrated with the actual 

solute charge distribution and cannot be properly described by the adiabatic 

approximation. In such a case, the reacting system is better described by non- 

equilibrium dynamics. 

Based on the continuum solvent model approach, a self-consistent reaction field 

model to calculate frequency-dependent molecular properties as well as electronic 

excitation energies and transition moments of solvated molecules was recently developed 

in terms of single-configuration self-consistent field (SCF) or multiconfiguration self-

consistent field (MCSCF) electronic wave functions [220]. This method takes into 

account the response of the reference state to a time-dependent perturbation. Since in this 

case the energy is not stationary, the Frenkel's variation principle in the form of the 

Ehrenfcst's equation was used to derive the expressions for the time-depcndent response. 

In this model, the solute is enclosed in a spherical cavity embedded in the solvent, 

which is assumed to be a linear, polarizable, homogeneous, isotropic dielectric medium 

with a macroscopic frequency-dependent dielectric constant. The total polarization vector 

of the solvent is decomposed into two components: the optical polarization vector -
which responds instantaneously to changes in the solute charge distribution inside the 

cavity - and the inertial polarization vector - which has a relaxation time, characteristic 

for the solvent, which describes how fast the inertial polarization vector changes as a 

consequence of sudden changes in the charge distribution within the cavity. To describe 

the response of the solute-solvent complex to a high frequency time-dependent

perturbation, it is assumed that the electronic response of the solute molecule is slower 

than the optical polarization and faster than the relaxation time of the inertial 
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polarization. The system is described by a multiconfiguration self-consistent reaction 

field (MCSCRF) wave function, with a set of configuration state functions (CSF), 

which is fully optimized, thus satisfying the generalized Brillouin theorem. A time- 

dependent perturbation is applied to the system and the time evolution of the electronic 

wave function response is determined by requiring Ehrenfest’s theorem to be satisfied 

through each order of the perturbation. The poles of the response function give the 

transition energies of the unperturbed system and the residues give the transition 

moment, thus allowing for the determination of the excitation energies and transition 

moments from the MCSCRF reference state to the excited states. This method has been 

applied to calculate electronic excitations, transition moments and frequency-dependent 

polarizabilities of a solute molecule in a series of dielectric media. The multipolar 

expansion of the solvent interaction energy was truncated at the seventh order multipole. 

The results showed that the properties of the outer dielectric medium can have a 

substantial effect on the solute molecular properties. Electron correlation was found to 

be important; also, the solvent effects cannot be described by correcting vacuum values 

with the aid of scalar factors [221]. 

The polarizable continuum model (PCM) of Miertus and Tomasi was recently 

modified to account for non-equilibrium effects due to the delay of solvent synchronism 

in a chemical reaction, through a proper representation of the boundary conditions 

associated with the solvent cavity [222]. Expressions to determine the nonequilibrium 

surface charge distribution were derived as a sum of the electronic (inertialess) 

polarization effects acting on the solvent molecules and the slower orientational and 

vibrational (inertial) motions of the molecular component of the medium. The 

continuous charge distributions were represented by a set of discrete point charges 

defined over the cavity surface; expressions were thereafter obtained to determine the 

nonequilibrium surface charge distribution required to derive the reaction potential, the 

solute wave function and the free energy of the system. This formalism was tested by 

studying the photoionization and electronic transition processes of ions and molecular 

solutes. Simplified models of the changes occurring in the orientational component of

the solvent polarization during the characteristic time of an elementary reaction step 

were tested on the SN2 reaction of fluoride ion with methylfluoride [222, 223].
The multicavity SCRF method developed by Karelson et al [114] was applied to 

calculate the hydration energies of the proton, hydroxyl ion and several inorganic ions 

[224]. Each hydrated complex was divided into five spheres, corresponding to the central 

atom and four water molecules of the first coordination sphere. The energy for cavity- 

formalion was accounted for by using scaled particle theory. The calculated total 

hydration energies, which includes both the quantum-chemical and the cavity formation 

contributions, was found to be in excellent agreement with experimental results. Studies 

were recently reported [225] on solvent reorganization and donor/acceptor coupling in 

electron-transfer processes. See also [226]. 

Based on the discrete solvent approach, a perturbed hard fluid model was developed 

to study dissociation reactions [227]. In this model, the solute-solvent interactions are 
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separated into repulsive hard sphere and mean field attractive contributions. Lennard-

Jones potentials are used to represent the solute-solvent atoms and solvent-solvent

interactions. Thermodynamics quantities can be computed within this scheme from the

excess chemical potential change, which is related to the excess partial molar Gibbs free 

energy change, by using standard thermodynamics relations. The only adjustable 

parameters in this model, which represents the reactant and product attractive mean field 

coefficients, can be derived using simulation results at a single temperature and density. 

The hard fluid model was applied to quantitatively estimate repulsive contributions to 

solvation [228]. The excess solvation free energy of an atomic or molecular solute in a 

real liquid represents the reversible work required to introduce a fixed (zero kinetic 

energy) solute into solution. This energy for hard sphere solutes of various sizes and 

also the cavity size distributions in water and apolar organic solvents were calculated. 

The theoretical predictions were favorably compared, in most of the cases, with both 

computer simulation and rare gas solubility measurements. Some discrepancies were 

found when comparing hard fluid model predictions with simulation results, which may 

reflect details of the liquid structure arising from the nonspherical shape of real solvent 

molecules. The hard fluid model was also used to estimate the repulsive contributions to 

the excess free energy of solutions of atoms and molecules in water and n-hexane. The

results indicated that the larger repulsive solvation energies in water than in n-hexane

can be accounted for by the hard sphere model, which has no orientational order. 

According to the authors of this paper, this implies that hydrophobic hydration may

have more to do with the translational order (or packing) than with the orientational 

order (or hydrogen bonding structure) of water around a solute. 

6.1. SOLVENT EFFECTS AND CHEMICAL REACTIONS

Alternative approaches to simulate reactions in solution have been proposed by 

Warshel's group [229], in which the system is partitioned into an inner region, which

typically consists of solute molecules and is treated by quantum mechanical methods, 

and a surrounding region, corresponding to the solvent molecules, which is represented 

either by classical or by pseudopotentials at several levels of approximation. The

replacement of the solvent classical potential by a pseudopotential is expected to provide

an insight into the effects associated with the delocalization of the solute electrons on 

the solvent molecules. The calibration of the parameters in the potential can be achieved 

using results either from ab initio or density-functional calculations, or experimental

data. The combined quantum/molecular mechanical potential and forces calculated at each 

step can be used in classical [60, 109] or free-energy perturbation molecular dynamics 

simulations [229]. 

Another similar approach applies an explicit density-functional theory treatment to 

the solute molecules, while representing the contribution of the solvent molecules as an 

effective potential [105]. 

An alternative reaction-field approach to the calculation of molecular electronic 
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structure, solvation energies and pKa values was proposed [230]. In this work, the

reaction potential is computed from a finite-difference solution to the Poisson-

Boltzmann equation using an overrelaxation algorithm and numerical grids; the solute

electronic structure is computed by density functional methods and self-consistency

between the reaction potential and the electronic structure is iteratively achieved. The 

effective electron-electron interaction in the density functional approximation here 

considered is taken to be the Green function of the Poisson equation. This function is 

divided into a gas-phase-like Coulomb part and a remainder part, which represents the 

effect of the solvent. An iterative procedure brings the gas-phase and solvent parts of the

calculation to self-consistency. Gradient corrections for the correlation and exchange 

functionals are added in the self-consistent cycle that determines the molecular electron 

density. Proton affinities, solvation energies, solvated dipole moments and absolute 

pKa values were calculated for a variety of small organic molecules. The reported gas- 

phase results appear to be competitive with the best available ab initio ones, and the 

solvation energy estimates are comparable in quality with other models in which the 

solute is quantum-mechanically described. 

The DFT approach has been applied to the study of small hydrated proton clusters 

[231]. The Perdew nonlocal potential for electron exchange and correlation was used in 

the calculations. The optimized structures of the clusters up to H13O6
+ were calculated; 

the corresponding harmonic vibrational frequencies and IR intensities were computed and 

compared with high resolution experimental data. A very good agreement with 

experience was obtained. Proton transfer barriers in clusters in aqueous solution were 

computed for a few model systems and the sensitivity of the calculations to the partial 

charges used was assessed. A combined ab initio density functional and molecular 

dynamics simulation was carried out to calculate the free energy of proton transfer. The 

barrier was found to be 3 kcal/mol higher than in the gas phase and very large solvent 

fluctuations were observed during the simulation. 

Truhlar and coworkers [29, 232, 233] have proposed a quantum-mechanical-

continuum dielectric model for aqueous solvation. This method is discussed by Truhlar 

and coworkers in Chapter I. 

quantum chemical PSGVB package (which performs ab
initio quantum chemical calculations at the generalized valence bond/perfect pairing 

(GVB-PP) level) with the Delphi program (which yields a numerical solution to the 

Poisson-Boltzmann (PB) equation) has been recently proposed [234]. The continuous 

gas-phase charge distribution of the molecular solute obtained from the quantum 

chemical wave functions was replaced by atomic point charges at the atomic centers, 

obtained by fitting the former using a least-square criterion. These charges were passed 

to Delphi and then passed back to PSGVB, which solved the electronic structure 

equations in the electrostatic field of the point charges, i.e, in the presence of' the 

reaction field. The PSGVB and Delphi calculations were iterated until convergence was 

achieved. The electrostatic contribution to the solvation energy (Eel) was then obtained

A combination of the 
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as the difference between the gas-phase and solution-phase quantum chemical energies. 

Accurate gas-phase charge distributions for 29 small molecules representing a variety of 

functional groups were produced. Solvation energies that agree with experiment with an 

average error of 0.6 kcal/mol were also obtained, except for methylated and unmethylated 

primary amines and amides, which were systematically too low by 1-2.5 kcal/mol .
A combined quantum mechanical-configuration interaction and molecular mechanics 

(QM-CI/MM) method was developed [126, 235] to study solvatochromic shifts of 

electronic transitions. The condensed-phase system was partitioned as usual into distinct 

regions: quantum mechanical calculations were performed to treat the region consisting 

of solute molecules, while classical, empirical potentials in statistical mechanical 

simulations were used to represent the surrounding solvent molecules. Standard self- 

consistent field (SCF) Hartree-Fock (HF) equations were initially solved for the solute 

molecules and the HF wave-function was used as the reference state to build the CI 

(configuration interaction) wave function. The CI matrix was built and diagonalized, 

from which models of the ground-state and excited-state energies, as well as 

eigenvectors of the condensed-phase system, were obtained. The Monte Carlo 

Metropolis sampling was based on the ground-state CI potential energy; solute-solvent 

interaction energies for both the ground and excited states were determined by employing 

the corresponding one-particle density matrix of the CI wave function. A new 

configuration was then generated by randomly moving the solute, a solvent molecule or 

the volume and the procedure was repeated. Finally, the ensemble average and statistics 

were analyzed. This technique was applied to simulate solvent effects on the n-->π*

spectral shifts of acetone in water, methanol, acetonitrile, chloroform and carbon 

tetrachloride. The qualitative trend of solvent effects on the solvatochromic spectral shift 

of acetone in polar solvents was found to agree with experiments, while quantitative

estimates were greater than the experimental values; however, the experimentally- 

observed red shift in the So->S1 excitation of acetone in CC14 was not predicted because

the mutual solute-solvent dispersion interactions were not included in this model. 

The several theoretical and/or simulation methods developed for modelling the 

solvation phenomena can be applied to the treatment of solvent effects on chemical 

reactivity . A variety of systems - ranging from small molecules to very large ones, 

such as biomolecules [236-238], biological membranes [239] and polymers [240] –  
and problems – mechanism of organic reactions [25, 79, 223, 241-247], chemical

reactions in supercritical fluids [216, 248-250], ultrafast spectroscopy [251-255], 

electrochemical processes [256, 257], proton transfer [74, 75, 231], electron transfer [76, 

77, 104, 258-261], charge transfer reactions and complexes [262-264], molecular and 

ionic spectra and excited states [24, 265-268], solvent-induced polarizability [221, 269], 

reaction dynamics [28, 78, 270-276], isomerization [110, 277-279], tautomeric

equilibrium [280-282], conformational changes [283], dissociation reactions [199, 200,

227], stability [284] - have been treated by these techniques. Some of these 

applications will now be reviewed. 
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6.2. ELECTRON AND CHARGE TRANSFER PROCESSES

Electron and charge transfer reactions play an important role in many chemical and 

biochemical processes. Dynamic solvation effects, among other factors, can largely

contribute to determine the reaction rate of these processes and can be studied either by 

quantum mechanical or simulation methods. 

Strong interactions are observed between the reacting solute and the medium in 

charge transfer reactions in polar solvents; in such a case, the solvent effects cannot be 

reduced to a simple modification of the adiabatic potential controlling the reactions, 

since the solvent nuclear motions may become decisive in the vicinity of the saddle

point of the free energy surface (FES) controlling the reaction. Also, an explicit 

treatment of the medium coordinates may be required to evaluate the rate constant pre- 

exponential factor. 

The reaction rate constant for the SN2 reaction of chloride ion with methylchloride

in water was calculated within the SCRF framework by considering the FES cross 

section in the coordinate subspace including coordinates of both the reacting solute and 

the medium [79]. This approach allowed the subsequent evaluation of the transmission 

factor χ by the stochastic dynamical theory. The FES cross sections along the medium

coordinate appeared to be single-well-shaped curves, even those obtained after the 

separation of the noninertial polarization. At the saddle point, all of the calculated cross- 

sections coincided; however, the cross-section in the total polarization space may differ 

from the latter by several kcal/mol when far away from the saddle point. A 

classification scheme for the mechanism of charge transfer reactions in polar solvents 

was proposed by the authors. According to this scheme, the reactions which proceed via 

a single-well shaped TS suffer little influence from the solvent molecules, the motion 

along the solute reaction coordinate being the driving force of the reaction. On the 

contrary, a double-well shaped TS is related to reactions which proceed through an 

electron-transfer mechanism. 

The dynamics of carbon-halogen bond reductive cleavage in alkyl halides was 

studied by MP3 ab initio calculations, using pseudopotentials for the halogens and

semidiffuse functions for the heavy atoms [104]. The effect of solvent was treated by 

means of the ellipsoidal cavity dielectric continuum model. Both a concerted (i.e., a 

one-step) and a stepwise mechanism (in which an anion radical is formed at first) were

investigated, by calculating the energy of CH3X and CH3X
.-

as a function of the

distance carbon-halogen taken as the reaction coordinate. A comparison between the 

reductive cleavage of methyl- and perfluoromethyl chlorides was also performed; in this 

case, a full basis set was used, instead of a pseudopotential. The reaction profiles were 

quite similar to the preceding ones in the range of small and medium C-C1 distances.

However, at large C-Cl distances, the CF3C1 anion energy profile exhibited a clearly

marked minimum, indicating a stepwise mechanism in the gas phase, in contrast with 

CH3Cl, for which a transition state (TS) characteristic of a concerted mechanism was 
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determined. The effect of a polar solvent on the bond breaking profiles was also 
simulated; the results showed that these profiles remained almost unchanged in the case 
of the neutral molecules, whereas the anionic states were largely stabilized. The 
stabilization increased along the C-C1 distance, leading to an energy profile that 
decreases monotonically along the reaction coordinate. Thus, in the presence of a polar 
solvent, the carbon-halogen bond reductive cleavage of the perfluoromethyl chloride 
changes from a stepwise to a concerted mechanism, in agreement with previous 
electrochemical results. 

6.3. ULTRAFAST SPECTROSCOPY 

In this type of phenomena, electronic degrees of freedom are strongly coupled to
the solvent instead of being completely delocalized as in the gas phase. This solute- 
solvent coupling results in an intense, broad electronic absorption, thus enabling the 
study of the dynamics of the solvation process involved in electron transfer and other 
chemical reactions. Different pictures concerning the nature of the solvent fluctuations 
coupled to the hydrated electron can be drawn from studies using different experimental 
techniques. Photoinjection of electrons into neat liquid water indicates that equilibrium 
solvated electrons are formed very rapidly (on the picosecond time scale); the equilibrium 
spectra is recovered nearly instantaneously upon nonadiabatic relaxation to the ground 
state [285-288]. However, in transient hole-burning spectroscopy (THB) experiments, in
which the photoexcited electrons have the equilibrium solvation structure, spectral 
transients are found which persist for a few picoseconds [289, 290]. Nonadiabatic 
quantum molecular dynamics simulations of the excess electron solvation dynamics 
[291] and photoexcited equilibrium hydrated electrons [252, 253] have been performed 
in order to provide a better understanding of these phenomena. In the former work, the 
effects of molecular vibrations on the excited state lifetime of excess electrons, the 
relaxation dynamics and the influence on equilibrium spectroscopy were examined, while 
the latter works have addressed the problem of investigating the solvation dynamics 
following photoexcitation of the hydrated electron. In both cases, the hydrated electron- 
water interactions were modelled with a pseudopotential. The water-water interactions 
were represented by a simple point charge (SPC) model in which intramolecular 
flexibility was added to the standard SPC intermolecular potential. An algorithm 
including state-to-state transitions was used to represent the nonadiabatic transitions 
corresponding to a breakdown of the BO approximation. Nonadiabatic and ground state 
simulations were performed [291] and the relaxation from low lying excited states was 
followed. Two qualitatively different types of trajectories were found in this case, one of 
which cascaded quickly to the ground state, while the other trajectories were trapped for 
some period of the time in the lowest excited state. On the other hand, all of the 
calculated trajectories for the simulation of the dynamics of photoexcited equilibrium 
hydrated electrons, including those which were promoted to the second excited state upon 
excitation, presented qualitatively similar behavior, the solvent relaxation acting to raise 
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the energy of the ground state instead of lowering the energy of the excited states [252].
In this case, the strong coupling of the electronic eigenstates to aqueous  solvent 
fluctuations made evident both by the fluctuations of the hydrated electron energy levels, 
which are comparable to the spacing between them, and by the enormous shift of the 
quantum energy gap (about 75% of the initial excitation energy)  following excitation. 
Much of the local change in solvation structure was associated with a significant change 
in both size and shape of the electron upon excitation, as shown by the dynamic 
evolution of the solvent cavity containing the electron. These works have shown the 
relaxation of the quantum energy gap due to solvation to be directly related to the
dynamics of non radiactive decay of the excited state electron, as well as to the differing 
relaxation pathways observed between electron photoinjection and transient hole-burning 
photoexcitation experiments. The results obtained in these simulations were further 
compared with available ultrafast laser experimental data [251]. The  two-steps 
relaxation mechanism proposed to account for the simulation results has proved to be 
consistent with the experimental data. Moreover, alternative mechanisms proposed on 
the basis of the experimental results were shown to be accounted for in this mechanism. 

6.4.  ORGANIC REACTIONS

From a theoretical viewpoint, the effect of aqueous solvation in organic reactions has 
received considerable attention in recent years. These studies have gone a step beyond 
analysis of simple models to consider reactions such as SN1, SN2, cycloaddition 
reactions and CIaisen rearrangement, for instance, with more realistic models. 

A coupled quantum mechanical/molecular dynamics scheme was used to examine 
the SN1 splitting in water of the (neutral) tert-butyl chloride yielding two charged 
fragments [241]. In order to obtain the aqueous phase reaction profile for this reaction, 
potential of mean force calculations, using two different approaches to correct for the 
neglect of long-range electrostatic interactions, were performed. A good agreement with 
the experimental results was obtained when the Born correction for the generated ions 
was applied, except for the intimate ion pair formed in the first step of the proposed 
fragmentation mechanism, which appears to be too deep. At short C-C1 distances, the 
reaction profile obtained with the use of scaled charges correction also presented the 
expected behavior; however, as the reaction progressed to greater C-C1 separation, the 
energy of the system continued to drift downward, instead of rising as expected. Overall, 
the model using the Born correction seemed to be the most reasonable one. The solute 
and solvent structures along the MD trajectory have also been examined. Near the 
equilibrium C-C1 separation, little or no solvent structure around the solute was found. 
However, as the two product fragments are separated from each other, a very clear 
solvent structure became evident, the water molecules clustered about the chloride ion 
having their positively charged protons directed towards the anion. Specific interactions 
between the tert-butyl cation and the solvent were also observed. 

The possible reaction paths of the cycloaddition reaction between ketenes and 
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aldehydes to form 2-oxetanones was studied by ab initio calculations [242] with the 

aim of understanding the origins of the abnormally low stereo-selectivity of this 

reaction, as well as the influence of the solvent and Lewis acid catalyst on the 

mechanism. The solvent effects were examined with the aid of the ellipsoidal cavity 

continuum model. A resonably synchronous transition state (TS) was located and

characterized in the initial gas-phasc potential energy hypersurface. Two possible 

orientations (exo and endo) of the TS were examined and the authors arrived at the 

conclusion that monosubstituted ketenes should interact exclusively through exo TS's, 

at least in the gas phase. The catalytic effect of a Lewis acid on this cycloaddition 

reaction was investigated by using a formaldehyde-BH3 complex. The calculated saddle 

point in the catalyzed reaction corresponded to a relatively early and asynchronous 

zwitterionic TS, in which the BH3 moiety was bonded to the carbonyl oxygen of the 

aldehyde and adopted an exo disposition with respect to the 2-oxetanone ring being 

formed. A concerted two-steps reaction mechanism was therefore envisaged. A decrease 

in activation energy was found with respect to the non-catalyzed reaction. Upon 

introduction of the solvent effects using both the Onsager and the ellipsoidal cavity 

models, the activation and reaction energies did not vary significantly with respect to 

the gas-phase reaction. However, the main features of the exo TS differed significantly 

from the in vacuo results: this TS was slightly earlier and more synchronous than its 

gas-phase analog. The shape of the solvated TS explained the change in stereoselectivity 

observed in the catalyzed reaction, leading to the preferential formation of cis 2-

oxetanoncs when bulky Lewis acid catalysts are used. 

The Claisen rearrangement is an electrocyclic reaction which converts an allyl vinyl 

ether into a γ,δ-unsaturated aldehyde or ketone, via a (3.3) sigmatropic shift. The rate of 

this reaction can be largely increased in polar solvents. Several works have addressed the 

study of the reaction mechanism and the electronic structure of the transition state (TS) 

by examining substituent and solvent effects on the rate of this reaction. 

The reaction coordinate of the Claisen rearrangement of allyl vinyl ether in the gas- 

phase and in aqueous solution was calculated in order to determine the effect of hydration 

on the free energy of activation for this reaction [292] and also the influence of multiple 

conformational states for the reactants [293]. Ab initio calculations at the RHF/6-

31 G(d) level were used to locate the transition state(s) (TS) for the reaction and to 

obtain a minimum energy reaction path. The reactants partial charges along it, which are 

needed for the potential functions that describe the intermolecular interactions between 

the reacting system and the solvent molecules, were also calculated. Solvent structures 

were chosen along the gas-phase reaction coordinate and a Monte Carlo simulation with 

statistical perturbation theory was carried out to generate the aqueous reaction coordinate. 

Estimates of the relative free energies of hydration for the reactants, TS and products 

were obtained. The increased hydration of the TS as compared with the reactants was 

assumed to account for the rate increase by a factor of 664 over the gas-phase reaction. 

This observed hydration effect was related to an increase of the number and strength of 

the solvent hydrogen bonding to the ether oxygen in progressing from the reactants to 
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the transition state. This effect arose from an increased accessibility of the oxygen atom 

in the TS and also from an increase in its partial charge. The effect of including 

multiple conformational states for the reactant on the free energies of activation were 

found to be small and similar in the gas phase and in water. 

The effect of solvation by water on the Meyer-Schuster reaction [202] and di-n-

butyl ether-water on the Claisen rearrangement of allyl vinyl ether was studied by a 

number of variants of the continuum models combined with ab initio wave functions

[244]. The gas phase barrier for this reaction was predicted via a density functional 

method including electron correlation, while both Hartree-Fock and DF wave functions 

were used to model solvation. In the latter case, the strategy of solvating stationary 

point structures determined for the gas phase reaction was followed, according to the 

same procedure followed previously by Severance & Jorgensen [292]. Three continuum 

models were used to predict solvent effects on the barrier height of the reaction: (i) a 

spherical solvent cavity, (ii) an ellipsoidal cavity and (iii) the polarizable continuum

method (PCM) . At the Hartree-Fock level, the PCM approach was seen to give results 

closest to the experimental ones both for solvation in water and di-n-butyl ether;

however, the experimental barrier height reduction may be somewhat underestimated for 

water solvation. Electron correlation was found to affect the transition state (TS) more 

than the ground state energy; such barrier lowering is reflected in the reduced polarity of 

the TS compared with that of the ground state and leads to a reduction in the calculated

differential solvation energy. 

A theoretical study at a HF/3-21G level of stationary structures in view of modeling 

the kinetic and thermodynamic controls by solvent effects was carried out by Andres and

coworkers [294]. The reaction mechanism for the addition of azide anion to methyl 2,3-

dideaoxy-2,3-epimino-α-L-erythrofuranoside, methyl 2,3-anhydro-α-L-crythrofuranoside

and methyl 2,3-anhydro-β-L-erythrofuranoside were investigated. The reaction

mechanism presents alternative pathways (with two saddle points of index 1) which act

in a kinetically competitive way. The results indicate that the inclusion of solvent 

effects changes the order of stability of products and saddle points. From the structural 

point of view, the solvent affects the energy of the saddles but not their geometric 

parameters. Other stationary points geometries are also stable. 

6.5. CHEMICAL REACTIONS IN SUPERCRITICAL FLUIDS

Supercritical water (SCW) presents a unique combination of aqueous and non-aqueous

character, thus being able to replace an organic solvent in certain kinds of chemical 

synthesis. In order to allow for a better understanding of the particular properties of

SCW and of its influence on the rate of chemical reactions, molecular dynamics 

computer simulations were used to determine the free energy of the SN2 substitution

reaction of Cl- and CH3Cl in SCW as a function of the reaction coordinate [216]. The 

free energy surface of this reaction was compared with that for the gas-phase and ambient

water (AW) [248]. In the gas phase, an ion-dipole complex and a symmetric transition 
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state were found. In AW, the minima corresponding to the ion-dipole complex 

essentially disappeared as a consequence of the weakning of the nucleophile-water

hydrogen bond interaction, which offsets the energy of ion-dipole interaction. The free 

energy barrier in SCW was found to be close to that in AW, in spite of the large 

differences in solvent density and dielectric constant among them; however, a slight 

minimum is present in SCW, corresponding to the ion-dipole complex. The activation 

barrier in SCW is only 1 kcal/mol higher than that between reactants and the transition 

state; therefore, there is an equilibrium between the reactants and the ion-dipole

complex. The potential of mean force for this reaction in SCW was further compared 

with that for an organic polar solvent, dimethylformamide (DMF) [216]. The activation 

barrier and the well for the ion-dipole complex in SCW lie between those in AW and 

DMF, even if the dielectric constant is 9.7.5 for SCW, 78 for AW and 38 for DMF. 

Angle averaged cylindrical resolved distribution functions for the water molecule near the 

solutes at the geometries of the separated reactants, ion-dipole complex and transition 

state were calculated. The solvation is dominated by electrostatic forces, since a clear 

preference for the water molecules to solvate the ion versus the dipole was observed. 

Detailed structural information about the changes in coordination number and hydrogen 

bonding with both density and temperatures for solutes of varying charges was also 

obtained. Even though the coordination number remains high, the number of hydrogen 

bonds from AW to SCW decreases as the hydrogen bond strength increases for the solute 

series from Cl’ and Cl in the transition state, to Cl- in the ion-dipole complex and 

finally to free Cl-.

Hu and Truhlar have recently reported a modeling transition state solvation at a 

single-water representation [295]. Recent experimental advances leading to the study of 

SN2 reactions of gas-phase microsolvated clusters which can advantageously been 

studied with ab initio electronic theory. These experiments and theoretical studies are 

quite relevant to chemical reactions in supercritical water. 

Homogenous catalysis in supercritical fluids has recently been reviewed by Noyori 

and coworkers [250]. 

7. Discussion

The theory of solvent effects on standard solutes and on chemically reacting species 

has been developed in this chapter. Some shortcomings related to the Born-Oppenheimer

view that are important at the interconversion domains have been discussed. A quantum

theory of chemical interconversion in the gas-phase and in passive solvent media has 

been introduced. This is an extention of our earlier ideas [43]. 

By using an intcrconversion coordinate, it is shown that degeneracies of reacting 

states on the BO-scheme are only apparent crossings. The concept of electro-nuclear

fluctuation has been used in connection with reactant quantum states at the energy 

degeneracy regions. The expectation values of the interconversion coordinate with the 

degenerate quantum states have values allowing for a differentiation (along this axis) of 
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these states. The chemical interconversion process appears to be a quantum jump 

between quasi degenerate states that have non-zero transition moments. The near zero- 

frequancy photon field created by the thermally equilibrated system acts as the coupling 

source among the quantum molecular states. 

The theory goes beyond standard inolecular orbital and valence bond approaches. The 

stationary Hamiltonians having no ground state play a central role. Their energies are 

solvent dependents, while their geometries appears to be conserved within reasonable 

bounds. Calculations using ab initio and semi empirical methods and different model 

systems show that the geometries are a rather robust entity. Of course, in standard 

valence bond and molecular orbital approaches there is an apparent shift of the saddle 

point for results ploted along the reaction coordinate. Using the interconversion 

coordinate concept and active precursor and successor complexes the invariance aspect is 

more easily observable in actual calculations. Normally, the distance between donor and 

acceptor centers for precursor and successor complexes are different among themselves 

and they are different from the distance characteristic of the SPi-1. It is therefore 

logically inconsistent to directly compare precursor and succesors. The introduction of 

activated precursor and successor complexes built around the geometry of the SPi-1 

solves the logical inconsistency and allows for the study of the quantum interconversion 

(in a region where there will be a minimal geometric deformation [167]). The standard 

approach leads to the classical concept of reaction path, while in the present view such 

an idea is foreign. The success in obtaining kinetic isotope effects with our approach is 

based on this new idea [94, 96, 174]. 

The theory of rates has been dominated by the transition state theory. Following 

Laidler and King [37], the essential features of this theory can be summarized as 

follows: (i) Rates can bc obtained by focussing attention on the activated complex, 

which lies at the saddle point of the potential energy surface; (ii) The activated complex 

is in a state of “quasi-equilibrium” with the reactants; (iii) the motion of the system at 

the saddle along the “reaction coordinate” can be treated as a free translational motion. In 

the present theory, point (iii) is completely rejected, while (i) and (ii) are modified. For 

unimolecular processes, the RRKM theory has played an important role in interpreting 

experimental data [296]. Being an statistical theory, there is no need for detailed 

information concerning the intramolecular dynamics. Most important is the assumption 

of a critical configuration separating internal states of the reactant from those of the 

products. Classically, this configuration represents a dividing surface parting the phase 

space of reactant and product. It is assumed then that a crossing of this surface occurs 

only once, the system thereafter proceeds towards products. In the theory presented in 

this paper, the concept of critical configuration is retained (it would correspond for a 

given R-region distance to the optimized geometries obtained along the interconversion 

axis, each one obtained from model wavefunctions of reactant and product), but the 

quantum jumping among states eliminate the classical view found in the RRKM 

approach. The interconversion process cannot be reduced to an adiabatic process. On the 

contrary, energy relaxation inside reactant or inside product channels can be modeled 
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with adiabatic procedures. This latter subject has extensively been analyzed in the 

literature [26, 38, 166, 297-300], 

The introduction of at least one interconversion process (step) having a nature 

different from the activation-relaxation processes found along the reactant and product 

channels allows for a distinction between rate-related and mechanistic-related processes 

among quantum states. A simple reaction is defined by the existence of only one 

interconversion step. A real chemical reaction can, in principle, be decomposed in a 

series of simple reactions. 

It is worth noticing that quantum reactive scattering theory, semiclassical scattering 

theory and reduced dimensionality theory of quantum reactive scattering treat this 

problem in a different manner [21, 159, 160, 163, 301, 302]. The BO scheme is used 

throughout. In our theory, the quantum states of the precursor and active precursor can 

be adiabatically related (in principle all those states belong to the same stationary 

Hamiltonian), while there is no adiabatic process leading to a change of quantum state 

(in particular at the QIC). In words of Polanyi and Zewail [303], ‘‘ ‘the transition 

state’ ... illustrate the mystical event of trans-substantiation”. In the present theory, this 

state is just the site where quantum mechanics reigns. 

The present approach sets the chemical mechanism at focus. We have subscribed to 

a variant of the idea that the so called transition state is “a molecule like any other” 

[304]. But, at variance with Forst, the molecule in our view is characterized by a 

stationary Hamiltonian with no electronic ground state. It shares with any other 

molecule the fact that their excited states have finite lifetimes. Then, postulating the 

quantum interconversion complex is not entirely pointless exercise since it helps 

organize a good deal of general linear free energy relationships [172]. The invariance of 

its geometry and the principle of surface complementarity gives a simple explanation to 

enzyme evolution. The primary function of the enzyme would be to trap the substrates 

(reactants) by molding them into a geometry as similar as possible to any one the APC- 

-ASC structures. As in normal molecules, there are “equilibrium” distances and angles 

that appear to be fairly invariant, and in this sense one can talk about standard 

geometrical parameters for transition structures in enzyme molecular mechanism. Since, 

for a given mechanism, the APC-IQC-ASC quantum region is unique, the enzyme via 

an adaptive process tend to deform the reactants into a zone as proximal as possible to 

this fundamental triad [43]. 
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