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Foreword 

The principles governing the plan and pattern of the present volume 
have been summarized in the Preface to the series 'The Chemistry of 
the Functional Groups'. 

Out of the originally planned contents, three chapters failed to 
materialize. These should have been chapters on the 'Photochemistry 
of the Amino Group', on the 'Syntheses and Uses of Isotopically 
Labelled Amines' and on 'Enamines'. 

Jerusalem, September 1967 SAUL PATAI 
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The Chemistry of the Functional Groups 
Preface to the series 

The series 'The Chemistry of the Functional Groups' is planned to 
cover in each volume all aspects of the chemistry of one of the im- 
portant functional groups in organic chemistry. The emphasis is laid 
on the functional group treated and on the effects which it exerts on 
the chemical and physical properties, primarily in the immediate 
vicinity of the group in question, and secondarily on the behaviour of 
the whole molecule. For instance, the volume The Chemkty  of the Ether 
Linkage deals with reactions in which the C-0-C group is involved, 
as well as with the effects of the G-0-C group on the reactions of 
alkyl or aryl groups connected to the ether oxygen. I t  is the purpose 
of the volume to give a complete coverage of all properties and re- 
actions of ethers in as far as these depend on the presence of the ether 
group, but the primary subject matter is not the whole molecule, but 
the G O - C  functional group. 

A further restriction in the treatment of the various functional 
groups in these volumes is that material included in easily and 
generally available secondary or tertiary sources, such as Chemical 
Reviews, Quarterly Reviews, Organic Reactions, various 'Advances' 
and 'Progress' series as well as textbooks (i.e. in books which are 
usually found in the chemical libraries of universities and research 
institutes) should not, as a rule, be repeated in detail, unless it is 
necessary for the balanced treatment of the subject. Therefore each of 
the authors is asked not to give an encyclopaedic coverage of his sub- 
ject, but to concentrate on the most important recent developments 
and mainly on material that has not been adequately covered by re- 
views or other secondary sources by the time of writing of the chapter, 
and to address himself to a reader who is assumed to be at a fairly 
advanced post-graduate level. 

With these restrictions, it is realized that no plan can be devised 
for a volume that would give a complete coverage of the subject with 
no overlap between the chapters, while at the same time preserving 
the readability of the text. The Editor set himself the goal of attain- 
ing reasonable coverage with moderate overlap, with a minimum of 
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X Preface to the Series 

cross-references between the chapters of each volume. In this man- 
ner, sufficient freedom is given to each author to produce readable 
quasimonographic chapters. 

The general plan of each volume includes the following main 
sections : 

(a) An introductory chapter dealing with the general and theoretical 
aspects of the group. 

(b) One or more chapters dealing with the formation of the func- 
tional group in question, either from groups present in the molecule, 
or by introducing the new group directly or indirectly. 

(c) Chapters describing the characterization and characteristics of 
the functional groups, i.e. a chapter dealing with qualitative and 
quantitative methods of determination including chemical and 
physical methods, ultraviolet, infrared, nuclear magnetic resonance, 
and mass spectra; a chapter dealing with activating and directive 
effects exerted by the group and/or a chapter on the basicity, acidity 
or complex-forming ability of the group (if applicable). 

(d) Chapters on the reactions, transformations and rearrangements 
which the functional group can undergo, either alone or in con- 
junction with other reagents. 

(e) Special topics which do not fit any of the above sections, such as 
photochemistry, radiation chemistry, biochemical formations and 
reactions. Depending on the nature of each functional group treated, 
these special topics may include short monographs on related func- 
tional groups on which no separate volume is planned (e.g. a chapter 
on 'Thioketones' is included in the volume The Chemistry of the Carbonyl 
Group, and a chapter on 'Ketenes' is included in the volume The 
Chemistry of Alkenes). In other cases, certain compounds, though con- 
taining only the functional group of the title, may have special 
features so as to be best treated in a separate chapter as e.g. 'Poly- 
ethers' in The Chemistry of the Ether Linkage, or 'Tetraaminoethylenes' 
in The Chemistry of the Amino Group. 

This plan entails that the breadth, depth and thought-provoking 
nature of each chapter will differ with the views and inclinations of 
the author and the presentation will necessarily be somewhat uneven. 
Moreover, a serious problem is caused by authors who deliver their 
manuscript late or not at all. In order to overcome this problem at 
least to some extent, it was decided to publish certain volumes in 
several parts, without giving consideration to the originally planned 
logical order of the chapters. If after the appearance of the originally 
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planned parts of a volume, it is found that either owing to non- 
delivery of chapters, or to new developments in the subject, sufficient 
material has accumulated for publication of an additional part, this 
will be done as soon as possible. 

I t  is hoped that future volumes in the series 'The Chemistry of the 
Functional Groups' will include the topics listed below: 

The Chemistry of the Alkenes (published) 
The Chemistry of the Carbonyl Group (published) 
The Chemistry of the Ether Linkage (published) 
Ths Chemistry of the Amino Group (published) 
The Chemistry of the Nitro Group (in press) 
The Chemistry of Carboxylic Acids and Esters (in press) 
The Chemistry of the Carbon-Nitrogen Double Bond 
The Chemistry of the Cyano Group (in preparation) 
The Chemistry of the Carboxamido Group (in preparation) 
The Chemistry of the Carbon-Halogen Bond 
The Chemistry of the Hydroxyl Group (in preparation) 
The Chemistry of the Carbon-Carbon Triple Bond 
The Chemistry of the Azido Group 
The Chemistry of Imidoates and Amidines 
The Chemistry of the Thiol Group 
The Chemistry of the Hydrazo, Azo and Azoxy Groups 
The Chemistry of Carbonyl Halides 
The Chemistry of the SO, SO,, 4 0 , H  and -S03H Groups 
The Chemist ry of the -OCN, -NCO and 4 C N  Groups 
Th.e Chemistry of the -P03H2 and Related Groups 

Advice or criticism regarding the plan and execution of this series 
will be welcomed by the Editor. 

The publication of this series would never have started, let alone 
continued, without the support of many persons. First and foremost 
among these is Dr. Arnold Weissberger, whose reassurance and trust 
encouraged me to tackle this task, and who continues to help and 
advise me. The efficient and patient cooperation of several staff- 
members of the Publisher also rendered me invaluable aid (but un- 
fortunately their code of ethics does not allow me to thank them by 
name). Many of my friends and 'colleagues in Jerusalem helped 
me in the solution of various major and minor matters and my 
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thanks are due especially to Prof. Y. Liwschitz, Dr. Z. Rappoport and 
Dr. J. Zabicky. Carrying out such a long-range project would be 
quite impossible without the non-professional but none the less essen- 
tial participation and partnership of my wife. 

The Hebrew University, 
Jerusalem, ISRAEL 
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CHAPTER 1 

General and theoretical 

R. DAUDEL 
Sorbonne and Centre de MLcanique Ondulatoire Appliqude, Paris, France 

I. 

11. 

111. 

IV. 

THE NATURE OF THE CHEMICAL BOND AND THE MAIN METHODS 
OF CALCULATING MOLECULAR WAVE FUNCTIONS . 
A. Some Aspects of Molecular Structure . 
B. The Main Methods of Calculating Electronic Molecular Wave 

Functions . 
SOME ASPECTS OF THE PROPERTIES OF AMINES IN THEIR GROUND 
STATE . 
A. A Theoretical Discussion of some Physical Properties of 

Aliphatic Amines in their Ground State . 
B. Physical Properties of Aromatic Amines in their Ground 

State . 
C. Chemical Properties of Amines in their Ground State . 
SOME ASPECTS OF THE PROPERTIES OF AMINES IN THEIR ELEC- 
TRONICALLY EXCITED STATES . 
A. Electronic Spectra of Amines . 
B. Base Strength of Aromatic Amines in their Electronically 

Excited States . 
References . 

I. THE  NATURE O F T H E  CHEMICAL B O N D  A N D T H E  M A I N  
METHODS O F  CALCULATING MOLECULAR WAVE 
FUNCTIONS 

A. Some Aspects of Molecular Structure 

In order to help the readers who are not specialized in the field of 
quantum chemistry we will summarize in this first section some 
important results on the nature of the chemical bond and the main 
ideas which form the basis of the usual methods of calculating elec- 
tronic wave functions1. 

I t  will be convenient to introduce the subject by the analysis of the 
electronic structure of an atom. Let us take, as an example, a helium 
atom in its first excited state (which is a triplet state). In  the old 

1 



2 R. Daudel 

theory of Bohr this state would correspond to one K electron in a 
certain circular orbit and one L electron in another one. From the 
wave-mechanical point of view the electronic structure of the atom 
appears to be rather different. 

First of all, since no experiments have as yet been devised to deter- 
mine the trajectories of electrons in atoms and molecules, it is assumed 
that such trajectories (if they exist) cannot be known. The wave 
mechanics can only give us a procedure to calculate the probability 
of finding an electron at a certain instant in such and such a small 
volume of an atom or molecule. 

However, the main forces which from the wave-mechanical view- 
point are responsible for the 'motion' of electrons and nuclei, remain 
essentially the same as in classical mechanics; these forces are the 
coulombic interactions (repulsive between electrons or between nuclei, 
attractive between an electron and a nucleus). The Coulomb attrac- 
tion that the nucleus of an atom exerts on the electrons holds them in a 
very small region of space, despite the repulsive forces between the 
electrons. Likewise, the repulsion between the nuclei of a molecule is 
compensated for by the attraction of electrons for the nuclei. But 
furthermore, we must take into account the spin of the electrons. Let 
us recall that this kinetic moment is quantized, in such a way, that 
if its projection along a given axis is measured, only one of the two 
values 5 4h/2r (where h is Planck's constant) can be found. 

Obviously it is more difficult to obtain a simple geometrical picture 
of an atom in the framework of the wave mechanics than with the 
theory of Bohr. 

However, such a picture is very useful, especially for chemists who 
like to use intuitive concepts. This is why the notion of 'logeY2 has 
been introduced into the wave mechanics. 

Let us go back to our helium atom in its first excited state. Let us 
consider a sphere of radius r (this value being completely arbitrary) 
with its center at the nucleus. With the help of wave mechanics it is 
possible to calculate the probability P of finding one electron, and 
one only, in this sphere. When T is very small this probability is also 
very small because the sphere is generally empty. When r is very 
large, P again will be very small because now the sphere will generally 
contain the two electrons (and not one only). Thus, intuitively, we 
must anticipate that P will possess a maximum for at least one value 
of 7. The curve3 of Figure 1 shows that this is true. The maximum is 
large as it corresponds to P = 0.93. The corresponding radius is 
1.7 a,. (a, = 0.529.A being the atomic unit of length.) We shall say 
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FIGURE 1. The probability P as a function of r. 

that the best division of the atomic space into spherical loges is 
obtained when r = 1.7 a,  and that there is a probability of 93 per 
cent of finding one electron, and only one, in this sphere (the other 
one being outside). Therefore Figure 2 symbolizes the most probable 
organization of the electrons of helium in its first excited state. We are 
thus quite naturally led to associate the sphere of radius 1.7 a,  with 
the K shell and the rest of the space with the L shell. 

+ Nucleus 

0 Electron 

FIGURE 2. The best decomposition in loges for the helium atom (first 
excited state). 

I t  is important to point out that the K and L shells are associated 
with some portion of space, but not with a particular electron. It  
would not be convenient to speak ofa K electron or an L electron from 
the wave-mechanical point of view, since we know that the various 
electrons of a system are assumed to be undistinguishable. 
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These results can be extended. The space associated with an atom 
can be cut up into spherical rings, all concentric with the nucleus, 
one built on the other in such a way that there is a high probability 
of finding in each ring a certain number of electrons4. For example, 
in the fluoride ion F - (ground state) there is an 81 per cent probability 
of finding two electrons of opposite spin in a sphere with the center 
at the nucleus and with radius r = 0.35 a,,, the other 8 electrons being 
outside. The sphere corresponds to the K loge, the remaining part of 
the space corresponding to the L loge (Figure 3). 

0 Electron for which Ihe projection 

of the spin is + 112 -1. 2% 

0 Electron for which the projection 

of the spin is -112 h 2% 

FIGURE 3. The best decomposition in loges for the fluorine negative ion. 

If the volume of a given loge is divided by the number of electrons 
which it usually contains, a certain volume v is obtained which gives 
an idea of the space associated with one electron in the loge. More- 
over, we can evaluate the average value p of the electronic potential 
which is exerted in the loge. Odiot and Daude15 observed that for 
all atoms and all shells the following relation applies: 

p% = constant 
A kind of Boyle-Mariotte law exists between the 'electronic pressure' 
p and the volume v associated with one electron in an atomic loge. 

Another important feature arises from the Pauli principle or in 
other words from the symmetry of the electronic wave hnctions. 
In wave mechanics the probability dP of finding an electron in a 
volume dv surrounding a point M is written as: 

= 1*MI2 dv 
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l where is the de Broglie wave function which satisfies the Schro- 
dinger equation. For a system ofelectrons this writing is generalized and 

represents the probability of finding electron 1 with a projection of 
the spin equal to w, in a volume dv, surrounding the point M,, and 
electron 2 with a projection of the spin w, in a volume dv, at point 
M,. As a consequence of the indistinguishability of electrons it is 
easy to show that # must be symmetric or antisymmetric with respect 
to a permutation of the electronic coordinates. That is to say: 

The Pauli principle consists of selecting the sign minus. We are led to 
the very important relation : 

Let us calculate the probability of finding the two electrons in 
the same volume dv at point M with the same projection of the spin w. 
This probability will be : 

but the relation (1) becomes: 

which obviously shows that: 

Therefore the probability of finding two electrons with the same 
projection of the spin in the same small volume is zero. In other 
words two electrons with the same projection of the spin (or, in 
short, 'with the same spin') do not like to occupy the same small 
volume of the space. Obviously this is also true for two electrons of 
opposite spin as there is always the Coulomb repulsion, but when the 
spins are the same a stricter repulsion is added to this Coulomb 
repulsion. This is why two electrons with opposite spins are sometimes 
said to be coupled. This does not mean that they like to occupy the 
same small volume of space. The interaction between them remains a 
strong repulsion but the repulsion is less severe than when they have 
the same spin. In conclusion it may be said that two electrons with 
opposite spin can be found in a smaller portion of space than two 
electrons possessing the same spin. 
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Another way of picturing this phenomenon is to compute the most 
probable configuration of the electrons of various atoms. The most 
probable configuration of an atom is the set of electronic coordinates 
which corresponds to the highest maximum of the modulus of the 
wave function. Figure 4 represents the most probable configuration of 

FIGURE 4. The most probable electronic configuration of small atoms. 

some small atoms, computed by Linnet and Poe 6. For berylliunl in its 
3P state, the most probable configuration corresponds to two electrons 
of opposite spins at the nucleus and two electrons of the same spin at 
2.7 a, from the nucleus; the angle formed by these two electrons and 
the nucleus is therefore 180". In the case of boron in its 4P state, two 
electrons of opposite spins are found at the nucleus and three electrons 
with the same spin are found 2.45 a, from the nucleus at the vertices of 
an equilateral triangle. In the case of carbon (5S) four electrons 
possessing the same spin are found at the vertices of a regular tetra- 
hedron. It is observed, as expected, that in the same loge, the electrons 
possessing the same spin tend to form the largest possible angles with 
the nucleus. 

The notion of loge is also helpful in describing the electronic struc- 
ture of molecules. In  a good division of a molecule into loges, some 
loges usually appear which were also representative of the free atoms 
before bonding. Such loges are said to be loges of the cores while the 
others can be called loges of the bonds. As an example let us take the 
case of the lithium molecule Li,. Figure 5 represents a good division 

FIGURE 5. A good decomposition in loges for the lithium molecule. 
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of this molecule3 into loges. In the two spherical loges which look like 
the K loges of the lithium atoms there is a probability of 0.96 of finding 
two electrons (and two only) with opposite spins. Therefore the distri- 
bution of the electrons symbolized by Figure 5 has a very high proba- 
bility. The region of space outside of the two spheres where there is 
also a high probability of finding a pair of electrons, can be con- 
sidered as the loge corresponding to a two-electron bond. 

Another useful notion which gives information on the nature of 
the chemical bond is the density dzyerence function given by the equation : 

where p(M) is the actual electronic density at a given point M of a 
molecule, and pf(A4) is the electronic density which would occur at 
this point if the density in the molecule were the simple sum of the 
density in the free atoms. Therefore, at any point where 6(M) is 
positive, an increase of electronic density results from the binding. On 
the other hand, in any region where 6(M) is negative, the binding has 
led to a decrease in the electronic density. Figure 6 shows the variation 
of 6(M) along the line of the nuclei of the hydrogen molecule HZ7. It  
is seen that between the nuclei 6(M) is positive. In agreement with 
chemical intuition the chemical binding produces an increase in the 
electronic density in this region. 

FIGURE 6. The density difference function in the hydrogen molecule. 

If we consider now a molecule like 0, we are led to a rather different 
conclusion. Figure 7 corresponds to that case8. There is no increase of 
electronic density between the nuclei but an annular region centered 
on the axis of the molecule where 6(M) is positive. The fact that there 
is no increase of electronic density along the nuclear axis is probably 
due to the presence of four electrons (two of each spin) in this vicinity. 
The strong repulsion between electrons possessing the same spin tends 



8 R. Daudel 

to place them outside the small space surrounding the bond axis. 
Therefore we can say that between the cores of small atoms near the 
bond axis there is only room for two electrons with opposite spins. 

FIGURE 7. The density difference function in the oxygen molecule. 

This is the reason why a molecule in which the number of electrons 
of the loges of the bonds is twice the number of adjacent atomic cores 
usually contains two-electron bonds. Let us consider methane. This 
molecule contains ten electrons. In a good division into loges two will 
be associated with the K loge of the carbon atom in such a way that 
eight electrons remain in the binding region. As there are four pairs of 
neighboring cores we expect the formation of four C-H loges associa- 
ted with the two electrons which are very often near the bond axis 
(Figure 8) .  Four electrons possessing a projection of the spin + 4h/27r 

FIGURE 8. Methane. 

1 .  General and Theoretical 9 

will very often be in the binding region surrounding the carbon core. 
They will tend to form angles of 109" 28' with the carbon nucleus. The 
same will be true for the four electrons of spin - 3 h/27r. As in the vicin- 
ity of each C-H axis there is very often one electron of positive spin 
(and also one of negative spin) we must expect that the angle between 
the C-H axes will also be 109" 28'. This explains why methane is 
a tetrahedral molecule. 

Now let us consider the molecule NH, (the simplest amine !) . It  also 
contains ten electrons and two will be associated with the K loge of 
the nitrogen atom and eight electrons will remain in the binding 
region. As the total projection of the spin of such a molecule is zero 
this region will often contain four electrons with positive spin and 
four with negative spin. In the case of CH,, the electrons possessing the 
same spin tended to form tetrahedral angles but as in NH, there are 
only three pairs of neighboring cores, six electrons only will be used to 
form three N-H bonds, while two electrons will remain as a lone 
pair (Figure 9). However, the angle between the N-H bonds will again 
be of the order of log0, explaining why NH, is pyramidal. Obviously 
the lone pair can be considered as 'a potential bond'. If a proton is 
added to the system, the NH,+ ion is obtained (Figure 9) where the 
four N-H bonds produce a structure very similar to that of methane. 

FIGURE 9. Ammoniac and ammonium ion. 

When, as in CH,, NH,, NH,+, it is possible to find, between two 
neighboring cores, a good loge associated with a certain number n of 
electrons possessing a given organization of spin, it can be said that 
an n-electron localized bond between these cores has been defined. 
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But it is easy to see that in certain cases it is not possible to localize, 
between only two cores, a region where there is a high probability of 
finding n electrons with a precise organization of spins. This is the 
case with diborane B2H& This molecule contains 16 electrons. Four 
of them can be associated with the two K loges of boron. Twelve 
electrons remain for binding purposes. Diborane consists of eight pairs 
of neighboring cores. Therefore it is not possible to associate a two- 
electron localized bond with each pair of neighboring cores. From the 
experimental viewpoint the four outer B-H bonds have the same 
behavior as normal localized two-electron bonds. Then, we are led to 
try a division into loges similar to the one described in Figure 10a, 

FIGURE 10. Decompositions in loges of diborane. 

since only four electrons remain for the four central pairs of neighbor- 
ing cores. But obviously, Figure lob corresponds to another situation, 
which for symmetry reasons possesses the same probability as the one 
shown in Figure 10a. Therefore the probability of the electronic 
configuration being symbolized by one of these two figures cannot be 
higher than + which does not correspond to a good division into loges. 

If now, the space of the central B-H is divided between two three- 
center loges, as in Figure 11, this difficulty disappears. There are no 

FIGURE 11. Another decomposition in loges of diborane. 

a priori reasons to exclude the possibility of finding such good loges. 
As they are now extended over more than two cores we shall say that 
they correspond to delocalized bonds; more precisely to two-electron 
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bonds delocalized over three centers. I n  conclusion, when it is not 
possible to find a good loge between two cores the loge will be extended 
over a greater number of cores and an n-electron bond delocalized 
over p centers will be considered. 

B. The Main Methods of Calculating Electronic Molecular Wave 
FunctionsQ 

Assuming that the Born-Oppenheimer approximation is con- 
venient, the main ideas forming the basis of the principal methods of 
calculating electronic molecular wave functions will now be sum- 
marized. 

I n  the approximation the calculation of this function is done as if 
the nuclei were fixed. To obtain the space part @ of the wave function 
we are led to solve a Schrodinger equation 

where H is the non-relativistic Hamiltonian and W the energy of an 
electronic state of the molecule. The total electronic wave function 
Y is obtained by multiplication of @ by a convenient spin function a 
and aRer transformation of the product @a in order to obey the 
Pauli principle, we can write 

Y = A@a (2) 

if A represents the convenient antisymmetrisor. 
As it is not possible to solve the Schrodinger equation (except for 

very simple molecules) it is customary to use approximate solutions. 
An important starting point to find such solutions lies in the indepen- 
dent electron model. I n  this model the repulsion between the electrons 
is neglected, The corresponding part of the Harniltonian H vanishes 
and only a certain part H0 remains. Thus, one must solve the equation 

HO@O = WO@' 
I t  is easy to show that 

is a solution of equation (3) if n electrons are involved in the problem, 
and if the various v, obey the equation 

where h is the Hamiltonian corresponding to the motion of one electron 
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in the field of the nuclei of the molecule under consideration. If this 
solution is taken 

WO = €1 + E, +".E, +. . .  (6) 

The functions p,i are called molecular orbitals. Obviously the dis- 
cussion applies to the case of one atom (which may be considered to 
be a monoatomic molecule), and then the p,, are atomic orbitals. The 
relation (6) shows that the energy associated with a given state of the 
independent-electron model is the sum of the energies q associated 
with the various orbitals introduced in the wave function @O. 

If now we consider the total wave function obtained from equation 
(2) we have 

Y0 = A@Oo (7) 

and it is readily seen that this function is a linear combination of 
Slater determinants. For this reason it is not possible to introduce in 
@O a given orbital more than twice (one with the a spin function 
corresponding to the positive projection of the spin and one with the 
p spin function corresponding to the negative projection), otherwise 
the determinants will vanish. 

But the solutions of the independent model are very far from 
exact solutions because the repulsion between the electrons is far 
from being negligible. For this reason this interaction must be taken 
into account at least in part. To do so the general form of equation (7) 
can be kept, that is to say it is assumed that @O is a product of mono- 
electronic functions p,, but that these p, do not obey equation (5) and 
must be chosen by a variational procedure. The functions p, obtained in 
this way are again called molecular orbitals. This is the essence of the 
self-conristentjeld method. In fact it is very tedious to solve the exact 
equation corresponding to the self-consistent field method. A new 
approximation is usually made; it is assumed that a molecular orbital 
can be expanded as a linear combination of the atomic orbitals 
associated with the atoms constituting the molecule: this is the LCAO 

approximation. 
Some aspects of the calculation of wave functions in this framework 

will be demonstrated, using the simplest amine, NH,, as an example. 
The ammonia molecule has been studied by several authorsl0 using 
the self-consistent field method with the LCAO approximation. Kap- 
lan's results will be analyzed. Figure 12 shows how the axes are 
chosen. The three hydrogen nuclei H,1,, H,,, and H,,, lie in the plane 
xOy, H,,, being on Ox. The nitrogen nucleus is on the z axis. First 
of all, the most important atomic orbitals must be listed. As the 
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FIGURE 12. Coordinate axis for NH3. 

ground-state wave function must be computed, only those atomic 
orbitals which are usually used in the representation of the ground 
states of the free atoms will be considered. These are: 

-the 1s orbital corresponding to the K shell for each hydrogen 
atom (Let a, b and G be the 1s orbitals of H,,,, H,,, and H,,, re- 
spectively) 

- the 1s orbital corresponding to the K shell of the nitrogen atom 
- and the 2s, 2p,, 2p, and 2p, orbitals associated with the L shell 

of the same atom. 

TABLE 1. Ammonia molecular orbitals. 

with, 
h. = no(a + b + c )  
h, = n,(a - +(b + c ) )  
h, = n,(b - c )  

no, n,, n, being normalization coefficients. 
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Following the LCAO approximation each molecular orbital v, is 
expanded as a linear combination of these various atomic orbitals 

qf = k,a + k2b + k,c + k41s + k52p, + k62p, + k,2p, + k82.r 

where the k's are numerical coefficients that must be computed in 
such a way that the total energy associated with the wave function is 
a minimum, since we are concerned with the ground state. 

Thus a mathematical problem must be solved which leads to 
Roothaan's equations. In the case of ammonia these equations have 
been solved by Kaplan who obtained the following results. Table 1 
contains the explicit form of the molecular orbitals obtained with the 
values of the associated energies ei (in atomic units). 

The corresponding function 0 is 

= ~ l ( ~ l ) v l ( ~ 2 ) ~ 2 ( ~ 3 ) ~ 2 ( ~ 4 ) ~ 3 ( ~ 5 ) ~ 3  

04(M7)~4 
and the total electronic wave function 

Y = A& 
can be written as 

= det ~ 1 ( ~ 1 ) ~ ) ~ 2 ( ~ 3 ) ~ 2 ( ~ 4 ) ~ 3 ( ~ :  5 )  

~4(M7)~4(M8)v5(21/19)~5(MlO) 

where 'det ' means the Slater determinant built by permutation of the 
coordinates in the product of orbitals; a molecular orbital with a bar, 
e.g. F, being associated with a /3 spin function and an orbital without a 
bar being associated with an a spin function. The total energy cor- 
responding to this wave function is -56.266 a.u. There is a fair 
agreement with the experimental value of -56.596, the error being 
smaller than one per cent. I t  is interesting to note that this energy is 
not the sum of the energies associated with the molecular orbitals 
introduced in the wave function. Such a relation only applies in the 
framework of the independent-electron model and disappears when 
the repulsion between electrons is taken into account. 

Other properties can be computed from the wave function but as is 
well known the precision is not as good as in the case of the total 
energy. If the first ionization energy is calculated using Koopman's 
approximation, that is to say if it is taken as equal to - e5 a value 
of about 14 ev is obtained. Experiment gives 11 ev. Furthermore 
the wave function Y corresponds to a dipole moment of 1.82 D, the 
experimental value being 1-46. 
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11. SOME ASPECTS O F  T H E  PROPERTIES O F  AMINES IN 
THEIR  G R O U N D  STATE 

A. A Theoretical Discussion of some Physical Properties of Aliphatic 
Amines in their Ground State 

The general formula of aliphatic amines can be written as 

where R1, R2 and R3 are hydrogen atoms or alkyl groups. As has been 
stated the ammonia molecule NH, can be considered as the simplest 
aliphatic amine. In  fact many aliphatic amines possess the most 
important properties of ammonia. They all contain a lone pair of 
electrons on the nitrogen atom and three two-electron localized bonds 
starting from this atom. Therefore, as in the case of NH,, four pairs 
of electrons are found surrounding A the nitrogen core. For this reason 

it must be expected that the RNR angles will be about 109" except 
when steric hindrance or geometrical strain A appears. 

For example, in trimethylamine the CNC angle is 108" 40' + 1 ll. 
Table 2 contains other geometrical data concerning this molecule. 

TABLE 2. Valence angles and interatomic distances in trimethylamine. 

A 
CNC angle 108.7' f 1 l1 or 108 f 4"la 

G N  distance 1.472 f 0-008 A l l  or 1.47 f 0.002 A'' 
A 

HCH angle 108.5 f 1.5"" 

G H  distance 1.090 A" 

The electronic structure of the N-H bond in ammonia has been 
carefully investigated by Tavard13 from the theoretical viewpoint. 
Since the electronic structure of the N-H bond in aliphatic amines is 
probably very similar, the main results obtained by Tavard will be 
reported. He calculated the electronic density in NH3 using a very 
elaborate electronic wave function obtained by Moccia14. Figure 13 
shows lines corresponding to various values of the density difference 
function 6(M). From this figure it appears that during the formation 
of the chemical bond there is some electron transfer from the hydrogen 
to the nitrogen (as 6 is negative near the hydrogen and positive near 
the nitrogen in the vicinity of the bond axis). This transfer is in good 
agreement with chemical intuition as nitrogen is considered to be more 
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electronegative than hydrogen. Furthermore, Figure 13 shows a 
region in which 6 is positive and which forms an angle of about 109" 
with the bond axis. This result is consistent with the idea of the 
localization of a lone pair near this region. 

FIGURE 13. Density difference function in NH,. 

Electron diffraction experiments15 confirmed this effect of the 
binding on the distribution of electron density in ammonia. Figure 14, 
reproduced from the paper of Iijima and coworkers15, shows the 
variation of density as a function of the diffraction angle. Curve a 
corresponds to theoretical calculations for which it is assumed that 

FIGURE 14. Intensity scattered as a function of the diffraction angle. 

the electron density at a given point of the molecule is the sum of the 
electron densities of the free atoms, curve b is calculated from the 
actual density in the molecule when the Moccia electron wave function 
is used and finally the points A and 0 correspond to the experimental 
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results. First of all, it can be seen that there is a significant difference 
between curve a and curve b for the small angles. This difference is a 
theoretical measurement of the effect of the binding on the electron 
density (as is the 6 function). The agreement observed between curve 
b and the experimental results inspires confidence in this measurement. 

The N-H stretching vibration corresponds to an infrared band be- 
tween 3500 and 3400 cm-l in the spectra of secondary aliphatic 
amines taken in dilute solution in carbon tetrachloride to avoid 
molecular association16. Under these conditions primary aliphatic 
amines show two bands near 3500 and 3400 cm-l (asymmetrical and 
symmetrical vibrations) 16. Among the vibration frequencies associated 
with ammonia two harmonic frequencies are found in approximately 
the same region (3506 and 3577 cm-l) 17. Therefore we can anticipate 
that the main force constant KRR will be of the same order of magnitude 
for NH,, as well as for secondary and primary amines. This fact 
supports the hypothesis that the electronic structure of the N-H bonds 
would not be very different in all these molecules. 

The force constant K,, of ammonia has been evaluated as 7.1 7 from 
the infrared spectrum. Allavena calculated the same constant l6 (with 
the help of an electronic wave function similar to Moccia's function, 
but a little less precise) and obtained a value of 9. The agreement 
between experiment and theory is not very satisfactory and could 
certainly be improved if Moccia's function itself were used. 

The first ionization energy of aliphatic amines, as in the case of 
NH,, is essentially the production of an electron hole in the lone-pair 
region. It  must therefore be expected that the first ionization energy 
is of the same order of magnitude in all this set of molecules. This is 
found to be the case since in ammonia the first ionization energy has 
been evaluated as 10.5 lg or 1 1 20 ev, the corresponding energy being 
estimated as 9 ev in trimethylaminezl. 

The electric dipole moment of aliphatic amines also contains a con- 
tribution from the lone pair, but as the various bonds also contribute, 
the resulting value varies in a more significant manner in going from 
one molecule to another. For example, it is evaluated as 1-46 D in the 
case of ammonia, while values between 0.61 z2 and 0.86 can be 
found in the literature for the dipole moment of trimethylamine. 

B. Physical Properties of Aromatic Amines in their Ground State 
Very little precise information is known about the geometry of aro- 

matic arnines. Some problems remain even in the case of the simplest 
aromatic amine, aniline. The main part of the molecule is certainly 
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planar and the nitrogen is certainly in the plane of the aromatic ring. 
Figure 15 shows for example, the values of valence angles and inter- 
atomic distances in a parent compound24. It is seen that the geo- 
metrical organization of the aromatic ring is very similar to that of 

FIGURE 15. Interatomic distances in pars-iodoaniline. 

benzene, but the position of the two hydrogen atoms of the NH, 
group is not yet known exactly. Van Meerssche and L e r ~ y , ~  studied 
the geometrical structure of 2-bromo-4'-dimethylamino-2-cyanostil- 
bene by x-ray diffraction. Figure 16 shows the results concerned with 
the part of the molecule which contains the amino group. The authors 
claim that the dimethylamino group and the neighboring aromatic 
ring are coplanar. Furthermore, it is seen that again the geometry of 
the aromatic ring does not differ greatly from that of benzene. It  
should be noted that the length of the C-N bond connecting the 
amino group and the ring is only 1.34 A. (The length of a normal 
C-N simple bond is 1.47 A.)  

FIGURE 16. Geometry of a part of 2-bromo-4'-dimethylamino-2-cyanostilbene. 

On the other hand, in their recent book Higasi and c ~ w o r k e r s ~ ~  
remark that if the group NH, were in the plane of the ring, p-diamino- 
benzene should be non-polar likep-dichlorobenzene. This is not so, as 
the former has a large dipole moment of 1.5 D 27. An explanation of this 
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apparent discrepancy may lie in the fact that the amino group and  he 
ring would not be coplanar in the gaseous or liquid phase, but would 
be so in the crystal used to observe the x-ray pattern. 

No precise detailed experimental study of the electronic distribution 
in aromatic amines seems to be available. The only way to obtain such 
information is from theory. Let us consider the case of aniline. As this 
molecule contains a ring similar to that in benzene, data known about 
the latter will first be recalled. The total number of electrons is 42. If 
12 electrons are accounted for as being associated with the six K loges 
corresponding to the carbon cores, 30 electrons remain to be associated 
with the loges of the bonds. The benzene molecule contains 12 pairs of 
neighboring cores. The number of electrons is therefore higher than 
twice the number of the pairs of neighboring cores. If two electrons are 
associated with each pair of neighboring cores, six additional elec- 
trons must still be accounted for. As the C-H bonds appear to be 
normal simple bonds a convenient division into loges will contain a 
two-electron localized bond associated with each C-H bond. The six 
remaining electrons have to be associated with the central hexagon. 
Figure 17a shows a possible division into loges but Figure 17b repre- 
sents another one which for symmetry reasons has the same probability. 

FIGURE 17. Decompositions in loges of benzene. 

Therefore this probability will be at best equal to 0.5. This value 
does not correspond to a good division into loges. Figures 18a and 18b 
correspond to other divisions, which are poor for the same reasons. 
Thus the division shown in Figure 19 is usually adopted, in which 
there is a six-electron bond delocalized over the six carbon cores. 

To calculate a corresponding electronic wave function the LCAO 

approximation must be introduced. In this approximation the mole- 
cular orbitals will be expanded on the atomic orbitals associated with 
2 + C.A.G. 
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the free atoms, that is to say a 1s orbital for each hydrogen atom (let 
us call them h,, h2,. . . , h, respectively) and for each carbon atom the 
orbitals Is, 2s, 2p,, 2Py, 2P,. Obviously the carbon 1s orbitals can be 
associated with the carbon K loges. 

FIGURE 18. Other decompositions in loges of benzene. 

To represent a two-electron localized bond a function must be built 
with important values in the corresponding loges. As the nuclei about 
a carbon atom (C,,, for example) make angles with it of approximately 
120" the following three hybrid orbitals must be considered for this atom 

the Ox axis being along the corresponding C,,,-H,,, bond and the Oy 
axis in the plane of the ring, because the hybrid tr, points in the direc- 
tion of the hydrogen atom, tr; and tr; point respectively in the direc- 
tions of the neighboring carbon atoms as seen in Figure 20. These 
hybrid orbitals are called trigonal orbitals. Therefore, associated with 
the C,,,-H,,, bond is the bond orbital 

ah, + btr, 

and with the localized C,,,-Ct2, bond, the bond orbital 

ctr; + dtri 
and so on. 
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FIGURE 19. A better decomposition in loges of benzene. 

Of all atomic orbitals only the 2p,'s remain unused. It  is natural to 
associate them with the delocalized bond and to consider the molecular 
orbitals 

r i  = sJP1z + S2i2P2.2 + . + s6i2Pez 

where the s,'s are unknown coefficients. 

. t r ;  

FIGURE 20. Hybridization in benzene. 

As six electrons must be associated with the delocalized bonds at 
least three r orbitals will have to be introduced. To compute the 
coefficients S, it is necessary to introduce additional approximations 
such as the Hiickel 28 or the Pariser and Parr 29 approximation. Details 
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of these approximations can be found elsewhere1. Table 3 contains 
the rr orbitals obtained and the associated energies when the Hiickel 
approximation is used 30. 

The square of an S, coefficient before a certain 2pz is considered to be 
the electronic charge introduced by the rr orbital in the corresponding 
carbon atom. It is seen, for example, that the orbital rr, introduces a 
charge equal to (0.408)2 on each carbon atom. As each of the three rr 
orbitals must be used twice for the description of the ground state of 
benzene (as there are six electrons associated with the delocalized 
bond) the total electronic charge introduced in carbon 1 by the 
delocalized bond is 

The same result is obtained for the other carbon atoms. 
On the other hand, the quantity s2,sSi is considered to be the contri- 

bution of the orbital rri to the bond order 31 introduced between carbon 
2 and carbon 3 by the delocalized bond. Then the bond order between 
carbon 1 and carbon 2 due to the presence of the delocalized bond is 

The same bond order is obtained for the other pairs of adjacent carbon 
atoms. 

Let us consider now the case of aniline. The orbitals IsN, 2sN, 2PNx, 
2PNyy 2PNc will have to be introduced to take account of the nitrogen 
atom in place of the orbital h,, and the 1s orbitals associated with the 
hydrogen H,,, and H,,, belonging to the amino group must be con- 
sidered. Let us call h, and h, these orbitals. Let us assume that aniline 
is a completely planar molecule. The IsN orbital will be associated 
with the nitrogen K loge. The 2sNY 2pNx and 2PNy orbitals will be 
combined in such a way as to produce three trigonal orbitals trN, 
trh and tri which will be used to represent the various two-electron 
localized bonds C,,,-N, N-H,,, and N-H,,, (Figure 21). The 

TABLE 3. Benzene molecular orbitals. 
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delocalized bond can therefore be extended over the nitrogen atom 
as the 2pA., orbital is not yet used. The rr orbitals become 

A simple calculation shows that the nitrogen atom introduces two 
electrons into the delocalized bond. Therefore to describe the ground 
state of aniline four different rr orbitals must be considered, each of 
them being used twice. 

FIGURE 2 1. Hybridization in aniline. 

Obviously, as in the case of benzene, additional approximations are 
necessary in calculating the coefficients S. But contrary to the case of 
benzene, the values of these coefficients depend on the values chosen 
for the parameters which characterize the atoms and the bonds. The 
parameters under consideration are therefore very often chosen in 
order to obtain a good agreement between experiment and calcula- 
tion for certain properties of the molecule. In the present case, it is 
believed that the error introduced by assuming that aniline is 
completely planar is probably reduced by using this empirical choice 
of parameters. 

A recent study of aniline using the Hiickel method has been made 
by Fischer-Hjalmars 32. The same author also used the more sophisti- 
cated Pariser and Parr approximation. Figure 22 represents the 
corresponding molecular diagrams showing the distribution of bond 
orders and atomic charges associated with the delocalized bonds. 
The presence of a bond order of the order of 0.3 along the C-N 
bond explains why it is shorter than a normal C-N two-electron 
bond. From the diagram showing the distribution of the electronic 
charge it is seen that in the delocalized bond there is a charge transfer 
of about 0.07 electrons from the nitrogen atom to the ring. The main 
result of this transfer is the presence of an excess of electrons at the 
ortho and para positions which therefore become negative. 
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It must also be pointed out that the charge is more negative in the 
ortho than in the para position when the Pariser and Parr method is 
used. This result seems in agreement with recent measurements of 
these charges based on n.m.r. experiments 33. Finally, the contribution 

Electronic charges 

irhe values in brackets refer 10 Hiickel method) 

Band orders 

0.254 (OQ80) 

FIGURE 22. Molecular diagrams of aniline. 

of the delocalized bond to the dipole moment of aniline is calculated 
as 1-2 D by the Hiickel method and as 0.78 D by the Pariser and Parr 
method. The corresponding experimental estimation is 0.7 

C. Chemical Properties of Amines in their Ground State 
The basic behavior ofamines is certainly one of their most important 

chemical properties. If B denotes the neutral molecule the correspond- 
ing equilibrium constant can be written as: 

l .  General and Theoretical 25 

and the equilibrium constant K is a measure of the basic strength of 
the amine. 

Let us consider the equilibrium 

A+B,'C+D. 
K 

It is well known that K can be expressed as 

if the concentrations are small. In this expression the f's denote the 
various partition functions associated with the distribution of the 
various chemical species on the various translational, rotational and 
vibrational levels at the temperature T, and As represents the differ- 
ence between the sum of the ground-state energies of molecules C 
and D and the sum of the ground-state energies of molecules A and B. 
Finally X denotes the Boltzmann constant. Therefore 

Now for a large molecule a ground-state energy so, may be divided 
into various parts: 

(a) the vibrational energy E, corresponding to the zero point 
energy, 

(b) the energy q associated with the localized bonds and the atomic 
cores, 

(c) the energy sd associated with the delocalized bonds taking 
account of the interaction of these bonds with the cores and the 
localized bonds, 

(d) the energy E,, associated with the interaction between non- 
bonded atoms, including the steric effect. 

Therefore with obvious notations A& can be written as 

AE = A&,, + A q  + Aed + den,  
which leads to 

K f*f~ e - ( ~ & , ,  + A & .  +A&,, + A & , , b ) l f l  

f c f ~  

But in many cases the reaction takes place in a solvent and then it is 
necessary to take into account the solvent effect. A simple way to do 
that, is to introduce a term A E ~  into As representing the difference 
between the solvation energies of the final products and the solvation 
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energies of the initial products. But, as the solvation energy of a 
molecule depends on the temperature, we shall write this term as 

Furthermore, an index s will be put on each partition function to 
recall that the solvent effect can affect greatly this function. (Very 
often, for example, the free rotation of molecules becomes impossible 
and is replaced by oscillation.) Finally the expression 

is obtained, which shows that an equilibrium constant depends on 
six terms : 

(a) the vibrational energy change As, 
(b) the localized bond energy change Asl 
(c) the delocalized bond energy change As, 
(d) the non-bonded atoms energy change As,, 
(e) the solvation energy change Ass(T) 
( f )  the ratio 

of the partition functions. 
To show how it is possible to use equation (8) in studying the basic 

strengths of amino compounds one should try to understand which 
are the main factors responsible for the change in base strength of the 
amino group from one amino acid to another. For such substances 
two different pK values must be considered; pK, corresponds to the 
equilibrium between 

H 3 N  +-CRR'--C02H and H 3 N  +-CRK-CO,- : 

and pK2 is associated with the equilibrium between 

H,N+-CRRf-CO2- and H2N-CRK-CO,-. 

Therefore the problem is the study of pK2. Let us consider two amino 
acids with K, and K; as the corresponding equilibrium constants, 

Taking account of equation (8) 

I n  this equation 
Ads, = As; - Asi 
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The theoretical prediction of the variation of the pK in the set of 
molecules under consideration requires the calculation o f f  ' l  f and 
of the five Ads terms which appears in the exponent. 

This calculation has been made by Del RC, Pullman and Yone- 
~ a w a ~ ~ .  They assumed that the ratio f ' l  f does not differ significantly 
from one and that Ads, is negligible. 

Obviously Ads, is a very important term because during the 
protonation of the amino group a new N-H bond appears and it is 
necessary to compute the energy of this new bond. For this calculation 
the Del RC method30 is used. I n  this method an orbital is associated 
with each bond and by the LCAO approximation this bond orbital is 
taken as a linear combination of the two convenient hybrids associated 
with the two atoms constituting the bond. 

The Ads, terms are calculated using the Hiickel approximation and 
as all these approximations do not take account explicitly of the 
electrostatic interaction occurring between the atomic charges Q, an 
additional term 

is calculated in which r,, is the interatomic distance between atom p 
and atom v. This term contains the main part of As,, when no steric 
hindrance occurs. Furthermore estimation of the Aa,(T) terms has 
shown that AAss(T) is negligible, and by plotting the experimental 
pK as a function of 

a rather satisfactory relationship was observed between the pK's and 
the considered term 35. 

Another theoretical discussion of the pK of amino compounds is 
given in the case of amino derivatives of molecules like pyridine, 
quinoline, isoquinoline and acridine. There is experimental evidence 
to show that with such molecules protonation occurs at the nitrogen 
belonging to the aromatic rings. Therefore the pK is not related to the 
protonation of the amino group. However, its study is extremely in- 
teresting because it permits a measurement of the perturbation brought 
to the heteroatom by the amino group. I t  was seen in Figure 21, that 
the amino group is able to increase significantly the electronic charge 
of certain atoms of the aromatic ring. I t  must be expected, therefore, 
that this group is able to increase the ease of protonation of the 

2 * 
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heteroatom and therefore to increase the pKa of molecules like pyridine, 
quinoline and so on. This is exactly what experiment has shown. 

Effectively the pKa of pyridine at 20°c in water solution is 5-2337 
and the pKa of p-aminopyridine is 9.17 37. Therefore the dissociation 
constant of the positive ion is reduced by a factor of 10,000 as a result 
of the presence of an amino group, that is to say the amino derivative 
is much more basic than the pyridine itself. 

Many authors38 have discussed the role of Ae, in the determination 
of the pK of such compounds. The importance of As, is obvious, since 
during protonation the proton is directly bonded to the nitrogen 
heteroatom which belongs to the delocalized bond. The change in 
energy of the delocalized bond which results from this binding can 
be estimated by various methods. Figure 23 shows the results ob- 
tained39 when the pK, is plotted as a function of Ae, calculated by 

4 1  I I I 
1.1 1.2 1.3 1.4 1 5  

9 
Ae, (Par~ser and Parr) 

FIGURE 23. The pK as a function of Ar,. 

the Pariser and Parr method. I t  is seen that the points corresponding 
to a set of compounds derived from a given skeleton (pyridine, iso- 
quinoline, quinoline or acridine) lie along a straight line. 

1 .  General and Theoretical 29 

The role of the solvent effect has been discussed by Chalvet, Daudel 
and Peradejordi 39. 40. 

The solvation energy of a molecule can be divided into three parts: 
the cavitation energy E,, associated with the hole that the molecule 
creates in the solvent, the orientation term E,, due to the fact that the 
molecule modifies the average orientations of neighboring molecules 
of the solvent and the interaction energy E,, due to the intermolecular 
forces which appear between the solvated molecule and the solvent. 
With obvious notations we can write 

Ae, = Aesc + Aeso + Aesi 

In the present case we can assume that Aes, is the most important term 
because during the protonation we are going from a neutral molecule 
to a positive ion, therefore we must expect a rather large Ae,, term. 
The discussion will be focused on the estimation of Ae,,. This term 
itself can be divided into three parts. Let us call A&,,, the part corres- 
ponding to the anisotropic interaction like those due to the formation 
of hydrogen bonds between the solvated molecule and the solvent 
molecules. In  our case this term is certainly important because a 
hydrogen bond can appear between the heteroatom of a molecule like 
pyridine and the water molecules. 

But as A&,,, represents the corresponding change of energy between 
the neutral and the protonated molecule, it can be assumed that this 
term will have about the same value for all the set of molecules under 
consideration, in such a way that the AAe,,, terms which appear in 
equation (9) will vanish in the first approximation. 

The part A&,,, due to dispersion forces will in this case be of small 
importance in comparison with the part Ae,,, associated with the iso- 
tropic interaction between electric charges and dipole moments. In  
conclusion, to estimate AAe,, account need only be taken of the AA&,,, 
term. 

The term Ae,,, can be estimated fiom the formula41 

where the &,'S are the apparent charges of each atom, and where r,, 
denotes the distance between the atom i and the atom j except when 
i and j are identical. In  the latter case r,, represents a certain empirical 
effective radius. Finally D is the effective dielectric constant of the 
solvent. 
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FIGURE 24. The pK as a function of Aed + AeScl. 

Figure 24 shows what happens when the pK, of the amino 
derivatives under consideration is plotted as a function of Ac, + Assii, 
this last term being derived from equation (10). Twelve points cor- 
responding to all families of compounds are now found along the 
same straight line with a deviation of no more than 0.3 units of pK. 
The introduction of As,,, destroys the segregation of the various 
families. The precision is very satisfactory as the theory predicts the 
constant with an uncertainty of a factor of only 2 and there is a factor 
of 10,000 between the highest and the lowest values of K. 

Also shown in Figure 24 are various points which lie near another 
straight line; they correspond to molecules containing an amino group 
in an ortho or keri position to the nitrogen heteroatom. In  this case a 
special As,, term appears mainly due to the interaction between the 
lone pair of the heteroatom and the amino group. 

In  conclusion, Figure 24 clearly shows the importance of Ac,, 
Ae8(T) and Ac,, in the determination of the pK of the molecules under 
consideration. 

The basic properties of arnines are also seen in other reactions. 
For example, amines are able to act as proton acceptors in the presence 
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of proton donors in such a way that association compounds are formed. 
There is an obvious analogy between the acid-base equilibrium 

and the association equilibrium 

where HR denotes the proton donor and K' the association constant. 
I t  is, therefore, interesting to compare the pK and the association 
constant. 

With obvious notations one can write 

Association constants are usually measured in a non-polar solvent 
like carbon tetrachloride. The solvent effect represented by Asl(T) 
is still further reduced. 

Furthermore, the interatomic distance between the amino nitrogen 
and the proton is greater in the association complex B-HR than in 
the positive ion BH +. Therefore we must expect that the effect of the 
electronic structure of amines will be less apparent in K' than it is 
in K. 

Finally we can expect that K' will vary more slightly with the 
electronic structure than K. However there is a chance that K and 
K' run parallel. The following table taken from Bonnet's thesis4' 
shows such an example 

TABLE 4. Comparison of the pK and of values of K' at 25Oc (in n-heptane). 

I p-Cresol Phenol Naphthol 

Such a parallel disappears if the pK depends strongly on the solvent 
effect and, as has been said, the association constants are measured in 
such conditions that this effect is usually very small. 

los K 

Triethylamine 435 
Dibutylamine 1282 

P= { 5 5  86 117 
83 128 162 



32 R. Daudel 

Ill. S O M E  ASPECTS O F  T H E  PROPERTIES O F  A M I N E S  
IN T H E I R  E L E C T R O N I C A L L Y  E X C I T E D  STATES 

A. Electronic Spectra of Amines 

The electronic spectrum of aniline has been analyzed, using wave- 
mechanical methods, by various a ~ t h o r s ~ ~ , ~ ~ .  The self-consistent 
field method which has been presented in section I and used in section 
I1 to describe the ground state of this molecule can also be used to 
represent its electronically excited states. For practical reasons it 
is necessary to introduce the LCAO approximation and either the 
Hiickel or the Pariser and Parr method is used. Furthermore, the 
'virtual orbitals' approximation is added. Let us consider the eigen- 
functions .rri of the self-consistent field operator hSCF corresponding to 
the ground state of aniline in the LCAO approximation. They obey 
the equation 

hSCF.rri = &pi 

Obviously the molecular orbitals .rr: which are used to represent the 
ground state are solutions of this equation. But there are also other 
functions .rriu which obey the equation. They are called virtual 
orbitals for the ground state. I t  is possible to show that if in the total 
wave function of the ground state one (or more) orbital .rr: is replaced 
by one (or more) virtual orbital, a convenient approximate wave 
function is obtained which represents an electronically excited state 
of the molecule. 

In  Table 5 some of the values obtained by Fischer-Hjalmars 
using this procedure are compared with experimental results. 

TABLE 5 .  Electronic excitation energies of aniline (in ev). 

Theoretical Experimental4* 

Taking account of the various approximations introduced into the 
calculation, the agreement is satisfactory. Other authors obtained 
analogous results. For example, Bloor and coworkers 43e are led to the 
conclusion that by adjusting the core integral empirically, or by using 
a variable electronegativity approach, it is possible to obtain agree- 
ment between experiment for the first two electronic transitions in the 
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vapor state, the change in ionization potential relative to benzene and 
the electron density pasa to the amino group. 

Mataga43d performed an analogous analysis of the spectra of 
isomeric phenylenediamines, of S-triaminobenzene and of several 
amino-substituted nitrogen heterocycles such as 4-aminopyridine, 
1,4-diaminotetrazine and melamine. 

B. Base Strength of Aromatic Amines in their Electronically Excited 
States 

Coulson and J a ~ o b s ~ ~  had studied, theoretically, charge migration 
in aniline under the effect of irradiation. They observed that the .rr 

electronic charge of nitrogen is smaller in the first excited state than 
in the ground state, that is to say, it should be less basic. F o r ~ t e r ~ ~  has 
effectively observed that if a base, such as 3-aminopyrene (which 
from the theoretical viewpoint must have a similar behavior) is 
irradiated, the excited molecules have acidic properties. To show this 
fact Fijrster studied the absorption and fluorescence spectra as a 
function of the pH of a solution of 3-aminopyrene. The absorption 
spectrum gives information about the ground state of the molecule. 
On  the other hand, the fluorescence spectrum depends on the excited 
states of the same molecule. I t  is found that up to pH - 2, the absorp- 
tion spectra are those of the ArNH3+ ions, whereas the fluorescence 
spectra correspond to ArNH,. I t  appears that as predicted by the 
theory, the molecules in their excited states have less tendency to add 
a proton than the ground-state molecules. Furthermore, near pH 12 
some new bands appear in the fluorescence spectra which can be 
attributed to the ArNH- ions. This attractive result shows that the 
excited molecules ArNH,* are able to react as an acid 

ArNH2* ArNH- + H+ 

The phenomenon has been analyzed in more detail by S a n d ~ r f j r ~ ~  
who calculated the distribution of the electronic charges, taking 
account of both the .rr and the a orbitals. He found that the nitrogen 
which is negative in the ground state becomes positive in the first 
electronically excited state, which completely explains why the 
molecule becomes an acid. 

Other arnines have been studied from the same viewpoint. For ex- 
ample it has been possible to measure the pK of p-naphthylamine in 
various states. A value of 4.1 is found for the ground state, whereas a 
value of -2 is obtained for the first singlet state and a value of 3.3 
for the first triplet state48. 
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To explain the difference between the first excited singlet and 
triplet levels M ~ r r e 1 1 ~ ~  pointed out that the energy of the direct donor- 
acceptor charge-transfer configuration lies at a higher energy than 
any of the actual states considered. Therefore is it normal that the 
actual charge transfer is greater for the excited singlet state than for 
the triplet, as the.energy of the former is nearer the energy of the 
charge-transfer configuration than is the energy of the triplet state. 
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I. INTRODUCTION 

For the purposes of discussion, the term amino group is taken to 
include not only the primary amino group (-NH,) but also substitu- 
ted-amino groups bearing one or more aliphatic or aromatic groups 
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on the nitrogen atom. This chapter is concerned with methods of 
synthesis of aliphatic, aromatic and mixed aliphatic-aromatic amines, 
including primary, secondary and tertiary amines, and related 
quaternary compounds. Other classes of nitrogen compounds which 
contain an amino group, e.g. amides, are considered only in relation 
to preparative ro.utes to arnines. 

The preparation of amines by methods involving substitution, 
addition and exchange reactions are discussed in sections I1 to VI, 
and reductive procedures are considered separately in section VII; 
molecular rearrangements are not considered as such, but are men- 
tioned where appropriate in the text. Steric factors influence many 
amine syntheses, but these are considered principally in section IV, 
as much of the relevant information has come from studies of aminoly- 
sis of halides and related compounds. 

II. INTRODUCTION OF AMINO GROUPS BY REPLACE- 
MENT OF HYDROGEN 

A. Direct Amination of Aromatic Compounds in the Presence of 
Lewis Acids 

Examples of the amination of aromatic compounds by various 
electrophilic species, derived from hydroxylamine l, and from hydro- 
gen azide2, have been known for some time. Aromatic compounds 
which have been aminated in this way range from benzene and 
alkylbenzenes to substances such as anthraquinone3. Recently, some 
of these reactions have been systematically examined, and the 
principal mechanistic features elucidated, mainly by Kovacic and 
coworkers. 

Direct amination of toluene can be effected with hydroxylamine-0- 
sulphonic acid 4, alkylhydroxylamines and hydroxylammonium 
salts6 in the presence of aluminium chloride (at least two moles per 
mole of aminating agent), and with hydrogen azide in the presence 
of aluminium chloride or sul~huric acid7. These reactions lead to 
the corresponding toluidines. Thus toluene 
sulphonic acid give mixed toluidines (50y0 
composition : 

o-toluidine (5 1 X ) ,  
m-toluidine ( 1 3y0), 
p-toluidine (36%). 

and hydroxylamine-0- 
yield) of the following 

The preponderance of ortho and para isomers indicates attack by an 
active, if somewhat unselective, electrophilic species. In fact, the 
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Selectivity Factor, S,, for this reaction, calculated according to 
equation ( I )  is 0.74, and similar values were calculated for the other 

S, = log 
(2 

Pars) 
meta 

aminations examined. Comparison of these values of S, for the amina- 
tion reactions with those for other electrophilic substitutions led to the 
view that the aminating agent is likely to be the protonated or Lewis 
acid-complexed nitrogen compound rather than the NH2+ cation, 
and this view is reinforced when the results of competitive aminations 
of toluene and benzene are compared with those of other substitution 
reactions. Likely electrophiles in the hydroxylamine-0-sulphonic 
acid/aluminium chloride and hydrogen azide/sulphuric acid aminat- 
ing systems are 1 and 2: 

and the amination of toluene by hydrogen azide may be represented 
schematically by reaction (2). 

Dialkylamino groups may, in principle, be introduced into aromatic 
rings using the dialkylchloroamine and concentrated sulphuric acid O, 

except in those cases where the chloroamine undergoes preferential 
ring closure (Hofmann-Loffler reactionlO) (reaction 3). However, 

these reactions are unselective and appear to be of preparative value 
only in a limited number of cases, for example benzene -+ N-phenyl- 
piperidine. 

By contrast, reaction of toluene with dichloroamine or trichloro- 
amine in the Dresence of aluminium chloride gives m-toluidine 11, and 
the same unusual meta-amination pattern was subsequently observed 



when the reaction was extended to include other alkylbenzenes12. 
Other products (from toluene) are o- and p-chlorotoluenes, and small 
amounts of m-chlorotoluene, 2-chloro-5-methylaniline and 4-chloro-3- 
methylaniline. The absence of substantial amounts of the last two 
compounds has been taken to indicate that N-chloro-m-toluidine is 
not an intermediate in the formation of m-toluidine, and after con- 
sideration of various possibilities, a U-substitution mechanism has been 
advanced to explain the observed orientation. This involves the 
formation of a chloroarenonium ion, followed by addition of a nucleo- 
philic nitrogen species, and subsequent aromatisation through loss 
of hydrogen chloride. The nature of the nucleophile is not certain, but 
it is not considered to be trichloroamine 12, 13. The overall result may 
be illustrated by reactions such as (4) and (5); these also account 
satisfactorily for the orientation of the chlorotoluenes produced. 

I n  spite of the unattractive properties of trichloroamine, this pro- 
cedure may be of value for the preparation of certain m-alkylanilines; 

2. The Introduction of the Amino Group 4 1 

the amination reactions based on hydroxylarnine-0-sulphonic acid, 
hydrogen azide, etc., seem to offer little in comparison with other 
routes to the corresponding amines. 

B. The Chichibabin and Related Reactions 

Direct amination by amide ion is possible with aromatic molecules 
which are susceptible to nucleophilic attack. This group includes 
many heterocyclic compounds, particularly derivatives of pyridine, 
quinoline and related ring systems 14, and also a number of benzenoid 
compounds containing appropriate electron-attracting substituents. 
These reactions may be conducted at elevated temperatures in di- 
methylaniline or a hydrocarbon for example, or at lower temperatures 
in liquid ammonia. I n  the pyridine series, it is the electron-deficient 
a-position which is preferentially aminated, though y-substitution 
may occur if no a-site is available (reaction 6). The second stage 

involves dehydrogenation, and ammonium and potassium nitrates 
have been used as additives on a number of occasions. 

In  some cases, conducting this type of reaction in the presence of a 
primary alkylamine (rather than dimethylaniline) allows effective 
introduction of the alkylamino group 15. There are grounds for believ- 
ing that the amino group is introduced and then displaced to a 
greater or lesser extent, by the alkylamino group; indeed, equilibra- 
tion of 2-methylaminoquinoline and 2-aminoquinoline by means of 
potassamide in liquid ammonia has been demonstrated in separate 
experiments l6 (reaction 7). 

Nitrobenzene may undergo nucleophilic substitution at the ortho 
and para positions, but it is desirable to employ nitrobenzene in excess 
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as some is destroyed by reduction. Thus N-o-nitrophenylpiperidine is 
formed from nitrobenzene and lithium piperidide (reaction 8) 17, 

whilst nitrobenzene and sodium diphenylamide give 4-nitrotriphenyl- 
amine (reaction 9) 18. 

Hydroxylamine has also been employed for direct amination of a 
few nitro compounds (reaction 10) 19. 20. 

C. Photoamination of Cyclohexane 

Direct photoamination of cyclohexane with hydrazine in t-butanol 
solution has recently been demonstrated, the most favourable yield of 
cyclohexylamine being 45%. Cyclohexanol occurs as a by-product, 
but its yield may be reduced by excluding oxygen21. Other by- 
products include bicyclohexyl and cyclohexylhydrazine, but the latter 
is not apparently an intermediate in the formation of cyclohexyl- 
amine 22. 
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A radical process is favoured for this reaction, with N-N bond 
fission as the important initiating step (reactions 11-14). 

Ill. INTRODUCTION OF AMINO GROUPS BY REPLACE- 
MENT OF HYDROXYL 

For most laboratory purposes, the important reactions under this 
heading are the Bucherer Reaction, chiefly useful in the naphthalene 
series, and the Ritter Reaction, which will be considered in sections 
1V.B and V1.B. 

The Bucherer Reaction 
Naphthols and the corresponding naphthylamines are intercon- 

vertible in aqueous media containing sulphite or bisulphite ion at 
elevated  temperature^^^. Thus naphthols may be converted to naph- 
thylamines by reaction with ammonia and ammonium sulphite in 
aqueous solution, usually in the temperature range 90-150"; the 
corresponding dinaphthylamine is sometimes obtained as a by- 
product (reaction 1 5). Monoalkylamines and dialkylarnines similarly 

OH 
I 

N H2 
I 

give the alkylarnino- and dialkylaminonaphthalenes, though higher 
temperatures are normally required. Naphthols also react with aryl- 
amines to give the arylaminonaphthalene, l-naphthols reacting less 
readily than 2-naphthols. Similar cases have also been noted with 
arylamines (reaction 16). 

Bisulphite addition compounds of naphthols have been isolated in a 
number of cases, and for a considerable time these were formulated as 
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derivatives of the ketonic form of the naphthol. Until recently, the 
generally accepted reaction scheme was (17) with the naphthol 
possibly reacting in the keto form. This overall equilibrium picture 

OH 
I HO, ,SO<Naf 

was consistent with the results of a systematic kinetic study of the 
reaction conducted with a number of naphthol and naphthylamine 
sulphonic acids and reported in 194624. 

The structures of the intermediate addition compounds have been 
reconsidered in the light of their physical and chemical properties, and 
the compounds from 1- and 2-naphthols are now formulated as tetral- 
l-one-3-sulphonates (3) and tetral-2-one-4-sulphonates (4) respec- 
t i ~ e l y ~ ~ ~ ~ ~ .  Discussion of this evidence is beyond the scope of the 

OH 
I 
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present chapter but it is interesting to note that a new synthesis of 
1-naphthol-3-sulphonic acids has emerged from this work. The 
scheme for the interconversion of naphthols and naphthylamines may 
be summarised by reaction (18), with the possibility of ketimine and 
enamine intermediates, except in the special case of reactions involving 
dialkylamines, when only an enamine intermediate is possible. Arnine 
exchange reactions of 1- and 2-naphthylamines with an amine 
R,NH are likely to involve further intermediates of types 5 and 6 
respectively, formed by addition of the amine R,NH to the inter- 
mediate ketimine or enamine. 

IV. INTRODUCTION OF AMINO GROUPS BY REPLACE- 
MENT OF HALOGEN, A N D  RELATED REACTIONS 

A. The Alkylation of Ammonia and Amines 
The preparation of amines and quaternary ammonium salts through 

displacement of halide ion from alkyl halides by ammonia or amines 
is commonly referred to as alkylation of ammonia (or amines) ; alkyl 
esters of other strong acids have also been used in similar alkylation 
procedures. Equations (19) to (22) represent in simple terms the 
sequence of reactions which may occur in the interaction of ammonia 
or an amine with an alkyl halide. 

In principle, these reactions lead to a wide range of amines and 
quaternary salts, containing identical or differing R groups. Internal 
alkylation is also possible in appropriate cases. Thus ammonia and 
1,5-dibromopentane react to give the amines (7) and (S), and the 



quaternary salt (9) 27; ammonolysis of 10 siinilarly gives the sym- 
metrical, high-melting l-aza-adamantane (11) (reaction 23) 

Studies of the mechanism of a number of these reactions, and parti- 
cularly of the quaternisation reaction (22) (commonly known as the 
Menschutkin reaction), have been reviewed elsewhere29 and only 
certain points are relevant here. The reactions generally exhibit the 
normal characteristics of SN2 reactions with regard to kinetics, solvent 
polarity and structural requirements of the alkyl halide. The basic 
strength of the arnine may provide a rough guide to its reactivity, the 
more strongly basic amines being frequently the most nucleophilic. 
Weakly basic amines such as diphenylamine can be methylated 
directly 30 (even to the quaternary stage under forcing conditions 31), 

but in preparative work it is not uncommon to enhance nucleophilicity 
by conversion to an alkali-metal or Grignard derivative prior to 
a l k ~ l a t i o n ~ ~ .  However, steric factors are also important in relation to 
the nucleophilicity of amines. These may be illustrated by the relative 
rates of reaction of the comparably strong bases, quinuclidine and 
triethylamine, with methyl, ethyl and isopropyl iodides in nitro- 
benzene33. At 25", the ratio (kQ/kT) of the specific rate constants for 
quinuclidine (12) (kQ) and triethylamine (13) (k,) have been deter- 
mined as 57, 254 and 705 for methyl, ethyl and isopropyl iodides 

respectively; for both bases, the rates decrease in the expected order 
Me1 > Et1 > i-PrI. These results indicate not only that the steric 
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requirements of quinuclidine are lower than those of triethylamine, 
but also that this difference in steric requirement becomes more 
important as the steric requirements of the alkyl halide increase. 
Similar effects have been observed in the reaction of pyridine and 
monoalkylpyridines with the same alkyl iodides3*. Again the reaction 
rates drop sharply in the order Me1 > Et1 > i-PrI for each amine, 
but whereas (relative to pyridine) 3- or 4-alkyl substitution leads to 
slight increases in rate, 2-alkyl substitution results in decreases which 
become very pronounced in the case of 2-t-butylpyridine. These steric 
factors are of considerable importance in amine alkylations. 

Limitations are also imposed by the nature of the alkyl group in the 
alkyl halide. Broadly speaking, the alkyl halides which react with 
ammonia (or amines) to give amines and quaternary ammonium 
salts are those which are susceptible to substitution by the SN2 mech- 
anism. Amines preparable by this route are consequently those in 
which primary or secondary alkyl groups are attached to the nitrogen 
atom. Attempts at alkylation of ammonia and amines using tertiary 
alkyl halides are normally frustrated by the occurrence of alternative 
elimination reactions and such problems are also apparent with other 
halides in which structural features favour alternative reactions 
(reaction 24) 35. An important group of tertiary halides which may be 

used for the alkylation of ammonia and amines are the tertiary pro- 
pargylic halides (reaction 25) 3? The ethynyl group may be reduced 

NMe, 
I 

to a vinyl or ethyl group and, since the steric requirements of the 
ethynyl group are small, a large variety of sterically hindered amines 
have become available, e.g. reactions (26) and (27) 37. These reactions 
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are relatively free fiom complications, although quaternisation of 
tertiary amines with tertiary propargylic halides may lead to the 
propargylic and the isomeric allenic quaternary salts (reaction 28), 
and may involve some destruction of the propargylic halide through 
dehydrohalogenation 38. Allylic halides react with ammonia and 

with amines to give allylic amines and quaternary salts which may 
contain the original or the rearranged allylic group (reaction 29) 3B. 

Primary allylic halides generally give normal products, whilst second- 
ary allylic halides frequently give rearranged products, or mixtures of 
normal and rearranged products. A general discussion of the factors 
relevant to reactions of allylic compounds with nucleophiles, including 
arnines, has been given in the first volume of this series 40. 

Amongst the alkyl halides, the order of ease of replacement of 
halogen is I > Br > Cl. This may be turned to advantage, even 
when the iodo compound is not readily available, by conducting 
the reaction of amine with alkyl halide in the presence of iodide ion, 
so as to generate the organic iodide in situ by halogen exchange. The 
preparation of 3- (2-methylpiperid- l -yl) propanol 41 is illustrative 

(reaction 30). Whilst alkyl halides probably represent the most 
general type of alkylating agent for amines, various other esters have 
been used (particularly for the transfer of small alkyl groups) and in 
many cases offer practical advantages. Amongst sulphur esters, these 
include alkyl sulphates, and alkylbenzene- and toluene-p-sulphon- 
ates 42, methyl trifluoromethanesulphonate 43 and methyl sulphite 44. 
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Interestingly, use of methyl sulphite leads to the methanesulphonate 
of the methylated amine. A recently reported method, considered to 
be suitable for alcohols capable of yielding fairly stable carbonium 
ions, involves thermolysis of the corresponding dimethylsulphamate, 
followed by hydrolysis (reaction 31). The method may prove a useful 

ROH + ROSOzNMe  ARM^^ 5 NRMe, (31) 

supplement to the SN2 alkylation  procedure^^^. Amines have also been 
alkylated by the use of alkyl p h ~ s p h a t e s ~ ~ ,  and in a few cases by pre- 
paration and decomposition of alkyl phosphoramidates (reaction 
32)47. Alkyl nitrates are effective alkylating agents for aliphatic 

arnines, though complications arise with aromatic a m i n e ~ ~ ~ .  Alkyla- 
tion of amines is also possible with certain types of carboxylic esters4B, 
and under appropriate conditions propiolactone can be used to intro- 
duce 8-carboxyethyl groups (reaction 33) 50. Epoxides are suitable 

for 8-hydroxyalkylation of amines (reaction 34)51 ; this type of reaction 
is very general. being useful for the introduction of amino groups in 
the glycerol and sugar series 52, 53. 

I t  will be appreciated that many of these alkylation reactions (19) 
to (22) can be made reasonably selective, for example (20) to the 
virtual exclusion of (21) and (22), by appropriate choice of nucleo- 
phile and alkylating agent. This selectivity is not likely to occur, 
however, in the corresponding reactions of ammonia and unhindered 
primary and secondary n-alkylamines with primary alkylating agents 
(except in favourable cases where the desired product separates from 
the reaction), where mixtures of arnines are to be expected. The 
problems attending separation of such mixtures are discussed below. 

In  the quaternisation reaction (22), or any sequence ending in 
quaternisation, separation of the ionic quaternary salt from unreacted 
arnine(s) presents few problems as reaction is normally conducted 



under conditions in which step (22) is effectively irreversible. I t  is 
well to remember, however, that quaternary ammonium ions are 
susceptible to nucleophilic displacement reactions 31. Ethanolamine 
has been shown to dealkylate tetraalkylammonium and aryltrialkyl- 
ammonium salts54 at about 154" according to reaction (35). In  

reactions involving a tertiary amine and a derived quaternary 
ammonium ion, such reaction may lead to redistribution of alkyl 
groups between the amine and the ion55. This has been demonstrated 
for benzyldimethylamine and the benzyltrimethylamlnonium ion, and 
for related pairs (reactions 36 and 37). The evolution of trimethyl- 

amine allows disproportionation of benzyldimethylamine to proceed 
in the presence of a catalytic amount of the quarternary salt. I t  is 
clearly desirable to avoid use of high temperatures for prolonged 
periods in these reactions. 

The preparation of tertiary amines from alkyl halides and a second- 
ary amine, or a primary amine in which both N-hydrogen atoms are 
to be replaced by identical alkyl groups, can be carried out with 
favourable yields in many cases, as evidenced by preparations of 
diethyl-n-hexadecylamine (from diethylamine) and of dimethyl-n- 
docosylamine (from dimethylamine) 56. Alkyl sulphonates have simi- 
larly been used, and the reaction extended to the preparation of cyclic 
tertiary amines from primary amines and appropriate terminal di- 
sulphonates (reaction 38) 57. Satisfactory conditions have been reported 

for dimethylation of primary aromatic amines using methyl sulphate56 
and for d i - n - a l k y l a t i ~ n ~ ~ ~  using n-alkyl phosphates; aniline and iso- 
propyl phosphate, however, give N-isopropylaniline, indicating the 
different steric requirements of the reactants. 

The isolation of tertiary amines from alkylation reactions is normally 
straightforward; except in special cases59, unwanted primary and 
secondary amines can usually be removed from the basic fraction by 
conversion to non-basic carboxamides (cf. ref. 46a) or sulphonamides 
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(cf. ref. 28). If quaternisation has occurred, the desired tertiary arnine 
may still be obtainable if the unwanted group can be removed re- 
ductively by use of lithium aluminium hydride (reaction 39) 60, or 
sodium and liquid ammonia 61. With allyl or benzyl trialkylammonium 

salts, the allyl or benzyl group is removed more readily than a methyl 
group. I t  may be noted in passing that there is a tendency to solvolytic 
cleavage of an allyl group in certain tertiary amine hydrochlorides, and 
appropriate precautions should be taken during purification (reaction 
40)62. (The other product of solvolysis was not identified, but is 

presumably allyl ethyl ether.) 
The preparation of dialkylarnines from ammonia or primary 

amines can be realised where steric factors militate against tertiary 
amine formation. Thus monoalkylation of t-butylamine with some 
alkyl halides and epoxides has been accomplished (reaction 41) 63. 

More generally, ammonolysis or aminolysis of alkyl halides, and 
particularly primary alkyl halides, is likely to give rise to mixtures of 
the primary, secondary and tertiary amines (reactions 19, 20 and 21). 
The proportions of the three possible amines in such a mixture may be 
varied by alterations in the relative proportions of the reactants. 
Where, for example, the primary amine is the desired product, the 
use of liquid ammoniaz7 (to ensure high concentration of ammonia), 
and also of sodamide (one mole per mole of alkyl halide) in liquid 
ammonia 64 have been recommended, though some dehydrohalogena- 
tion of the alkyl halide may occur when sodamide is used (reaction 42). 

In the reaction of ammonia with the alkyl halide, secondary and 
tertiary amine formation become more important as the concentration 
of ammonia is reduced. In  favourable cases, e.g. the mono-, di- and 
trioctylamines from ammonolysis of n-octyl chloride65, the amines 
may be separable by distillation. In other cases, chemical methods 

3 + C.A.G. 



may be employed. Treatment of such a mixture of amines with benzene- 
sulphonyl chloride (Hinsberg's method) gives an ' alkali-soluble ' 
amide (from the primary amine) and an ' alkali-insoluble' amide (from 
the secondary amine) ; again, phthalic or 3-nitrophthalic anhydride 
converts the primary and secondary amines into the phthalamic 
acids, but only the acid from the primary amine can be dehydrated to 
the corresponding ~ h t h a l i m i d e ~ ~ .  Both of these separation methods 
allow direct recovery of the tertiary amine from the unreacted amine 
fraction. Recovery of primary and secondary amines from these 
derivatives is considered below. Another method, suitable for separa- 
tion of secondary amines, involves formation of the N-nitroso com- 
pound and subsequent regeneration 67. 

B. The Use of Blocking Groups for Control of Alkylation 
The difficulties associated with direct alkylation of ammonia and 

amines have led to the development of indirect alkylation procedures 
designed specifically for the preparation of primary and secondary 
amines. These depend on the blocking of the required number of 
sites in the ammonia molecule so as to limit the extent of the alkylation 
reaction, and fall into two categories depending on whether or not 
the alkylation step involves the formation of a quaternary ammonium 
ion. 

The DClepine method6*, for primary amines, is based on the 
quaternisation of hexamine with an alkyl halide; the resulting 
hexaminium salt is then decomposed with ethanolic hydrochloric acid 
to give the desired amine, ammonia and the carbon fragments of the 
ring as diethylformal (reaction 43). 

TN7 TN7 RN H, 

6 3NH3 
EtOH 

(43) 

6 CH2(OEt), 

Primary amines are also available through the Ritter reaction in 
which an organic nitrile provides the blocked nitrogen atom. Though 
relatively poor nucleophiles, nitriles are able to capture carbonium 
ions; the resulting nitrilium ion reacts with water to give the amide, 
which can then be hydrolysed to the amine. A number of alkyl and 
aralkyl halides capable of yielding carbonium ions have been shown 
to react with nitriles in the presence of aluminium chloride69, silver 
sulphate 70 or particularly antimony pentachloride (reaction 44) 71. 
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For preparative purposes, Ritter's original procedure of generating 
the carbonium ion from the alcohol (or olefin) and sulphuric acid 
is preferred; under these conditions, hydrogen cyanide, produced 
in situ from sodium cyanide, can replace the ~ d t r i l e ~ ~ .  Secondary 
and tertiary alcohols can be used73, and the reaction, providing 
essentially for substitution by the SN1 mechanism, is a valuable 
addition to the methods already discussed. I t  must be borne in mind, 
however, that under certain conditions carbonium ion rearrange- 
ment is possible, and has indeed been observed in some applications 
of this reaction 74. 

For preparations of secondary amines by way of quaternisation 
reactions, it is necessary to employ a blocking group for two of the 
nitrogen valencies. Benzylidene derivatives of primary amines fulfil 
this function, and quaternisation of such compounds, followed by 
hydrolysis, gives benzaldehyde and the desired secondary amine 
(reaction 45) 75. Incorporation of the primary amine into an imidate 

PhCH=NR Me' [PhCH=NMeRICI- ---+ PhCHO + RNHMe (45) 

provides a new and interesting variant of this method, and has been 
employed for monomethylation of the N, atom of tryptophan. The 
primary amine is condensed with y-chlorobutyroyl chloride in pyri- 
dine, and the resulting amide cyclised to the iminolactone with silver 
fluoroborate. Methylation with methyl iodide, followed by hydrolysis, 
provides the secondary amine (reaction 46) 76. Another route to this 

RNH2 + RNHCO(CH2)3Cl - R N G  + 

type of iminolactone (and, by implication, to secondary amines) 
which would appear to be particularly suitable where R is a tertiary 
alkyl group, is exemplified by reaction (47) 77. I t  may be noted in 



passing that, in the aromatic series, rearrangement of imidates pro- 
vides a useful source of diarylamines (Chapman rearrangement) 
(reaction 48) 'E. 

NAr 

RC 
// 

----t RCONArArl ----t ArNHArl 
\ (48) 

A somewhat different approach to the synthesis of primary and 
secondary amines is involved in the use of blocking groups that so 
reduce the nucleophilicity of ammonia or a primary amine that 
alkylation does not proceed to the quaternary stage. For the conver- 
sion of ammonia to primary amines, these conditions are met in the 
Gabriel synthesis in which the nucleophile is the anion of phthalimide 
and the product the N-alkylphthalimide. Alkyl halides containing a 
variety of other substituents, e.g. -CN, -COR, -COOR, -OR, in 
the alkyl chain undergo this reaction, and the method has enjoyed 
considerable p~pular i ty '~;  alkyl toluene-p-sulphonatessO and epox-~ 
idess1 can also be used as alkylating agents. The alkylamine can be 
obtained from the alkylphthalimide by hydrolysis or by the milder 
hydrazinolysis procedure (reaction 49) s2. I n  a recent improvement, 
the use of dimethylformamide as solvent is recommended for the 
alkylation reactions3. 

A similar conception underlies the Hinsberg synthesis of secondary 
amines in which the anion of a sulphonamide is alkylateds4, and the 
amine obtained by hydrolysis (reaction 50). Mono- and dialkylation 

of toluene-p-sulphonamide, for example, provide routes to primary and 
symmetrically substituted secondary aminess5, and mixed aliphatic- 
aromatic amines are obtainable by use of sulphonanilidesE6. An 
interesting synthesis of secondary amines, embodying features of both 
the Gabriel and Hinsberg reactions, employs saccharin in a two- 
stage alkylation (reaction 51) E'. The Hinsberg method has not 
attracted wide popularity because of the difficulty of liberating the 
amine, and similar objections have attended the use of sulphonyl 
groups for protecting amino groups. Hydrolysis by moderately con- 
centrated mineral acids at elevated temperatures is frequently 
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undesirable, and other acidic procedures have been recommended 
for sensitive moleculesEE. A number of reductive methods (zinc and 
hydrochloric acid, sodium and isoamyl alcohol) have been reported 
for splitting sulphonamidess9, and sodium and liquid ammonia has 
been successfully used for this purpose in syntheses of oxytocin and 
related compounds 

Alkylation of cyanamide (anion), followed by hydrolysis, has been 
used for the preparation of some symmetrically substituted secondary 
amines (reaction 52) 91. I t  is clear from alkaloid studies that reduction 

with lithium aluminium hydride may be used as an alternative to the 
hydrolysis stage 92. 

A method which is suitable for the preparation of allylic amines 
involves the allylation of thiocyanate ion to give the ally1 thiocyanate 
followed by rearrangement (by the S,i mechanism in many cases) to 
the isothiocyanate, and subsequent hydrolysis 40. 

C. Nucleophilic Aromatic Substitution by Ammonia and Amines; 
the Bimolecular Mechanism 93 

- -  Aryl halides are relatively insensitive to nucleophilic substitution, 
i.e. replacement of halogen as halide ion, by ammonia and amines. 
However, susceptibility of the halogen atom to displacement (or of 
other groups displaceable as anions) increases as the ortho and para 
positions become progressively substituted by electron-attracting 
groups, nitro groups being particularly effective. The reactivity of the 
halogen atoms in 2,4-dinitrofluorobenzene (14) 94 and in 4,4'-difluoro- 
3,3'-dinitrodiphenylsulphone (15) 95 are cases in point. These examples 
illustrate an important difference between alkyl halides and activated 
aryl halides towards nucleophilic substitution, namely the generally 
high susceptibility of fluorine to displacement in the aromatic series; 
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this indicates the relative importance of the bond-making step in 
these reactions. 

Nucleophilic aromatic substitution has been the subject of con- 
siderable investigationg3 and of some controversyg6. Certain features 
are particularly relevant to the practical problem of introducing 
amino groups. The formation of the transition state or intermediate 
complex in these reactions involves approach of the amine from 
within a plane perpendicular to that of the aromatic ring, with the 
valencies of the carbon atom C(,, which bears the displaceable sub- 
stituent becoming approximately tetrahedral. When the nucleophile 
is an unhindered amine, relatively little steric hindrance to this 
approach is offered by 2- and 6-substituents in the aromatic ring 
unless these are especially bulky, e.g. t-butyl, but as the steric require- 
ments of the amine increase, even 2- and 6-methyl groups may exert 
detectable interference (cf. 16 below for the case where the activating 

substituent is a 4-nitro group). I t  will be noted that for effective 
activation at C(,, by a 4-nitro group the latter should ideally be 
coplanar with the ring and this may be rendered difficult by the 
presence of alkyl groups at C(3) and C(5, (cf. 17) ; 3- or 5-substitution 
does in fact markedly reduce ease of replacement at C(1,93997. This 
second effect is often product-determining in reactions of amines with 
alkyldinitrobenzenes (reaction 53) but is not observed with such 
activating substituents as the cyano group where the question of 
coplanarity with the ring does not ariseg9. In a number of cases, 
competitive displacement of substituents has been noted, as for ex- 
ample in reaction (54) loo. 

2. The Introduction of the Amino Group 

Almost comparable with the activating influence of a nitro group is 
that of the ring nitrogen atom in pyridine, and many examples of the 
introduction of amino groups by nucleophilic displacement of halogen 
atoms from the a- and y-positions are known (reaction 55) lol. Cor- 

NHPh I ; H ~ P ~  

p h N H l ,  N 5 5 .  

- 

responding positions, i.e. a- or y- with respect to the ring nitrogen 
atom, in related ring systems are similarly activated lo2. The synthesis 
of atebrine (reaction 56) lo3" is illustrative, and numerous potential 
antimalarial drugs have been similarly prepared from substituted 
4 -ch loroq~ino l ines~~~~.  Site activation is likely to be increased by 

NHCHMe(CH2),NEt2 

protonation or quaternisation of the ring nitrogen, and acidic catalysis 
b;ts been noted in a number of cases (reaction 57) 9 3 9  lo4. 

Cl NHPh 

In the reactions discussed in this subsection, the displacing nucleo- 
phile has been ammonia or an amine. A number of cases have been 
reported, however, in which a dimethylamino group has been intro- 
duced by use of dimethylformamide; these include displacement of 



halogen from halogenonitr~benzenes'~~~ and heterocyclic chloro 
compounds (reaction 58) '05b. Urea has also been used for the prepara- 
tion of aromatic primary amines such as 2,4-dinitroaniline from the 
corresponding chloro cornp~unds '~~ .  

Amines can often be induced to react with aromatic halides, in 
which activating influences of the type discussed above are absent, by 
employing the device of catalysis by copper and various copper 
compounds (reactions 59 and 60). Diarylamines (from aromatic 
amines'07") and mixed aliphatic-aromatic amines (from aliphatic 
amine~ 'O~~)  are obtainable in this way. These induced reactions have 

PhCl + MeNH, CU"CI"_ PhNHMe (60) 

been presented as nucleophilic substitutions of copper-complexed aryl 
halides in which the halogen has acquired positive character by 
coordination 93 a. 

D. The Route to  Aromatic Amines via Aryne Intermediates 

Many cases are known of the reaction of non-activated aryl halides, 
possessing at least one free ortho position, with metallic amides by an 
elimination-addition, i.e. aryne '08 or heteroaryne '09, mechanism. With 
the halogenobenzenes, the observed order of reactivity is Br > I > 
C1 >> F. The rates of the steps 18 -t 19 and 19 -t 20 are expected to 
decrease in the orders F > C1 > Br > I and I > Br > C1 > F 
respectively. The stepwise sequence 18 -t 19 -t 20 thus becomes 
effectively synchronous, i.e. 18 -t 20, when the rate of the second step 
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sufficiently exceeds the rate of the first, and this change occurs between 
chlorobenzene and bromobenzene "O. 

With substituted halogenobenzenes, the amide ion might be ex- 
pected to add preferentially to one or other end of the 'triple bond' 
and so lead to rearranged amines or mixtures of amines. The occur- 
rence of such cine substitution has obvious attractions for the syn- 
thetic chemist in providing useful routes to various amines which might 
otherwise be difficult to obtain. An example is provided by the 
synthesis of 2-amino-4-methoxybiphenyl from 3-bromo-4-methoxybi- 
phenyl (reaction 61) "l. A similar rearrangement is exploited in a 
recent synthesis of the aporphine alkaloid, laurelinen2. 

OMe ?Me 

The factors underlying the orientation pattern observed with 
substituted halogenobenzenes have been generalised by Roberts and 
coworkersn3. In the stages leading to the aryne, ortho- and para- 
substituted aryl halides give the 3- and 4-substituted benzynes, (20a) 
and (20b) respectively. Where the synchronous mechanism, 18 -t 20, 
applies, meta-substituted halides are expected to give preferentially the 
benzyne formed by removal of the more acidic of the hydrogen atoms 
ortho to halogen; for example, m-bromobenzotrifluoride gives 3-tri- 
fluoromethylbenzyne. Where the stepwise mechanism, 18 -t 19 -t 20, 
applies, loss of halide ion from the two possible aryl anions (19a) and 
(19b) becomes a contributory and possibly determining factor, as in 
the formation of 3,4-pyridyne from 3-halogenopyridine~'~~. 

(198) W )  (*a) ( 2 w  

The preferred site of addition of arnide ion to substituted benzynes 
is considered to be that giving the aryl anion which is most stabilised 
by the inductive effect of the substituent. With 3-substituted benzynes, 
amide ion would thus be expected to add preferentially to the meta 

3* 



position if Z is electron attracting, and to the ortho position (neglecting 
steric effects) if Z is electron releasing. Similarly, 4-substituted ben- 
zynes would be expected to give 4- and 3-substituted anilines respec- 
tively depending on whether Z is electron attracting or releasing. 
However, inductive effects are weaker with 4- than with 3-substituted 
benzynes, and conjugative effects may become relatively important; 
for example, approximately equal amounts of m- (21a) and p-anisidine 
(21b) are formed from p-bromoanisole and sodamide. These con- 

siderations have been generally used for predicting and rationalising 
product orientation in additions of amide ion (and of alkylarnide ions) 
to arynes 114, though the possible involvement of conjugative effects in 
the corresponding additions to 3-substituted benzynes has also been 
recently discussed 'l5. 

V. PREPARATIONS OF AMINES INVOLVING THE USE 
OF GRIGNARD REAGENTS 

A number of amine syntheses take advantage of the nucleophilic 
character of the alkyl (or aryl) group in a Grignard reagent. Thus 
direct amination of Grignard reagents (preferably those derived from 
alkyl chlorides or bromides rather than iodides) by methoxyamine 
leads to primary amines (reaction 62) l161117. In a similar way, 

various aromatic compounds have been metalated using n-butyl- 
lithium and the resulting aryllithium aminated with methoxyamine 
(reaction 63) l18. 

2. The Introduction of the Amino Group 61 

A number of a-dialkylaminoalkyl compounds, such as ethers and 
cyanides, react with Grignard reagents and so provide useful supple- 
mentary routes to tertiary amines. Dialkylaminomethyl ethers, pre- 
pared from the dialkylamine, formaldehyde and n-butanol, for 
example, react as in (64) l19. Corresponding compounds, available 

R,NCH,OBu-n + RIMgX A R,NCH,Rl (64) 

from cyclic secondary amines such as m o r p h ~ l i n e ~ ~ ~ ,  or from aromatic 
aldehydes lZ1, react in the same way. The amino-ether grouping may 
also be incorporated in a cyclic structure, in which case the reaction 
gives rise to a hydroxy amine (reaction 65) lZ2. 

a-Dialkylaminoalkyl cyanides react in a similar way to yield ter- 
tiary amineslZ3, although various complications have been ob- 
served 124.125. The reaction has, however, continued to find application 
and has been used for the synthesis of triisopropylamine (reaction 
66)126. Incidental examples of the reaction are also provided by 

displacement of angular cyano groups in the quinolizidine and 
octahydropyrrocoline series (reaction 67) 127. 

A few tertiary amines have been prepared from N,N-dialkyl- 
formamides by reaction with an excess of Grignard reagent, though 
yields are frequently not high (reaction 68) lZ8. 

VI. INTRODUCTION OF AMINO GROUPS BY ADDITION 
T O  CARBON-CARBON DOUBLE BONDS 

A. Nucleophilic Addition of Ammonia and Amines to  Carbon- 
Carbon Double Bonds 

Olefins are normally susceptible to attack by electrophiles rather 
than nucleophiles, and the addition of ammonia or amino compounds 
to carbon-carbon double bonds is only expected to occur readily in 



cases where the double bond bears one or more electron-attracting 
substituents. Typical activating substituentsU0 are -CN, -COOR, 
-COR, -NO2, -S02R. The general mechanistic features of this 
type of reaction have been discussed in an earlier volume of this 
series130, and only problems pertinent to amination reactions will be 
discussed here. 

These addition reactions may be typified by equation (69) where Y 
R2NH + CH2=CHY ----t R2NCH2CH2Y (69) 

is an activating substituent. Reaction often occurs at normal or ele- 
vated temperatures without added catalysts, though catalysis is 
desirable and often necessary for efficient reaction between aromatic 
amines and, a,Sunsaturated esters and nitriles, for example. Typical 
catalysts are acetic acid131, and various metallic compounds such as 
stannic chloride132 or cupric acetate133. Catalysis by bases (sodium 
ethoxide, benzyltrimethylammonium hydroxide) is also employed, 
particularly in reactions of amines with a$-unsaturated nit rile^^^^. 134. 

In  addition reactions involving ammonia, it is sometimes difficult 
to obtain solely the desired product. The problem is well illustrated by 
McElvain and Stork's synthesis of g ~ v a c i n e l ~ ~ ,  by way of the am- 
monia-ethyl acrylate reaction, which proceeds by reactions (70), (7 1) 
and (72). The optimum yield of the secondary amine, required for 

CH. = CHCO.Et 
NH3 , ' NHaCHaCHzCOaEt 

benzoylation, was about 447, (obtained using a 5:I molar ratio of 
ammonia to ethyl acrylate), but the tertiary amine was formed in 
comparable amount (47'7,). The reversibility of the individual steps, 
however, allowed conversion of the tertiary amino compound to 
N,N-di(/l-carbethoxyethy1)benzamide by thermal decomposition in 
the presence of benzoyl chloride. 

Ammonia and acrylonitrile react similarly to give the corresponding 
primary, secondary and, to a lesser extent, tertiary amine 131. Methyl- 
amine and ethyl acrylate give a mixture of the corresponding second- 
ary and tertiary a m i n e ~ l ~ ~ ,  or almost exclusively the tertiary amine137, 
according to conditions. Methylamine and acrylonitrile, however, 
give mainly the corresponding secondary or tertiary amine131, again 
depending on conditions. In this situation, it is customary to control 
the reaction as far as possible by adjusting the temperature and 
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and higher 
become less 

proportions of the reactants. With aromatic a r n i n e ~ l ~ ~  
primary n-alkylamines the problems of selective reaction 
acute and it is usually possible to obtain principally the secondary or 
tertiary amino compound as d e ~ i r e d ~ ~ ~ . ~ ~ ~ .  

Secondary amines react with acrylonitrile and with ethyl acrylate 
to give the tertiary amino compounds. Piperidine, morpholine and to 
a lesser extent diethylamine react readily enough but the rates of 
these reactions drop with increasing size and branching of alkyl 
groups, and may fail with highly branched alkyl amines where 
branching occurs near the nitrogen atom103b*140. These are reactions 
in which base catalysis is frequently employed131. Appropriate acidic 
conditions (with copper catalysis) have been used for the reaction of 
diphenylamine with acrylonitrile 141. 

Attachment of an alkyl group to the double bond, either a- or p- to 
the activating substituent, may result in a decrease in reactivity of the 
unsaturated compound, but also in greater selectivity of reaction. 
Thus methylamine and methyl methacrylate interact to give the 
corresponding secondary amino compound (1 : 1 adduct) in very 
good yield (reaction 73) 142. Esters of crotonic acid and its homologues 

MeNHa + CH,=CMeCOaMe ---t MeNHCHaCHMeC02Me (73) 

give similar 1 : 1 adducts with ammonia, and primary and secondary 
amines (reaction 74)143. Interestingly, ammonia and ethyl ytri- 

EtCH=CHC02Et + NHMea ---t EtCH(NMea)CHaCOaEt (74) 

fluorocrotonate give /l-amino-y,y,y-trifluorobutyramide, the inductive 
effect of one -CF3 group being insufficient to reverse the direction of 
addition (reaction 75) 144a; two p-CF3 groups are however effective 
in this respect (reaction 76) 144b. Esters of cinnamic acid react slug- 

CF3CH=CHC02Et + NH3 ----+ CF3CH(NH2)CHaCONH2 (75) 

'\ (CF3),C=CHCOaH + NH3 ----t (CF3),CHCH(NH2)C02H (76) 

gishly with amines to give indifferent yields of the corresponding 
p-amino-/l-phenylpropionic esters145. 

Ammonia and amines add readily to the double bond in a$- 
unsaturated ketones (reaction 77) 146 and nitro compounds (reaction 
78) 147, catalysis being usually unnecessary even for aromatic amines. 

Piperidine 
PhCH=CHCOMe > PhCHCH,COMe 

I (77) 
NCSHIO 

PhNH. 
PhCH=CH NO, > PhCHCH,NO, 

I (78) 
NHPh 
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The activating effect of a nitro group is even sufficient to promote 
arnine addition when transmitted through a benzene ring. Thus 
primary and secondary amines add to o- and p-nitrostyrenes to give 
1 : 1 adducts (reaction 79) 148, though yields decrease with increasing 
size of alkyl groups in the amine. Similar considerations apply to the 

direct addition ofamines to a- and y-vinylpyridines (reaction 80) 149a.b. 

Styrene itself can be aminated in the presence of sodium, but the 
reaction here probably involves addition of the highly nucleophilic 
amide ion 1299 150. 

A few instances have been noted of allylic compounds bearing an 
electron-attracting substituent undergoing addition reactions with 
amines. These cases appear to involve shift of the double bond from 
the P,y- to the a,/3-position prior to reaction. For example, benzyl 
ally1 sulphone and piperidine react to give benzyl/3-piperidinopropyl 
sulphone (reaction 81) 151. Ally1 cyanide similarly reacts with am- 

PhCH2S02CH2CH=CH2 - PhCH2S02CH2CH(CH3)NC,H,, (81) 

monia and amines at elevated temperatures to give adducts derived 
from crotononitrile (reaction 82) 152. 

NHEt CH2=CHCHzCN 4 CH3CH(NEtz)CHzCN (82) 

Transamination reactions are occasionally used as an adjunct to 
the addition reactions described in this section. Aniline and P-di- 
ethylaminopropionitrile (as hydrochloride) undergo amine exchange 
at 140-150" to give P-anilinopropionitrile (reaction 83) 153. These 

reactions may proceed in some cases by an elimination-addition 
mechanism, i.e. via acrylonitrile, but Cymerman-Craig and co- 

workers have adduced evidence for a substitution mechanism154. In 
another context, the P-cyanoethyl group may be seen as a potential 
blocking group for -NH, as in recently reported syntheses of glycyl- 
glycine and other simple p e p t i d e ~ l ~ ~ ;  removal of the blocking group 
may be effected using 10yo ammonium hydroxide (reaction 84). 

10Yo NH,OH 
RN(CHzCHzCN)z > RNHz (84) 

B. Routes to Amines Involving Electrophilic Additions to Carbon- 
Carbon Double Bonds 

A number of routes to amino compounds take advantage of the 
normal susceptibility of olefins to attack by electrophiles. In general 
these reactions do not lead directly to amines, but rather to com- 
pounds which can be transformed to amines by subsequent reactions. 
A notable exception is provided by the reaction of dialkylchloro- 
amines with terminal olefins in acidic media (reaction 85) 156. The 

EtzNCl + CH2=CHR 5 Et2NCHzCHCIR (85) 

process involves addition of an aminium ion-radical, e.g. ('NHEt,) + 

to the double bond followed by chain transfer. With the higher 
dialkylchloroamines, pyrrolidine formation (cf. section 1I.A) takes 
precedence over addition to the olefin (though not in the case of 
butadiene). Chlorination of the olefin is another possible complicating 
reaction. Nonetheless, yields of the 1: 1 adduct are of the order 
30-60yo where the reaction is applicable. 

a-Piperidyl radicals, generated from piperidine and benzoyl 
peroxide, also add to terminal olefins to give the alkylpiperidine 157, 

whilst addition of nitrogen dioxide to olefins gives products which 
are reducible to amino compounds 158. 

Further examples of the Ritter r e a ~ t i o n ~ ~ . ~ ~  (cf. section 1V.B) are 
grovided by the many substituted olefins that may be protonated to 
give carbonium ions which can be intercepted by hydrogen cyanide or 
organic nitriles; cyanogen chloride can also be used as intercepting 
species159, but offers no advantages. Mixtures of the two possible 
amides, and hence amines, are to be expected from non-terminal 
alkenes and from such olefinic compounds as oleic acid160. 

Olefins may also be converted to amines with yields of up to 60y0, 
by hydroboration and subsequent reaction of the organoborane with 
chloroamine in alkaline solution or preferably with hydroxylamine-0- 
sulphonic acid in diglyme (reaction 86) lal. The reaction is applicable 
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to hindered olefins and is stereospecific, the boron being replaced by 
the NH2 group with retention of configuration. 

VII. REDUCTIVE METHODS FOR THE PREPARATION 
OF AMINES 

A comprehensive review is available covering a large number of 
known reductive methods for the production of aminesls2. In prin- 
ciple, compounds containing an alkyl or aryl group linked to a nitro- 
gen functional group at a higher oxidation level than -NH2, or those 
containing an amino group directly linked to a carbon atom at a 
higher oxidation level than alkyl, or again compounds containing 
carbon-nitrogen multiple bonds, may all be reducible to amines. 

Within the first group, reduction of nitro compounds is by far the 
most important, though principally in the aromatic series. Aliphatic 
nitro compounds may be reduced to the corresponding primary 
amines by catalytic h y d r o g e n a t i ~ n l ~ ~ - l ~ ~  or by chemical means. 
Favoured chemical methods include reduction by iron and hydro- 
chloric acid (with optional catalysis by ferric chloride163) or by 
lithium aluminium h ~ d r i d e l ~ ~ .  With the latter reagent, ring enlarge- 
ment has been noted with some tertiary cyclic nitroalkanes (reac- 
tion 87) 166. Lithium aluminium hydride has also been extensively 

used for the reduction of p-nitrostyrenes to the important p-phenyl- 
ethylamines (reaction 88) ls5. The utility of these reductions is limited 

by the availability of the nitro compounds, and many applications 
depend on the use of condensation reactions involving simple nitro- 
alkanes to provide the required nitro compound 167. 

Aromatic nitro compounds are a much more accessible class of 
substances, and a wide choice of methods exists for their reduction to 
amines. The choice of reducing agents includes (i) a variety of metals, 
usually employed in acidic or faintly acidic media, (ii) metallic 
compounds involving a low valency state of the metal, stannous 
chloride being frequently used and (iii) anionic sulphur compounds 
such as ammonium and sodium sulphides and polysulphides, and 

sodium hydro~ulphitel~~. Catalytic hydrogenation is also widely 
employed162. Lithium aluminium hydride reduces simple aromatic 
nitro compounds to the azo compound 16'; sodium borohydride does 
not affect nitro groups except in special cases where a nitro group h 
displaced or eliminated as nitrite ion (reaction 89) ls8. A number of 

reductive procedures involving hydrogen transfer in the presence of 
palladium catalysts are known; hydrazine leg, and sodium borohydride 
in neutral or acidified solutions170 have been used for this purpose. 

A number of these methods of reduction are pleasingly selective 
and may be employed with molecules containing other potentially 
reducible groups; amongst the selective reagents are ferrous hydroxide 
and, particularly for the partial reduction of polynitro compounds, 
sodium and ammonium sulphides ls2. 

The substitution of a chlorine atom in the aromatic ring has been 
noted during some reductions in which concentrated hydrochloric 
acid is used; this presumably occurs by conversion of the intermediate 
arylhydroxylamine to the N-chloroamine and thence by rearrange- 
ment to the chloroaniline. A recent preparation of p-fluoroaniline 
exploits this type of substitution (reaction 90) 171. 

With aromatic compounds which are very reactive towards electro- 
philes, it may be preferable to introduce a nitroso or arylazo group 
rather than a nitro group; reduction to the amine can be effected in a 
number of ways (reaction 9 1) 162. 172. 



The reduction of hydrazine derivatives has not been widely ex- 
ploited for the preparation of amines, but might be useful in certain 
cases. Benzhydrazide can be alkylated on the terminal nitrogen atom; 
hydrogenolysis then gives the amine (reaction 92) 173. 

More widely used as a source of aliphatic and alicyclic amines is the 
reduction of azides (reaction 93), many of which are available by 

stereospecific SN2 azidolysis of various alkyl halides and toluene-p- 
sulphonates. The reduction may be carried out catalytically under 
very mild cond i t i on~ l~~ ,  or by use of lithium aluminium h ~ d r i d e l ~ ~  
or diborane 175. 

The principal compounds in the second group, i.e. those containing 
an amino group linked to a carbon atom at a higher oxidation level 
than alkyl, are the carboxylic amides. These are reducible by lithium 
aluminium hydride to the corresponding amine; primary, secondary 
and tertiary amides give respectively the primary, secondary and 
tertiary a m i n e ~ l ~ ~ .  This method of reduction allows indirect intro- 
duction of bridging amino groups in certain cyclic systems176. There 
is evidence that the reduction of primary amides involves the corres- 
ponding nitrile as an intermediate in at least some cases177. Amides, 
especially tertiary amides, can also be reduced to the amine by means 
of diborane (reaction 94) 178. 

Compounds containing carbon-nitrogen multiple bonds are also 
potential sources of amines; these compounds include imines (Schiff's 
bases), oximes, hydrazones, azines and nitriles. 

Imines can be reduced to amines by catalytic hydrogenation, or by 
reduction with lithium aluminium hydride, sodium boroh~dride or 
amine-borane complexes 179. For many purposes, it is not necessary 
to prepare the imine as the desired amine can, at least in principle, be 
obtained by catalytic reduction of a mixture of the corresponding 
carbonyl compound and precursoral amine (reaction 95) leO. The 

amine R1NH2 can even be replaced by compounds, e.g. nitro com- 
pounds, which are reducible to the amine under the reaction con- 
ditions le0. lel. This reaction is termed reductive alkylation and suffers 
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fiom the drawback that the amine formed may also condense with the 
carbonyl compound and so undergo further reductive alkylation. In  
practical applications of this method, undesired reactions of this type 
can often be minimised by suitably adjusting the concentrations of the 
carbonyl compound and the starting amine. A recent variant involves 
the reduction of a mixture of the carbonyl compound and the arnine 
salt by sodium borohydride in aqueous solution182. 

Reductive alkylation of amines by carbonyl compounds can also be 
effected by procedures in which formic acid and its derivatives provide 
the reducing systemle3. The particular combination of formaldehyde 
and formic acid (Clarke-Eschweiler method) provides for the methyl- 
ation of amines, usually to the tertiary stage (cf. ref. 60) le3; the 
DClepine method (cf. section 1V.B) can be modified to give alkyldi- 
methylamines by use of formic acid le4. These reactions are considered 
to involve decarboxylation of the intermediate aminocarbinyl formate 
(reaction 96) le5. 

Oximes, hydrazones and azines are obtainable from carbonyl com- 
pounds and can be reduced to primary amines (sometimes accom- 
panied by secondary amines) in various ways (reaction 97) 162,186. 

RCH=NOH ---+ RCH2NH2 (97) 

Rearrangements have been noted in the reduction of some oximes 
with lithium aluminium hydride le7. 

The catalytic reduction of nitriles is also frequently employed as a 
route to primary amines (reaction 98) 162. lee. This involves an imine 

as an intermediate stage and may, as in the reductive alkylation 
procedures, lead to the primary amine together with appreciable 
amounts of the secondary amine. For the preparation of primary 
amines, it has become common practice to conduct hydrogenation in 
the presence of an excess of ammonia, or alternatively in the presence 
of acetic anhydride, when the primary amide is produced. Lithium 
aluminium hydride is also widely used for the reduction of nitriles 165. 
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I. INTRODUCTION 

The wide distribution of amines in nature, their importance in industry 
as raw materials, intermediates, and finished products, and their use 
in the laboratory causes continuous interest in the analytical problems 
connected with them. These will be focussed at two levels in the present 
chapter; at the purely functional level attention will be paid to the 
nitrogen atom and its immediate vicinity, and at the molecular level 
the interactions between the amino group and the rest of the molecule 
will be considered. The alternative approach, centered on the discussion 
of the available methods, techniques, and instrumentation, is essential 
when one has to carry out an actual analysis, and constitutes the main 
part of the literature on the subject, in books and treatises on general 
analysis, organic analysis, and organic chemistry, as well as in original 
papers and reviews. Some outstanding titles are listed in references 
1 to 16. 

This chapter will deal with compounds in which structures 1 or 2 
appear at least once, where the nitrogen atoms are singly bonded to 
carbon or hydrogen atoms, and furthermore, when these carbon 
atoms are linked to hydrogen or carbon atoms. Thus structures such 
as pyrrole (3), morpholine (4), and their salts will be considered, 
whereas pyridine (5) and l-aminoethanol will be excluded, in spite 
of the fact that many of the methods applied in analysing the former 
compounds are useful for the latter too. 

I I .  FEATURES OF THE GROUP 

The amino group is endowed with a set of physical and chemical 
properties which depend mainly on the possession of certain structural 
elements. These do by no means belong to amines exclusively, but 
they may be used for the partial or total solution of many analytical 
problems. 
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A. The Nitrogen Atom 
I. Pyrolyses and other chemical methods 

On strong heating, many nitrogen-containing organic compounds 
yield hydrogen cyanide and a few yield cyanogen. Ammonia is evolved 
from compounds such as urea, guanidine, and some of their derivatives. 
Trimethylamine is released by compounds such as choline and 
betaineg. If the pyrolysis is carried out in the presence of calcium 
oxide the evolution of ammonia can be detected easilyg.17. 

The reductive pyrolysis of organic compounds in the presence of 
metals leads to the formation of the metal cyanide, which can be 
detected as Prussian blue (Fe, [Fe (CN) ,I ,) or by the copper (11) 

acetate-benzidine test18. Several metals and salts have been recom- 
mended for the fusion of the organic compound, e.g. p o t a s s i ~ m ~ ~ * ~ ~ ,  
sodium 21p 22, magnesium mixed with potassium carbonate 23, zinc 
mixed with potassium carbonate24, and a mixture of dextrose with 
sodium carbonate 25. When the compound contains sulphur the metal 
thiocyanate is also produced, which can be detected by ferric 
chloride 26* 27. 

Another type of reductive process is the combustion in hydrogen 
atmosphere in the presence of a nickel catalyst, where at temperatures 
over 1000" nitrogen is converted into ammonia and subsequently 
determir~ed~~-~O. A similar method adapted for ultramicroanalysis 
has been proposed 

Nitrogen and hydrogen can be determined simultaneously by 
burning in dry carbon dioxide in the presence of a copper-copper 
oxide-silver catalyst, when water and nitrogen are liberated and 
subsequently determined32. 

A very sensitive test for nitrogen consists of heating the sample in 
admixture with manganese dioxide or other oxidants such as lead 
dioxide, red lead oxide (Pb304), cobalt(111) oxide, nickel (111) oxide, 
or manganese(111) oxide. Nitrous acid is evolved and can be detected 
by the Griess reaction g* 33. 

Many deterrninations of nitrogen based on oxidative pyrolyses of 
organic samples are variations, adaptations, and refinements of the 
original Dumas method 34, consisting of burning the organic compound 
in oxygen. Adaptations suited to ultramicroanalysis (nitrogen content 
of the order of 1 yg) have been r e p ~ r t e d ~ ~ . ~ ~ .  The Dumas method 
has been amply reviewed15. 30* 37' 38. 

The Kjeldahl m e t h ~ d ~ ~ * ~ O  converts the bonded nitrogen into 
ammonium bisulphate which is then determined as ammonia. Many 
variations have been introduced in order to refine the method or 
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adapt it to diverse types of organic materials. I t  was originally devised 
to determine the nitrogen of amino or amido groups and it cannot 
be used for other functions without due precautions or previous 
treatment of the sample, and in certain cases it fails to render quantita- 
tive results, for example when applied to compounds with partial 
structure C--N-N-C, probably because elementary nitrogen is 
lost. Ultramicro scale determinations have been carried out by this 
m e t h ~ d ~ l - ~ ~ .  Ample reviews and discussions can be found else- 
where 15.30.43.44. 

Various classes of nitrogen-containing organic compounds were 
found to give colour reactions with p-dimethylaminobenzaldehyde in 
the presence of sulphuric acid in toluene solution 45. 

2. Nitrogen by mass spectrometry 
High-resolution mass spectrometers are capable of recording m/e 

values down to several decimal places, and the intensity of the peaks 
with an accuracy of fractions of 1 yo. This allows one to carry out ele- 
gant, though by no means straightforward, determinations of the 
elementary analysis and molecular weight of organic compounds. 

The m/e  value of the molecular ion-the ion resulting from losing 
one electron of the original molecule-is equal to the molecular 
mass M of the compound. I t  can be computed from equation ( l ) ,  
where n, is the number of atoms of the nuclide with mass number i 
present in the molecule, and d, is the difference between the atomic 
mass of the nuclide and its mass number. The fractional part of M 
can be calculated from equation (2), where I is an arbitrarily large 
positive integer. By finding the values of n, which best fit equations 
(1) and (2), the elementary analysis, and therefore the nitrogen con- 
tent of the compound, have in fact been determined. This can be 
accomplished by trial and error or by computer. In Table 1 the 
isotopes most frequently encountered in organic compounds are listed. 

M = z n , ( i  + d,) 
i 

Fractional part of M = Fractional part of I + 1 n, d, [ i l 
An alternative approach correlates the natural abundance of the 

isotopes (see Table 1) with the relative intensities of the peaks at 
M, M + 1, M + 2, etc. In order to illustrate the method consider a 
molecule with n carbon atoms with molecular ion of mass M. The 
intensity of the peak at M + 1 will be close to (n X l.l)yo of the 
4 + C.A.G. 
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TABLE 1 .  Naturally occurring isotopes frequently encountered in organic 
compoundsa. 

Mass Atomic Natural 
Element numberb massC Differenced abundance ( X )  

Hydrogen 1 1.007825 0.007825 99.985 
2 2.01410 0.01410 0.0 15 

Carbon 12 12.00000 0.00000 98.89 
13 13.00335 0.00335 1.1 1 

Nitrogen 14 14.00307 0.00307 99.63 
15 15.000 1 1 0.000 1 1 0.37 

Oxygen 16 15.9949 1 - 0.00509 99.759 
17 16.99914 - 0.00086 0.037 
18 17.99916 - 0.00084 0.204 

Fluorine 19 18.99840 - 0.00160 100 
Phosphorus 3 1 30.97376 - 0.02624 100 
Sulphur 32 3 1 .g7207 - 0.02793 95-0 

33 32.97 146 - 0.02854 0.76 
34 33.96786 - 0.032 14 4.22 
36 35.96709 - 0.03291 0.014 

Chlorine 35 34.96885 -0.031 15 75-53 
3 7 36.96590 - 0.0341 0 24.47 

Bromine 79 78.9183 - 0.081 7 50-54 
8 1 80.9163 - 0.0837 49.46 

Iodine 127 126.9044 - 0-0956 100 

" From reference 46. 
i in equation (1) .  

c Based on the arbitrarily assigned atomic mass of 12.00000 to the nuclide l%C, in the physical 
scale. 

* dr in equation (1). 

intensity of the peak at M, because for every carbon atom in the 
molecule there is a probability of l . l ~ o  of it being 13C. The contribu- 
tion of 2H to the M + 1 peak is much smaller because of the low 
natural abundance of this isotope, however 15N and other nuclides 
may have a noticeable effect, especially when more than one atom 
of these elements is present in the molecule. For compounds of high 
molecular weight, containing many carbon atoms, statistical considera- 
tions have to be made in order to calculate the M to M + 1 intensity 
ratio. The M + 2 peak can be used in the same way relative to the 
M + 1 peak. By comparing the calculated and experimental values 
of these ratios the elementary composition of the molecular ion can 
be found. 

The amino group is a source of instability in the molecular ion 
which may cause its rearrangement before reaching the collector of 
the mass spectrometer. If such rearrangements involve splitting of all 
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the molecular ions into two particles neither the molecular weight 
nor the elementary analysis will be accessible by mass spectrometry. 
This splitting will occur less frequently in cyclic compounds, where 
the bond rearrangements will not cause fragmentation of the molecule. 

The molecular ions of amines frequently abstract a hydrogen atom 
from a neutral species thus acquiring stability. This will make the 
molecular peak appear at M + 1. Such processes can be detected by 
studying the relative intensities of many peaks in the spectrum, as 
the relative intensities of peaks resulting from hydrogen abstraction 
will be pressure-dependent, as their corresponding ions result from 
bimolecular processes 47-51. 

The application of mass spectrometry in the determination of 
molecular weights has been reviewed 47. 4 8 9  52-54 and tables for the 
elementary analysis of compounds containing C, H, N, and 0, 
according to both mass spectrometry methods previously described, 
have been compiled 55. 

3. Nuclear activation 
Activation analysis is a method that in some cases allows one to 

determine small amounts of nitrogen, of the order of 1 pg or less. I t  
consists of irradiating the sample in a suitable generator of particles 
or rays, most frequently in a nuclear reactor, and measuring the decay 
of the new radioactive nuclides produced. The radioactivity A 
induced in such a manner can be calculated from equation (3), where N 
is the number of target atoms, U the cross section of the reaction, 
Q, the irradiation flux, t the irradiation time, and X the decay con- 
stant of the new n ~ c l i d e ~ ~ .  

I n  a nuclear activation reaction the following factors have to be 
considered besides the variables of equation (3) : threshold energy, 
mode of decay of the product, interference by other elements present 
in the sample yielding the same products as the element investigated, 
or products with overlapping decay spectra, etc. For example in the 
determination of compound 6 the 14N(n, 2n)13N reaction was used57. 

This is a 'fast neutrons' reaction, with threshold energy of 10.5 Mev, 
and is applicable only if sufficient high-energy neutrons are available. 
The other two neutron reactions which could be possibly used, 
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namely 14N(n, p) l4 C and 16N(n, y) 16N, are not very useful in this 
case because of their low yields: w ~ t h  the former 14C has a very low 
decay constant h, resulting in a low saturation factor, which is the 
expression enclosed in brackets in equation (3), whereas with the 
latter reaction the natural abundance (see Table 1) which is directly 
related to N, and the thermal neutron cross section o of 15N, are 
small 58*. 

In Table 2 nuclear reactions are listed in which nitrogen is con- 
verted into a radioactive nuclide. 

TABLE 2. Nuclear activation reactions of nitrogen. 

Half-life of 
Reactiona. product Possible interferencesa. b. c 

5770 years 170(n, a)14C and 13C(n, y)14C 
10.0 min l3C(p, n)13N and leO(p, a)13N 
10.0 min l3C(p, n)13N and leO(p, a)13N 
2.03 min 160(d, dn)150, 14N(p, Y ) ~ ~ O ,  

and 15N(p, n)160 
2.03 min 160(p, pn)150 
2.03 min 160(p, pn)160 

20.5 min 
7.35 sec 

" From references 58 and 59. 
In a reaction X(a, b)Y, nuclide X irradiated with a releases b yielding nuclide Y. 

C n-neutron, pproton, y-y-ray, d-deuterium nucleus, u-a-particle. 
From reference 46. 

B. The Free Electron Pair 

The fact that in amines the nitrogen atom has two free electrons 
readily available for reaction is the basis of a large number of detection 
and determination methods. Furthermore, in many cases in which 
the products are apparently the result of a reaction with N-H 
groups, the presence of the free electron pair is essential for the 
reaction to take place. The latter cases however will be treated in 
section 1I.C together with other properties of the N-H moiety. 

Table 3 summarises the various ways in which the free electron 
pair (p electrons) of arnines can react with other compounds or func- 

* The nuclides aH, lac ,  13C, 14N, 16N, leO, 170, and 1 6 0  can be determined 
after proton or deuteron activation, in gaseous samples, at pressures of a few mm 
Hg, by neutron time of flight spactr~scopy~~~.  In the case of nitogen the reactions 
are 14N(d,n) 1 6 0  and l6N(p,n)lSO. 
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tions. Types 1 and 2 of this table can be considered to differ from one 
another in the degree of coordination of the p electrons with a proton, 
types 2 to 7 are distinguished by the nature of the electron acceptor, 
and type 8 is a contribution (hypothetical or actual) to the structure 
of amines where the amino group is attached to an unsaturated system. 
I t  should be noticed that the molecule tends to be planar at the nitro- 
gen site in type 8, in contrast with the nearly tetrahedral geometry in 
the remaining seven types. 

TABLE 3. Coordination of the p electrons of amines. 

Type of coordination 

1. Hydrogen bonding 
2. Ammonium salts of protonic acids 
3. Ammonium compounds with Lewis acids 
4. Complexes with metallic ions 
5. Quaternary ammonium compounds 
6. Amine oxides 
7. Complexes with T acids 
8. Electron transfers in unsaturated molecules 

Section in which considered 

A further way in which the free electrons may react is by losing 
only one of them, thus yielding a radical-cation, for example by 
electron impact in a mass spectrometer, where reaction (4) probably 
takes place (see also sections II.A.2 and IV.A.2). 

I .  Reaction with protonic acids 

a. Basicity tests. Amines are weak bases capable of reacting with 
acids. Several methods of detecting this reaction have been proposed. 
The simplest is the solubility test of a sample in dilute mineral acid, 
used in qualitative organic analysis8. Is. In  another test the sample is 
dissolved in hydrochloric acid, evaporated to dryness, the residue 
redissolved, and the solution tested for chloride with silver nitrateQ. 
Some basicity tests make use of equilibria involving the formation of 
coloured precipitates, such as the complex of dimethylglyoxime (7) 
with nickel(11) ionss0, or 8-hydroxyquinoline (8) with zinc ions61. If  
in equations (5) and (6) the concentration of protons is adjusted to a 
value at which the solubility product of the metal complex is nearly 
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reached, then the addition of a base will lower the proton concen- 
tration and enhance the complex concentration thus causing its 
precipitation. 

Nia+ + 2 XH e Nixa + 2 H +  (XH = 7) (5) 

Many aliphatic amines have pK, values in the range of 9 to 11, 
and aromatic ones in the range of 4 to 5. Accordingly, an aqueous 
solution buffered at pH 5-5 will dissolve akylamines but not aryl- 
amines 62. 

b. Precipitation of salts. Amines are lipophilic substances, especially 
when no acidic groups are present in the same molecule, and there- 
fore they will dissolve in organic solvents such as chloroform, ether, 
benzene, etc., whereas their water solubility is small, except for a 
few with low molecular weight63. On the other hand, ammonium 
salts are lipophobic owing to their ionic character. These properties 
can be applied to the separation of amines from other organic mate- 
rials dissolved in solvents of low polarity. Precipitation by acids from 
these solutions, according to equation (7), has been applied qualita- 
tively and quantitatively. The extraction of ion pairs by organic 
solvents is sometimes possible owing to the hydrophobic character of 
the radicals attached to the ammonium moiety64. 

R1RaR3N + HX R1RaR3NH+X- 
(R1, Ra, R3 = H ,  alkyl, aryl) 

A great variety of salts derived from amines have been used for 
analytical purposes, a partial list of which appears in Table 4. It  
should be noticed that the nitro compounds listed in this table are 
both protonic and .rr acids, and therefore their derivatives may be 
ammonium salts, or under certain circumstances .rr complexes. With 
the commercial availability of reagent 18, the preparation of tetra- 
phenylborates has become an important method for the determination 
of organic bases 95. 

c. Aqueous titmtionr. Amines in aqueous solution interact with water 
yielding two formal species: a hydrate in which water is hydrogen 
bonded to the nitrogen atom, and an ammonium ion. The former can 

Perchloratesee 
Antimony(111) iodide complexes (9, 10, M = Sb) 
Bismuth(111) iodide complexes (9, 10, M = Bi) 
Chloroaurates 
Metapho~phates~~ 
Phosphomolybdates 
Phosphotungstate~~~. 
Silicotung~tates~~. 73-7e 

Fluor~silicates~~ 
Reinecke salts (11) 78* 

Chloroplatinatese5~ 79 

Oxalates 65 

Imidazole-4,5-dicarboxylates (12) 
3,5-Dinitrobenzoatesal 
2,4-Dinitroben~oates~~ 
3,5-Dinitro-o-toluatese3 
3,5-Dinitro-p-toluatese4 
Picrates (13) 6 5 , 7 9 3  85,86 

Picrolonates (14) 7 9 9  87-89 

Flavianates (15) O0 

Styphnates (16) 79.91 

2-Nitro-1,3-diketohydrindene salts (17) 92 
Tetraphenylborates (18) 7 9 v 9 3 - 9 7  

a Formulae 11 to 18 belong to the reagents. 
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TABLE 4. Salts derived from amines and used for analysisa. 

Halidese5 
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be considered as the most abundant species when amines are dis- 
solved in waterg8-loo, whereas the latter is the result of the acid-base 
dissociation of the former according to equation (8). 

\ \ +  
-N-..H--OH c -N-H + OH- 
/ / 

(8) 

The equilibrium favours the undissociated form on the left hand 
side of equation (8), but it can be displaced to the right by addition 
of a strong acid which will react with the hydroxide ions. Titrations 
with standard mineral acids can be carried out easily in aqueous 
solution when the amine has pKa 2 9, while for lower values it is 
difficult to distinguish the end-point. By adding neutral salts to the 
solution, the potentiometric break is enhanced, allowing better 
detection of the end-point lol. lo2. 

The low solubility of most amines in water is usually corrected by 
adding organic solvents such as ethanol, methanol, or dioxane. 
Another potential source of error arises from the possibility of associa- 
tion in solution, for example if the ammonium ion and a neutral 
amine molecule become associated the potentiometric break will be 
produced before the equivalent amount of acid has been added, as 
was found to be the case with aminophenols lo3. 

Amino acids in the zwitterion form104. lo5 can be titrated with 
mineral acids only if the acid moiety is a weak acid such as a carboxyl 
group, as in equation (g), which is a special case of titration of am- 
monium salts of weak acids. 

NH3+ - CO2- + H+ NH3+ - C0,H (9) 

Aqueous titrations of amines are amply discussed elsewherel4~ 15*37. 

d. Nonaqueous titrations. Three main purposes may be served by 
carrying out titrations in nonaqueous solvents: increased solubility, 
change of the pH scale, and resolution of mixtures. The prediction of a 
potentiometric titration curve in an arbitrary solvent is a difficult task, 
in which many factors intervene, such as dielectric constant, definition 
of acid and base in relation to the solvent, electrodes, actual structure 
of conjugate acids and bases, etc. Acetic acid, sulphuric acid, acetonit- 
rile, and alcohol-water mixtures have been extensively studied and 
were reviewed elsewhere lo6. Some solvents will be treated here briefly: 

Acetk acid. Bases with pKa 2 2 can be titrated in anhydrous acetic 
acidlo7, where they show a good potentiometric break. On the other 
hand, in this solvent bases become distinguishable only if their pKa 
values differ widely, and it is therefore not recommended for the 
determination of mixtures in which concentrations of the various 
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components are requiredlo8. Standardised perchloric acid in anhy- 
drous acetic acid is the titrant most frequently used. Very weak bases 
such as diphenylamine were titrated with this solvent-titrant system 
by differential thermometrylog. I t  should be noted that approxi- 
mately 0.6% of water is contained in a 0 . 1 ~  perchloric acid solution 
prepared from commercially available reagents, and if strictly an- 
hydrous conditions are required, it can be removed by treatment 
with the required amount of acetic anhydridellO. 

Acetic anhydride. This is also an excellent solvent for titrating organic 
bases, giving good end-points when they have pKa 2 0.5 lo7, although 
acetylation may occur to some extent in certain cases. Standard 
perchloric acid l o 7 9  or f lu~r~sulphuric acid 113 in acetic an- 
hydride have been used as titrants. Mixtures of acetic acid with acetic 
anhydride were also proposed as solvents for the titration of 
amineS107. 114.115 

Acetonitrile is a solvent in which excellent end-points and resolution 
of mixtures can be attained 1 4 9  l17. I t  has, however, the disadvantage 
of enabling the titration of many amides which may be mixed with 
amines in the sample. Perchloric acid is usually the titrant. Hydrogen 
bromide was used for thermometric titrations of amines in this 
solvent l 18. 

Nitromethne has properties similar to those of acetonitrile 
Dioxan gives good end-points. I t  can be used for titrating bases such 

as pyridine, but titrations of aniline were not satisfactory in this 
solvent. The titrant is perchloric acid lZ2. 

Glycols give good resolution in the titration of amines with close 
pKa values l 2 3 ~  124. 

Many other solvents have been used for the determination of pure 
and mixed amines. The subject is amply reviewed and discussed 
elsewhere 14.15.37.125-128. 

2. Reaction with Lewis acids 

A limited application of Lewis acids has been made in analyses of 
amines; boron t r i f l~o r ide l~~ ,  titanium tetrachloride, and tin tetra- 
chloride130 were used to titrate heterocyclic bases in aprotic solvents. 
Other applications connected with steric effects in amines will be 
discussed in section IV.C.4. 

3. Complexes with metal ions 

Amines can coordinate their free electron pair into empty orbitals 
of some metal ions, much in the same way as ammonia does in inorganic 

4* 
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complexes. This has found some application in the detection and 
determination of amines although the scope of each reaction is limited 
by factors such as the type of amine analysed and interferences from 
other classes of compounds. 

Aqueous solutions of copper(11) salts give a green to blue colour or 
precipitate in the presence of water-soluble amines16. In organic 
solvents, and preferably in the absence of water, aliphatic amines 
form a complex with excess of copper(11) chloride. Although the 
structure ofthis complex is unknown, it has composition 2CuC1,. amine, 
becoming therefore useful for quantitative analysis131. Amino acids 
yield complexes with the same salts, which are stabilised by a chelate 
structure 19. After isolation of the complex, it can be analysed for its 
copper content g r a ~ i r n e t r i c a l l y l ~ ~ , ~ ~ ~  or c ~ l o u r i m e t r i c a l l y ~ ~ ~ - ~ ~ ~ .  

Ferric complex ions have been used for very sensitive tests of 
detection and identification of certain classes of amines. Green to 
blue complexes are formed by the reaction of primary aromatic 
amines with sodium pentacyanoaquoferriate, as in equation (10) 

When a secondary amine is treated with sodium nitroprusside 
(Na,[Fe(CN),NO]) in the presence of acetaldehyde, acetone, pyruvic 
acid, etc., blue to violet compounds of unknown structure are ob- 
tainedg. 137, 138. This is the so-called Rimini test139. A colourimetric 
method for determining secondary amines is based on this reaction 140. 

I n  the absence of oxidants, cobalt(11) nitrate in a basic medium 
yields deeply coloured complexes with certain classes of amines, such 
as histamine (20), which can thus be determined colourimetrically. 
The formation of such complexes does not seem to depend on the 
presence of the imidazole (21) partial structure, although 21 itself 
yields a violet precipitate 4. 141. 
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Copper and cobalt complexes of amino acids have found applica- 
tions in the solution of stereochemical problems, as mentioned in 
section IV.C.2. 

4. Quaternisation 

Amines react with alkyl halides or certain esters attaining a higher 
degree of alkylation. Primary and secondary amines give, usually, 
mixtures of amines and ammonium salts while tertiary amines under- 
go a one-step reaction (equation 1 l ) ,  the product of which is relatively 
easy to separate and purify. Some reagents which raise the degree of 
substitution by one only, are treated in section II.C.3, and similarly 
sultones react according to equation (12), the best results being 
obtained with primary a m i n e ~ l ~ ~ .  

Quaternisation reactions can be carried out with alkyl halides such 
as methyl iodide143.144, and esters of strong acids such as methyl 
2,4-dinitroben~enesulphonate~~~, methyl p-toluene~ulphonate~~~, 
methyl picrate (0-methyl derivative of 13) 147, and methyl sulphate148. 
The reaction can take place with or without solvent and at tempera- 
tures ranging from room temperature up to that of refluxT9. 143-145. If 
the quaternary salt is obtained quantitatively it can be filtered off 
and weighed, or otherwise determined according to section 111. 

Some amines in chloroform solution yield the corresponding 
N-(dichloromethy1)ammonium chloride149. This reaction may lead 
to abnormal products, as is the case with 22, from which 23 is 
derived 150. 

For heterocyclic bases a method of determination was proposed 
based on quaternisation with ethyl iodide or methyl sulphate, followed 
by treatment with basic potassium permanganate. Volatile arnines 
are thus formed which can be collected in standardised mineral acid 
and back titrated 148. 
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Certain complex structures yield with alkylating reagents atypical 
products, for example acronycidine (24) on treatment with ethyl 
iodide yields the N-ethyl analogue of isoacronycidine (25) 151. More 
complex results were reported for the action of the same reagent on 
the similar compound dictamnine (34) 151 (section II.C.2.b). 

A method based on quaternisation was proposed for the detection of 
/3-hydroxyethylamine~~*~~~, which can be possibly extended to other 
B-substituted ethylamines. It  consists of heating the amine with sodium 
chloroacetate. A betaine is first formed (equation 13), which decom- 
poses on further heating, yielding acetaldehyde (equation 14). The 
latter can be detected with a morpholine-sodium nitroprusside 
solution (compare with the Rimini test in section II.B.3). 

5. Some oxidation methods 

Oxidations of amines usually yield degradation products, some of 
which provide indirect evidence for the presence of different types of 
amines. 

A solution of potassium dichromate in sulphuric acid has been used 
for the detection of classes of amines according to the colour changes 
observedls3, and in thin-layer chromatography for the identification 
of a ry lamine~l~~.  Ceric sulphate in sulphuric acid can be used for 
spotting alkaloids and probably other bases in thin-layer chromato- 
graphylSs. A standard solution of ceric sulphate was used for deter- 
mining p-methylaminophenol lSe. 

Lead dioxide in dilute acetic acid or alcohol reacts with aromatic 
amines giving characteristic colours1s7. The same oxide dissolved in 
phosphoric acid can be used for colourimetric determination of aro- 
matic a m i n e ~ l ~ ~ ,  
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The following oxidants were reported to give colour reactions with 
aromatic amines, which may be used for identification purposes under 
controlled conditions: chloric acid ls9, ammonium persulphate-silver 
nitrate lsO, benzoyl peroxide lel, and sodium hypochlorite le2. Amines 
with partial structures 26 and 27, where R1, R2 = H, alkyl, give the 
haloform reaction with hypochlorites in basic media le3. 

-CHa 

N-Iodosuccinimide with primary and tertiary amines yields stable 
brown solutions whereas with secondary amines the colour fades in a 
few minutes; N-bromosuccinimide yields orange precipitates with 
tertiary amines16.1e4, and gives colour reactions which may be of 
aid in the classification of other types of aminesle5. 

6. Spectral properties of the electron pair 
a. Electronic spectrum. The p electrons of amines have an absorption 

band at the fringes of the far ultraviolet region, due to a transition from 
a p orbital to an antibonding a orbital of nitrogen. Thus trimethyl- 
amineles and piperidine (28) le7 have a band at 200 mp, ems1 4000. 
It  has been suggestedle6 that this band can be used to distinguish 
primary, secondary, and tertiary amines, but this region is frequently 
obscured by other chromophores and is therefore rather difficult to 
interpret in more complicated cases lea. A band at - 2 14 mp, shows 
that the amino group is not attached to an unsaturated carbon atom, 
as otherwise the band is displaced towards longer wavelengths l". 
Further spectral properties associated with transitions of the p elec- 
trons of amines are discussed in section IV, in connection with 
molecular structure. 

b. Vibrational spectrum. Bands in the 2800 cm-l region are associated 
with the p electrons of certain amines, because they disappear on 
coordination of these electrons170. Some of the structures in which 
these bands arise are the following: N-methyl and N, N-dimethyl (not 
in N-ethyl) with medium to strong bands 171-174, in cyclic compounds 
when two or more adjacent C--H groups are tram to the electron pair 
as in 10-methyl-tram-quinozilidine (29), with a group of small 
bands175, and in other compounds such as di- and triethylamine, 
piperidine (28), N-ethylpiperidine, morpholine (4), etc., with a group 
of small bands 17e. 
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The N-methyl bands may be of aid in the further characterisation of 
the molecule172 as they appear at 2810-2820 cm-l in aromatic 
amines and at 2780-2805 cm-l in aliphatic or alicyclic arnines. A 
dimethylamino group attached to an aromatic system has a band 
near 2800 cm-l, and when attached to an aliphatic or alicyclic 
system it has two bands, a strong one at 2765-2775 cm-l  and the 
second one at 2810-2825 cm-l. 

C. The N-H Bond 

Among the most important reactions of ammonia and of amines are 
ammonolyses and condensations. Both start with an attack of the 
p electrons on an electrophilic centre, followed by the loss of one or 
two protons, and other transformations depending on the electro- 
phile. These reactions are the basis of many analytical methods for 
amines. Other methods are based on the instability of the bond, on 
its ability to form hydrogen bonds, and on its distinctive vibrational 
and nuclear magnetic resonance spectra. 

I. Active hydrogen 

The N-H partial structure confers upon primary and secondary 
amines a set of properties which can be connected mainly with two 
phenomena: active hydrogen and hydrogen bonding. Both are inter- 
related, although the methods of determining the former are usually 
'chemical', while the latter is investigated mainly through physical 
properties as shown in section 1I.E. 

Contrasting with the high thermochemical stability of the N-H 
bond (bond energies at O'K, in kcal/mole: C-H 98.2, C-N 78, 
N-H 92.2177) it is most unstable kinetically, and is capable of under- 
going extremely fast proton interchange reactions in protonic solvents 
such as water or a l c ~ h o l s ~ ~ ~ ,  and even in the gas phase this interchange 
is probably very fast 17g. 

Various methods have been used for detecting and determining 
active hydrogen in general, and they can be applied with diverse 
degrees of success to amines. 
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a. The Zerewitino$ method. This consists of allowing the active 
hydrogen compound to react with a Grignard reagent (equations 15 
and 16) and measuring the evolved h y d r o c a r b ~ n ~ ~ ~ - ~ ~ ~ .  

RNHa + 2 CH3Mgl ---+ RN(Mgt), + 2 CH, (15) 

An interesting example of a positive Zerewitinoff reaction is pro- 
vided by sempervirine (30), in spite of its lack of N-H bonds. I t  was 
proposed that the active hydrogen is present in the methylene group 
marked with (*) in 31, as 31 is a resonance form of 301a3. 

b .  Lithium aluminium hydride. In  the presence of active hydrogen 
compounds (X-H) LiAIH, decomposes according to equation (1 7), 
and the evolved hydrogen is measured la4, la5. 

X-H + 3 LiAIH, ---+ X-(LiAI),,, + Hz (17) 

c.  Isotopic exchange methods. Amines exchange their active hydrogen 
among themselves and with other active hydrogen compounds, in 
particular with water. This provides a method for detecting and 
determining active hydrogen by equilibrating with pure deuterium 
oxide, and then estimating the amount of 0-H bond formed by 
means of density measurementsla6, i.r. spectrophot~rnetry~~~,  n.m.r. 
s p e c t r o s c ~ p y ~ ~ ~ ,  or alternatively, by using tritium-labelled water and 
measuring the radioactivity of the amine after equilibrationla9. 

d. N-H and C-H spin-spin coupling. That the amino group is able 
to exchange protons in aqueous solutions was also shown by nuclear 
magnetic resonance. In  solutions of high pH methylamine shows a 
singlet corresponding to the three methyl protons, although a triplet 
could be expected from coupling of these protons with the two on the 
nitrogen atom. The singlet was interpreted as a result of the rapid 
exchange of the protons on the amino group, which does not allow 
their alignment with the external field, and therefore the spin states 
of the amino protons are averaged to zero. On the other hand, in solu- 
tions of low pH, where the methylammonium ion is prevalent, proton 
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exchange with the solvent occurs at a slow rate and a quartet is 
observed for the methyl group, resulting from spin-spin coupling 
with the three ammonium ~ r o t o n s l ~ ~ .  

1 - ---- - 
The analysis of active hydrogen is extensively discussed else- 

where15. 180.185.191.1Q2. 

2 Acylation 
Table 5 summarises some of the derivatives obtained by acylation 

(equation 18), which have found application in analysis. Acyl 
derivatives are widely used for identification p ~ r p o s e s ~ . ~ ~ .  

RIRaNH + Acyl-X ---+ R1R2N-Acyl + XH (18) 
(R1, Ra = H ,  alkyl, aryl; X = halogen, OH, alkoxy, 0-acyl, etc.) 

TABLE 5. N-Acyl derivatives of primary and secondary amines. 

Derivatives Type of reagent 

Acetarnides 184.103-204. a Anhydride or acyl chloride 
Formamides 162, 205-207 Acid or mixed acetic-formic 

Trifluoroacetamides lB2# 2088210, 8 
anhydride 

Anhydride 
p-Nitrophenylacetamides 212 A C ~ ~  chloride 
Benzamides 213-210. a Anhydride or acyl chloride 
3,5-Dinitrobenzamides 220-222 Acyl chloride 
p-Phenylazobenzamides 223 Acyl chloride 
Phthalimides 2 2 4 9  a,  c Anhydride 
Pyromellitic diimides aa5, a, c Dianhydride 
N- and N,N-substituted 

3-nitrophthalamic acids 227* a Anhydride 
3-Nitrophthalimides 227, a* c Anhydride 
N, N-Diphenylureas 228 Acyl halides 
Benzenesulphonamides 22e-231, a Acyl chloride 
p-Toluenesulphonamides 72. 232-234 Acyl chloride 
Benzylsulphonamides 233 Acyl chloride 
Methanesulphonamides 235 Acyl chloride 
p-Bromobenzenesulphonamides 236 Acyl chloride 
m-Nitrobenzenesulphonamides~37 Acyl chloride 
Sulphonebisacetamides 238 Ethyl ester 
~-Phenylazobenzenesulphonamides23e Acyl chloride 
2,4-Dinitrobenzenesulphenamides 240 Sulphenyl chloride 
o-Nitr~benzenesulphenamides~~~. 242 Sulphenyl chloride 

a See text. 
Derived from esten of amino acids. 
Primary amines only. 

a. Acetylation. A great variety of methods for the preparation of 
acetamides from acetic anhydride have been suggested, both in the 
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absence of catalyst16 and in the presence of catalysts such as 
acids193-195, pyridine16,1gs.197, and sodium hydroxide8. 

Although this reaction is of great value in the characterisation of 
primary and secondary amines, the reagents can cause rearrangements 
obscuring structural elucidation. Thus for example, harmaline (32) 
undergoes acetylation at N,,, yielding compound 331Q8.19g. 

Acetylation with acetic anhydride in anhydrous pyridine can be 
used for the determination of primary and secondary amines according 
to equations (19) and (20). 

RNH2 + (CH3CO),0 + RNHCOCH, + CH3C02H (19) 

R2NH + (CH3CO)20 ---t RaNCOCH3 + CH3COaH (20) 

The amount of amine reacted is determined by titration of the 
liberated acidlg6 or by the amount of water necessary for hydrolysing 
the excess acetic anhydridelg7. 

Acetylation proceeds at different rates for alcohols, phenols, ali- 
phatic amines, and aromatic amines. I t  is possible therefore to deter- 
mine the latter in the presence of all the others200, or sometimes even 
in alcoholic solution201. Similar determinations based on the use of 
acetyl chloride were proposed202* 203, but the anhydride methods seem 
to be more advantageous15. 

Further discussions of this reaction and lists of acetamides can be 
found elsewhere8s 10.14-16.37.203.204. 

b. Benzoylation. This reaction has found its main application in the 
characterisation of compounds as ' a ~ y l a t a b l e ' ~ ~ ~ ,  and in the identi- 
fication of primary and secondary amines. 

Benzoylation of certain compounds may yield atypical products, 
for example dictamnine (34) gives no reaction with acetic anhydride 
but yields N-benzoylnordictamnine (35) on treatment with benzoyl 
chloride 213, and myosrnine (36) yields compound 37 on treatment with 
benzoic anhydride 214. 

Further discussions of benzo~lation and lists of benzamides can be 
found elsewhere8s 1 0 ~ 1 ~ 1 6 . 2 0 4 , 2 1 ~ 2 l Q .  

c. Phthloylatwm. Phthalic anhydride 2a4 and pyromellitic anhydride 
(38) a a 5 9 2 2 6  are reagents for the determination of primary and second- 
ary amines. 
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3. Nitroarylations and nitrobenzylations 
Certain aryl and benzyl halides react with primary and secondary 

amines yielding the corresponding secondary and tertiary amines, in 
addition to hydrogen halide, much in the same fashion as described 
in section II.B.4. However, by virtue of the electronegative nature of 
the reagents, the reaction does not proceed further up to quaternisa- 
tion as with the previous case, neither does it yield quaternary am- 
monium compounds with tertiary amines. 

Many authors include these reactions among acylations, based on 
the similarity of the processes and the nomenclature of some reagents, 
for example from picric acid (13) one prepares picryl chloride which 
yields a picramide according to equation (18). 

The reactions of amines with p-nitrobenzyl and of 
amino acids with 5-fluoro-2,4-dinitroaniline 254, were recommended 
for identification purposes. So was picryl which can be 
also used in quantitative analysis, by determining the hydrogen 
chloride released in the r e a ~ t i o n ~ ~ ~ . ~ ~ ~ .  

2,4-Dinitrophenyl chloride or fluoride with amines give a strong 
colour which under certain conditions can be tentatively correlated 
with the type of arnine, i.e. yellow for primary amines and orange to 
brown for other types9. The derivative is useful for identification 
purposes 257. 

2,4-Dinitrophenyl fluoride has found wide application in biochemi- 
cal analysis, in problems related to amino acids, peptides, and proteins, 
such as the chromatographic separation and identification of amino 

259, and the analysis of end amino acids of peptidic chains, 
(equations 27 and 28) 260-265. The same reagent was used for the 
determination of primary and secondary amines in genera1266v267 and 
of a-amino acids in 26g, by measuring the derivative 
spectrophotometrically after extraction with a suitable solvent or 
after chromatographic separation2''. The spectra of the derivatives 
present bands at 350 and 390 mp, providing a way of distinguishing 
between primary and secondary amines, as the ratio of the extinction 
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coefficient of the former band to that of the latter varies from 0.4 to 
0.8 for primary amines, and from 2.1 to 2.4 for secondary aminesZ7l. 
I t  was pointed out15 that the ratio is 2.1 to 2.4 for a-amino acids, that 
is, similar to the case of secondary amines. 

I. Bass 

2,4-(N0,),C6H3F + NH,CHRCO-Peptide residue m 
2.4-(N0,),C6H3NHCHRCO-Peptide residue (27) 

H,O(Acid) 
2,4-(N02),C6H3NHCHRCO-Peptide residue 2,4-(N02),C6H3NHCHRCOaH 

+ Peptide degradation products (28) 

The applications of 2,4-dinitrophenyl fluoride in organic analysis 
are amply reviewed elsewhere 260. 272. 

4. The Folin reaction 
In  this method primary aliphatic and aromatic amines yield 

coloured products by nucleophilic displacement of the sulphonic 
group of 1,2-naphthoquinone-4-sulphonic acid (44) (equation 29) 273. 

This reaction has also been applied in colourimetric determina- 

(44 

5. Ureas, thioureas, I ldantoins, and thiohydantoins 

Primary and secondary amines react with aryl isocyanates, as in 
equations (30) and (31), or with azides of arylcarboxylic acids, after 
their rearrangement to isocyanates, according to equation (32). 

ArN- + NHaR - ArNHCONHR (30) 

ArNa + NHR, ArNHCONR, (31) 

ArCON, - ArN=C=O + N, (32) 
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When the arylurea derivative of an a-amino acid is treated with 
acid a hydantoin is formed, according to equation (33), which can be 
used for detection and i den t i f i~a t i on~~~ .  

H 
I t  is sometimes advantageous to use aryl isothiocyanates instead of 

aryl isocyanates yielding the corresponding thioureas, as these reagents 
are more resistant to decomposition by water8. Both aryl isocyanates 
and aryl isothiocyanates were found to yield atypical products with 
certain enamines, as shown for example in (34), where a vinylogue 
of an arylurea is obtained from an aryl i s ~ c y a n a t e ~ ~ ~ .  

Table 6 summarises the ureas and thioureas derived from amines 
and used in analysis. 

TABLE 6. Arylureas and arylthioureas derived from primary and secondary 
amines. 

Derivatives Type of reagent 

N, N-Diphenylureas 228 

a-Naphthylureas 278 

P - N a p h t h y l u r e a ~ ~ ~ ~  
m-Chlorophenylureas 280 

p-Chlorophenylureas 281 

m-Bromophenylureas 280, 282 

p-Bromophenylureas 283. 284 

m-Iodophenylureas 285 

p-Iodophenylureas 
m-Nitrophenylureas 2877 288 

p-Nitrophenylureas 
3,5-Dinitrophenylureas 2 B 0 g  291 

2,6-Dinitro-p-tolylureas 2B2 

Phenylthioureas 203 

a-Naphthylthioureas 204 

P-Naphthylthioureas 203 

p-Biphenylylthioureasm3 
o - T o l y l t h i ~ u r e a s ~ ~ ~  
~-Chlorophenylthi~ureas~~~ - 

m-Nitrophenylthioureas 2g5 

Carbamoyl chloride 
Isocyanate 
Isocyanate 
Isocyanate 
Isocyanate 
Isocyanate or benzazide 
Isocyanate or benzazide 
Benzazide 
Isocyanate 
Isocyanate or benzazide 
Isocyanate or benzazide 
Isocyanate or benzazide 
Benzazide 
Isothiocyanate 
Isothiocyanate 
I~othioc~anate  
Isothiocyanate 
Isothiocyanate 
Isothiocyanate 
Isothiocyanate 
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An important application of phenyl isothiocyanates is the analysis of 
end amino acids in peptides and proteins. This is represented by 
equations (35) to (39), and involves derivatives of the end amino acids 
such as thiazolines (45), phenylthioureas (46), and phenylthiohy- 
dantoins (47) 2Q6-301. 

PH 8-9 
C6H,NCS + NH,CHRCO-Peptide residue --+ 

C6H6NHCSNHCHRCO-Peptide residue 

C6H5NHCSNHCHRCO-Peptide residue H P ( H  +) 

Peptide c6H5NHr$ + degradation products 

0 

c6H5NHr=$ HaO(H')l C,H,NHCSNHCH RC0,H 

R (fast) 
/' (46) 

0 
(45) 

The applications of phenyl isothiocyanate to biochemical analysis 
are amply discussed e l s e ~ h e r e ~ ~ ~ . ~ ~ ~ .  

The reaction of amines with phenyl isothiocyanate is of the second 
order and proceeds at different rates for different amines, thus pro- 
viding a means of determining the components of a mixture, by 
following kinetically the decrease of the amine concentration in the 
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reaction mixture 3029 303. Among aliphatic amines secondary ones react 
faster than primary ones, but akylarylamines react slower than prim- 
ary arylamines. In general aromatic amines react faster than aliphatic 
arnines 30a. 

6. Reactions with carbon disulphide 
Primary and secondary amines yield dithiocarbamic acids with 

carbon disulphide (equations 40 and 41). 

After discarding the excess reagent, the presence of dithiocarbamic 
acids can be detected by their catalytic action on the process in 
equation (42), as the evolution of nitrogen becomes patent, or by a 
black precipitate obtained on adding silver nitrate solutiong. 

2 NaN3 + I, ---+ 2 Nal + 3 N, (42) 

Iodine can be used to oxidise the dithiocarbamic acids to an 
isothiocyanate and sulphur; the latter is insoluble and therefore 
detectable by the turbidity it produces (equations 43 and 44) 304. 

Alternatively the dithiocarbamic acids can be oxidised with iron(111) 
chloride or mercury(11) chloride, as in equation (45), and the hydrogen 
sulphide easily detected 305. 

S S 
II II I. NaOC,H, 

RNHCSSCNHR '' Ia > 2RNCS+2S 

RNHCS,H + RNCS + H,S (45) 

Dithiocarbamic acids with copper(11) salts in the presence of am- 
monia give coloured complexes (48a). If the R groups are sufficiently 
hydrophobic the complex can be extracted into benzene for better 
detectiong. For secondary amines the complex 48a can be extracted 
into chloroform and measured spe~trophotometrical1y~~~~~~~. With 
nickel(11) salts coloured precipitates (48b) can be obtained 308. 

S NR, 

S=C 
/ \M/ \ 

r--S 
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Reactions (40) and (41) can be followed by direct titration of the 
dithiocarbamic acids with a l l ~ a l i ~ ~ ~ ~  310, or by precipitating complex 
48b and determining the nickel in the precipitate311. Secondary 
amines were determined coulometrically as the dithiocarbamate 
anions react with mercury(11) cations generated at the electrode, as in 
equation (46) 31a. 

The analysis of amines via dithiocarbamic acids is amply discussed 
elsewhere 14-16. 37. 

7. Reaction with sulphur trioxide 
Aromatic amines can be determined in dioxane solution by adding 

excess of sulphur trioxide (equation 47), then destroying the excess 
reagent with water and titrating the sulphuric acid thus produced313. 

8. Reactions of primary amines with aldehydes and ketones 
The general reaction described by equation (48), when carried out 

with certain reagents and under controlled conditions, provides good 
methods of detection and determination of primary amines, although 
some amines of other types may interfere. 

/ 
RINHa + O=/ - RIN=C + H,O (48) 

\R3 \R3 

(49) 
(R1, Rat R3 = H, alkyl, aryl) 

a. Benzaldehyde and similar reagents. Primary aliphatic and aromatic 
amines can be determined with benzaldehyde in nonaqueous solution. 
Excess of reagent is used and destroyed afterwards with hydrogen 
cyanide314 (equation 49), and the water produced according to (48) 
is measured by the Karl Fischer method315. 

C6H5CH0 + HCN + CBH5CH(CN)OH (49) 

2-Ethylhexaldehydel10 and vanillin (50) react, in a way similar to 
benzaldehyde, with primary aromatic amines; the Schiff base (49) 
derived from 50 can be determined spectrophotometrically31e. With 
salicylaldehyde (51) the use of hydrogen cyanide is avoided, and 
instead the excess reagent is titrated with standardised sodium 
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methoxide317, or otherwise the Schiff base is measured spectrophoto- 
metrically 318. 

A variation of the salicylaldehyde method, applicable only to 
primary aliphatic amines with an unbranched a-position, consists of 
carrying out the reaction in the presence of copper(11) chloride and a 
base such as triethanolamine, whence complex 52 is formed, which 
can be extracted and measured spectrophotometrically310. 

2,4-Pentanedione undergoes tautomerisation according to equation 
(50), and therefore resembles salicylaldehyde in its reactions with 
primary amines 319p 320. 

P-Dimethylaminobenzaldehyde is the reagent used in very sensitive 
tests for the detection and possibly identification of primary amines 
as coloured Schiff basesg* 321. Other amines, notably diphenylamine 
and pyrrole derivatives in which the NH group and at least one hydro- 
gen atom of the pyrrole ring are preserved, also give colour reactions 
with this reagent322.323. The reaction with the pyrrole derivatives is 
due to condensation of the aldehyde with a methylene group, pro- 
duced in the heterocyclic compound by tautomerisation according to 
equation (51). Condensations with pyrroles and other atypical amines 
can be avoided when detecting primary amines, by controlling the 
pH of the solution9. 

b. Glutaconic aldehyde. This compound yields with primary amines 
polymethyne dyes324-32e such as 56. The reagent is however un- 
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stable and has to be prepared not more than a few days before use, 
either by irradiating aqueous pyridine with ultraviolet light327 
according to equation (52) or by treatment of N-(4-pyridy1)pyridinium 
chloride hydrochloride with alkali328 according to (53). Products 53 
and 54 of these reactions are enolate salts derived from glutaconic 
aldehyde (55), and are able to condense with primary amines in the 
presence of acid (equation 54) 329. 

Glutaconic aldehyde can react with compounds other than primary 
a m i n e ~ ~ ~ ~ ,  for example it undergoes condensations at C-positions with 
pyrrole derivatives that tautomerise according to equation (5 1). 

The condensations of amines with aldehydes have been reviewed 
and discussed elsewhere l 4 - l 6 9  37. 

9. Reaction of a-amino acids with ninhydrin 

Ninhydrin (hydrate form, 57) 330,331 and similar reagents such as 
perinaphthalenetrione (hydrate form, 58) 332, 333 are capable of oxidis- 
ing a-amino acids in neutral solution. This provides a very sensitive 
detection method, as dyes such as 59 are probably produced in a pro- 
cess involving equations (55) to (57) in the case of ninhydrin, and 
similar ones for the other reagents. 
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RCCOzH 
I I + HzO W R C H 4  + NH, + COz 
N H 

The colour reaction is transient but it can be fixed with special 
reagents and applied for detection and identification of individual 
amino acids, by making use of polychromic methods, especially after a 
chromatographic separation 334-341. 

The determination of amino acids based on the ninhydrin reaction 
can be carried out in several ways: by spectrophotometry of the 
coloured s o l ~ t i o n s ~ ~ ~ - ~ ~ ~ ,  or spectral reflectance after chromato- 
graphic separation of the amino acids and colour development 339.346, 

by spectrophotometry of ninhydrin-zinc chloride complexes347, by 
determining the aldehyde obtained in equation (56), either chemic- 
ally342 or by gas chr~matography'~~, or by determining ammonia, 
carbon dioxide, or both, produced in equation (56) 348-354. 

The ninhydrin reaction has been amply discussed and reviewed 
elSewhere9, 14-16.133.192.355-359. 

10. Diazotisation of primary amines 
With nitrous acid, primary amines are diazotised (equation 58), 

secondary amines undergo N-nitrosation (section II.C.2.e), and ter- 
tiary aliphatic or alicyclic amines fail to react while tertiary aromatic 
amines may undergo C-nitrosation. 

+ 
R-NHS + HNOz + H+ ---+ R-NEN + HzO (58) 

(R = alkyl, aryl) 
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a. The van Slyke method. Primary aliphatic amines, including amino 
alcohols and amino acids, react with nitrous acid (equation 58), 
followed immediately by decomposition (equations 59 or 60). The 
amines are determined by measuring the amount of nitrogen 
e v o l ~ e d ~ ~ ~ . ~ ~ ~ .  Ammonia reacts as a primary amine, and has to be 
determined independently when present. Amines of high molecular 
weight or complex structure fail to give quantitative results37. The 
method has been amply reviewed14. 15* 37* 356. 

+ 
R-NEN + Olefin + H+ + Nn (60) 

b. Ayldiamnium salts. Primary aromatic amines can be detected, 
after diazotisation and coupling, as deeply coloured azo dyes are pro- 
duced in the presence of phenols or aromatic amines in solutions of 
controlled pH8.14. Quantitative analyses via diazotisation can be 
performed in various ways; for example by titrating with standardised 
sodium r ~ i t r i t e ~ . ~ ~ ~ ,  or by spectrophotometry of the diazonium salt 
itself363 or its coupled 

Several methods have been proposed based on the decomposition 
of diazonium salts. The volume of nitrogen can be measured after 
treating aryldiazonium compounds with copper(1) chloride14, potas- 
sium iodide 365, or titanium(111) chloride 366* 367. Otherwise, the excess 
catalyst can be determined, as in the case of titanium(111) chloride14, or 
chromium(~~) The diazonium compound strongly heated 
with hydriodic acid yields iodine which can be t i t ~ a t e d ~ ~ ~ .  

The differential kinetic method (section II.C.5) is also applicable 
to mixtures of primary aromatic amines, which after diazotisation can 
be determined by measuring the first-order rates of evolution of 
nitrogen, catalysed by copper (I) chloride 370. 

These methods are further discussed elsewhere 8. 14* 1 5 9  65. 

I I. Spectral properties of the N-H bond 

a. Vibrational spectrum. Two complementary spectroscopic methods 
are available, namely infrared and Raman spectroscopy. Unfortu- 
nately the latter has not yet acquired the popularity and widespread 
application of the former. Raman spectra can be used as finger- 
prints of compounds for identification, and for the detection of 
functional groups, among which amino groups appear with charac- 
teristic bands arising from N-H vibrations. The N-H group of 
primary and secondary amines has characteristic infrared absorption 
bands which are summarised in Table 7. 
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TABLE 7. Absorption bands of N-H in aminesa. 

Region (cm - l )  Origin of band 

1600 Deformation modes 
3400 Stretching (fundamental) 
5000 Combination of stretching and deformation modes 
6700 Stretching (1st overtone) 

l0000 Stretching (2nd overtone) 

" Data from references 170, 37 1 ,  and 372. 
The influence of hydrogen bonding is not included. 

Considerable discussion notwithstanding, the absorption band in the 
1600 cm-l region has been assigned to N-H deformation modes371. 
For primary amines a medium to strong band appears almost always 
at 1590-1650 cm-l;  in aromatic amines this can be confused with a 
band from an aromatic ring vibration near 1600 cm-'. In  the case 
of secondary amines this band is much weaker. 

The most useful region for analytical purposes is that of the funda- 
mental stretching modes. In  the absence of association, primary 
amines present two bands, which for aromatic amines appear at 
about 3400 and 3500 cm-l, while in the case of aliphatic amines they 
appear at frequencies, lower by about 100 cm-l. The lower frequency 
band is assigned to the symmetric and the higher to the asymmetric 
stretching mode, both being of medium strength 373-378. This pair of 
bands can be identified more easily if the correlation in equation (61) 
is Secondary amines show, in the absence of association 
phenomena, a single band in the 3300-3500 cm-l  region379-384. 
The intensities in the fundamental stretching region are much higher 
for aromatic and some heterocyclic primary and secondary amines 
than for aliphatic amines, and the former can be determined in this 
region 372,385,388. 

Primary amines have absorption bands in the 5000 cm-l region, 
probably arising from the additive combination of bending and 
stretching modes387. For aromatic amines it appears at 5050-5100 
cm-l and has been proposed for the characterisation and determina- 
tion of these corn pound^^^^*^^^. The absorptions of aliphatic amines 
are of about half the intensity of those of aromatic amines, appearing 
a t  somewhat lower frequencies, and it has been suggested that they 
too can be used for quantitative analysis372. 
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Primary aromatic amines have two bands assigned to the first over- 
tone of the stretching mode, the symmetric one appearing at about 
6700 cm-l and the asymmetric one at about 6900 cm-l, the former 
being some six times more intense than the latter389. Secondary 
aromatic amines have only one band in this region, near the site of 
the symmetric band of primary aromatic amines but of about half the 
intensity372r388*390. Primary and secondary aliphatic amines absorb 
at about 6500 cm- l, which is out of the range of the aromatic ones390, 
and allows the determination of mixtures of both classes388. I t  has 
been suggested that this and the combination region are better than the 
fundamental region for the determination of aliphatic amines, owing 
to the wider choice of solvents that can be used for this purpose372. 

Finally, in the second overtone region only very weak bands can be 
observed for aromatic amines, the most outstanding being the sym- 
metric band at about 9800 cm-l, of limited analytical value389. 

I t  has been pointed out that a possible way of distinguishing between 
primary, secondary, and tertiary amines is by treatment with acid 
and looking for the bands arising from the ammonium salt, as these 
are distinctive for each ammonium type170, 176. The problem of 
distinguishing between O H  and NH groups in the fundamental 
stretching region was also considered391. A comparison of absorption 
bands and intensities of functions containing N-H bonds can be 
found elsewhere 392. 

b .  Nuclear magnetic resonance spectrum. The resonance bands due to 
NH groups are summarised in Table 8. The main factors affecting the 
location and shape of the N-H bands are hydrogen 
the quadrupole moment of 14N, and the fast proton exchange occur- 
ring in certain solvents 394. TWO main effects stem from the quadrupole 
moment of 14N, namely a splitting of the band into a triplet, by coup- 
ling with the three states of 14N, and the bands becoming broad, even 
sometimes disappearing395, 396. The fast proton exchange occurring in 
certain solvents tends to sharpen the N-H band (see however 
reference 397, and also section 1I.C. 1). 

TABLE 8. Chemical shifts of NH groupsa. 

Type of compound Chemical shift 

Aliphatic and alicyclic amines 2.9-5.0 
Aromatic amines 3.6-4.7 
Amides 54-8.0 

' Data from reference 393. 
In parts per million (p.p.m.) of the 6 scale. 
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The values in Table 8 are only general guides for the assignment of 
resonance bands, and wide discrepancies have been observed, for 
example histidine (60) dissolved in trifluoroacetic acid presents a band 
at S - 1, assigned to the nitrogen-bonded irnidazole proton398. 

D. The N-C Bond 
I. Chemical methods 

The N-C bond of amines is very resistant to chemical attack and 
is usually cleaved only under drastic conditions. 

a. The Herzig-Meyer method3g9-402. When an amine and hydriodic 
acid are heated strongly, dealkylation occurs (equations 62 and 63). 

H 
\ 

N-R + HI j 1- 

/ / '\R 

The alkyl iodide can be determined by gravimetry, iodometry, or 
gas chromatography, and identified by the latter method or by 
preparing derivatives recommended for alkyl halides 2? 1°* 16. 

Akoxy groups undergo dealkylation more readily than amines, and 
in the presence of the former, after addition of the hydriodic acid the 
sample should be subjected first to distillation at 150°, in order to 
determine the alkoxy groups, and then to pyrolysis at 360°, where the 
Herzig-Meyer method is operative 403. 

The method is further discussed elsewhere 15. 358* 404. 

b. Fusion with benzoylperoxideO. On melting an amine with benzoyl 
peroxide, the N-alkyl substituents become oxidised according to 
equation (64). 

i n  the case of N-methyl compounds (R = H in equation 64) 
formaldehyde is liberated, which gives a violet colour with a chromo- 
tropic acid (61)-sulphuric ,acid solution405. When R = CH, or a 
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(61) 

somewhat higher homologue, the aldehyde produced can be detected 
by the colour it produces with a solution of sodium nitroprusside and 
morpholine, which is similar to the Rimini test described in section 
II.B.3. 

Compounds containing alkoxy or propenyl groups interfere with 
this method, as they too yield aldehydes on fusion with benzoyl 
peroxide. 

c. p-Substituted ethylaminesg. The process in equations (65) and (66) 
takes place when compounds of general structure X-CH2CH2-Y 
are fused with moist zinc chloride406. The acetaldehyde of equation 
(66) can be detected by the sodium nitroprusside-morpholine reagent. 

/ 
X, Y = OH, OR, N \ , SH, SR, halogen, etc. 

2. Vibrational spectrum 

Table 9 summarises the regions in which bands assigned to C-N 
vibrations appear. In the case of aliphatic amines407 the band is 
difficult to locate both because of its low intensity and the fact that it 
appears in a region where other bands also usually do371. The bands 
of aromatic amines407.408 can be used for confirmation of proposed 
structures, although the possibility of confusion with bands belonging 
to other groups should be born in mind. 

TABLE 9. Absorption bands of C--N stretching vibrationsa. 

Type of compound Region (cm-') Intensity 

Aliphatic amines 1020-1220 Weak to medium 
Aromatic amines 

Primary 1250-1340 Strong 
Secondary 1280-1350 Strong 
Tertiary 1310-1360 Strong 

Data from references 170 and 371. 
5-k C.A.G. 
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E. Hydrogen Bonding in Amines 
In sections 1I.A to 1I.D the main features of the amino group were 

examined from the point of view of organic qualitative and quantita- 
tive analysis. Section IV will deal with some of the structural problems 
posed by amines. I t  is convenient to bridge these two aspects of analysis 
with a brief examination of hydrogen bonding in the amino group, 
which has a deep influence on a wide range of physical and chemical 
properties used in the elucidation of molecular structure. The im- 
portance of hydrogen bonding can be more fully appreciated by con- 
sidering Table 10, in which nearly all these properties are listed. 

TABLE 10. Influence of hydrogen bonding on the properties of a systema. 

Intramolecular Intermolecular 
Property hydrogen bond hydrogen bond 

Structure of compound 

Geometry of bond 
Molecular weight 
Density 
Molecular volume 
Molecular refraction 
Viscosity 
Self diffusion 
Parachor 
Surface tension 
2nd Virial coefficient 

(Berthelot equation) 
Vapour pressure 
Boiling point 
Melting point 
Solvent power 

Thermal conductivity 
Acoustic conductivity 
Electric conductivity 

Dielectric constant 

Dipole moment 

Usually found in ortho, 
cis, peri, diequatorial, 
and equatorial-axial 
positions 

Usually bent 
Normal 

Decreased 
Increased 
Decreased 

Decreased 
Decreased 
Normal 

Normal 
Normal 
Normal 
Normal 

Normal 
Normal 
Normal 

Usually found in meta, 
faro, trans, and diaxial 
positions 

Usually straight 
Increased 
Increased 
Decreased 

Increased 
Decreased 
Decreased 
Increased 
Absolute value increased 

Decreased 
Increased 
Increased 
Increased if solute be- 

comes hydrogen bon- 
ded to solvent 

Increased 
Increased 
Increased if hydrogen- 

bonded network is 
formed 

Normal for solids and Increased for solids and 
variable according to variable according to 
molecular shape for molecular shape for 
liquids liquids 

Lower than calculated Higher than calculated 
for structure. Concen- for structure. Increases 
tration independent with concentration 
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TABLE l &(Cont.). 

Intramolecular Intramolecular 
Property hydrogen bond hydrogen bond 

Reaction rate Often influenced Often influenced 
Reaction mechanism Often influenced Often influenced 
Optical rotation Can be large if spiro Usually none 

structures are formed 
Electronic absorption Shifted Shifted 

bands 
Phototropy Often presented Seldom presented 
Vibrational spectrum 

Stretching frequencies Shifted down Shifted down 
(vs! 

Bendmg frequencies Shifted up Shifted up 
(v!,) 

Concentration depen- None 
dence of v, and vb 

Size of AV, Determined by function- 
al groups and size of 
ring formed 

Effect of phase change Small 
on AV, 

Intensity of stretching Somewhat increased 
band 

Half-width of stretch- Somewhat increased 
ing band 

Nuclear magnetic resonance 
Chemical shifts Shifts to lower field 
Concentration depen- Small 

dence of chemical 
shifts 

Present 

Determined by function- 
al groups 

Large 

Very much increased 

Very much increased 

Shifts to lower field 
Large 

a From G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, W. H .  Freeman and Company, 
San Francisco, 1960. 

Amino groups are capable of becoming associated among themselves 
or with other functions by two types of hydrogen bonding, formally 
represented as 62 and 63. In the former the amine acts as a weak 
protonic acid, and must therefore be primary or secondary (or an 
ammonium compound other than quaternary). On the other hand, in 
63 it acts as a weak base, sharing its F electrons, and can be any type 
of amine (but not an ammonium compound). 
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Hydrogen bonds of types 62 and 63 are relatively weak and there- 
fore amenable to investigation by i.r. spectroscopy 179. 384.409-41a. 

Special attention should be paid to the stretching frequencies of the 
N-H and X-H bonds, the shape and intensity of the absorption 
bands, and the effect of temperature, concentration, and deuterium 
exchange. 

F. Miscellaneous Chemical Properties 
I. Preliminary tests for detection and classification 

A great number of methods have been proposed hitherto in order to 
ascertain whether a nitrogen-containing compound is an arnine or not. 
I t  is possible to use some of these tests to classifjr amines into aromatic, 
aliphatic, primary, secondary, or tertiary. As the chemical process 
involved in most of them is vaguely known, results should be taken 
only as a helpful guide. Such tests include many of the oxidations 
described in section II.B.5 and the ones listed below. 

a. Potassium thiocyanate test. Salts of amines (not quaternary ammon- 
ium compounds) yield hydrogen sulphide on heating at 200-250' with 
potassium thiocyanate413. Compounds which liberate water on heating 
also give a positive test. The process is probably similar to the am- 
monium thiocyanate rearrangement (equation 67) 414* 415. 

b. Chloranil test. Chloranil (64) yields coloured products in the 
presence of amines. Amino acids do not react, but some amides such 
as anilides do. Aliphatic amines react more readily than aromatic 
amines, and the colour may be used for classification as follows 416. 4 l 7  : 
red-primary, violet-secondary, and emerald-tertiary. This re- 
action can be used for chromatographic development41e. 
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c. Reaction with triphenylmethyl dyes. All amines yield on melting with 
a mixture of 'fluorescein chloride' (65) and anhydrous zinc chloride, 
red water-soluble dyes of structure 66. Their fluorescence under U.V. 

illumination may be used to classifjr amines as follows: yellow-green 
fluorescence shows the presence of an NH-alkyl partial structure in 
66, orange fluorescence shows the N(alkyl), partial structure, and if 
an N-aryl group is present in 66 no fluorescence is o b s e r ~ e d ~ ~ ~ , ~ ~ ~ .  
Pyrroles, indoles, and carbazoles give blue fluorescence g. 

Bromophthalein magenta E (67) yields coloured derivatives with 
aliphatic amines in anhydrous solutions. The colour can be correlated 
with structure as follows: purple (X,,, 530-540 mp)-primary, blue 
(X,,, 570-580 mp)-secondary, and red (X,,, 520-530 mp)-ter- 
tiary4,1. 

pco2c2H. 

d. Lignin test. The lignin present in newsprint reacts swiftly at room 
temperature with primary and secondary arylamines, in the presence 
of strong acid, yielding yellow to orange spots. Aliphatic and alicyclic 
primary and secondary amines give the reaction on heating. Tertiary 
amines, amino acids, and amides do not react 16. 

e. o-Diacetylbenzene test. Primary amines, aliphatic and aromatic, 
undergo colour reactions with this compound. Secondary and tertiary 
amines, and some primary amines such as glucosamine give negative 
results 422. 
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f. Reaction with polycarboxylic acidr. Tertiary amines yield red to 
blue coloured solutions when heated briefly with malonic (68), 
citric (69), or aconitic acid (70), in acetic anhydride solution423. 
Aconitic anhydride (71) can also be used for this test417. 

C02H CHzCOzH CH2C02H CH,CO,H 

CH2 H O k 0 2 H  CCOzH 1 

Co2H CH2C02H 1 CHCOzH 1:: I1 

(68) (69) (70) H C=O 

(71) 
TABLE 11. Reagents for development of amines in thin-layer chromatographya. 

Amine for which reagent 
Reagent is recommended 

Bismuth(1rr) iodidelacetic acid (Dragendorff Alkaloids 
reagent) 

Cerium(rv) sulphate/sulphuric acid Alkaloids 
Chloranil (64) Aliphatic amines 
Chloroplatinic acid/potassium iodide Alkaloids, N-heterocyclic 

compounds 
Chromic acid/sulphuric acid Aromatic amines 
Cinnamic acid (72)/hydrochloric acid Indole derivatives 
p-Dimethylaminobenzaldehyde/hydrochloric Indole derivatives, ergot 

acid alkaloids 
p-Dimethylaminobenzaldehyde-2,4-pentanedione Aminosaccharides 
Formaldehyde/hydrochloric acid (Prochazka Indole derivatives 

reagent) 
Glucose/phosphoric acid Aromatic amines 
Iodine solution General reagent for organic 

compounds 
Malonic acid (68)/salicylaldehyde (51) Amines, N-heterocyclic 

compounds 
Mercury(r1) iodidelsodium hydroxide (Nessler Alkaloids 

reagent) 
4-Methylumbeliferone (73) N-heterocyclic compounds 
Ninhydrin (hydrate form, 57) Amino acids, amines 
Ninhydrin/copper(~~) nitrate (polychromatic Amino acids 

reagent) 
Nitric acid Alkaloids, amines 
Potassium iodate Sympaticomimetic aminesb 
Sodium 1,2-naphthoquinone-4-sulphonate Amino acids 

(Folin reagent, sodium salt of 44) 
Sodium nitroprusside/acetaldehyde (Rimini test) Secondary aliphatic and 

alicyclic amines 
Sulphuric acid (charring reagent) Alkaloids, amines 
Vanillin (50) Amino acids, amines 

a Data from references 16, 424, and 425. 
E.g. (phenylethy1)amine and derivatives. 
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2. Development of chromatograms 
In  Table l1  a list is given of the most usual developing reagents 

recommended for amines in thin-layer chromatography, many of 
which can be used for the same purposes also in column and paper 
chromatography. 

3. Ring substitution in aromatic amines 
Aromatic amines are usually very reactive towards electrophilic 

reagents yielding derivatives substituted at carbon atoms. Reactions 
such as nitration8 and b r ~ m i n a t i o n ~ . ~ ~ - ~ ~ , ~ ~  can be applied to the 
amine as such, or to the amine previously protected at the nitrogen site. 
Although the derivatives from these reactions are useful for identifica- 
tion and possibly quantitative purposes, the site and stoichiometry of 
the substitution are specific for every system, and no generalisation can 
be made. Aryldiazonium salts undergo coupling reactions with aro- 
matic amines to yield azo dyes, which can be used for detection and 
determination. In Table 12 some of the aryldiazonium salts used in 
analysis are listed. 

TABLE 12. Diazonium salts for coupling with aromatic amines. 

p-Acetylbenzenediazonium chloride4 
p-Aminobenzenediazonium chloride4 
p-Arsonobenzenediazonium chloride4a6 
Benzenediazonium salts4a7 
2-Carboxy-4-nitrobenzenediazonium r e s i n e s u l p h ~ n a t e ~ ~ ~  
2,5-Dichlorobenzenediazonium resinesulphonate 4a6 

m-Nitrobenzenediazonium chloride l4 

p-Nitrobenzenediazonium r e s i n e ~ u l p h o n a t e ~ ~ ~  
p-Nitrobenzcncdiazonium salts4.4a7 
p-Nitrobenzenediazonium t e t r a f l u ~ r o b o r a t e ~ " . ~ ~ ~  
p-Phenylazobenzenediazonium tetraflu~roborate~~'  
p-Sulphobenzenediazonium salts4. 427, 430 

p-Toluenediazonium chloride14 



122 Jacob Zabicky 

Ill. QUATERNARY AMMONIUM COMPOUNDS 
The analytical methods based on chemical reactions of compounds 
with structure 2, in which the nitrogen atom is bonded to four carbon 
atoms, can be grouped into two classes, namely methods preserving 
the cationic part of the molecule, and methods in which this part is 
destroyed. 

The latter class is rather limited as it involves, usually, drastic 
treatment of the sample. Quaternary ammonium compounds treated 
with morpholine yield tertiary amines (equation 68) which can be 
fractionally distilled and determined431. Simple quaternary am- 
monium compounds can be determined by repeatedly heating with 
sodium hydroxide and collecting the liberated tertiary amines, for 
example tetramethylammonium salts yield trimethylamine by this 
method 432. 

In the most important methods the ammonium ion is not destroyed. 
Quantitative analyses can be carried out by determining either the 
cation or the anion, whereas in detection or identification problems, of 
course, the cation has to be traced. 

Quaternary ammonium hydroxides are strong bases, comparable 
with alkali hydroxides, and therefore can be easily titrated with 
standardised mineral acid. This affords a method of determining 
quaternary salts, by using ion exchangers and titrating the resulting 
h y d r ~ x i d e ~ ~ ~ . ~ ~ ~ .  Ammonium salts other than quaternary will yield 
weak bases distinct from the strong quaternary ones. The converse ion 
exchange can be also carried out, thus alkaloid salts were converted 
into magnesium salts, and the metal cation determined435. 

Salts of weak acids such as ca rboxy la t e~~~~ ,  pi crate^^^^, or car- 
b o n a t e ~ ~ ~ ~  can be titrated with mineral acids. Ammonium halides 
can be converted into acetates by treatment with mercury(11) acetate 
in glacial acetic acid, and determined by subsequent titration with 
perchloric a ~ i d ~ ~ ~ . ~ ~ ~ .  Salts of strong acids, such as sulphates and 
halides, can be determined by measuring the anion441, or alternatively 
the quaternary cation can react to form complexes which precipitate, 
or remain in aqueous solution, or have to be extracted into organic 
solvents. These complexes can be measured directly, or indirectly by 
measuring the excess reagent. In Table 13 appears a list of reagents 
used for the determination of quaternary ammonium compounds 
by complex formation. 
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TABLE 13. Reagents for the determination of 
quaternary ammonium compounds. 

Reinecke salt (11) 3. 442 

Phosphotungstic acid 44" 

Potassium d i ~ h r o m a t e ~ ~ ~  
Picric acid ( la)  445. 448 

Dipicrylamine 447-44Q 

Potassium iodide450 
Potassium cadmium iodide (CdI, .2 KI) 451 

Sodium tetraphenylborate (18) Q5* 452, 453 

Alipal CO-436 14. 

Igepon T-77l4, 
Sodium lauryl sulphate 4 6 4 9  466 

Sodium dodecyl sulphate4S6 
Sodium s u l p h o s ~ c c i n a t e ~ ~ ~  
Eosin A (74) 4 5 8 7  c 

Bromophenol blue (75) 4 5 3 9  459-463. c 

Bromothymol blue (76) 4 4 Q 9  461* 462. c 

Bromocresol purple (77) 464, c 

Chloranil (64) c 

Aconitic anhydride (71) 465, c 

a Trade name for ammonium nonyl phenoxy polyethoxy 
sulphate of mol. wt. 504. 

Trade name for oleyl methyl tauride. 
C Can be used in colour reactions for detection. 

IV. ELUCIDATION OF STRUCTURES 

The chemist confronted with the problem of assigning a structural 
formula to a compound has a great variety of methods to aid him in his 
pursuit. His choice will usually depend on the amount of back- 
ground information available, the relation between the amount of 
work to be invested to the amount of information expected, and the 
adaptability of the method to the particular problem. Thus for 
example, if he has to find the structure of a crystalline organic solid, 
and assuming that all the requirements are met, a single method that 

5* 
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could solve the problem completely is x-ray diffraction. This however 
will probably be his last resource, as the method requires specialised 
training and can be extremely time consuming and expensive. 
Usually information is obtained from elementary analysis and physical 
properties such as melting point, boiling point, pK,, etc., and from 
i.r., u.v., n.m.r., and mass spectra. The compound is subjected to 
chemical reactions and the above proceedings repeated with the 
derivatives. At progressive stages it is possible to propose more and 
more detailed structures, until finally the elucidation is complete or 
no further advancement can be expected. I t  may then be necessary to 
resort to crystallographic methods for confirmation or completion of the 
solution of the problem. To round up the case a total or partial 
synthesis of the compound may be attempted, assuming that the 
structure of the starting material, intermediates, and products is 
unambiguously known. 

For example, the elucidation of the structure of festucine (78) went 
through the following steps466: elementary analysis and mass spectro- 
scopy showed formula C8HI4N2O and molecular weight 154; n.m.r. 
indicated the presence of one N-methyl group, the two nitrogen atoms 
were shown to be basic by preparing the dihydrochloride, pKa values 
2-5-3-0 and 8.25; the alkaloid underwent monoacetylation and 
mononitrosation, and the acetyl derivative was an N,N-disubstituted 
acetamide as shown from its i.r. spectrum; the oxygen atom was 
considered to be etheric since no carbonyl or hydroxyl stretching 
bands were observed; after strong heating with concentrated hydro- 
chloric acid festucine yielded a compound of formula C8Hl,C1N20, 
which showed a hydroxyl stretching band (and was diacetylated with 
acetyl chloride but only monoacetylated with acetic anhydride, 
pointing to a secondary alcohol structure) and from which festucine 
could be regenerated on treatment with base; and the dihydrochloride 
of festucine did not undergo hydrogenation, pointing to a saturated 
structure. From its physical and chemical properties, analogous to 
those of other known bases, it was concluded that festucine was a 
cyclic ether with pyrrolizidine skeleton, and the definitive structure 78 
was assigned after carrying out an x-ray diffraction 
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In the following sections an outline will be presented of the solution 
of some important structural problems in which the properties of the 
amino group are taken into account. I t  should be pointed out that the 
methods mentioned below, especially those based on spectroscopy and 
crystallography, are capable of yielding much more detailed in- 
formation than that stemming from the interactions of the amino 
group with the rest of the molecule alone, but the discussion of such 
applications lies beyond the scope of the present chapter. 

A. Saturated Vicinity of the Nitrogen Atom 

It  was shown in section II.D.l that chemical methods for the 
analysis of groups attached to the nitrogen atom require drastic 
treatment. On the other hand i.r., n.m.r., and mass spectroscopy 
afford excellent methods for such studies. In sections II.B.G.b, 1I.C. 1 l .a, 
and II.D.2 certain structural features of saturated amines yielding 
absorption bands in the infrared region were mentioned already, and 
no further treatment of i.r. spectroscopy will be made here. 

I. Nuclear magnetic resonance spectrum 

N-Methyl groups show a band at about 6 2-15 p.p.m. ; this is shifted 
to higher fields when -CH2-, -CHR-, or -CRR1- groups are 
interposed between the nitrogen atom and the methyl group, making 
the chemical shift almost indistinguishable from a hydrocarbon 
methyl group. In some cases it may be helpful to locate the band of 
the interposed methylene or methyne group at lower field (see below), 
and observe the splitting into a quartet for the free amine and a more 
complicated pattern when the amine is converted into an ammonium 
salt (see section II.C.l). The methyl bands of aryl-N-CH, and 
acyl-N-CH, systems468 are shifted towards lower fields, which is of 
great aid in the assignment of structures. 

Protons of N-methylene and N-methyne groups give rise to bands 
at slightly lower fields than those of N-methyl groups, and they too 
become shifted to lower fields by N-acetylation. 

Examples illustrating the chemical shifts of various saturated groups 
attached to the amino group are given in Table 14. The bands arising 
from N-H groups were treated in section 1I.C.ll.b. Detailed dis- 
cussions on this method can be found elsewhere393,469-472. 



TABLE 14. Nuclear magnetic resonance bands of alkyl groups in aminesa. 
(Groups containing the relevant protons are indicated by *). 

Structure Chemical shift 
~ ~ - - ~  - -..--- 

CH3*NR'R2 (R', R2 = H, alkyl) -2.15 
(CH3)2*NCH2CeH, 2.17 

,CH2GH2 

\ / 
CH2CH2 

CH3*CH2NR1R2 (R1, R2 = H, alkyl) 
CH3*CH2CH2CHaNR1R2 
(CH3)2*CHNH2 
(CH3)3*CNH2 
(CH3)2*NC6H5 
(CH3)2*NCeH4CHO-fl 
Alkyl-CH2*NHa 
CH2CH2* 
I \ 

CH3 
" Data from references 4-70. 

In parts per million (p.p.m.) of the S scale; S 0.00 for tetramethyhilane. 
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1 2. Mass spectrum 
! Mass spectroscopy provides a powerful means for the elucidation 
l of the structure of alkylamines. The radical-ions derived from these 

compounds tend to become stabilised by undergoing scission of 
a,P-carbon-carbon bonds, as in equation (69). 

+ + 
[R3--CH2-NR1R2]'+ ---+ R3. + [CHZ=NR1R2 t-t CHZ-NRIRz] (69) 

(R1, R2, R3 = H, alkyl) 
(79) 

Cation 79 is capable of undergoing further cleavage if R1 or R2 
have a hydrogen atom in the a-, p-, y-, or &positions, according to 
equation (70), where M represents a neutral molecule derived from 
R2 by scission and loss of one hydrogen atom473-476. The same 
process of course can take place on cation 80. 

R' R1 
+/ + /  

CH,=N ---+ M + CHz=N (70) 

"R2 
\ 

H 

(79) (80) 

Cleavage according to equation (69) has been applied in the study 
of amino acid sequences in oligopeptides, by reducing the peptide 
to an amino alcohol (81) (equation 71) and determining its mass 
spectrum. 

H-C-NH- H-CO,H > 
I I 

t 
o a 

In  81 scissions at bonds a, b, or c,  yield two different ions, as two 
heteroatoms can be responsible for the scission. If the reduction is also 
carried out with lithium aluminium deuteride (LiAlD,), the assign- 
ment of the peaks in the mass spectrum will be more facile, as a 
displacement of + 2  mass units will be observed for every reduced 
carbonyl group included in the ion, for example in 81 the molecular 
ion and the ions resulting from scissions at d, e, or f will be displaced 
by + 6 mass units, the ion on the left of a scission at b will be displaced 
by + 2 units, and that on the right side by + 4 ~ n i t s ~ O . ~ ' .  
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B. Unsaturated Vicinity of the Nitrogen Atom 
I. Ultraviolet spectrum 

The amino group, when attached to an unsaturated system, shifts 
the absorption bands in the ultraviolet and visible regions towards 
longer wavelengths (see Table 15) and enhances their intensity. 

TABLE 15. Bathochromic shifts due to an 
-NR, (R = H, alkyl) group attached to an 

unsaturated systema. 

System Shift (mp) 

C=G-NR, 40 
C=G-C=C-NR, 65 
GBH5-C=C-NR, 58 
O=C-C=C-NR, 95 
H02C-C=G-NR, 80 
C6H,-NR, 51 and 43 

" Data from references 477-479. 

The main absorption bands of unsaturated amines are associated 
with electronic shifts such as those depicted in equations (72) and (73). 

R R 

When the p electrons of the amino group are coordinated, as occurs 
in ammonium compounds, the spectra resemble those of the hydro- 
carbon skeleton, for example the spectrum of the anilinium ion is 
similar to that of benzene, and differs much from that of aniline 480, 481, 

and that of the N,N-dimethylindolium ion (82) is similar to that of 
styrene and indene (83) but not to that of indole (84) as shown in 
Table 16 482. 
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TABLE 16. Ultraviolet spectra of some amines. 

Indole (84) 487 

2,3-Dimethylindole (cf. 84) 487 

Ibogamine (85) 485 

Alloyohimbine (86) 486 

Ajmalicine (87) 486 

-V-Methyl-A 8-9-octahydroisoquinolin-7-one (90) 496 

3-(Dimethylaminomethyl)cyclohex-2-en- l-one (91) 496 

4-(2-Dimethylaminoethy1)cyclohex-2-en- l-one (92) 496 

4- (Dimethylaminomethyl)cyclohex-2-en- l-one (93) 496 

A1-9-Octahydronaphthalene-2-one (94) 496 

The absorption spectrum of a compound can be associated with a 
partial structure of the molecule (sometimes the whole molecule), and 
it can be expected that all molecules embodying that part as their 
only chromophore will have the same spectrum. This principle has 
been applied in the elucidation of structures of natural products 483, 484. 

Thus for example, it was found that the indole alkaloids have two 
absorption bands, at about 225 mp, em,, 25000, and at 270-290 
mp, E,,,,, N 6000, as in ibogamine (85) 485, alloyohimbine (86) 486, and 
ajmalicine (87) 486, shown in Table 16. The enhanced absorption of 
87 at 226 mp is due to superimposition of the absorption of the 
acrylic system also present in the molecule. Some care has to be taken 
when deciding which is the chromophore responsible for the absorp- 
tion spectrum of a compound. Thus 2,3-dimethylindole (cf. 84) 487 is 
a better choice than indole (84) 487 itself, as a model for the spectra of 
alkaloids 85, 86, and 87, as showin in Table 16. 
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Amino groups attached to vinyl systems can undergo tautomerisa- 
tion as in equation (74), or take part in processes as in equation (75). 

Equations (5 1) and (76) are examples of tautomerisation equilibria. 
In  the former the N-protonated form is predominant, while in the 
latter it is the C-protonated form488. 

Reaction (74) is the main reason for the instability of vinylamines, 
as it facilitates solvolysis in the azomethine form. I t  has been studied 
by following the changes in the spectrum of the system489, 490. 

Usually an unsaturated amine will change its absorption spectrum 
on passing from a basic or neutral solution to an acid solution. This is 
due either to the conversion of the amine into an ammonium salt 
or to the occurrence of a process similar to equation (75). The former 
cause allows one to determine pK, values from spectrophotometric 
data479. An example of the latter cause is found among retinenes: 
compound 88 has h,,, 365 mp in alkaline solution, and acquires 
structure 89 in acid solution with h,,, 440 mp4919492. 
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('39) 

I t  should be pointed out that the process suggested by equation (75) 
has been recently subjected to criticism and revision 490. 493-495. 

Thep electrons of amines can also influence the spectrum of a distant 
chromophore. In  Table 16 the absorption bands of some compounds 
(90-93) are shown in which 'long range conjugation' (equation 77) 
possibly takes place, resulting in a displacement towards lower wave- 
length and smaller E,,, values as compared with the model com- 
pound 94496. 

Fuller discussions on the applications of U.V. spectroscopy in 
structural elucidation can be found elsewhere 168. 479. 483. 484. 

2. Basicity of unsaturated amines 
Aromatic amines are less basic than aliphatic ones owing to the 

delocalisation of the p electrons in the resonance hybrid (e.g. equation 
73) and to the higher -I effect of unsaturated structures, for example 



aniline and cyclohexylamine have pK, values of 4.58 and 10.64 
respectively 4g7. 

Vinylamines (Table 17) capable of reacting according to equation 
(75) are more basic than their saturated counterparts498, e.g. com- 
pound 95 as compared with 96499. On the other hand, unsaturated 
amines prevented by their structures from undergoing protonation 
according to equation (75), will be less basic than their saturated 
counterparts, owing to the -I effect exerted by the double bond, for 
example compounds 97-100 of the quinuclidine s e r i e ~ ~ ~ O . ~ ~ l ,  and 
neostrychnine (101) as compared with dihydrostrychnine (101 
without the isolated double bond) 502. 

TABLE 17. Basicity of unsaturated amines and their saturated counterparts. 

Unsaturated amines c p K ,  pK,+ Saturated amines 

N,2-Dimethyl-A2-pyrroline 1 1.94 10.26 N,2-Dimethylpyrrolidine 
(95) 499 (96) 499 

A2-Dehydroquinuclidine 9.82 10.95 Quinuclidine (98) 500. 501 
(97) 500.501 

~ e t h i l  ~ ~ - d e h ~ d r o ~ u i n u c l i -  7.17 9.40 Methyl quinuclidine-3-carbo- 
dine-3-carboxylate xylate (100) 500. 501 
(99) 500.501 

Neostrychnine (101) 502 
Strychnine (108) 502 : } 7.45 Dihydrostrychnine (cf. 101) 502 

Retronecine (102) 503 8.94 10.22 Platinecine (103) 503 
Deoxyretronecine (104) 503 9.55 10.91 Retronecanol (105) 503 
Heliotridine (106) 503 10.60 1 1-48 Heliotridane (107) 503 
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The comparison between pK, values of unsaturated and saturated 
amines may be of aid in placing the unsaturation. Thus the senecio 
alkaloids 102, 104, and 106 were correctly assumed to be allylamines 
because their pK, values are lower than those of the saturated alkaloids 
103,105, and 107 (Table 17). The vinylamine structure was discarded 
in these, as basicities higher than those of the corresponding saturated 
compounds would be expected503. The opposite should be true in the 
case of neostrychnine (101), a vinylamine unable to react according to 
equation (75), and therefore less basic than strychnine (108), an allyl- 
amine in which the -I effect of the unsaturation on the amino group 
is weakened by distance (Table 17) 502. 

C. Stereochemical Aspects of Amines 

I. Asymmetric nitrogen atom 

A nitrogen atom can become a centre of asymmetry in compounds 
such as ammonium salts. The resolution into two optical isomers of 
benzylmethylphenylpropylammonium salts504, and other similar 
corn pound^^^.^^^^^, was accomplished at the turn of the century, by 
precipitation of diasteroisomeric salts. A study on aziridinium salts 
was carried out recently507. 

The nitrogen atom of amines is an asymmetric centre, at least in 
theory, if three different groups are attached to it, owing to the non- 
planarity of the group. The fact that such amines cannot be resolved, 
is attributed to the mobility of the p electrons at the heteroatom508, 509. 

More recently it was shown that in certain cases, such as the aziridines 
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109 and 110, the inversion at the nitrogen atom is s~fficiently 
slow near room temperature to show two distinct C-methyl bands in 
the n.m.r. spectra, which should coincide were that inversion much 
faster 510, 511, as is the case with larger heterocycles 510. This however is 
still far from actual resolution into optical isomers. In fact, the asym- 
metric nitrogen has to be held in a rigid structure in order to avoid 
inversion. In such cases the asymmetric nitrogen is usually accom- 
panied by asymmetric centres at carbon atoms, for example com- 
pounds 101-108 and 120-127. To the author's knowledge, arnines 
with asymmetric centres exclusively at nitrogen atoms have not yet 
been resolved, although racemic mixtures of compounds such as 111 
are known512. Troger's base (112) was actually resolved513, but this 
example departs slightly from the restricted definition of amines 
given in section I. 

2. a-Amino acids 

Among amines where the amino group is attached to an asymmetric 
centre a-amino acids and peptides are by far the most widely investi- 
gated class from the point of view of stereochemistry. The main results 
will be presented here, and more detailed discussions can be found 
e l ~ e w h e r e ~ l ~ - ~ l ~ .  I t  was found that most a-amino acids derived from 
peptidic and proteinic materials belong to the L series, that is they 
have absolute configuration 113, related to L(+)-lactic acid (114), 
when 113 and 114 are drawn according to the Fischer-Klyne con- 
vention518. Evidence for these assignments came from optical rotation 
studies in series of derivatives of hydroxy acids and amino acids51Q. 620, 

a-azido- and a-halogenopropionic acid derivatives 521, which can be 
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correlated with the derivatives of lactic acid and a l a r ~ i n e ~ ~ ~ . ~ ~ ~ ,  and 
D-2-glucosaminic acid as compared with D-amino acids524-529. 

I t  was shown that the optical rotation changes observed on treating 
neutral natural amino acids with acid or by converting them into 
hydantoins (115), were of the same sign and about the same magnitude 
for almost all the cases studied. This was interpreted as being due to all 
these compounds having a unique c o n f i g u r a t i ~ n ~ ~ ~ - ~ ~ ~ .  Assignments 
of configuration based exclusively on optical rotatory evidence have 
led in some cases to the wrong conclusions532. I t  is fortunate therefore - that the configurations proposed above were confirmed by several 
independent methods, including x-ray diffraction515. 

More recently, widespread use has been made of optical rotatory 
dispersion as a means for studying configurations. a-Amino acids were 
investigated as s ~ ~ h ~ ~ ~ - ~ ~ ~  or as derivatives, notably alkyl dithio- 
carbamates (116) 536, 537, copper(11) complexes 538. 539, and cobalt(111) 
complexes540. From these studies useful though not always straight- 
forward correlations have been obtained, between the shape and 
location of the dispersion curves and the configuration of the com- 
pounds. 

Rotatory-dispersion curves of polypeptides ideally depend almost 
exclusively on the conformation of the peptide-links backbone, and 
not on the amino acid composition541, although in special cases the 
contribution of individual amino acids may be important 542-544. 
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3. Examples of configuration assignment 
Certain reactions take place under strict steric requirements as is 

the case of the pinacol-type rearrangement shown in equation (78). 
Compound 117 has two asymmetric carbon atoms and therefore four 
diasteroisomers. With racemate a (118) the phenyl group migrates, 
and with racemate p (119), the p-chlorophenyl group. The conforma- 
tions shown in 118 and 119 are the less strained, where the smallest 
group H is staggered between the two bulky aromatic substituents. 
The relative positions of the groups depicted in 118 and 119 are 
preserved in the transition state, thus determining the nature of the 
rearranged product, and from the latter the geometry of the amino 
alcohol can be d e d u ~ e d ~ , ~ - ~ ~ ~ .  The same could be found from 
kinetic data, as the migration aptitude of a phenyl group is larger 
than that of a P-chlorophenyl group 548. Similar studies were carried 
out also with diasteroisomeric 2-amino- l ,2-diphenylethanol 549. 

Evidence gathered from chemical reactions, optical rotation, and 
basicity, as well as conformational considerations were applied in 
order to assign the configurations of the two families of cinchona 
alkaloids listed in Table 18550-552. The main steps of the elucidation 
were the following: the configuration at Cs, and C,,, (cf. 120) is the 
same for the eight alkaloids; the decreasing order of optical rotations 
in the two series was taken as a guide-line for proposing parallel 
configurations at C(,) and C,g, (cf. 120) ; the highest positive optical 
rotation and the negative one in each series were considered to have 
opposite configurations at both C,,, and C,g,; quinidine and cin- 
chonine were known to yield a cyclic ether by reaction of the hydroxy 
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TABLE 18. Physical properties of cinchona alkaloidsa. 

Compound pKa 

Quinidine (120) +254" 7.95 
Epiquinidine (122) + 102" 8.32 
Epiquinine (124) +43" 8.44 
Quinine (126) - 158" 7.73 
Cinchonine (121) + 224" 
Epicinchonine (123) + 120" 
Epicinchonidine (125) + 63" 
Cinchonidine (127) - 1 1 1 "  

"Data on optical rotation from reference 551, and on basicity 
from references 550 and 552. 

C-C & N H-A...,$+ 

and vinyl groups; an alkaloid could be converted into the epi form 
and vice versa by oxidation of the alcohol followed by reduction; the 
fact that in a pair, alkaloid-epialkaloid, the latter is the more basic was 
attributed to the stabilisation of the ammonium cation by hydrogen 
bonding, as the conformation attained on forming the hydrogen- 
bonded structure 130 is sterically less hindered in the epi forms. 

The configurations of four 10-hydroxydihydrodesoxycodeines (131) 
appear in Table 19. The assignments were made by taking into 
account the stabilisation of the ammonium ion by hydrogen bond- 
ing553, by acquiring a structure such as 130. Lysergic acid (pK, 7.8) 
and isolysergic acid (pK, 8.4) are two isomers of structure 132. 
They were respectively assigned configurations where the carboxyl 
group could not and could establish hydrogen bonding with the 
ammonium cation on formhg the salt 554-556. 
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TABLE 19. Configuration of 
10-hydroxydihydrodesoxycodeines (131)". 

R pK, Assignment 

H 8.72 tram 
H 9-1 7 cis 

CH3 7.7 1 tram 
CH3 9.41 cis 

a Data from reference 553. 
C{m)-OH relative to C(s)-NR. 

4. Conformations, steric hindrance, and other stereochemical 
problems 

The preferential conformations of a compound can be deduced in 
certain cases by considering the bulkiness of the groups present in the 
molecule, as was done above with the amino alcohols (118) and (119), 
and the alkaloids (120-127). In  other instances more indirect con- 
siderations have to be made. For the needs of the present section, the 
changes in configuration resulting from inversion of p electrons at 
nitrogen atoms will be regarded as changes in conformation. 

The equilibrium of conformers of tram-N,2-dimethyl-3-isopropyl- 
aziridine, shown in equation (79), was found by n.m.r. spectroscopy to 
favour the left hand side by a ratio of about 4 to 1, at temperatures 
from -55.5 to 9'. The method could not be applied at somewhat 
higher temperatures 557. 

Pr-i P r -  i 

N.m.r. was also used to show that at low temperatures there is 
considerable freezing of ring conformation in N-methylmorpholine 
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(133) and N,N'-dimethylpiperazine (134) as compared with morpho- 
line and cyclohexane 658. 

From optical rotatory dispersion studies, 3-benzoyl-3-chloro-N- 
methylpiperidhe was shown to have conformation 135, with the 
carbonyl group pointing away from the amino function, in neutral 
solution, and conformation 136, with the carbonyl and ammonium 
moieties pointing towards each other, in acid solution 559. 

The preferential conformation of a substituent at the nitrogen atom 
of piperidine seems to depend on its size and the state of solvation of 
the p electrons560. Thus it was found that the steric requirements of 
the unsolvated pair are less than those of a proton or a methyl 
group 561, 562, for example in equation (80) equilibrium favours form 
137 over 138 at room temperature in benzene solution ( ~ 8 8 7 ~  for 
R = H, and -94yo for R = CH,), as was shown by dipole-moment 
 measurement^^^^. On  the other hand, the solvated electron pair has 
larger steric requirements than an N-hydrogen, as shown for example 
from the kinetics of equilibration of epimers of methyl N-methyl- 
decahydroquinoline-4-carboxylate (139) 563. Results from the n.m.r. 
spectroscopy of piperidine and N-methylpiperidine in methanol (a 
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strongly solvating solvent), also support these hypotheses on the 
steric requirements of the p electrons of a m i n e ~ ~ ~ * .  

Conformations of o,o'-disubstituted diphenylamines could be deter- 
mined from i.r. spectra by studying the hydrogen bonding established 
between the N-H group and X or Y, as shown in 140, in a manner 
similar to the one applied for o,ol-disubstituted diazoaminobenzene~~~~. 

In contrast with the tetrahedral disposition of bonds and electron 
pair at the nitrogen atom in the examples discussed above, it was 
shown from rotational spectra that pyrrole (3) is a planar structure 566. 

The degree of planarity at the nitrogen atom varies according to the 
substituents attached to it. From its rotational spectrum aniline was 
shown to be non-planar at the nitrogen atom567, nevertheless aryl- 
amines are more planar at that site than alkylamines, owing to the 
contributions of planar forms to the resonance hybrid (e.g. equation 
73). The degree of planarity at the nitrogen atom can be changed by 
steric hindrance, as can be deduced from the U.V. spectra of substituted 
N,N-dimethylanilines568~569, their basicity497, and their dipole 
moments 570. Thus methyl groups in the ortho positions will hinder the 
dimethylamino group from attaining coplanarity with the ring, 
resulting in U.V. spectra that are intermediate between that of di- 
methylaniline and that of benzene. The p electrons by participating 
less in p-n conjugation, will tend to adopt the tetrahedral geometry of 
ammonia, resulting in their increased availability (basicity) and a 
lowered dipole moment. 

Benzoquinuclidine (141) is a case where owing to the rigidity of the 
structure and to the p electrons being held at a right angle with the 
n system, no p-n conjugation occurs, and therefore the main effect of 
the benzene ring is a negative inductive effect resulting in a basicity 
higher than that of N,N-dimethylaniline but still lower than that of 
quinuclidine, as shown in Table 20 571,572. 
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TABLE 20. Basicity of some amines. 

Compound PKS 

N,N-Dimethylaniline487 5.06 
Benzoquinuclidine (141) 571. 57a 7.79 
Quinuclidine (98) 6 7 1 p  10.65 
Ammonia576 9.25 
Meth~ lamine~"~  10.63 
Dimethylamine 675 10.78 
Trimethylamine5"5 9.80 

Steric hindrance to coplanarity, may also shift U.V. absorption 
bands to longer wavelengths (Brunings-Convin for ex- 
ample in dyes such as 142 (h,,, 446 mp) as compared with 143 
(h,,, 479 mp). I t  was suggested that the resonance energy was more 
affected by steric hindrance in the ground state than in the electroni- 
cally excited state, in compounds of this type, yielding El-E, values 
for the transition which are smaller, and therefore corresponding to a 
longer h,,,, in the case of 143574. 

The basicity of an amine can be considered as the result of elec- 
tronic and steric effects acting on the functional nitrogen atom. The 
increasing pK, values observed on progressively methylating am- 
monia stop at dimethylamine and drop for trimethylamine575~576 
(Table 20). The increase in pK, parallels the increasing inductive 
effect by methyl groups, and the decrease observed for trimethylamine 
was attributed to steric e f f e ~ t s ~ ~ ~ - ~ ~ ~ .  More recent evidence from 
hydrogen bonding of ammonia and the three methylated amines with 
methanol in the gas phase, shows strict inductive order for the series 179. 

Steric hindrance by substituents at the nitrogen atom of amines 
has been determined by preparing certain Lewis salts and measuring 
their dissociation constants and heats of formation. Quinuclidine (98) 
was found to yield the most stable adduct with t r i rne thylb~ron~~~,  
while the adduct in the case of triethylarnine is unstable581. These 
results show that the approach to the nitrogen atom is hindered to a 
certain extent by the ethyl groups, which are free to rotate and flip 
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around the nitrogen atom, while in quinuclidine these movements 
are absent, leaving free the approach to the fi  electrons580. 

An important consequence of the formation of a hydrogen bond 
A-H...B is the shortening of the interatomic distance A-B, as 
compared with the sum of the van der Waals radii of A and B. This 
has to be considered when studying the stereochemistry of amines and 
ammonium compounds, especially in the solid phase, as very signifi- 
cant distortions and steric effects may result. Table 21 summarises 
hydrogen bonds involving nitrogen atoms, and their lengths are 
compared with the van der Waals distances. The contraction taking 
place on hydrogen-bond formation is the more noteworthy as the van 
der Waals radius of hydrogen is not taken into account for this 
comparison. 

TABLE 2 1 .  Hydrogen-bond lengths and van der Waals distances in 
crystalline compoundsa. 

van der 
Waals A-B 

A-B distance distance 
A-H type (4 (4 

All 0-H 2.80 + 0.09' 
Ammonium 2.88 + 0.13d 
Amide 2.93 + 0.10" 
Amine 3.04 + 0.13' 
All N-H 3.10 + 0.130 
NH,F 2-69 
NH, . BF, 3.01 0.3 
NH2(CH2),NH2. 2 HCl 3.01, 3.07 
Adenine (144). HCl .$ H 2 0  3.11, 3.21 
4,5-Diamino-2-chloropyrimidine 3.5 1, 3.52 

(145) 
NH2(CH2),,C02H. HBr .$ H,O 3.30, 3.44 
Cleavamine methiodide (146) 582 3.4 

a From G. C. Pimentel and A. L. McClellan, The Hydrogm Bond, W .  H .  Freeman and Company, 
San Francisco, 1960. 

Estimated from 1.65 A proposed by Pimentel and McClellan for the van der Waals radius of 
nitrogenloo, and those given by Pauling for the other atomsss. 

C Average of 21 data. 
" Average of 41 data. 

Average of 35 data. 
f Average of 30 data. 
g Average of 37 data. 

In  spite of the A-B contraction, the A-H bond undergoes elonga- 
tion in these cases. The location of the hydrogen atom participating 
in a hydrogen bond has been accomplished by several methods, for 
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example x-ray diffraction which although rather ineffective for this 
purpose owing to the low scattering amplitudes of hydrogen atoms, 
yielded in some instances reliable results, e.g. for compound 145583. 
Electron diffraction was also used for the same p ~ r p o s e ~ ~ ~ . ~ ~ ~ .  The 
neutron scattering amplitude of hydrogen is comparable with that of 
carbon or oxygen, allowing therefore the localisation of hydrogen 
atoms by neutron diffraction. Furthermore, by this method hydrogen 
and deuterium atoms can be distinguished, thus adding to its useful- 
ness loo. Finally, N-H distances have been calculated for amines, 
ammonium compounds, and other functions, based on the band widths 
measured by n.m.r. s p e c t r o s ~ o p y ~ ~ ~ - ~ ~ ~ .  

D. Multifunctional Amines 

The presence of additional functional groups in an amine can of 
course be detected by spectroscopic and chemical methods specially 
devised for these groups. Functional groups affect strongly the pro- 
perties of the amino group if they are near the nitrogen atom, but 
their influence decreases steeply with distance. For example the pKa 
values of the senecio alkaloids 102-107 in Table 18 illustrate the 
effect of the electronegativity of hydroxyl groups, as these lower the 
pK, of the compound. Extensive studies have been carried out to 
establish the influence of substituents on the basicity of amines of 
structure X-(CH2),-NH,. I t  was shown that the pKa value is 
strongly affected for functional groups X, compared with X = H, 
when n = 0, 1, only slightly for n = 2, and remains practically un- 
affected for n 1 3. Some of the groups studied were h y d r ~ g e n ~ ~ ~ - ~ ~ ~ ,  
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carboxylic acid and ester507, sulphonic acid598, phosphonic acid509, 
phenylso0, etc. 

early and extremely important application of basicity studies 
was made when glycine, and by analogy other natural amino acids, 
was established as a zwitterion. The dissociation of the conjugate acid 
of this compound could take place according to equations (81) or (82). 
The former is similar to the dissociation of the conjugate acid of 
methylamine (pK, 10.6) which has been modified by an a-carboxy 
group, while equation (82) resembles the dissociation of acetic acid 
(pK, 4.8) modified by an a-ammonium group. The pKa value of 
glycine being 2.3, points to the latter possibility as the correct 
one 104*105. 

The effect on the basicity of aniline (pK, 4-58497) has been studied 
for a wide list of substituents in the ortho, meta, and para positions. It 
was found that the pK, value of a substituted aniline can be estimated 
from that of aniline by the use of additive terms depending only on the 
nature and position of the s u b s t i t ~ e n t ~ ~ ~ .  Thus the calculated and 
experimental values of polysubstituted anilines showed good agree- 
ment for a wide range of substituents and substitution  pattern^^^^-^^^, 
thus providing a method for structural assignment based on a funda- 
mental property of the amino group. For example, on bromination of 
6-acetylamino-l,2,3,4-tetrahydronaphthalene followed by hydrolysis 
of the acetyl group, two monobromo compounds with pK, 3-05 were 
obtained. They were assigned structures 147 and 148, while structure 
149 was discarded, as the calculated values, based on aniline and 
assuming that the tetramethylene chain acts as two methyl groups, 
are 3-18 for 147 and 148, and 4.09 for 149601*602. Fuller discussions of 
substituent effects in amines can be found e l s e ~ h e r e ~ ~ ~ ~ ~ ~ ~ .  

Correlations between chemical shifts of N-protons in substituted 
anilines "6-608, and methyl protons of substituted N, N-dimethyl- 
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anilinessoS have been found, which may be of aid in the assignment of 
substitution sites of similar compounds. 
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I. INTRODUCTION 

Owing to the presence of a lone pair of electrons on the nitrogen atom, 
all arnines can potentially act as bases, accepting protons from 
Lowry-Bronsted acids. In the case of normal acids in aprotic solvents 
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this results in the formation of substituted ammonium ions, probably 
with hydrogen bonds between the proton and the anion, but with 
some weak proton donors such as alcohols it may lead only to the 
production of hydrogen bonded complexes (equations 1 and 2). 

The reaction in a so-called 'ionising' solvent, however, is very different. 
I t  is generally written formally as in equation (3) 

where S represents a solvent molecule, but this is an over-simplified 
representation of a chemical reaction in which solvent participation is 
both fundamental and complex. Thus change of solvent is tanta- 
mount to a change of reaction under study. 

The lone pair of electrons can be broadly described as occupying 
an sp3 hybrid orbital of the nitrogen atom, but the precise character 
of this orbital depends upon the groups linked to the nitrogen atom. 
Thus the energy of the N-H bond produced, and the thermodynamic 
stability of the positive ion, depend on the nature of these groups. As 
a result of this and other factors the strengths of amines as bases vary 
considerably. 

I n  aqueous solution the strength of a base B can be defined in terms 
of the equilibrium constant K, of the reaction (4). 

At low concentrations the activity coefficient term fB can be taken as 
unity, and fBH+ = foH- = f*, SO 

For convenience in expression, and by analogy with the pH and pKa 
scales, K, may be written in terms of its negative logarithm, i.e. 
pKb = - logl0 Kb. 

The alternative and more usual scheme, however, is to describe 
the strength of a base in terms of the dissociation constant K, of its 
conjugate positive ion, i.e. the constant of reaction (7). 
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Having activity coefficient terms for univalent ions in both the numer- 
ator and denominator, at low concentrations this reduces to equation 

The product KaKb is given by equation (10). 

Since at 25Oc the value of K,, the ionic activity product of water, is 
about 10-14g. ion2/litre2, it follows that pK, + pKb = -log K, = 14. 
The lower the value of pKb and hence the higher the value of pK, the 
stronger is the base. 

The values of pK, for bases can be determined by essentially the 
same methods as are used for acids. These have been listed, and the 
pKa values for a large number of amines tabulated, by Perrinl. 

II. FACTORS D E T E R M I N I N G  T H E  S T R E N G T H S  O F  
A M I N E S  A S  BASES 

A. Thermodynamic Considerations 

The standard free-energy change AGO attending the dissociation of 
an aminium ion is given by 

-AGO = R T h  K, 
so it follows that 

pK, = AG0/2.303 R T  

where the standard states are those of unit activity for the amine, its 
cation, and the solvated proton and the pure state for the solvent. The 
pK, value, therefore,is determined by the temperature and by the free- 
energy difference between the (imaginary) states of the system when 
the solution contains (a) the amine at unit activity, H 3 0 f  ions at 
unit activity, and solvent, and (b) the aminium ions at unit activity 
and solvent. Again since 

this free-energy difference depends upon the enthalpies and entropies 
of the two states of the system. Any factors which can modifjr these 
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properties in either state will therefore influence the base strength of 
an amine. 

The dissociation of a molecular acid HA is accompanied by net 
generation of charges, and hence there are very large net hydrational 
changes. The increased order in the system which this brings about 
leads to large changes in the entropy of the system. Also, because the 
extent of this ordering is temperature dependent, it leads to large 
changes in the heat capacity. Typically for the dissociation of a mole- 
cular acid in water (equation 14) 

A S 0  is about - 20 cal/deg/mole and AC; is about - 40 cal/deg/mole. 
The dissociation of an amine cation, on the other hand, is isoelectric, 
so A S 0  and AC,O may be zero or have low values, positive or negative. 

The analysis of the factors determining the value of pKa is compli- 
cated by the fact that AGO, AHO, and ASOallvary with the temperature: 

Even AC; is temperature variant. Since AGO is essentially the quantity 
measured, it follows that the precision with which AHO, AS0, and AC; 
can be determined decreases with the increase in the number of 
differentials upon which they depend. Thus even if AGO can be 
determined to f 0.5 cal/mole, the error in AHO may be + 20 cal/mole 
and in A S 0  + 0.1 cal/deg/mole, whilst the error in AC; will be even 
greater. Present accuracy does not permit the temperature dependence 
of AC; to be determined. The apparent alternative route of measuring 
AHO directly by heat of neutralization measurements is not useful, as 
it is as yet impossible to achieve the accuracy required with solutions 
sufficiently dilute for the purpose. 

Meaningful values of the thermodynamic quantities at a particular 
temperature T can only be determined, therefore, by precision meas- 
urements over a range of graduated temperatures on either side of T. 
Then if AC,O can be regarded as effectively constant over the tempera- 
ture range used, 

Introducing these values into equation (13) gives 
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or 
pK, = AIT + (AC;/R) log T + B (19) 

where A = -AH;/2.303 R and B = - (AS$ - AC;)/2.303 R. The 
results of measurements at different ionic strengths are extrapolated 
to zero ionic strength so as to obtain the value of pK, at each tempera- 
ture. The resulting data are then analysed using equation (19) and 
the best values of A, AC;/R, and B deduced. Thence the values of 
AH;, AS;, and AC; are derived '. 

Unfortunately only a few amines have been studied with such 
precision. A number of authors, however, have deduced approximate 
values of A S 0  and AHO from measurements at two temperatures by 
using the relationship (dAGo/dT) = -AS0, the value of AHO being 
obtained by application of equation (13). The values so obtained are 
very useful for comparative purposes, but their limitations must be 
realised when interpreting small differences. 

The comparison of data for different amines is made more complica- 
ted by the fact that they often refer to measurements with different 
solvents or solvent mixtures and at different temperatures. The effects 
of these factors on pKa will therefore be considered first. 

B. The Nature of the Solvent 

In  general the net effects of the presence of any solute species in a 
solution should be assessed in terms both of solute-solvent interactions 
and of the influence of the solute on solvent-solvent interactions, which 
in water are particularly strong and specialised3. For ionic species 
close-range nearest-neighbour interactions with solvent molecules are 
strong. This interaction depends on the charge type and effective size 
of the ion, the factors which determine the intensity of its field, and also 
on its chemical nature. I t  may involve orbital overlap, an interaction 
akin to hydrogen bonding, or intense charge-dipole interaction. For 
aminium ions or amine molecules in aqueous solution hydrogen- 
bonding interactions undoubtedly occur with nearest-neighbour water 
molecules. Whatever type of interaction is involved in this primary 
hydration 'shell' it is sterically limited in extent but gives rise to a 
substantial loss of enthalpy (since attractive forces are satisfied), entropy 
(through loss of freedom of the solvent molecules), and usually, of heat 



capacity (through loss of freedom and through the fact that freedom 
tends to be regained with rise of temperature) 3. 

The orderliness of arrangement can be regarded as transmitted 
outwards from the primary zone, so that there is 'correlation' between 
the first and second shells. The field of the ion is still strong, and highly 
polarised water molecules in the first shell readily form hydrogen 
bonds with others further from the ion. Proceeding outwards, how- 
ever, the influence of the ion must decline and restriction of freedom 
of the solvent molecules decreases until orientational rather than 
translational freedom is lost. As a result, the secondary hydration 
zone is less well defined than the primary zone, but it contributes to 
the loss of entropy and of enthalpy. Its effect on heat capacity is 
probably composite. Since weak restriction of freedom will undergo 
release with increase of temperature there may be a positive contribu- 
tion. 

The order generated in this way locally around an ion does not fit 
particularly well into the peculiar orderliness of the structure of the 
water. I t  is primarily centro-symmetrical, whereas the water structure 
is not, and the result of conflict between the incompatible ordering 
influences seems to be a zone of disorder which makes a substantial 
positive contribution to the entropy. This is the reason why Frank 
and Evans4 found that ions in aqueous solution have 'too much' 
entropy. 

Non-polar solutes have the effect of promoting the ordered arrange- 
ment of water molecules about themselves, lowering both the enthalpy 
and entropy. Thus methane is only very slightly soluble in water 
because of the very large entropy loss which dissolution involves. 
This effect is common not only to all non-polar solutes but also to 
non-polar parts of bifunctional solute molecules with hydrophilic 
groups. I t  is called 'hydrophobic hydrationy4 because it involves no 
specific solute-solvent interactions, but is the effect of an inert body 
on solvent-solvent interactions in its vicinity. I t  is the cause of the 
apparently ice-like structure which seems to exist a t  the interface 
between water and gas or water and a hydrocarbon. 

This hydrophobic hydration gives a very large contribution to the 
heat capacity, apparently because it 'melts' with rise of temperature. 
Since it conflicts with the centm-symmetrical association it is probably 
weakened or destroyed by the field of a charge on an adjacent part 
of the molecule. As a result it is more important for the neutral amine 
molecule than for its conjugate cation, and so it should lead to a 
negative contribution to A S 0  and a positive contribution to ACE, as 
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well as making AHO less positive. I t  may be noted that it is a general 
that the factors which lead to a decrease in AHO also 

decrease AS0, and hence there is a partial compensation in the - 
values of AGO and hence of pK,. 

These effects have been discussed in detail by Ives and Marsden 3, upon 
whose views the majority of this section has been based. They will be 
referred to again later in the discussion of various groups of amines. 

In  general, the apparent basic character of an aminc is influenced 
by the base strength of the solvent, the greater its proton a h i t y  the 
lower the pK, value. In  addition, however, it depends upon the rela- 
tive extents to which the solvation of the amine molecule and the 
H,O + ion on the one hand, and the amine cation on the other, affect 
the entropy and enthalpy of the system. There is no simple formula, 
therefore, relating the relative strengths in one solvent to those of the 
wme amines in another solvent, and it is not surprising that the basic - - - . - - 

strengths of amines in anisole and chlorobenzene solutions, compared 
by measuring their equilibria with the indicators 2,6-dinitrophenol 
and bromophenol blue, do not parallel completely their strengths in 
water5. On  the other hand, they show a much closer relationship 
with the catalytic constants for the decomposition of nitramide in 
anisole6. Similar behaviour has been observed with various bases in 
isoamyl alcohol 7. 

The basic strengths of many amines have been measured in mixed 
solvents, particularly in mixtures of water with an alcohol. In  such 
media a certain degree of solvent sorting occurs, with the result that 
the solvation layers around the various species tend to differ in com- 
position from the bulk of the solution, thereby confusing the position 
still further. In  spite of these complications, however, the pK, values 
for different amines in these hydroxylic media differ numerically from, 
but are closely parallel with, their values in water. The parallelism 
arises doubtless because of the variation of AHO, which depends 
predominantly on the relative proton affinities of the base and 
solvent. The actual numerical values, however, have not quite the 
same significance as for aqueous solutions, since the relationship 
pK, + pK, = 14 no longer holds. 

C. Temperature 
Since AGO = 2.303 R T  pKa it follows that (dAGO/dT) = -AS0 = 

2.303R pK, + 2.303 RT(d(pKa)/dT) and hence 
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Thus (dpKa/dT) is negative so long as - AS0 is less than 4.576 pKa. 
As AS0 never has such high negative values the temperature co- 
efficient of pK, is always negative. 

Perrin8 has pointed out that the temperature variation of the pK,, 
values of univalent organic cations can be represented satisfactorily 
by the function 

and for bivalent cations by 

These corrections tacitly assume that for univalent cations AS0 is 
about -4.1 cal/deg/mole, whilst for divalent cations it is zero. Since 
for many amines AS0 has relatively low values no great error is intro- 
duced by employing these relations, provided that the temperature 
range over which correction is made is relatively small. 

D. Structural Features 

The nature of the remainder of the molecule to which the amino 
group is linked affects the relative energies of the amine and its cation. ' 

Factors which decrease the free energy of the cation more than that of 
the amine tend to stabilize the former and hence to increase pKa, 
whilst if the base is stabilized to a greater extent than the ion the pKa 
value is reduced. The formation of the amine cation requires the dona- 
tion of the lone pair on the nitrogen atom to a proton, so any factor 
which tends to increase the electron density or availability at the 
nitrogen atom will increase its proton affinity, that is will increase the 
strength of the base, whilst any factor which tends to decrease this 
electron density has the reverse effect. The modifications to the base 
strength produced by various groupings in the molecule are generally 
classified under three headings. 

I. Inductive (polar) effects 

When a hydrogen atom linked to a carbon atom in an amine mole- 
cule is replaced by a halogen atom or a nitro group, or by any other 
group attracting electrons, a dipole is set up with its negative end 
directed away from the carbon atom. This exerts a - I  inductive 
effect, that is electron density is drawn away from the carbon atom 
making it more electronegative. It therefore tends to draw electron 
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density away from its neighbouring atoms, and eventually this leads 
to a decrease in the electron density on the nitrogen atom. The new 
dipole also exerts a direct field effect, tending to polarise the orbitals 
of all the other electrons in the molecule. The result of these effects is a 

of the base strength of the amine. 
A methyl group, having a weak dipole in the reverse sense, with its 

positive end away from the carbon atom, should have a slight tendency 
to exert a + I  effect, with resulting increase of base strength. 

These inductive effects fall off very rapidly with distance, particu- 
larly in saturated compounds, so it is with substituents relatively near 
to the amine group that they are most marked. When the substituent 
is linked to an aromatic ring or other conjugated system with a highly 
polarizable n-electron system, however, these inductive effects extend 
over much further distances. 

2. Mesorneric (resonance) effects 

When the amino group is linked directly to a conjugated system the 
lone-pair electrons tend to become delocalized and to participate in the 
conjugated system. This reduces their availability for accepting a 
proton and hence lowers the base strength. If another group is now 
introduced into the system in such a position that its mesomeric effect 
can interact with that of the amino group there is a further effect. A 
nitro group or other group with a - M  effect will withdraw electron 
density from the conjugated system by the mesomeric mechanism and 
so effectively increase the + M  mesomeric effect of the amino group 
and decrease the base strength still further. On  the contrary, a halogen 
atom, a hydroxyl group, or any other group with a + M  effect donates 
electron density to the system, opposing the mesomeric effect of the 
amino group and so increasing the base strength. 

Since in general the inductive and mesomeric effects of different 
substituents present in the molecule are roughly additive, attempts 
have been made to correlate the pKa values of aromatic amines with 
the Hammett o functions of the substituentsg and those of aliphatic 
amines with the corresponding Taft U* functions 1°. These relation- 
ships and their applications have been fully reviewed by Clark and 
Perrin l. 

3. Steric effects 

When bulky groups are present in close proximity to an amino 
group, steric effects are to be expected. If they are present, for instance 
in an aromatic amine, in positions where they tend to prevent the 
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amino group from assuming the conformation most favourable for 
mesomerism, they should increase the basic strength of the amine 
relative to that of the corresponding compound in which obstructing 
groups are absent. Such behaviour is observed with ortho-substituted 
N,N-dialkylanilines. I n  some other cases, however, the presence of 
such bulky groups tends to decrease the basicity of the amine. Although 
this general behaviour has been known for some time, the mechanism 
through which the effect is exerted has been the subject of considerable 
controversy. Brown and Cahn l2 suggested that the - NH, + group in 
the cation is appreciably larger than the -NH2 group of the free 
arnine and is comparable in size with a methyl group. On this basis 
the presence of other large groups in the vicinity may cause steric 
interference which increases the potential energy of the cation relative 
to that of the free base. This would be unfavourable to cation forma- 
tion and so would lower the strength of the base. 

This theory, however, has not received universal acceptance. For 
one thing it is by no means certain that the anilinium ion has greater 
spatial requirements than the free amine, in fact the reverse seems 
more likely to be true. Although the ammonium ion is tetrahedrally 
symmetrical, the HNH bond angle in ammonia is smaller than the 
tetrahedral angle. This suggests that the lone-pair electrons exert a 
greater repulsive force on the hydrogen atoms than does one boundq 
hydrogen atom on another. The relatively small H ~ H  bond angle 
(1044") in the water molecule and the structures of some of the' inter- 
halogen compounds also suggest that a lone pair has considerable 
spatial requirement. I t  seems much more likely that in the majority 
of cases the reason for decreased base strength is to be sought in 
solvation phenomena, as discussed in section ILB, rather than in 
actual physical interference of the groups. 

As in some instances more than one mechanism may be acting, these 
effects will be discussed in conjunction with the classes of compounds 
in which they arise, particularly the alkylamines, ortho-substituted 
anilines and N,N-dialkylanilines, and polynuclear aromatic amines. 

A. The Methykamines 

The basic strength of methylamine is appreciably greater than that 
of ammonia. This is sometimes attributed to the +I inductive effect 
of the methyl group, leading to an increased electron availability at 
the nitrogen atom1,. I t  would perhaps be better to regard this as a 
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mutual polarisation of the methyl and amino groups. At the same 
time it is of importance to note, as will be discussed later, that the 
difference in AGO and hence in pK, arises more from the difference 
b e ~ e e n  the entropy changes associated with the dissociation of the 
ions than from the difference between the enthalpy changes. 

The substitution of a second hydrogen atom of the ammonia mole- 
cule by a methyl group to give dimethylamine leads to only a small 
firther increase in base strength, whilst the substitution of the third 
hydrogen atom leads to a considerable decrease, trimethylamine 
being only slightly stronger as a base than ammonia. 

This peculiar order of base strengths was attributed by Brown and 
his coworkers to what they call 'B-strain'14. 15. This they define as the 
strain introduced into a molecule as a result of changes in the normal 
bond angles of an atom brought about by the steric requirements of 
bulky groups attached to that atom. Thus they suggested that in 
trimethylamine the three methyl groups are crowded around the small 
nitrogen atom, and that their steric requirements are met by a 
spreading of the CNC bond angles to a value greater than the tetra- 
hedral angle. On  this view the addition of a proton to the lone pair, 
which would tend to reduce the bond angle to the tetrahedral value, 
is resisted by the molecule. Very similar ideas have been expressed 
by Fyfe16. These views, however, seem to be inconsistent with the 
observations of Lide and Mannl", who have deduced from the micro- 
wave absorption spectrum that the CNC bond angle in trimethyl- 
amine is 108.7 + 1 O. 

The apparent anomaly is clarified to a considerable extent, how- 
ever, by reference to the precision measurements of Everett and 
Wynne-Jones on a m m ~ n i a l ~ * ~ ~ ,  methylamine, dimethylamine, and 
tnmethylamine2, which covered a wide range of temperatures and of 
ionic strengths. These permitted the evaluation of AG, AS0, AGO, and 
AHO for the dissociation of each of the cations. The final results for 
25" and zero ionic strength are included in Table 1. 

For the dissociation of the ammonium ion AS0 is small and AC; is 
zero. Unlike methane, which is repelled from water due to the large 
negative AS value involved, the ammonium ion must be very strongly 
attracted by water. As a result there is only a very small decrease in 
entropy on dissociation corresponding with the slight changes in the 
orderliness of arrangement attending the replacement of the NH, + ion 
by an H,O+ ion and a water molecule by an ammonia molecule. The 
equilibrium is determined principally, therefore, by AHO, which in turn 
depends mainly on the relative base strengths of ammonia and water. 
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TABLE 1. Thermodynamic functions for the dissociation of amine 
cations in aqueous solution at 25'~ .  

AC; ASo AG AH" 
(cal/deg/ (cal/deg/ (kcal/ (kcal/ 

mole) mole) mole) mole) pK, 

Ammonia 18* l Q  

Methylamine 21 

Dimethylamine 21 

Trimethylamine 21 

Ethylamine 22. l6 

Triethylamine l6 
n-Propylamine 22 

n-Butylamine 22 

Ammonia 
in 60y0 MeOH23 

Methylamine 
in 60% MeOH23 

"Dimethylamine 
in 60% MeOHZ3 

"Trimethylamine 
in 60y0 MeOH23 

0.0 
+ 7.5 

+ 19.9 
+41.0 
- 
- 

- 

- 

0.0 

- 12 

0 

Positive 

Data for ionic strength 0.10. 

As the hydrogen atoms of the ammonia molecule are successively 
replaced by methyl groups the value of AS0 changes systematically to 
more negative values. Trotman-Dickenson 20 explained this as arising 
from the progressive decrease in the number of hydrogen atoms on the 
amine cation available for hydrogen bonding to solvent molecules, 
thus decreasing the constraint produced in the solvent through this 
cause. At the same time AC; acquires a progressively larger positive 
value, this being associated with a large decrease in AN0. For the 
change from ammonia to methylamine the entropy effect predominates 
and leads to a large increase in AGO and hence in pKa, but for the 
subsequent changes from methylamine to dimethylamine and from 
dimethylamine to trimethylamine almost similar increases occur in 
-AS0, but with each step AC," shows increasing increments, with 
associated decreases in AN0. The result is that a maximum value of 
AGO is reached at dimethylamine. 

In addition to the effect produced by the reduction of the number of 
hydrogen bonds to the cation, and the further ordered structure 
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produced near the aminium group, the successive additions of methyl 
groups would be expected to yield increasing areas of surface over 
which hydrophobic hydration can occur in the neutral amine mole- 
cule, and to reduce slightly the hydrogen bonding of its amino group. 
~t is difficult to assess the area over which hydrophobic hydration can 
occur but it is not unreasonable to suppose that this may be very 

greater over the almost complete hemisphere formed by three 
methyl groups than over the smaller surfaces presented by two or 
one methyl groups. Being close to the centre of positive charge this 
hydration atmosphere will be almost wholly dispersed in the cation, 
so the heat capacity of the system in the dissociated state will be higher 
than that for the cation-solvent system, since it contains a term repre- 
senting the heat required to disperse this solvent layer. This has a 
corresponding effect on the enthalpy of the amine-solvent system, 
since a considerable amount of heat would be required to bring the 
solvent atmosphere around the methyl groups isothermally to the 
more random state which exists around these groups in the cation. 
These effects and theories regarding hydrophobic hydration are 
discussed fully by Ives and Marsden3. 

I t  is interesting to note that the effects become modified in aqueous 
methanol solution, where for ammonia AS0 becomes positive, possibly 
through the ammonium ion exerting a greater sorting effect in its 
hydrogen bonding than does the hydroxonium ion. Although AC; has 
the rather unexpected value of - 12 cal/deg/mole for methylamine, 
it is very low for the other amines, indicating that no phenomenon 
analogous to hydrophobic hydration occurs to an appreciable extent 
in this solvent mixture. The changes in AS0, therefore, may reflect 
the decrease in the number of hydrogen atoms in the cation available 
for hydrogen-bond formation. The AGO values for dimethylamine and 
triethylamine must be lower at zero ionic strength than at I = 0.10, 
so the net result is that in this medium methylamine seems to be the 
strongest of the bases. 

B. Higher Alkylamines 
Lengthening of the alkyl chain makes only relatively slight differ- 

ences to the pKa values of primary amines (Table 2). After a very small 
increase in ethylamine they remain almost constant up to n-decyl- 
amine, after which there seems to be a slight decrease. Chain branch- 
ing also produces very little effect. Amongst secondary amines (Table 
3) there is evidence of the values rising to a maximum at di-n-butyl- 
amine, after which they assume an almost constant value. 
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TABLE 2. pK, Values of primary alkylamines in aqueous solution at 25'~. 

Ammonia 
Methylamine 
Ethylamine 
n-Propylamine 
n-Butylamine 
n-Pentylamine 
n-Hex~lamine 
n-Heptylamine 
n-Octylamine 
n-Nonylamine 

Amine PK. 

9.2424.19, 9.2525 
10.62 28, 10.6321, 10.6425 
10.64 22, 10.67 1.9 

10.53 22, 10.6g27 
10-6022, 10.61 28. 29, 10.6630 
10.63 29, 10.6 1 31 

10.64 2Q 

10.6629 
10.65 29, 10.57 31 

10.6429 

n-Pentadecylamine 
n-Hexadecylamine 
n-Heptadecylamine-n-Docosylamine 
i-Propylamine 
i-Butylamine 
t-Butylamine 
i-Pentylamine 
t-Pentylamine 
Methyl(diethy1methyl)amine 
Triethylmethylamine 

TABLE 3. pK, Values of secondary alkylamines in aqueous solution 
at 25'c. 

-- 

Amine PG 
Dimethylamine 10.7326, 10-77 32, 10-78", 10.81 33 

Diethylamine 10.9422, 10.98289 18, 1 1.0433 
Di-n-propylamine 11-0031 
Di-n-butylamine 11.2531, 11-3128 
Di-n-pentylamine ll.182e 
Di-n-hexylamine 11.01 29 

Di-n-octylamine ll.01a9 
Di-n-dodecylamine-Di-n-octadecylamine 1 1.00 29 

Di-i-propylamine 1 1 .05 
Di-i-butylamine 10.50 34, 10.82 28 

Di-S-butylamine 11.01 34 
Di-i-pentylamine l l .00 2e 
N-Methyl-2-aminoheptane 10.82 31 
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The effect of chain length is more pronounced in the tertiary alkyl- 
a d n e s  (Table 4), where triethylarnine is much more basic than 
trimethylamhe, whilst N, N-dimethylethylamine and N, N-diethyl- 
rnethylamine lie intermediately. There are some anomalies amongst 
the data for the higher members of this series, and further measure- 
ments on them would be of interest. 

TABLE 4. pK, Values of tertiary alkylamines in aqueous solution at 25'c. 

Amine PK* 

Trimethylamhe 9.7425, 9.7538, 9-7635, 9.8021.32, 9-81 33 

Triethylamine 10.6535, 10.6718, 10.71 32 

~ri-n-propylamine 10.65 2e 

Tri-n-butylamine 9.93 28, 10.87 
N, N-Dimethylethylamine 9.9935 
N, N-Diethylmethylamine 10.2935 
N,N-Dimethyl-n-propylamine 9.9935 
N, N-Dimethyl-n-butylamine 10.02 35 

N, N-Dimethyl-i-propylamine 10.30 35 

N, N-Dimethyl-i-butylamine 9.9 1 35 

N, N-Dimethyl-S-butylamine 1 0.4035 
N, N-Dimethyl-t-butylamine 10.52 35 

Studies of the entropy changes attending the dissociation of the 
cations of these amines have led to somewhat conflicting results 
(Table 1). From measurements at only two temperatures Evans and 
Hamann22 found the value of - A S 0  decreased systematically from 
methylamine to n-butylamine, this being accompanied by a pro- 
gressive increase in A H O .  They also found - A S 0  for the dissociation 
of the diethylammonium ion to be less than for the dimethylam- 
monium ion. Fyfe16, on the other hand, inferred from measurements 
at four temperatures that the values of - A S 0  for the ethylammonium, 
diethylammonium, and triethylammonium ions were all much higher 
than for the corresponding methylammonium ions. 

The difference between these two series of amines is likely to arise 
principally from the hydrophobic hydration effects. If Evans and 
Hamann's results are correct they suggest that in ethylamine the 
extent of hydrophobic hydration may not be much greater than in 
methylamine, or may persist in part in the cations, since the p-carbon 
atom is an appreciable distance from the charge centre near the nitro- 
gen atom. Fyfe's measurements, on the contrary, suggest that this 
hydrophobic hydration atmosphere is dispersed in the cation. Further 
measurements on these compounds are obviously required. 
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C. Substituted Alkylamines 

The introduction of a trimethylsilyl group into an alkyl group 
increases the base strength, the pKa values of both trimethylsilyl- 
methylamine and di(trimethylsilylmethy1)amine being appreciably 
higher than the values for methylamine and dimethylamine, respect- 
ively. The effect diminishes, however, the further the trimethylsilyl 
group is removed fi-om the amino groupz7 (Table 5). 

Although chlorinated alkylamines generally hydrolyse or cyclise 
rapidly in solution, the pKa values of some of these compounds have 
been measured. As is to be expected from their strong - I  effects, 

TABLE 5. pKa Values of substituted alkylamines in aqueous solution. 

Amine pKJTemperature ('c) 

Trimethylsilylmethylamine 
p-Trimethylsilylethylamine 
y-Trimethylsilylpropylamine 
Di(trimethylsilylmethy1) amine 
p$-Difluoroethylamine 
p,p,p-Trifluoroethylamine 
y,y,y-Trifluoro-n-propylamine 
p,p,p-Trichloroethylamine 
y,y,y-Trichloro-n-propylamine 
6,6,6-Trichloro-n-butylamine 
y-Bromo-n-propylamine 
N,N-Di(p-chloroethy1)ethylamine 
N, N-Di (p-chloroethyl) -n-propylamine 
N,N-Di(p-chloroethy1)-i-propylamine 
N,N-Di (p-chloroethyl) -n-butylamine 
p-Hydroxyethylamine (ethanolamine) 
y-Hydroxy-n-propylamine 
6-Hydroxy-n-butylamine 
Ethylenediamine (pKa2) 

Propylenediamine (pKa2) 

Butylenediamine (pKa2) 
Pentylenediamine (pKa2) 
Hexylenediamine (pKa2) 
Ethylenediamine (pKal) 

Propylenediamine (p&,) 
Butylenediamine (pKal) 
Pentylenediamine (pKal) 
Hexylenediamine (pKal) 
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halogens decrease the base strength of an amine, the effect diminishing 
the further the halogen is removed from the amino group. Although 
the available data are somewhat restricted, they indicate that fluorine 
has an appreciably greater effect than chlorine. 

The presence of a hydroxyl group also decreases the base strength, 
and again there is a marked effect of the position of the substituent. 

The introduction of a second amino group similarly decreases the 
pKa value of ethylamine, but with the introduction 
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* = "C labeled 
(Ref. 149) 

I Exclusive C6H5 migration 

'c6H5* 
Exclusive C6H5* migration 

of phenyl groups (equation 142) l7Oa ,  and the ground-state control of 
the group that migrates171. lgO. For the reaction in which water is the 
leaving group (equation 158), the migration ratio of anisyl to phenyl 

X */ X = OH2+, A/B = 24 
,,C-C t.H X=N,+,A/B= 1.4 (Ref. 170a) 

C6H5 H 

is 24, indicating participation by the aromatic rings in the transition 
state. For the reaction in which nitrogen is the leaving group, the ratio 
is 1.4, indicating a very low degree of participation in the transition 
state for the loss of nitrogen. The low ratio is consistent with the view 
that the transition-state energy is low. Under these conditions, the 
migration ratio is determined largely by the distribution of isomers in 
the ground ~ t a t e ' ~ ~ . ' ~ ~ ;  in the example of equation (158), with 

X = Nz+, conformations 58 and 59 should be approximately equally 
populated. 

The highly stereospecific reactions of cyclohexylamines (e.g. 
equation 159)lg1, are accounted for by the maintenance of gross 
stereochemistry by the counter ion (similar to the interpretation given 
in section (3)-path (a); see section (1)). By this means, the trans- 
coplanar arrangement of groups favorable for rearrangement on 
stereoelectronic grounds1g2 is obtained. 

(5) The nitrous acid deamination in acetic acid 
On the average, it appears that in the dearnination of secondary 

carbinamines in acetic acid, the substitution products are formed by 
paths (d), (e), (f) and (g) (equation 146). Note that both axial and 
eauatorial amines yield alcohols with overall retention of configura- 
I - -  ~- 

tion (Table 12). 
The deamination of endo-norbornylamine yields 87y0 norbornyl 

acetates ( m  99% exo), 10yo norbornanols (98y0 exo) and 2y0 of the 
norbornyl nitrates174. The exo acetate was 89% racemic; this fact 
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the large exolendo ratio indicates the involvement of the bridged 
(or of rapidly equilibrating ions) (equation 160) le3. We have 

L X - ]  H I 
racemic 

found that the decomposition of ethyl N-endo-norbornyl-N-nitro- 
carbamate (X in equation (160) = -OCO,C,H,) in acetic acid 
yields the carbonates with an exolendo ratio of 50-100. Since every 
other nitrosoamide decomposition we have carried out in acetic acid 
has proceeded with overall retention of configuration (Table 6), we 
conclude that some special event must occur in the norbornylamine 
case to block retention of configuration; the formation of the bridged 
ion appears to be a logical possibility for this event. Since we have 
shown that the path to retention is extremely fast, equivalent to 
rotation times of the 180-labeled carboxylate ion (section a (3)), we 
conclude that bridged-ion formation is extremely rapid, and that time 
scales of the order of molecular rotation times are involved. Thus if 
equilibrating ions are involved, the rate of equilibration is so fast that 
the value of drawing a distinction becomes doubtful. 

Rearrangement products are often formed stereospecifically in the 
nitrous acid dearnination. Berson and coworkers have recently pub- 
lished an elegant series of papers on such rearrangementsle4, of which 
one example is shown by equations (1 6 1) and (1 62) 1e5a. Although 
isomeric amines (60) and (63) could in principle yield a common 
classical 2,2,2-bicyclooctenyl cation, different sets of products were in 
fact obtained. The results (equations 161 and 162) can be accounted 
for by the counter-ion hypothesis. Following the loss of nitrogen, the 
counter ions, by virtue of their positions and weak bonding (section 
(l)) ,  maintain a difference between species 61 and 64; in the transition 
states for rearrangement, the interaction with a neighboring carbon 
occurs on the opposite side of the electron-deficient carbon relative 
to the anion (see also sections (3) path (a) and (4)). Skeletal re- 
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arrangements can be fast relative to reactions between ions (nor- 
bornylamine and nitrosoamide results and also equation 159), and 
most of the product probably comes from bridged ions 62 and 65. 
The deamination of 60 also led to the formation of a fair amount 
( W  30y0) of the product set obtained from amine 63, this crossover 
probably occurs on the way to 61 by a process related to the intra- 
molecular inversion observed in simpler systems (path g). 
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Berson and Gajewski la5& have given an explanation of their experi- 
mental results in which the products of the reaction are determined by 
the formation of the 'deformationally isomeric' ions 66 and 67. As 
an alternative, they propose that the different results in the two systems 
may be 'attributed to transitory differences in the local environment 
of the cations rather than to two structurally different cations', an 
explanation that encompasses the counter-ion mechanism given above. 
The reader is referred to the original work for details. 

(6) The nitrous acid deamination in water 
The relationship of the nitrous acid and nitrosoamide methods of 

deamination is more tenuous in water since only one example of the 
nitrosoamide decomposition in aqueous media has been reported. 
The decomposition of N-nitroso-N-n-propylbenzamide in dimethyl- 
formamide-water (60140 by vol) yielded a propyl benzoate fraction 
containing 9% of the isopropyl isomer and a propanol fraction con- 
taining 33% of isopropyl alcohol 141a. The nitrous acid deamination of 
n-propylamine under the same conditions yielded an alcohol fraction 
containing 3 1 X of isopropyl alcohol 141a. The similarity in the isomer 
contents of the alcohol portions suggests that common intermediates 
were involved. The less extensive isomerization of the benzoates may 
be a reflection of the shorter lifetime of the propyl cations trapped by 
negatively charged counter ions compared to those trapped by 
neutral solvent molecules; on the other hand, the role of diazopropane 
must be determined before definitive conclusions are possible. 

The deamination in water-acetic acid mixtures, lean in water, is 
very similar to that in glacial acetic acid (section 5) and Table 13). In 
the dearnination of tram-tram-2-decalylamine (axial amino group) le0 

(Table 13), the decal01 is formed with overall retention of configura- 
tion up to a solvent composition of 75 mole X water-25 mole X acetic 
acid; presumably the retention path ((d), equation 146) is one of the 
chief reaction modes operating. The decalyl acetates (the 'solvolysis' 
products) are formed with overall inversion of configuration in all the 
solvent mixtures and the proportion of inversion increases with water 

P 8. Cleavage of the Carbon-Nitrogen Bond 479 

TABLE 13. Deamination of the 9,lO-tram-2-decalylamines. 

Mole yo acetic acid (+ water) 100 75 50 25 3-4 

A. tmm-tram4-2-Decalylamine Yields of products 
tram-2-Decalyl acetate 32 29 2 5 17 7 

cis-2-Decalyl acetate 39 35 29 24 26 
tram-2-Decal01 2 7 31 33 32 16 
cis-2-Decal01 2 5 13 27 5 1 

B. tram-cis4-2-Decalylamine 
tram-2-Decalyl acetate 18 15 1 1  6 3 
cis-2-Decalyl acetate 55 48 46 37 26 
tram-2-Decal01 1 3 3 4 3 
rir-2-Decal01 26 36 40 53 68 

4 Refers to the hydrogen atom in the 2-position. 

content. Note that the solvolysis product from nitrosoamide reactions 
in acetic acid is always formed with more inversion of configuration 
than the intramolecular product (Table 7). In these cases, the net 
extra inversion is probably the result of capture of the cation by the 
solvent cage with predominant, but not complete, inversion of con- 
figuration (path (f)). 

In the water-rich 3.4 mole yo acetic acid mixture, (1) the alcohol is 
formed with net inversion, (2) 7707, of the substitution products are 
formed with inversion of configuration and (3) most of the product 
(67y0) is now alcohol. In highly polar media, the force between the 
cation and counter ion (or solvated counter ion) may be so weakened, 
that collapse to the counter-ion product (paths (d) and (g)) is not 
inevitable and reactions with molecules of the solvent cage can lead 
to 'cooler' solvated ion pairs 68 and solvent-separated ion pairs 69 of 

the type proposed for solvolytic reactions195b. Under these circum- 
stances, the competition between inversion and retention modes of 
decomposition will lead to a dominance of inversion, since non- 
bonded interactions of the solvent with the axial hydrogens at positions 
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mixture to room temperature. An intractable mixture of nitrogen- 
containing compounds is also obtained*, presumably formed in part 
via symmetrical triazenes (RIVEN-NHR) . 

The deamination of aliphatic arnines is occasionally effected through 
reaction of the amine with an alkyl nitrite in a non-polar 
solvent '01* 202. Primary carbinamines apparently react in this 
system via d i a ~ o a l k a n e s l ~ ~ ~  (see section (3), path (b)). Triazenes 
(RN2NHR) and free radicals are also possible intermediates that must 
be considered for deaminations in non-polar solvents. The reaction 
of amines with nitrosonium salts in aromatic solvents is probably a 
closely related process203. Through the use of alkyl nitrites in non- 
polar solvents, it has been shown recently that certain vinyl amines 
yield products that probably stem from carbene intermediates 
(equation 165) 202. 

Lastly, an interesting method of deamination under basic condi- 
tions has been reported recently by Moss204 (equation 166). 

* Preliminary evidence indicates the following structures for compounds 
obtained from n-butylamine and tritylamine: 
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2. Reactions in which nitrogen is not the leaving group 
a. Von Braun reaction of amides. The replacement of the amino 

gmup of primary aliphatic amines by a halogen may be brought about 
in good yield by the von Braun reaction of the N-substituted benzamide 
 derivative^^^^^^^^. Treatment of the benzamide with phosphorus 
pentahalide gives the halide and benzonitrile (equation 167). Thionyl 
chloride has been employed successfully in the place of phosphorus 

b. Pyrolysir of amides. The pyrolysis of N-alkylamides can lead 
to C-N bond cleavage with formation of an alkene and the parent 

RCH2CHaNHCOCH3 A RCH2=CH2 + CH3CONH2 (168) 

amide (equation 168) 208. N-t-Alkylamides and N-alkylanilides are 
found to pyrolyze with the same ease as many esters, though in general 
a higher temperature ( > 500') is required for pyrolysis and low yields 
(with charring) are obtained. The acid-catalyzed pyrolysis of amides 
has been and N-alkyl acetamides form olefins when 
boiled with 15y0 hydrochloric acid210. 

c. Oxidation methods. 
(1) Oxidation with permanganate 

The oxidation of primary carbinamines with basic potassium per- 
manganate yields the corresponding carboxylic acid (equation 169). 

RCH2NH2 ---+ RC02H + NH, (169) 

The reaction has been used in a degradation scheme for the location 
of 14C in cyclic compounds211. At the 1,5-diaminopentane stage, a 
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was then treated with hydrazoic acid to continue the degradation. 

pentane 140b. The oxidation of amines with neutral permanganate 
been reported recently to give a variety of products212; a review of 
permanganate oxidation was included in this report 212. 

(2) t-Butyl hypochlorite 

Hypochlorous acid has been used to effect the chlorination213, but 
t-but$ hypochlorite has been found to be a more convenient 
reagent 214. 

(3) Photochemical oxidation 
The deamination of cyclohexylamine has been brought about 

photochemically using benzophenone as s e n ~ i t i z e r ~ ~ ~ .  Cyclohexanone 
was produced in 80-90% yields (equation 173). The reaction is also 
successful with secondary amines. 
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(4) Tramamination 
Transamination represents a potentially useful method for the 

synthesis of amines-and also for the cleavage of C-N bonds with a 
transfer of asymmetry (equation 174). Snell has reported the synthesis 

of glutamic acid containing an excess of the L isomer from the reaction 
of ketoglutaric acid with L-alanine, catalyzed by the copper salt of 
p y r i d o ~ a l ~ ~ ~ .  A discussion of conformational factors in this reaction 
has appeared recently217. The biological applications of transamina- 
tion are covered in chapter 9 of this volume. 

B. Aromatic and Heterocyclic Amines 

I. Reactions involving diazonium salts 

Treatment of a primary arnine with aqueous nitrous acid almost 
invariably gives solutions of more or less stable diazonium salts 
(equation 175) The decomposition of the diazonium salt with loss 

of nitrogen, which can be brought about thermally or catalytically 
in the presence of cuprous salts or finely divided copper, gives high 
yields of substituted aromatic derivatives and the reaction has found 
much use in organic synthesis. This subject will be covered in detail 
in another volume of this series. 

Heterocyclic aromatic amines also react to form diazonium salts 
(equation 176). With many heterocyclic amines, the substitution 
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R R 

the ability of nitrous acid to bring about mutations; that is, by i 
action on DNA219. 

2. The Bucherer reaction 

100" gives naphthols (equation 178) 220. The reaction is reversibl 

NaHSO, 

and limited in its application to naphthalene derivatives, resorcinol 
and compounds of this type. Secondary and tertiary naphthylamines 
also react to give naphthols. 

The mechanism of the reaction has been investigated recently by 
SeebothZz1 who has isolated I-tetralone-3-sulfonic acid by the reaction 
of both l-naphthylamine and I-naphthol with excess sodium bisulfite 
(equation 179); 72 was stable in aqueous media and could be 
chlorinated or brominated in the Bposition before hydrolysis to the 
corresponding naphthol ; 71 was isolated only from nonaqueous media. 
Treatment of the I-tetralone-3-sulfonic acid with arylamines gave 
good yields of arylnaphthylamines (equation 180). The reaction is 
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~t successful with phenol itself, presumably because of the loss of 
resonance energy in the addition of bisulfite ion. 

NHAr 
I 
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I. INTRODUCTION 

The elements of amino groups obviously originate in the atmosphere 
but only a few of the simplest, unicellular living organisms are capable 
of using or fixing atmospheric nitrogen directly as a precursor of 
amino compounds. Higher plants, as well as those microorganisms 
which cannot fix atmospheric nitrogen, can use either ammonia or 
nitrate as a nitrogen source. Animals, which are more complex in 
structure, function and degree of specialisation, require organic 
nitrogen compounds, some of which already contain amino groups. 
The sequence of reactions by which either free or combined nitrogen 
is converted to naturally occurring amino compounds is not yet 
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completely worked out, but it is clear that the steps in each sequence 
are all enzyme catalysed. The ability of different life forms to use free 
or combined nitrogen is governed, to some extent, by the presence of 
particular enzymes. Since all enzymes are proteins, and therefore 
derivatives of the most important naturally occurring amino com- 
pounds, the a-L-amino acids, any argument concerned with the purely 
biological formation of amino compounds is essentially circular. The 
implication is, then, that at some very early stage, before the evolution 
of life on this planet, amino acids must have been formed directly 
from the elements of the atmosphere. 

Although Miller has shown that the passage of an electric dis- 
charge through mixtures of methane, ammonia and water vapour 
(possible constituents of a primeval atmosphere), results in the 
production of some a-amino acids, these always occur as racemic 
mixtures of the L and D forms. I n  biological systems, both structural 
and functional proteins are built almost exclusively from L-amino 
acids. I t  is clearly easier to construct a well-ordered macromolecule 
from residues having the same stereochemistry, but the original selec- 
tion of one-handed residue over the other is as yet unexplained. 

Such speculations as to the origin of a-L-amino acids may seem out 
of place, but they are designed to emphasise the importance of these 
particular amino compounds in biological systems. Not only must 
amino acids have been among the earliest formed amino compounds, 
on the evolutionary scale, since they are the precursors of the natural 
catalysts of all metabolic processes, but they also appear to be the 
first-formed products following ingestion of inorganic nitrogen com- 
pounds by either plants or microorganisms. All other amino com- 
pounds (e.g. purines and pyrimidines, amino sugars, vitamins and 
chemical transmitters) must, therefore, be derived from amino acids. 
Although some of the biosynthetic routes are incompletely understood, 
many are known to involve the transfer of amino groups from either 
amino acids or from amides of amino acids to receptors such as 
carbohydrate residues or heterocyclic ring systems. 

Between the various life forms now extant, there is a remarkable 
conservation of so-called fixed nitrogen. Plants, animals and micro- 
organisms enjoy a symbiotic relationship, with microorganisms 
holding the balance between fixed and atmospheric nitrogen. Apart 
from the nitrogen-fixing microorganisms, there exist a number of 
nitrifjring bacteria which can convert ammonia, or more importantly 
organic nitrogen compounds of plant or animal origin, into nitrate. 
The nitrate may then be assimilated by plants and converted to 
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organic nitrogen compounds. Of these, certain amino acids, readily 
synthesised by plants, are necessary in the diet of herbivorous animals 
while carnivores obtain the same essential amino acids by consuming 
herbivores. JVhen animals and unconsumed or inedible plants die, 
the organic amino and nitrogen compounds may be reconverted to 
nitrate, by nitrifjhg bacteria, and so the principal cycle of fixed- 
nitrogen conservation is completed. Alternatively, the nitrogen of 
nitrate may be returncd to the atmosphere by the action of denitrifylng 
bacteria. 

Not all animals obtain the essential amino acids from plants. Some 
(the ruminants) can by-pass the main route by direct assimilation of 
the amino acids produced by symbiotic bacteria in the gut. These 
bacteria can break down cellulose, the main structural carbohydrate 
of plants, and can also synthesise all the amino acids, required for 
their growth and development, from a simple fixed-nitrogen source. 
The ruminant obtains its more complex nitrogen requirements by 
digestion of dead bacteria. (Goats, for example, can survive on a diet 
of hay and ammonia.) This may appear to be a somewhat one-sided 
symbiosis, with the bacteria carrying out all the important functions 
but, in return, the bacteria obtain from the animal a copious supply of 
carbohydrate and are maintained in a favourable environment with 
respect to temperature and medium composition. 

I t  is fortunate, not least from the point of view of this chapter, that 
the fundamental differences in the dietary nitrogen requirements of 
different forms of life are not followed by an equivalent diversity in 
the principal routes to amino compounds and their derivatives. 
Figure 1 shows, in outline, the most important reactions and these are 
the ones to which the present discussion will be limited. The reactions 
shown with bold arrows are common to most bacteria and to some 
cells of multicellular organisms. The reactions shown with light 
arrows are no less important but they only occur in particular life 
forms. For example, the decarboxylation of a-L-amino acids to form 
amines occurs only in bacteria and (to a lesser extent) in plants. 
Although excess amino acids in animals may be removed by decar- 
boxylation, it is the intestinal bacteria which carry out the reaction 
and not cells of the animal itself. The production of alkaloids is also 
marked with a light arrow. Alkaloids, which are formed almost 
exclusively in plants, with the exception of the poisonous skin secre- 
tions of certain toads and salamanders, have profound physiological 
effects when administered to higher animals, but their function in 
plants remains quite unknown. Because the function of the product is 

9. Biological Formation and Rcactions of Lhe Amino Group 
503 



504 Barbara E. C. Banks 

unknown, the formation of plant alkaloids is considered as a seconda 
rather than a primary metabolic process. 

The first two sections of this c 
problems involved in elucidating 
properties of the necessary catalysts. In 1 
reactions given in Figure 1 are consider 
given in each case reflects more the pres 
'mechanism' of each reaction than 
Although the formation of proteins fro 
acids from purine and pyrimidin 
discussion of the biosynthesis of these 
the scope of this chapter. 

II. PROPERTIES O F  ENZYMES 

As stated in the opening paragrap 
differences in the nitrogen requireme 
the presence or absence of specific enzymes. Since the great 
of metabolic processes are enzyme catalysed, so each reaction 
in the synthesis and metabolism 
in terms of the properties of indi 
of multicellular organisms and in ev 
reactions occur, some only during p 
ment and others throughout the existence of 
the presence of many different catalysts. Metabolic studies in 
animals, plants and mkroorganisms, or in tis 
of particular parts of higher organisms, have led to the partial identifi 
cation of many hundreds of enzymes but relatively few of these hav 
been isolated in forms which satisfy the criteria of purity applied t 
proteins. (It should be remembered that these criteria are still far 
less stringent than those applied to 
However, certain generalisations about so 
enzymes can be made with reasonable 
enzymes appear to be proteins (molecula 
may or may not require a non-pr 
activity. The cofactor may be a 
fragment, a metal or a relatively small orga 
are all built from some or all of the twenty known, nat 
amino acids (Table 1) and therefore the specificity of 
a catalyst for a particular reaction (or a 
reactions) must in part be a function of the sequence in which the 
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TABLE 1. Common a-L-amino acids. 

Common name Chemical structure 

Alanine 

Valine 

Leucine CH,CH(CH& 

NH,LHcooH 

Isoleucine CHBCHC2H5 I 
NH,CHCOOH 

Serine 

Threonine HC(OH)C% 

NH,LHcooH 

Methionine CH,CH,SCH, 
I 

NH,CHCOOH 

Tyrosine CH2CeH40H-p 

NH,LHcooH 

Proline 

Aspartic acid CH,COOH 

N H,LHCOOH 
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TABLE I. (continued) 

Common name Chemical structure 

Asparagine CHaCONHa 
I 

NHzCHCOOH 

Glutamic acid CHzCHaCOOH 
I 

NHZCHCOOH 

Glutamine CHaCHaCONHz 
I 

NHaCHCOOH 

Lysine W(CH&NHz 

L .NH2 HCOOH 

Arginine CHaCHzCHzNHC-NH2 
I l1 

NHpCHCOOH NH 

Histidine 

Cystine CH2-S---S-CH, 
l 

amino acids are joined. The relative ease with which, for many 
enzymes, catalytic activity is lost, without any peptide bonds being 
broken, for example by heating or by change of pH or solvent, 
suggests that both specificity and activity are functions of the secondary 
and tertiary structure of the protein, that is, the three-dimensional 
arrangement of the protein chain or chains. 

In spite of the mass of existing literature concerned with the 
'mechanisms' of enzyme catalysis (more, perhaps, than in the field of 
physical organic chemistry), in no single case can an answer be given 
to the question of how enzymes increase the rates of known chemical 
reactions by factors which may be as high as 108 or log. In one case, 
the complete three-dimensional structure of a small enzyme (lysozyme 
(egg-white) mol. wt. 14,600) is now known, as a result of col- 
laborative efforts of protein chemists and crystallographers. Un- 
fortunately, the chemistry of the substrate of this particular enzyme 
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(complex polysaccharide molecules containing N-acetylglucosarnine 
and N-acetylmuramic acid present in some bacterial cell walls-see 
section V.E) is not well understood, and so even for this enzyme, 
theories of the mechanism of catalysis, although plausible, are largely 
speculative 3. 

Although it is not known, in detail, how enzymes catalyse metabolic 
reactions, it is still useful to discuss which enzymes are present in 
living cells, particularly in relation to cell function and degree of 
specialisation. I t  should at once be pointed out that the presence of a 
particular enzyme in a cell is a necessary but not a sufficient condition 
for the reaction catalysed by that enzyme to occur. The standard 
free-energy changes of metabolic processes are all relatively low 
(about + 12 kcal/mole), hence the reactant concentrations are as 
important as the presence of the necessary catalyst in that they 
determine the direction in which reaction proceeds. An example will 
serve to illustrate this important factor. I t  has been emphasised that 
plant and animal cells do not contain the enzymes, present in some 
bacteria, which are responsible for converting atmospheric nitrogen 
to ammonia. Multicellular organisms must be supplied with fixed 
nitrogen, but the next step in the production of amino compounds 
from ammonia is most probably that given in equation (1). The 
reaction is catalysed by an enzyme (glutamic dehydrogenase, see 
section 1V.B) which occurs in bacteria, plants and also animals. (It 
is not implied that enzymes catalysing the same reaction but present 
in different species are identical proteins.) In principle, the reaction 
(equation 1) could be, in all living matter, the first step in the pro- 
duction of amino compounds, as it appears to be in bacteria and 
probably also in plants. 

COOH COOH 

L ( Ha)a 

L0 + NH,+ + NADH* I + NAD+ + HzO CHNHa 
(1) 

CooH 
I 

COOH 

a-ketoglutaric acid glutamic acid 

However, it is well known that animals, with the exception of 
ruminants, cannot survive on ammonia as a source of nitrogen. The 
reason for this apparent anomaly is that although glutamic dehydro- 
genase is present in animals (predominantly in the liver), the level of 
ammonia is too low to drive the reaction to the formation of glutamate. 

* See Figure 2a and section 1V.A. 
171 
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reaction, breaks down. Intermediates detected under these conditions 
may not be formed to any significant extent in whole cells. As pointed 
out previously, the mere presence of an enzyme in tissue is not 
indicative of its importance in uiuo. 

Studies of metabolic pathways in microorganisms are not subject to 
the same limitations as those considered above in relation to plants 
and animals. There are a number of advantages in working with 
unicellular organisms. For example : 

(a) I t  is generally easier to keep microorganisms alive under con- 
ditions used for the introduction of isotopically labelled compounds. 

(b) The dilution of any isotopically labelled compound is less than 
in multicellular organisms because of the lower mass of material in 
each microorganism. 

(c) The high rate of reproduction, and hence the increased fre- 
quency of mutation of microorganisms, permits the culture of mutant 
strains in which particular metabolic pathways may be blocked. Inter- 
mediates present at low stationary concentrations in the wild strain 
may well accumulate in mutants, and so be more easily identified. 

(d) The considerable adaptability shown by many microorganisms, 
with respect to nutrients in the growth medium, greatly facilitates the 
production of mutants with desired characteristics. For example, it is 
~ossible, in some cases, to produce mutants in which a particular 
metabolic path is blocked, simply by culturing the organism in the 
presence of the end-product of that particular path. 

Among the disadvantages are : 

(a) The difficulty of culturing microorganisms on a large scale. 
(b) AU the reactions necessary for growth, development and repro- 

duction must occur within each unicellular organism. I n  multicellular 
organisms, on the other hand, particular cells are specialised to carry 
out functions for the organism as a whole and within these specialised 
cells, the total number of enzyme catalysed reactions may be reduced. 

(c) Because of the size of microorganisms, the only feasible method 
of introducing isotopically labelled compounds is by assimilation. 
Since transport of material across cell walls is limited to certain 
chemical compounds, the labelled compounds which can be intro- 
duced are similarly limited. 

In  studying the metabolism of amino compounds, use is commonly 
made of the stable isotope 15N, the abundance of which may be 
determined mass spectrometrically. The radioactive isotope of 
nitrogen, 13N, has too short a half-life ( 10 min) to be of much value 

in this field, though some experiments in the limited field of nitrogen 
fixation have been reportedq. 

IV. FORMATION O F  a-L-AMINO ACIDS 

There are two main reasons for considering the formation of a-L-amino 
acids separately from other amino compounds. The first is that the 
a-L-amino acids are the basic components of enzymes and the second 
is that those organisms which can use inorganic nitrogen compounds 
as the sole source of nitrogen appear to form all amino compounds 
from amino acid precursors. The reactions, included in Figure 1, 
which are primarily involved in amino acid formation are: 

(a) Ammonia formation, by nitrogen fixation and nitrate reduction. 
(b) Glutamate formation by incorporation of ammonia into an existing 

carbon skeleton (a-ketoglutarate), catalysed by the enzyme glutamic 
dehydrogenase. 

(c) Tramamination between (i) glutamate and some a-keto acids to 
form a-L-amino acids with the regeneration of a-ketoglutarate; 
(ii) aspartate, (formed by (c) (i) from oxaloacetate (or possibly by 
direct incorporation of ammonia into fumaric acid) and some a-keto 
acids to form a-L-amino acids with the regeneration of oxaloacetate. 

(d) Miscellaneous reactions of amino acids formed by reactions 
(a)-(c) 

A. Ammonia Formation 

I. Nitrogen fixation 
The ability ofcertain microorganisms to take up and use atmospheric 

nitrogen was recognised late in the nineteenth century. Since 1890, an 
increasing number of microorganisms with this ability have been 
isolated in pure strain and the somewhat surprising fact to emerge is 
that nitrogen-fixing microorganisms have little else in common. I t  is 
conventional to classify microorganisms broadly according to diet, 
(e.g. autotrophs require only inorganic foodstuffs, heterotrophs re- 
quire some organic material), energy source (e.g. chemosynthetic 
microorganisms require a chemical 'energy source', photosynthetic 
microorganisms can obtain energy directly from sunlight) and type of 
oxidation reactions (e.g. in anaerobes, oxidation of foodstuffs occurs 
in the absence of molecular oxygen). Inorganic oxidation-reduction 
systems such as nitrate-nitrite or sulphate-sulphide, may be involved 
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or, in the case of fermenting microorganisms, carbohydrate products 
such as pyruvate may undergo the type of reaction 

Aerobic microorganisms use molecular oxygen in the terminal stages 
of oxidation of foodstuffs. 

Nitrogen-fixing microorganisms have representatives in all these 
classes. For example, among the free living bacteria, Clostridium 
pasteurianum is an anaerobic chemosynthetic heterotroph while Awto- 
bacter agilis is an aerobic heterotroph ; blue-green algae (nitrogen-fixers 
which may be found living in symbiosis with higher plants and lichens) 
and certain photosynthetic bacteria are autotrophs. 

There have been a number of claims for nitrogen fixation by higher 
organisms, including chick embryos and some fungi 6*7 but the most 
controversial issue is concerned with nitrogen fixation by plants. The 
requirement of higher plants for an adequate supply of fixed nitrogen 
(as nitrate or ammonium salts) has been recognised since the late 
eighteenth century, while crop rotation has been practised since 
Roman times. In  particular, some leguminous plants have a beneficial 
effect on soil for subsequent crops, the effect being most marked when 
the plants are turned into the soil as green manure. The possibility 
that these leguminous plants in some way increased the concentration 
of fixed nitrogen in the soil led to the proposal that the plants them- 
selves fixed atmospheric nitrogen. The situation was confused by the 
observation, late in the nineteenth century, that legumes grown in 
sterile soil do not fix atmospheric nitrogen but examination of the 
plants grown under sterile and non-sterile conditions showed that only 
those grown under non-sterile conditions had nodulated roots. Root 
nodules, characteristic of both legumes and other species capable of 
fixing nitrogen, were shown to contain microorganisms. These (many 
bacteria of the species Rhizobium, blue-green algae, etc.) live in true 
symbiosis with the plants, being responsible for fixing atmospheric 
nitrogen and supplying nitrogenous material to the plant which, in 
turn, provides the symbiotes with carbohydrate foodstuffs. Isolated 
bacteria from root nodules cannot themselves fix atmospheric nitrogen. 

In  the following period of fifty years little progress was made 
towards elucidating the mechanism of the process. Many attempts 
were made to obtain cell-free preparations containing the enzymes 
presumably involved in nitrogen fixation, but these were unsuccessfid 
until 1960. The intracellular organisation of enzyme systems is known 
to be complex, groups of enzymes involved in sequential reactions 

t 
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frequently being localised in or on subcellular particles. One would 
predict that nitrogen fixation would involve a complex series of reac- 
tions so it is not surprising that the difficulty experienced in obtaining 
active, cell-free preparations is associated with the conditions under 
which the cells are disrupted. Successful methods of cell disruption 
include sonic, mechanical and enzymic disruption in an atmosphere of 
hydrogen, but the method of choice depends on the organism studied. 
Activity is judged by incorporation of 15N8 or 13N into ammonia and 
organic nitrogen compounds by the action of the supernatant liquid 
obtained after high speed centrifugation of the cell extract (25,000- 
50,000 g), the supernatant liquid having been shown to be cell-free. 
Knowledge of the mechanism of nitrogen fixation is still in a primitive 
state but some interesting facts have emergedg-ll. Firstly, there 
appears to be a close but non-stoichiometric connection between 
nitrogen fixation and carbohydrate metabolism. In  extracts of 
Clostridium pasteurianum, Bacillus polymyxa, Rhodospirillum rubrum and 
Chromatium the particular intermediate in carbohydrate metabolism 
required is pyruvate, believed to be metabolised to acetyl phosphate 
(equation 6). Working with extracts of Cl. pasteurianum, Carnahan and 

coworkers have shown that there is a large molar excess ( -  100-fold) 
of pyruvate metabolised over amount of nitrogen fixed, and also an 
initial lag period in which nitrogen fixation cannot be detected. Had 
there been a stoichiometric connection between pyruvate metabolism 
and nitrogen fixation, the obvious overall reaction would be as shown 
in equation (7). However, as frequently occurs in biological systems, 

the connection between the oxidation (of pyruvate) and reduction 
(of nitrogen) appears to involve an electron-transfer system rather 
than hydrogen transfer. Since reference will be made, in later sections, 
to those oxidation-reduction reactions involved in the metabolism of 
amino compounds, a brief account follows of the currently accepted 
position with regard to natural redox systems. 

The enzymes catalysir~g reactions involving oxidation and reduction 
(oxido-reductases) are of two types : 

(a) those requiring a readily dissociable, nicotine-adenine nucleo- 
tide (NADP) cofactor (Figure 2a, 2b) catalysing reactions of the type 

MH, + NAD+ M + NADH + H+  
(MH, = reduced metabolite) 
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H-L- 
H-C-OH 

I  
H-C-OR 

1 
H-C-OH 

H-C 
l 

0 0 H-C- 
I I1 II I 

CH2-0-P-0-P-0-CH, 
I  I 

FIGURE 2a. Nicotinamide-adenine nuc!eotide cofactors (oxidised). 

H-C-OH H-C-OR 

H-C 0 
l II II I 

0 H-C 

CH2-0-P-0-P-0-CH, 
I I 

I t ) ~  OH 

R = H, NADH 

R = - P03Hz, NADPH 

FIGURE 2b. Nicotinamide-adenine nucleotide cofactors (reduced). 

(b) those containing a tightly bound flavine 
2d) and catalysing reactions of the type 

MH2 + FP + M + FPH, 

Reoxidation of the reduced cofactors occurs by 
shown in Figure 3. The abbreviation 'cyt-system' 

cofactor (Figur 

one of the reac 
refers to the con 
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H-C-OH 
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R = adenosine (linked through of \ D-ribose). FAD 

FIGURE PC. Flavin cofactors (oxidised). 

0 0 
II I  I 

CH2-0-P-0-P-OR 
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H-C-OH OH OH 
I 

H-c-OH 
I 

H-C-OH 
I 

H-$-H 

c i 4 3 ~ N " , " ' c = 0  1 

CH3 N-H 
N C' 
H 0 II 

R = H, FMN 

R = adenosine, 

FIGURE 2d. Flavin cofactors (reduced). 

arrangement of flavoproteins, a quinone-type derivative and the so- 
called cytochromes which exist in particular subcellular particles 
called mitochondria. The cytochromes are protein-bound haem 
complexes (haem is a porphyrin ring system in which the four pyrrole 
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ring nitrogens are coordinated to iron). The iron in these haernopro- 
teins undergoes reversible reduction and oxidation as electrons pass 
from one cytochrome to the next, the ultimate reaction with molecula 
oxygen, transported to the cells in association with the haemoglobin 
of blood, is as shown in equation (10). 

2 cyt a, Fez+ + 2 H +  + ) 0, 2 cyt a, Fe3+ + H,O 

Oxidised metabolite Reduced metabolite 
(e.g. pyruvate) (e.g. lactate) 

Oxidation by coupling w i th  second 
metabolic reaction 

N A D H  N A D +  
or  o r  

NADPH NADP+ - @) Anaerobic dehydrogenasesa 

Via 'cyt-system' 
Oxidised Reduced Oxidised 

flavoprotein flavoprotein flavoprotein - @ Aerobic dehydrogenases 

H202 0 2  

l catalase 

H 2 0  + 3 0 2  

FIGURE 3. 
a The reduced flavoproteins catalysing reaction @ are always reoxidised by the 

cytochrome system. 

For the particular system involved in nitrogen fixation, an iron- 
containing protein called ferredoxin appears to act as an electron- 
carrying intermediary between pyruvate metabolism and nitrogen 
reduction. Ferredoxin was first isolated from Cl. pasteurianum in 1962 12. 

The iron in ferredoxin is not associated with a porphyrin ring system 
nor is the protein associated with a flavin entity. The ferredoxin 
isolated from Cl. pasteurianum is a small protein (mol. wt. -.6,000), 
showing absorption maxima at 280, 300 and 390 mp when oxidised 
(brown colour) but only the 280 mp absorption remains when the 
protein is reduced. The soluble, nitrogen-fixing system, from Cl. 
pasteurianum, has been fiactionated into two parts13, one called the 
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hydrogen-donating system (HDS) and the other the nitrogen-activat- 
ing system (NAS). Both fractions are required for nitrogen fixation. 
The HDS catalyses the reaction between pyruvate and inorganic 
phosphate (equation 6) and also the production of molecular hydrogen 
from hydrogen ions. Both these activities of the HDS fraction are 
stimulated by ferredoxin. Figure 4 summarises the proposed con- 
nection between the nitrogen-activating system and the hydrogen- 
donating system. 

Pyruvate etc. + Oxidised ferredoxin 

Acetylphosphate + COa + Reduced ferredoxin 

NAS PN2 
Oxidised ferredoxin + NH3 

The above account ignores many facets of the problem of nitrogen 
fixation. For example: 

(a) The role of molybdenum, which is known to be an essential 
trace metal for nitrogen fixation in root nodules14 and possibly in 
free living microorganisms 15. 

(b) The long-standing argument as to the nature of the 'key- 
intermediate', that is, the compound immediately preceding in- 
corporation of nitrogen into a carbon compound. 

(c) The possibility of a route involving first oxidation and then 
reduction, for example via nitrous oxide, nitramide or hyponitrous 
acid to hydroxylamine, and thence to ammonia. 

On balance, the evidence so far favours the theory that ammonia 
is the end-product of nitrogen fixation. 

2. Nitrate reduction (in higher plants and some microorganisms) 

The biological reduction of nitrate is a stepwise process. The inter- 
mediates have not all been characterised but enzymes catalysing some 
of the postulated steps have been identified in certain higher plants 
and microorganisms. 
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a. Nitrate reductase. An enzyme catalysing the reduction of nitra 
to nitrite has been detected in some moulds16, bacterial7, plan 
and yeasts. In all cases the enzyme activity is associated 
flavoprotein (FP), containing flavine adenine dinucleotide 
2c, 2d) and requires two cofactors, one of which is either 
NADPH (Figure 2a, 2b), depending on the source, and th 
specific metal, molybdenum, known to be essential, in trace amountq 
for healthy plant growth. This particular oxidation-reduction system 
does not come into either of the separate categories given in section 
1V.A. I but the possibility still exists that more than one enzyme may 
be involved. It is interesting, in this context, that removal of the metal, 
by chelation, inhibits nitrate reduction but not the reduction of the 
FAD of the enzyme by added NADH or NADPH18. 

b. Nitrite reductase. An enzyme catalysing the reduction of nitri 
less well characterised than nitrate reductase, but its presence has 
demonstrated in yeastslg and plant leaveslg and some rmcr 
organismsa0. This enzyme also appears to be a metalloflavopro 
requiring NADH or NADPH, but the heavy metal cofactor has 
been positively identified. Likely candidates are iron, copper 
manganese. The reduction product is uncertain. The enzyme may we 
be the same as that designated as hyponitrite reductase, detected i 
Neurosporaal. 

c. Hydroxylamine reductase. The reduction of hydroxylamine t 
ammonia is catalysed by another metalloflavoprotein, present in som 
plant leaves1g, yeasts and rnicroorganismsaO. The enzyme requir 
NADH and the metal is most likely to be manganese. 

Hydroxylamine is known to be highly toxic to plants so the poss 
bility that it is an obligatory intermediate in nitrate reduction mus 
be considered with caution.* Interest in hydroxylamine arises fro 
the lengthy controversy, briefly mentioned here, concerning the re1 
tive merits of hydroxylamine or ammonia as the key intermediate 
nitrogen fixation. The toxicity of hydroxylamine may well be due 
its action as an enzyme inhibitor. However, in spite of its toxici 
there are still some claimsa2 that hydroxylamine may be an inter- 
mediate in the formation of amino acids by oxime formation with 
such carbonyl compounds as glyoxilic acid (formed in photosynthesis), 
pyruvate, a-ketoglutarate or oxaloacetate (intermediates in carbo- 

* In a sequence of reactions, occurring in viva, if one step is blocked, by addi- 
tion of a specific inhibitor, the resulting increase in the concentrations of 
intermediates preceding the block may well prove toxic. 
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hydrate metabolism) and subsequent reduction of the oximes to 
a-amino acids (equation 11). Virtanen and coworkers, the main 

NH,OH + RCOCOOH + RC=NOH I RCH-COOH I (11) 

supporters of hydroxylamine as the key intermediate in nitrogen 
fixation, originally proposed that the main route to a-amino acids 
might be through oxime formation; however, this route is now gener- 
ally believed to be only of minor importance. 

The sequence of reactions alleged to occur in nitrate reduction are 
given in equation (1 2). 

HN03 - HNO, ----t [HNO] ----t NH,OH ----t NH3 (12) 

3. Nitrification and denitrification 
The nitrifying microorganisms, which can convert ammonia and 

organic amino compounds to nitrate, and the denitrifying micro- 
organisms which produce elementary nitrogen fi-om nitrate and nitrite, 
are important in that they control the supply offixed nitrogen to higher 
organisms. The mechanisms of the two processes are obscure. It is 
possible that, at least in Nitrosomonas, nitrification may occur by the 
reverse of the reactions of equation (12). Certainly, enzymes catalysing 
the production of nitrite from hydroxylamine have been detecteda3. 
In denitrification, cell-free preparations of Pseudomonas stutzeri have 
been shown to catalyse the reduction of nitrate and nitrite to nitrous 
and nitric oxides and to gaseous nitrogen. Among the proposed 
cofactors for the enzymes involved are NAD, NADP, FAD, FMN, 
iron and copper, but nothing is certain. I t  is alleged that some of the 
enzymes contain bound cytochromes, and in this respect, differ from 
the metalloflavoproteins involved in the reduction of nitrate to 
ammonia. 

B. Glutamic Dehydrogenase 

Glutamic dehydrogenase catalyses the formation of glutamate from 
a-ketoglutarate and ammonia. The cofactor for the enzyme may be 
NAD (as shown in equation l), or NADP, depending on the source 
of the enzyme. In plants and in most animal tissues, the cofactor is 
NAD while some bacterial and yeast enzymes require NADP. The 
mammalian liver enzyme works with either cofactor. The equilibrium 
constant is such that, at the hydrogen ion and substrate concentrations 
in most regions containing the enzyme, the production of glutamate is 
favoured. It has been suggesteda4 that the reaction may occur in two 
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steps, in the first of which an imino acid is formed, and in the second, 
the imino acid is reduced by the cofactor (equations 13 and 14). The 

COOH COOH 

l 
COOH 

l 
COOH 

COOH 
l 

COOH 
I 

enzyme, which has been crystallised from beef liver, forms active 
protein aggregates (mol. wt. -- 106) which can be dissociated (e.g. by 
dilution) to give four enzymically active subunits (mol. wt. -- 2.5 X 105). 
The subunits can be further fragmented, by treatment with urea or 
dodecyl sulphate, to inactive units (mol. wt. -- 5 X 104)z5, suggesting 
that the enzymically active entities possess a number of polypeptide 
chains. The original aggregate may be held together by coordination 
to zincz6. The mechanism of catalysis remains obscure. 

The biological importance of this enzyme has already been discussed 
(section 11). Its role in producing glutamate, as the first organic 
amino compound, in bacteria and plants seems reasonably well 
established. In animals, which do not have the ability to produce all 
amino compounds from a simple nitrogen source, the enzyme seems 
to be concerned with the removal of excess amino compounds (equa- 
tions 2-5) as well as with the production of glutamate for conversion 
to the acid amide (section V.B) or to take part in transamination 
reactions to form the non-essential amino compounds. Cellular control 
of the direction in which reaction occurs may well lie in the ratio of 
the concentrations of the oxidised and reduced forms of the cofactor. 
This ratio is not a fixed quantity but depends on the metabolic activity 
of the cell (NAD and NADP are cofactors for many oxidation- 
reduction reactions) as well as on the availability of molecular oxygen 
for the terminal step in respiration, by which the reduced cofactor 
is reoxidised by the cytochrome system (section 1V.A. 1). 
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I. General 
The enzyme-catalysed, reversible interchange of amino groups 

between carbon skeletons without the production of ammonia has 
been recognised since 1937 (equation 15). The actual number of 

RICHCOOH + R2COCOOH RICOCOOH + R2CHCOOH (15) 
I I 
NHz NHz 

transaminases and the relevant specificities of these enzymes are still 
in dispute but indirect evidence suggests that many pairs of a-amino 
and a-keto acids can take part in transamination reactions. Only two 
transaminases have been purified to states approaching homogeneity 
and of these two, (catalysing reactions (16) and (17)) the glutamic- 
aspartic transaminase has been the subject of most mechanistic 
studies, partly because one of the substrates (oxaloacetic acid) can 
be relatively easily estimated. The enzymes catalysing reactions (16) 

COOH COOH COOH COOH 

Coo, CooH 
l l 
COOH COOH 

aspartate a-ketoglutarate oxaloacetate glutarnate 

I 
alanine CooH pyruvate COOH 

and (17) do not show absolute specificity for these particular substrates. 
For example, in equation (16), oxaloacetate can be replaced by a-keto- 
malonate, aspartate by cysteic acid (HSO,CHzCH(NHz)COOH) or 
glutamate by a-methylglutamate. However, the activities observed 
with substrates other than the principal ones is too low to account for 
the production of a-amino acids other than aspartate and alanine by 
transamination between glutamate and a-keto acids. Indirect evidence 
for the existence of other transaminases comes from studies of the 
nutritional requirements of whole animals and mutants of some 
microorganisms, and from the effects of vitamin B, deficiency. The 
dietary nitrogen requirements of higher animals include certain so- 
called essential amino acids (listed in Table 2 for man and rat), but 
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TABLE 2. Essential amino acids. 

Argininea Methionine 
Histidinea Phenylalanine 
Isoleucine Threonine 
Leucine Tryptophan 
Lysine Valine 

a Only in rat. 

it has been shown27 that young rats develop equally well if supplie 
with the a-keto analogues of at least five of these amino acids 
ileu, val, phe and met) together with glutamic acid. Since dev 
ment of the animal depends on protein biosynthesis which, in t 
depends on the presence simultaneously of all twenty-odd 
acids, the implication is that transamination between glutama 
the dietary a-keto acids must occur rapidly. Organisms reqm 
certain amino acids do not, then, appear to lack the enzymes cata 
the introduction of the amino group to form these amino ac 
enzymes involved in forming the carbohydrate skeletons into W 

the amino group is incorporated. The synthesis of particular tr 
aminases can be either induced or repressed in certain microorganis 
For example, XEscherichia coli is grown in a medium deficient in valin 
the ability of this organism to transaminate between alanine a 
a-ketoisovalerate increases 28. If, on the other hand, the growth mediu 
is supplemented with tyrosine, the ability of E. coli to form. tyros 
and phenylalanine from glutamate and p-hydroxyphenylpyruvate 
pyruvate, decreases29. 

As will be seen later, enzymes catalysing a number of reactions 
a-amino acids, including transamination, require a derivative 
vitamin B, as cofactor. Vitamin B, deficiency in both rats and micro- 
organisms causes, among other things, a decrease in the level of tr 
aminase activity. For example, Streptococcus faecalis can grow in 
presence of the a-keto acid analogues of normally essential a-a 
acids, but when grown in a vitamin B, deficient medium, the 
to transaminate between glutamate and a-keto acids is lost. 
aminase activity can be restored by addition of a sufficient quantity 
the cofactor. 

The transamination reaction represented by equation (15) involves 
the reversible transfer of a-amino groups. Although there are probably 
more enzymes catalysing this type of reaction, some transaminases 
catalysing w-amino group transfer have also been partially identified. 
For example, the a-ketoglutarate-y-aminobutyrate transaminase 
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localised in the mitochondria of the grey matter of brain30 and also 
present in some microorgani~ms~~, catalyses the reaction given in 
equation (18). Transamination between ornithine and a-keto acids 

l \ 
COOH COOH 

y-amino- a-ketoglutarate succinic glutamate 
butyrate semi- 

aldehyde 

(equation 19) has been demonstrated in liver and in Neurospora crassa, 
while an enzyme specific for the reaction between ornithine and 
cc-ketoglutarate has been partially purified from rat liver mito- 
~ h o n d r i a ~ ~ .  It  may be noted that transamination reactions involving 

CH0 
R 

(19) 

I COOH COOH 
COOH 

ornithine glutamic- 
y-semialdehyde 

glycine may be regarded as both a- and w-amino group transfers. It 
is of interest that transamination between glyoxylate and a-amino 
acids occurs readily, even in the absence of enzyme catalysts33. 

In spite of the failure, to date, to isolate and adequately characterise 
more than two transaminases, both of which catalyse a-amino group 
transfer, it is now generally accepted that transamination plays an 
important part in amino acid metabolism. 

2. Mechanism of transamination 

The reactions of amino acids, catalysed by enzymes requiring a 
derivative of vitamin B, (Figure 5a) as cofactor, have been the subject 
of a number of mechanistic studies. Enzymes catalysing decarboxyla- 
tion, racemisation, dehydration (of serine or threonine) or desulphy- 
dration (of cysteine) require pyridoxal-5'-phosphate as cofactor 
(Figure 5b), and are dealt with in later sections. Enzymes catalysing 
transamination, on the other hand, require either pyridoxal-5'- 
phosphate or pyridoxamine-5'-phosphate (Figure 5c). Snell and 
c o w o r k e r ~ ~ ~  showed that the reactions of amino acids normally 
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CHzOH CH0 

HO&,CH~OH 

H3C 

FIGURE 5a. FIGURE 5b. Pyridoxal- FI 
Pyridoxine. 5'-phosphate. 

catalysed by pyridoxal phosphate-dep 
aqueous solutions at 100' in the presenc 
cofactor and metal ions (e.g. AI3 +), the relative e 
tion, racemisation, transamination etc., depending on pH. The gene 
theory put forward by Snell to account for the reactions occurring 
the absence of enzymes is summarised in Fig 
confirmed that imines are formed between pyridoxal and 
acids in aqueous solutions. No detailed analysis of the subs 
reactions of the imines was possible because of the complexity o 
product mixture. 

I t  has since been shown35 that reversib 
tion occurs between pyridoxal and alanine a 
pyruvate in neutral, aqueous solutions, at 25' 
metal ions. (No evidence has yet been obtained for the presence 
metal ions in purified mammalian tr 
conditions, no decarboxylation or race 
could be detected. From the results of kinetic a 
studies in this simple model system for trans 
shown that imines are formed rapidly and reversibly between the 
pairs of reactants and that tautomerisation of the two Schiff's 
intermediates is rate limiting in the overall tr 
The reaction scheme is given in Figure 7. 

A more complete investigation has recently 
system more relevant to the reaction given in equation (16). ( 
enzyme catalysing this reaction has proved the most amenabl 
purification and characterisation). The reacti 
5'-phosphate and glutamate or aspartate and 
5'-phosphate and oxaloacetate or a-ketoglut 
individually. Transamination in these syste 
imine formation and slow isomerisation of 
The complete system is best described by 
in Figures 8a and b. Values have been assi 
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constants associated with this scheme and also to some of the individu 
rate constants. 

Evidence for the view that enzyme-catalysed transamination occu 
be a sequence of reactions similar to that given in Figure 8b c 
from a number of sources. Using modern methods for protein p 
cation, a number of workers have obtained the soluble glutarmc- 
aspartic transaminase of pig heart muscle in a state of homogeneity 
with respect to ultracentrifugation and free flow electrophoresis. The 
enzyme may be purified as the holoenzyme, the cofactor remaining 
associated with the protein throughout the purification, or as the 
apoenzyme, the cofactor being removed at an early stage in the puri- 
fication. The activities of apoenzyme preparations tend to be 30-50% 
lower than those of holoenzyme preparations, suggesting that the 
enzyme is less stable in the absence of the cofactor. In order to study 
the recombination of the apoenzyme and the two forms of the co- 
factor, it is best to purify the holoenzyme and to remove the cofactor, 
as the final step, using the mild conditions described by S ~ a r d i ~ ~ .  

There is little certainty about the nature of the link between the 
apoenzyme and either form of the cofactor. The 5'-phosphate group of 
the cofactor is probably involved since the non-phosphorylated pyri- 
doxal and pyridoxamine are inactive. The binding is unlikely to be 
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ionic since recombination of the apoenzyme and cofactors is relatively 
slow and the kinetics of the recombination are sufficiently complex t 
suggest that the initial association of protein and cofactor is follo 
by changes in the tertiary protein structure, to give maximum activl 
Reduction of the holoenzyme with lithium borohydride, followed b 
hydrolysis of the protein and chromatographic analysis of the hyd 
lysate led to the identification of a lysine-bound pyridinium residue 
In consequence, it has been suggested that the aldehyde form o f t  
cofactor is bound to the protein through an azomethine link to th 
&-amino group of a lysine residue. If this were true then the fir 
step in transamination would require displacement of the lysine 
one of the amino acid substrates. The amine form of the CO 

could not be bound to the apoenzyme in the same way. It is known 
the holoenzyme can pick up excess pyridoxal phosphate, with no 
crease in catalytic activity. This could well be due to non-spec 
imine formation with &-amino groups of lysine residues in the prote 

The equal effectiveness of the amine and aldehyde forms of th 
cofactor, in reactivating the apoenzyme, is consistent with the schem 
given in Figure 9. Indirect support for the proposed mechanism comes 

k 
Earn 0 

k, 

A 
Eal + 
2 Ea' A + X? 

Earn + 
" k, 

Eal G 4 Eam a 
k m  

2f 
E represents the enzyme. al represents the aldehyde form of 
the cofactor. am represents the amine form of the cofactor 

FIGURE 9. 

from the technique of Scardi and c o w o r k e r ~ ~ ~  for removing th 
cofactor from the holoenzyme. The method is based on conversion o 
the holoenzyme to the amine form by treatment with an excess 
one of the amino acid substrates. Pyridoxamine-5'-phosphate is mor 
readily lost from the protein than is pyridoxal-5'-phosphate. Inter- 
conversion of the amine and aldehyde forms of the holoenzyme in the 
presence of the appropriate a-keto or a-amino acid substrates has now 
been demonstrated spectrophotometrically 38. 39. However, it should 
be remembered that, in all spectrophotometric studies, the concentra- 
tions of holoenzyme required are vastly in excess of the catalytic 
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quantities used in kinetic studies. Interpretation of data obtained 
using 1 0 - 3 ~  solutions of protein in terms of the mechanism of trans- 
amination in the presence of about 1 0 - 8 ~  protein solutions should be 

with caution. 
Attempts have been made to estimate the amounts of cofactor 

present in the catalytically active form of the enzyme. The main 
problem is that the methods available for such determinations usually 
require high protein concentrations. For example, in determining the 
molecular weight of a protein in an analytical ultracentrifuge, 0.3 to 
1 yo protein solutions are required (i.e. ~ O - ' M  for an average-sized 
protein). Many proteins (e.g. insulin and glutamic dehydrogenase) 
aggregate at this concentration. The literature value40 for the mole- 
cular weight of glutamic-aspartic transaminase (1 10,000) is in error, 
the true value being - 80,00042. A recent, simple method of molecular 
weight assessment applicable to globular proteins, involves filtration 
through a molecular sieve (G-100 sephadex), and has been reviewed 
recently41. The virtue of this technique is that it can be used over a 
wide range of protein concentrations and so gives information about 
association phenomena. In the case of transaminase, the molecular 
weight, estimated by gel filtration, is - 77,000 and shows no variation 
in the concentration range 10-4-1 0 - 8 ~  42. Repeated estimations of 
the amount of cofactor bound in the holoenzyme have given, con- 
sistently, one mole per 40,000 g protein42. 

It  is well established that the glutamic-aspartic transaminase, while 
showing no concentration-dependent association phenomena, con- 
tains two moles of cofactor per mole of protein, molecular weight - 80,000. This may appear inconsistent with the proposed scheme, in 
which transamination is regarded as the sum of two independent 
half-reactions, since the presence of two cofactor molecules might seem 
to imply that a ternary mechanism (Figure 10) operates, the two half- 
reactions occurring simultaneously. However, evidence that the true 
equivalent weight of the transaminase is 40,000 rather than 80,000, 

EA + B + EAB ,I" ECD 

ECD -'. EC + D 

Either A and C or B and D are the 
two amino acid substrates and the 
two keto acid substrates. 
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has recently been obtained by a method of quantitative estimation of 
the N-terminal amino acid of the protein. 

A considerable number of kinetic investigations of the reaction 
catalysed by pig heart glutamic-aspartic transaminase have been 
reported, the majority of which are based on ambiguous met 

, measurement of reaction rates. Unambiguous assay conditio 
now been established" and used in a recent and complete 
gation4'. The results are consistent with the binary mechanism 
9) rather than the ternary mechanism (Figure 10). The eq 
constants associated with all six steps have been evaluat 
conventional studies, for this type of system, of the way in W 

velocities of forward and reverse reactions depend on substrate 
centrations, it is normally possible to obtain eight ind 
variable parameters, each of which is a function of 
individual rate constants. However, in this parti 
tional information can be obtained from the effects, on meas 
velocities, of deuterium substitution in the a-position of the 
acid substrates. I t  is possible to predict which o f t  
will be affected by deuterium substitution. The scheme i 

A 
k'l, 

Eal -l- G* ,k* i a  

G 

FIGURE 1 1. 

illustrates the situation for tran 
a-deuteroglutamate. If, as is known to be the ca 
system, a-deuteration of the amino acids affects on1 
slowest steps in transamin 
intermediates, and not the 
parameters containing k,, (k 
affected in the presence of a-de 
of a-deuteroaspartate). Using the results obtained 
a-deutero amino acid substrates, values have been assigned to k3 an 
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kg ( - 400 sec - l) and k4 and klo ( - 1000 sec -l). Corresponding values 
in the model system are k3 = 1.6 X 10-'j sec-l, k, = 1.75 X 10-" 
sec-1 and klo = 0.82 X 10-6 sec-l. The presence of the enzyme 
therefore increases the rate of transamination by a factor of 10'-109, 
which is some 103 times higher than the estimated figure quoted by 
Meister a4 in his recent review. 

The above values of certain rate constants are at variance with 
those quoted by Hammes and Fa~ella'~. These workers used the 
temperature-jump technique to determine the relaxation times 
associated with intermediates believed to be formed in the course of 
transamination, but the assignment of the observed phenomena to 
particular intermediates is somewhat arbitrary. The main source of 
error in applying this relatively new method to enzyme-catalysed 
reactions lies in the very high protein concentrations (greater than 
1 0 - 5 ~ )  required. I t  is quite possible that, under these conditions, 
enzyme-substrate complexes which do not lie on the normal reaction 
path may be present in significant amounts. 

Enzymes catalysing transamination reactions are clearly of im- 
portance in controlling the distribution of amino groups in biological 
systems. From the mechanistic point of view, transamination is better 
understood than many other enzyme-catalysed reactions, largely 
because of the involvement of a well-defined cofactor. If, as seems 
reasonable, catalysis involves the cofactor directly, it is possible, as 
here, to design and study model systems from which the enzyme is 
absent. However, the mechanism of catalysis of transarnination is as 
obscure as for other enzyme-catalysed reactions, but at least the 
magnitude of the problem is now well defined. 

3. Formation of individual amino acids 
I t  is clearly not possible to discuss here at any length, the metabolism 

of individual amino acids. I n  addition, the details of the biosynthesis 
and catabolism of amino acids, well reviewed in Volume I1 of Meister's 
recent book46, are concerned more with the formation and breakdown 
of the carbon skeleton than with the introduction or loss of the amino 
group. Modifications of some of the twenty amino acids normally 
found in proteins have been detected in some protein hydrolysates, 
e.g. iodinated tyrosine, phosphoserine and hydroxylysine. I n  some 
cases the modification appears to be made before the amino acid is 
incorporated into protein (e.g. iodination of tyrosine) while in other 
cases modification is believed to occur when the amino acid is already 
present in proteins (e.g. hydroxylation of lysine, and in some cases, of 
18 + C.A.G. 
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proline). In addition to these less common amino acid residues in 
proteins, many non-protein amino acids are known to exist, but the 
functions of these are, in general, obscure. None of the less common 
amino acids are considered here but reviews are a ~ a i l a b l e ~ ~ . ~ ~ .  The 
suspected origins of the amino groups of the common a-L-amino acids 
are summarised in Table 3. Transamination, commonly from gluta- 

TABLE 3. Origins of amino groups of the common a-L-amino acids. 

Amino acid Principal origin of NH, Type of reaction 

Reductive amination of a-keto acid 
Transamination 
Direct amination of fumarate? 
Transamination 
p-Decarboxylation (bacteria) 
Reductive amination of pyruvate 

(bacteria) 
Transamination 
Dehydroxymethylation 
Transamination 
Hydroxymethylation 
(a) Trans-sulphuration from homo- 

cysteine 
(b) Direct sulphuration (bacteria) 

I See 3.3 c (iii) 

Transamination 
Transamination 
Transamination 
Transamination 
Transamination 
Reduction and isomerisation 
Transamination 
Conjugation with indole 

Krebs-Hensleit cycle 

Reduction of w-COOH 
Transamination 

Krebs-Hensleit cycle 

Aspartate or glutamate 
Glutamate Transamination 
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mate or aspartate, to a-keto acids is the final step in many cases. 
Apart from reductive aminations of the type discussed in section IV.B, 
in which ammonia is incorporated into a-keto acids, the main ex- 
ceptions to terminal transamination are listed below: 

(i) The formation of histidine. The a-amino group of histidine is 
apparently introduced before the carboxylic acid group is formed. The 
proposed sequence of reactions, deduced from studies of mutants of 
Escherichia coli and Neurospora crassa, is illustrated in Figure 12. The 
enzyme catalysing transamination between glutamate and imidazolyl- 
acetol phosphate has been partly purified from Neurospora ~ r a r r a ~ ~  
and shown not to be entirely specific for these substrates. 

H H H 
HC-N, HC -N, 

C-N C-N C-N 

1 1 Glutamate + 

l 
H-C-OH - CH2 5% - 
imidazolylglycerol 

phosphate 
imidazolyl- 

acetole 
phosphate 

L-histidinol 
phosphate 

H 

Hi/-N:H // 

C-N 
l 

H 

"f -'CH // 

C-N 
I 

I l 
CHzOH COOH 

L-histidinol L- histidine 

FIGURE 12. Formation of histidine from imidazolylglycerol phosphate. 

(ii) Formation of serine and glycine from each other by trans- 
hydr~x~methylation, mediated by tetrahydrofolic acid (FH,) (Figure 
13). The overall reaction is represented by equation (20). 

~ O O H  
serine glycine 



534 Barbara E. C. Banks 

~H,(COOH) 

FIGURE 13. Tetrahydrofolic acid (FH,). 
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FIGUKF 14. Interconversion of cysteine and methioninc. 
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(iii) Formation of the sulphur-containing amino acids, cysteine 
and methionine, which are interconvertible by the reactions given in 
Figure 14. 

(iv) Formation of tryptophane from serine and indole (or indolyl-3- 
glycerolphosphate) according to equation (2 1). 

0 
I I  

(CH(OH)CH(OH)CH~OP-OH) 1 + HOCH2CH-COOH 

0 H 
I 
N H2 

l i  serine 

H 
tryptophane 

(v) Formation of threonine from aspartate summarised in Figure 
15. 

COOH 
l l 

COOP-OH C H 0  CHaOH 

aspartate p-aspartyl aspartate homoserine 
phosphate p-semialdehyde 

I I 

threonine 0-phosphohomoserine 

FIGURE 15. Formation of threonine from aspartate. 
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(iv) Formation of arginine, ornithine and citrulLine, all of which 
- -- 

are involved in the production of urea, which will be considered in 
section V1.B. 

V. FORMATION OF AMINO COMPOUNDS OTHER 
T H A N  a-L-AMINO ACIDS 

A. D-Amino Acids 

In referring earlier to amino acids of the L configuration as the 
'natural' amino acids, no account was taken of the known existence, in 
biological systems, of D-amino acids. There is no conclusive evidence 
for the occurrence of D-amino acids in the proteins of plants or higher 
animals but the possibility of their existence, in trace amounts, is 
hard to exclude. Total acid hydrolysis of proteins may result in 
racemisation of the amino acids. Hydrolysis catalysed by enzymes 
specific for peptide bonds between L-amino acids would be less 
ambiguous but very much more tedious and so the controversy on 
this subject remains u n r e s ~ l v e d ~ ~ . ~ ~ .  It is now well established that 
peptide-linked, D-amino acids do occur, to a significant extent, in 
bacteria, particularly in association with the mucopeptide compo- 
nents of bacterial cell walls. In cell-wall hydrolysates of some bacteria 
50 to 100% of particular amino acids (e.g. alanine, aspartate, glutam- 
ate in some lactic acid bacteria) may be of the D configuration 52. The 
presence of the 'unnatural' isomers may well confer a biological 
advantage since one would predict that microorganisms so endowed 
would be resistant to attack by plant or mammalian peptidases 
which are specific for peptide links between L-amino acids. Destruc- 
tion of bacteria by protease or peptidase action is one method by 
which bacterial infections are resisted naturally. A modern method of 
assisting the natural processes is based on the observation that some 
microorganisms produce antibiotics which are toxic to other micro- 
organisms. Interestingly enough, a number of these antibiotics are 
polypeptides containing D-amino acids (e.g. Gramicidin-S, Figure 16). 
The toxicity of these therapeutic agents may be due to interference 
with cell-wall synthesis in those bacteria normally associated with 
D-amino acids. 

The production of D-amino acids is clearly relevant in the metabolism 
of microorganisms. In plants and higher animals the main problem is 
not so much the production of D-amino acids but the removal or 
utilisation of the 'unnatural' isomers, inevitably present because of the 

ubiquity of microorganisms. It is known from nutritional studies that 
some of the essential L-amino acids can be replaced in the diet by the 
D-isomers (e.g. methionine and phenylalanine in manJ3) without ill 
effects, implying that a route exists for inversion of amino acid 
configuration. (The low concentration of free amino acids, of either 
configuration, in the waste products of animals also leads to the con- 
clusion that animals have some mechanism for destroying D-amino 
acids). 

The two types of reaction by which D-amino acids may be formed 
in vivo are dealt with in this section. The mechanisms by which D- 

amino acids are incorporated into cell-wall mucopeptides and bacterial 
antibiotics are not well understood but will be mentioned briefly in 
section V.E. 

I. Racemisation 

Enzymes catalysing the racemisation of some amino acids have been 
partly purified only from bacterial sources (e.g. alanine racemase 
from Streptococcur faecalis, methionine racemase from strains of Pseudo- 
rn0na.1~~'). No direct evidence for their existence in animals is available. 

Pyridoxal is known to catalyse racemisation of amino acids in the 
model systems studied by Snell and c o ~ o r k e r s ~ ~  but the evidence for 
involvement of pyridoxal-5'-phosphate in the enzyme-catalysed 
reaction is indirect. Nutritional studies on S. faecalisJ5 have shown that 
this microorganism has a growth requirement for D-alanine, and that 
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neither L-alanine nor the a-keto analogue, pyruvate, can replace 
D-alanine. The vitamin B, content of these microorganisms is low. 
Purified glutamic acid racemase from Lactobacillus arabinos~s~~ is 
reported to be inhibited by hydroxylamine, consistent with involve- 
ment of an aldehyde group, but there are conflicting reports on activa- 
tion of the enzyme by added pyrido~al-5'-phosphate~~. In no case 
has a racemase been shown, in vitro, to require pyridoxal-5'-phosphate 
as a cofactor. 

A possible mechanism of racemisation, in the model system, is 
included in Figure 6. Some doubt is cast on the exact relevance of this 
scheme, to the enzyme-catalysed reaction, by recent reports that a 
reduced flavin cofactor may also be involved57. Enzyme-catalysed 
racemisation is not considered to be of great- importance in the 
metabolism of D-amino acids. 

2. D-Amino acid oxidase 

Enzymes catalysing the oxidative deamination of D-amino acids are 
widespread (microorganisms, mammalian liver and kidney etc.). The 
overall reaction, given in equation (22) is alleged24 to occur in two 

steps, through an imine intermediate, but no imine has so far been 
identified. There is an apparent analogy with the reverse of reductive 
amination as catalysed by glutamic dehydrogenase (section 1V.B) but 
there is also an important difference. The amino acid oxidases are all 
flavoproteins, the flavin cofactor being most commonly FAD (Figure 
2c and d), and no pyridine nucleotide cofactor is involved. Reoxida- 
tion of the reduced flavoprotein (see Figure 3) by molecular oxygen 
produces hydrogen peroxide which is, in turn, destroyed by the ex- 
ceptionally efficient enzyme catalase. Equations (23-26) summarise 

the reactions involved. In the absence of molecular oxygen, that is, 
under anaerobic conditions, reactions (25) and (26) cannot 
The reduced flavoprotein resulting by reactions (23) and (24) fiom 
one D-amino acid can then be used to catalyse reductive amination of 
a-keto acids to form other D-amino acids. 

There is no certain evidence for the existence of specific D-amino 
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acid oxidases. The highly purified, crystalline e n ~ y m e ~ ~ . ~ ~  from hog 
or sheep kidney oxidises most D-amino acids, attacking tyrosine, 
proline and methionine more rapidly than other s u b s t r a t e ~ ~ ~ ~ ~ ~ .  

The enzyme forms complexes with benzoic acid, which are more 
resistant to denaturation than is the native protein. Use is made of 
this fact in purifying the enzyme. This particular flavoprotein is 
relatively easily resolved (e.g. by dialysis" or dilution61) into apo- 
enzyme and FAD. Reported estimates of the size and composition 
of the active enzyme are at variance, partly because the protein tends 
to polymerise. The values given by M a s ~ e y ~ ~  (mol. wt. 182,000, 
4 FAD/mole) and by Yagi63 (mol. wt. 115,000, 2 FAD/mole) are 
based on ultracentrifuge data and spectrophotometric estimation of 
FAD concentrations. The apparent discrepancy is discussed by 
C h a r l ~ o o d ~ ~  in terms of the effects, on sedimentation constants, of 
changes in shape as well as in size. The most recent value of the 
minimum molecular weight, quoted by DixonG1, is 54,000 g/mole 
FAD. This estimate is based on a polarographic study of the resolution 
of the holoenzyme on dilution. 

Inhibition of the enzyme by reagents combining with sulphydryl 
groups is consistent with the involvement of a sulphydryl group in the 
active site of the protein. The rate of inhibition by one of these re- 
agents (p-chloromercuribenzoate) has recently been shown to be the 
same as the rate of loss of FAD from the holoenzyrne. The susceptible 
sulphydryl group may, therefore, be concerned only with binding the 
cofactor to the protein and not with the mechanism of action of the 
enzyme. The kinetics of action of the enzyme and inhibition of 
activity by straight-chain fatty acids has led DixonG1 to propose that 
substrates are bound to the holoenzyme by the carboxylic acid group 
and up to five carbons of the amino acid side-chain. Little can be 
concluded with safety from spectrophotometric studies because these 
require very high protein concentrations, (see section IV.C), but some 
such studies have been reported. The holoenzyme is normally yellow 
but addition of amino acid substrates, under anaerobic conditions, 
causes a shift in the absorption maximum, a red-coloured intermediate 
being formed. 

No firm conclusions can be drawn so far concerning the mechanism 
of action of this enzyme, in spite of its availability in crystalline form 
and its apparent importance in the metabolism of D-amino acids. The 
reactions catalysed by D-amino acid oxidase probably account for the 
production of D-amino acids by microorganisms and also for the 
removal of D-amino acids from higher animals. 

18' 
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B. L-Amino Acid Amides 
This book is not concerned with the behaviour of acid amides but 

brief mention must be made in this section of two naturally occurring 
amides of L-amino acids, glutamine and asparagine, both of which 
occur in proteins. Glutamine is of particular importance because of 
its involvement in many metabolic processes of the type given in 
equation (27), where the carbon to which the hydroxyl group is 

ioNH2 COOH 

( HJ2 \ l 
+ -C-OH 5 

L N H ,  , 
LOOH 

glutam~ne glutamate 

attached may be part of the ring of a sugar, a purine or a pyrimidine. 
This is an over-simplification of the situation since a phosphate ester, 
adenosine triphosphate (ATP, Figure 17) is also commonly involved 

0 0 
I I 

0 
I I l l 

HO- P - 0 - P - 0 - P - 0  
I I I 
OH OH OH 

FIGURE 17. Adenosine triphosphate (ATP). 

in this type of reaction. The same ester is also involved in the sequence 
of reactions leading to the formation of glutamine (equation 28). 

COOH CONH, 
I 
(CH& 

l 
(CH,), 

I + NH3 + ATP l + ADP + H,P04 
CHNH, CHNH, 

C o o H  c o o H  I 
glutamate glutam~ne 

Glutamine synthetase, the enzyme catalysing this reaction, has been 
purified from sheep brains5. The possible mechanism of its action has 
been reviewed by MeisterZ4, but none of the intermediate steps, 
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proposed on the basis of isotope effects, substrate specificity or catalysis 
of possible intermediate reactions, have been confirmed. The apparent 
coupling of synthetic reactions with the formation of ADP and in- 
organic phosphate from ATP has long been recognised and gave rise 
to the curious myth that 'energy', derived from catabolic reactions, 
was somehow stored in ATP. Subsequent hydrolysis of ATP was then 
thought to release the stored 'energy' which could then be used to 
drive anabolic processes. I t  is now abundantly clear66 that the one 
reaction which must not occur, if there is to be a link between degrada- 
tive and synthetic processes, is the hydrolysis of ATP. Metabolic 
reactions involving ATP and other phosphate esters appear now to 
occur by transphosphorylation, and the coupling of metabolic processes 
is best discussed in terms of the presence of enzymes catalysing phos- 
phate group transfer reactions. Enzymes catalysing the hydrolytic 
reactions are localised, within cells, in regions of low metabolic activity 
(e.g. in association with cell membranes, and the structural protein of 
muscle). Synthesis of glutamine may well involve the formation of a 
phosphorylated derivative of glutamate. The failure to identify such 
an intermediate may be explained if the phosphorylated intermediate 
is not released from the surface of the enzyme. 

The presence of glutamine synthetase in mammalian brain is 
interesting in view of the account already given (section 11) of diff- 
erences between animals and microorganisms in their tolerance of 
ammonia. Since ammonia is toxic to higher animals, apparently 
acting on the central nervous system, the presence of glutamine 
synthetase in central nervous tissue confers a two-fold advantage. 
Firstly, given an adequate supply of glutamic acid, ammonia can be 
converted to and stored as glutamine, which is non-toxic, and secondly, 
the glutamine so formed can replace ammonia as a source of amino 
groups. 

The function of asparagine is obscure. I t  can be identified in most 
living tissues and occurs at high concentrations in some higher plants 
in which it may replace glutamine as a non-toxic source of available 
nitrogen. Asparagine and glutamine are interconvertible by transarni- 
dation (equation 29). Direct formation of asparagine from ammonia 

CONH, COOH COOH CONHz I 

I I I 
COOH COOH COOH ~ O O H  

glutamine aspartate glutamate asparagine 
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and aspartate may occur by a reaction analogous to that given 
for glutamine (equation 28) but a recent report suggests that the 
products of ATP cleavage may in this case be AMP and inorganic 
pyrophosphate 67. 

Glutamine (and probably asparagine) can be destroyed by two 
independent routes. The enzyme catalysing direct deamidation to 
glutamate is activated by phosphate, suggesting a mechanism related 
to that of glutamine synthetase. The second path involves transamina- 
tion (equation 30) and subsequent deamidation (equation 31) of 
a-ketoglutaramic acid. The two reactions are catalysed by separate 
enzymes 

CONH, CONH, 
I I 

( f~a)a (6~a)a + RCOCOOH I + RCH-COOH 
CHNH, CO I (30) 
I 
COOH I N H, 

COOH 
glutamine a-ketoglutaramate 

CONH, COOH 

~ O O H  

a-ketoglutarate 

C. Amines 

I. General 

The importance of amines in biological systems is undoubted, but 
they are the hardest to discuss under the heading of this chapter. One 
reason for this is that different life forms show remarkable differences 
in relation both to the formation and function of amines. In  general, 
the words 'amine' and 'detoxication' are closely linked in the minds 
of most biochemists, implying that amines are undesirable metabolites 
which should be removed forthwith. Putrefaction of organic matter 
(spoilage of foodstuffs) is largely due to the formation of amines with 
familiar, offensive smells. The agents primarily responsible for this 
type of amine formation are microorganisms which contain a range of 
enzymes catalysing the decarboxylation of amino acids. The toxicity 
to mammals of amines produced by bacterial decay may be due to 
effects on blood pressure. Certain amines found normally in mammals 
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(carried in the blood stream and so classified as hormones) are known, 
among other actions, to affect indirectly the size of certain blood 
vessels, causing them to constrict (vasopressors) or expand (vaso- 
dilators), so increasing or decreasing arterial blood pressure. The 
specific effects of particular arnines depend on the site of action and 
on the level of concentration so no general statement can be made 
about their mode of action. In addition, in common with most 
biological control systems, other factors are involved in the overall 
control of blood pressure and all the types ofcon trol are interdependent. 

I t  appears, from the preceeding paragraph, that in mammals as 
well as in bacteria there must be a mechanism for the production of at 
least some amines. The route is now known to be formally the same as 
that in bacteria, i.e. decarboxylation of amino acids, but a distinction 
must be made between the bacterial and mammalian enzymes, not 
only on the grounds of differences in the physiological function of the 
products, but also because of differences in the substrate specificities 
of enzymes from the two sources. 

Plants can use urea and a variety of relatively simple amines as a 
source of nitrogen. The first step in the metabolism of amines is 
probably oxidation to the corresponding aldehyde and ammonia (see 
section V.A). The arnines occurring naturally in plants include 
methylamine, isoamylamine and other volatile amines, which are 
found in some flowering species. The route to these amines is not 
thought to involve decarboxylation of amino acids, but little is yet 
known with certainty about the metabolism of amines in plants. 
Glutamic decarboxylase activity has been detected in a wide variety 
of higher plants, consistent with the widespread distribution of the 
product of decarboxylation, yaminobutyric acid. 

2. Mechanism of a-decarboxylation 
A number of enzymes catalysing decarboxylation of amino acids, 

and showing substrate specificity, have been isolated from bacteria 
and well c h a r a c t e r i ~ e d ~ ~ . ~ ~ .  In  all cases, pyridoxal phosphate was 
found to be a cofactor. The mammalian decarboxylases are less well 
characterised but in common with the plant glutamic decarboxylase 
they also require pyridoxal phosphate for activity. The possible 
mechanism of decarboxylation is illustrated in Figure 1871. Data 
obtained by Mandeles and c o w o r k e r ~ ~ ~  on the decarboxylation of 
a-amino acids in D,O are consistent with this mechanism, the product 
amine containing only one deuterium atom attached to the a-carbon 
of the substrate. An earlier proposal, that loss of hydrogen from the 
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. . 
I 

R- C-COO- 
1 

H 
I 

R-C- coo- 

I 
R-C-H 

FIGURE 18. Mechanism of a-decarboxylation of amino acids. 

a-carbon of the substrate preceeded decarboxylation, is disproved by 
this experiment, since such a mechanism would require that two 
deuterium atoms be incorporated into the amine from the solvent. The 
amine produced by enzyme-catalysed decarboxylation of L-glutamic 
acid in D 2 0  is asymmetric about the a-carbon atom (equation 32). 

COOH COOH 
I 
I l 

(CH212 (CH212 
+ D20 e , + CO, 

H- -NH2 H-C-NH2 
l I 

The enantiomorph of this deuteroamine, prepared by decarboxyla- 
tion of a-deuteroglutamate in water, does not exchange deuterium 
with the solvent, under the same conditions. (a-Deuteroglutamate is 
prepared by enzyme-catalysed racemisation of D- or L-glutamate in 
deuterium oxide). Additional support for the stereospecificity of 
enzyme-catalysed decarboxylation of amino acids comes from experi- 
ments in which tyrosine was decarboxylated in D 2 0  to give R-a- 

9. Biological Formation and Reactions of the Amino Group 545 

deuterotyramine and a-deuterotyrosine was decarboxylated in H 2 0  
to give S-a-deuterotyramine. The configurations of the products were 
assigned by comparison of the rates of enzyme-catalysed oxidation (also 
stereospecific, see section V1.A) of the two isomers with those for 
oxidation of isomers prepared by unambiguous synthesis 73. 

3. Distribution and specificity of a-decarboxylases 
Decarboxylases isolated from bacteria act on the amino acids listed 

in Table 4. Each enzyme appears to be substrate specific and the 

TABLE 4. Common amino acids decarboxylated 
by microorganisms. 

Amino acid Product 

Arginine 
Aspartic acid 
Cysteic acid 
Glutamic acid 
Histidine 
i-Leucine 
Leucine 
Lysine 
Ornithine 
Phenylalanine 
Tyrosine 
Valine 

Agmatine 
L-Alanine or p-alanine 
Taurine 
y-Aminobutyric acid 
Histamine 
(2-Methy1)butylamine 
(3-Methyl) butylamine 
Cadaverine 
Putrescine 
(2-Pheny1)ethylamine 
Tyramine 
(2-Methy1)propylamine 

substrates are in general those found in protein hydrolysates. There is 
so far no conclusive evidence for decarboxylation of such common 
amino acids as glycine, serine, alanine, threonine, proline or hydroxy- 
proline, the sulphur-containing acids or the common acid amides. 

In animals, decarboxylation of glutamic acid, histidine, tyrosine, 
phenylalanine and tryptophane and hydroxy derivatives of the 
aromatic amino acids is reasonably well established. The enzymes 
catalysing decarboxylation of glutamic acid and of histidine are sub- 
strate specific but there is no certain evidence for the existence of 
specific aromatic amino acid decarboxylases. 

a. Glutamic decarboxylase. The activity of this enzymye has been 
demonstrated in the brain74. The decarboxylation product (yamino- 
butyric acid) is known to reduce the excitability of nerve cells and has 
been tentatively identified as the central nervous inhibitor in lobster 
brain75, and as the peripheral inhibitor in crustacean muscle. 
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b. Histidine decarboxylase. This catalyses the formation of histamine 
which is liberated when cells are damaged and which has p o w e a  
physiological effects. Although histamine causes contraction of the 
smooth muscle present in the walls of large blood vessels and one 
would predict a consequent rise in blood pressure, it also causes 
dilation of the minute peripheral blood capillaries. The overall affect 
of administration of histamine is a fall in blood pressure with attendant 
side effects. The enzyme is present in special components of the blood 
called mast cells. 

c. The aromatic amino acid decarboxylase. This catalyses a number of 
reactions leading to physiologically important amines. Some of these 
reactions are given in Figures 19a and b. The enzyme has been partly 
purified from pig kidneyT6 and identified in liverT7. I t  shows a con- 
stant ratio of activities, with respect to decarboxylation of tyrosine, 
tryptophane and phenylalanine, 3,4-dihydroxyphenylalanine and 
5-hydroxytryptophane, up to one hundred-fold purification. Histidine 
is also decarboxylated by the same enzyme but not as efficiently as by 
the specific histidine decarboxylase of mast cells. 

The specific action of serotonin, the amine produced by decarboxyla- 
tion of 5-hydroxytryptophane, in stimulating cerebral activity, sug- 
gests that a specific decarboxylase for this substrate may be present in 
brain tissue. The amine itself cannot pass the so-called blood-brain 
barrier, so must be formed in situ. A deficiency of serotonin results in 
mental depression. The serotonin produced by the kidney decarboxy- 
lase and carried in the blood may be concerned with control of blood 
pressure since it is a powerful vasoconstrictor. The two amines 
tyramine and tryptamine are both vasopressors. 

Norepinephrine, (Figure 19a) and its N-methyl derivative epine- 
phrine (adrenalin) are examples of so-called 'chemical transmitters' 
which are substances released at the end of nerve fibres in response to 
electrical impulses passing down the fibres. (Electrical impulses, at any 
rate in the peripheral nervous system, pass down nerves by transverse 
migration of ions across the nerve membrane.) Their function is to 
excite neighbouring cells. Where the neighbouring cell is another nerve 
cell, the junction is called a synapse; where the neighbouring cell is a 
muscle cell, a neuro-muscular junction is said to be formed. Norepine- 
phrine and epinephrine are the transmitters at most of the endings of 
nerve fibres belonging to the sympathetic system affecting smooth and 
cardiac muscle and glands and, as such, have diverse physiological 
effects, e.g. increase in rate and force of heart beat, dilation of the 
bronchi, constriction of peripheral vessels etc. In addition, the same 
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COOH COOH COOH 
I I I 
CHNHz CHNHz I 

phenylalanine OH 
ty  rosine 3,4 dihydroxyphenyl- 

alanine (DOPA) 

tyramine dopamine 

l 

OH 
norepinephrine 

two substances are produced in the medullary cells of the adrenal 
glands, again in response to nervous stimulation, and are carried 
in the blood stream (hence the classification as hormones) to sites 
at which they reinforce the effect of direct nervous stimulation of 
effector organs. Epinephrine also affects carbohydrate metabolism in 
the liver. I t  is possible that both these substances are also central 
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base, is itself derived from ethanolamine, and the acetyl derivative of 
choline is independently important because it is the chemical trans- 
mitter involved in synaptic transmission of nerve impulses in both the 
sympathetic and ~aras~mpathet ic  systems, and is the post ganglionic 
transmitter for parasympathetic nerves and for some sympathetic 
nerves. I t  is also the transmitter at the neuro-muscular junction of the 
somatic (voluntary) system. Acetylcholine acts at those junctions out- 
side the central nervous system which do not respond to epinephrine 
or norepinephrine. 

Recent work in the general field of lipid biochemistry has revealed 
that although the carbon skeleton of serine is extensively used in the 
biosynthesis of ethanolamine (and hence choline and acetylcholine), 
decarboxylation of free serine does not occur78* 79, nor is the ethanol- 
amine formed from serine found free. I t  appears that the hydroxyl 
group of serine is first esterified with phosphatidic acid by reaction 
with cytidine diphosphate diglyceride (Figure 2 1). Phosphatidyl 
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tryptophane 5- hydroxytryptophane 

H 
tryptamine 

FIGURE 19b. 

nervous transmitters but the role of chemical transmitters in th 
central nervous system is by no means as well elucidated as it is a 
peripheral junctions. 

d. Decarboxylation of serine. I t  was stated at the beginning of 
section that there is no conclusive evidence for the existence o 
decarboxylase acting on serine. Howev 
tion of this amino acid, ethanolamine, i 
in particular in association with phosp 
are derivatives of phosphatidic acid (Fi 

CH2-0-CO-R 

L-a-phosphat~d~c ac~d P-phosphat~d~c ac~d 

FIGURE 20. 

group is esterified with ethanolamine. The lecithins have the same 
general structure as the cephalins but the phosphate group is esterified 
with choline in place of ethanolamine. Choline, a quaternary nitrogen 

FIGURE 2 1 .  Cytidine diphosphate diglyceride. 

serine is then d e c a r b o ~ ~ l a t e d ~ ~ . ~ ~  to phosphatidyl ethanolamine, 
methylation of which produces phosphatidyl choline (a lecithin) and 
choline is eventually released by enzyme-catalysed hydrolysis. The 
reactions are summarised in Figure 22, with the steps involved in 
reconversion of choline to serine through a betaine which is succes- 
sively demethylated to glycine and the glycine hydroxymethylated to 
serine. 



Barbara  E. C. Banks 

( C H ~ ) ~ ~ C H ~ C H O  
betaine aldehyde \ ( C H ~ ) ~ ~ C H ~ C O O H  

choline betaine 
.F I 

phosphatidyl choline (lecithin) 

t 

I 

J. 
(CH3)2NCH2COOH 

dimethylglycine 

I 

phosphatidyl dimethylethanolamine 

t 

I I 
R-0-P-0-CHaCH2NHCH3 

AH 
phosphatidyl methylethanolamine 

t 
I 

1 
NHaCHaCOOH 

glycine 

I 

J. 
HOCH2CHNHpCOOH 

serine 
/ 

phosphatidyl ethanolamine / 

I 

O H  
phosphatidyl serine 

FIGURE 22. Interconversion o f  serine a n d  choline. 

D. Purines and Pyrimidines 
I. General 

The purine and pyrimidine nucleotides, which are the basic units 
of the macromolecular nucleic acids, are as important to the function- 
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ing of living organisms as are the amino acids. The relevance of these 
compounds to the present discussion is two-fold. Firstly, three of the 
five most common nucleotides have amino substituents in the purine 
or pyrimidine rings (Figure 23), the amino groups coming from the 
arnide group of glutamine or possibly from ammonia, and secondly, 
the nitrogen atoms of the heterocyclic purine and pyrimidine bases 
originate variously from aspartate, ammonia (in the form of car- 
bamyl phosphate, see section V1.B) and again the amide group of 
glutamhe. Much information was obtained, in the years 1950-59, 
concerning the biosynthetic routes to the nucleotides, largely from the 
results of isotope studies. The fact that purines and pyrimidines are 
not essential constituents of the diet and, moreover, that dietary 
purines and pyrimidines are not, in general, incorporated into tissue 
nucleic acids, suggests immediately that biosynthesis of these com- 
pounds may not occur through the free bases. I t  is now well established 
that the two types of hetero rings are made at the nucleotide level. 
Both purine nucleotides originate in inosinic acid, the nucleotide of 
6-hydroxypurine, and the pyrimidines originate in uridine-5'-phos- 
phate, a nucleotide of 2,6-dihydroxypyrimidine. 

OH N H ~  
uracil thyrnine cytosine 

OH N H2 
guanine adenine 

FIGURE 23. C o m m o n  pu r i ne  a n d  py r im id ine  bases. 

Although the origin of each atom in the two ring systems is now 
known (Figure 24) the postulated routes are not unequivocally 
established. This is hardly surprising in view of the number of steps 
apparently involved and the inherent instability of some of the postu- 
lated intermediates. The problem of isolating and characterising the 
enzymes involved is immense and the frequency with which the 
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carbamyl 
phosphate 

N l $C 

FIGURE 24. Origins of purine and pyrimidine ring systems. 

ubiquitous nucleotide ATP (see s 
with intermediate reactions sugges 
the detailed mechanism of purine 
stood. 

In view of the t 
mostly arising from 
made here to give a detailed acco 
pyrimidines. The subject has be 
Meister's book-Biochemistry of the Amino Acids46, and more extensively 
reviewed at an earlier datee2. 

The two schemes illustrated in Figures 25 and 26 are very much 
simplified but include the principal reactions currently believed to be 
involved. 

2. Biosynthesis of pyrimidine nucleotides (Figure 25) 
Enzymes catalysing reactions Ie3 and IIIe4 have been crystallised 

from bacterial sources. The dihydroorotic dehydrogenase is a flavo- 
protein which is reoxidised by NAD+. Reaction IV involving in- 
version of configuration at the C,,, atom of the ribose sugar, has been 
studied extensively by Kornberg and associatese5. 

Substitution of an amino group for the 6-hydroxyl group of uracil 
to form cytosine apparently occurs when the base is present as a 
nucleoside triphosphate. There is some argument as to whether the 
amino group originates in ammoniae6 or glutarninee7. The introduc- 
tion of a methyl group in the C,,, position of the base to form thymine 
occurs at the nucleotide level, that is after reduction of the sugar ring 
to form 2-deoxyribose, the sugar found in thymidylic acid. 

3. Biosynthesis of purine nucleotides (Figure 26a) 
~ 

The purine ring system is built, stepwise, onto the C(,, atom of 
ribose-5-phosphate. Reaction I presumably involves inversion of 

COOH COOH 
I 
CH2 

I 

I CH2 -HaPO, 1 
H2N-c-0@ + CHNHz -~ CH-NH-CO-NH2 

II I I l 
0 COOH 

carbamyl phosphate aspartate 

orotic acid 

i 1'. 
b H  OH 

5-phosphoribosyl pyrophosphate 

~ O O H  
carbamyl aspartate 

o=c, LHCOOH 
NH 

dihydroorotic acid 

-R-@= /3 link t o  C,,, of ribose 



\ 
HaN, /CT0 Aspaftate ATP 

i=t W 
&R-N, /,N 

C H  

- H o o c c H = C H c o o ~ J ~ v l l l  Furnaric acid 

inosinic acid 

a See Figure 25. 
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@-R-PP" Glutamine 

5-phosphoribosyl pyrophosphate - 
I. 

+ R-CHO @RRNH--CDIHZ-N H-CHO @R-N H--C*CH~-NH, 

I t  
Ill 

glycinamide ribonucleotide 
Glutamine ATP IV 

HaN< 
ATP F P  - H,O 

@-R-HN N H  - v oc6 
f~rrn~lglycinamidine ribonucleotide 5-aminoimidazole ribonucleotid 

/ 5-formamido-4-imidazole 
carboxamide ribonucleotide 

Cl fragment carried on tetrahydrofolic acid (Figure 13) strictly N(,,N(lo, 
methenyl T H F  (Figure 37), not N(lo, formyl THE as is involved at (C). 

FIGURE 26a. 
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Aspartate 
GTP" 

I 
R-@ 

inosinic acid adenylosuccinic acid 

- HoOCCH=CHCOOH 
Furnaric acid J I 

F Adenylic acid 

ATP 
Glutamine 
L Guanylic acid 

H 0  

xanthylic acid 

a Guanosine triphosphate. 
FIGURE 26b. Conversion of inosinic acid to adenylic and guanylic 

acids. 

configuration at the C,,, atom, but the ribosylamine intermediate has 
not been isolated, probably because of its chemical reactivity. Syn- 
thetic 5-phosphoribosylamine is converted to the second intermediate 
(reaction 11) in the presence of glycine, ATP and an enzyme isolated 
from pigeon livera8. Enzymes catalysing reactions 111, IV and V 
have been partly purified from l i ~ e r ~ ~ . ~ O .  Carboxylation of 5-amino- 
imidazole ribonucleotide (reaction VI) occurs in the presence of high 
concentrations of bicarbonate buffer. The reaction is strongly in- 
hibited by the productg1. Reaction V11 is blocked in sulphonamide- 
inhibited cultures of Eschiarischia coli and the 5-amino-4-irnidazole 
carboxamide ribonucleotide accumulates under these conditionsg2. 
The purine-N3 is introduced by a condensation reaction with aspartate 
(reaction VII) presumably to form an imine which undergoes proto- 
tropic rearrangement to the N-succinyl compound shown. The same 
type of reaction is involved in the conversion of inosinic acid to adenylic 
acid (see below). Cleavage of the N-succinyl compound releasing 
fumaric acid (reaction VIII) is apparently catalysed by an enzyme 
(adenylosuccinase) which has been partly purified from yeaste3. The 
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enzymes catalysing reactions IX and X have not been separated no 
has the formamido intermediate been identified with certainty. H 
ever, the synthetic formamido compound is rapidly cyclised to inos 
acid by enzymes present in liver 94. 

In  the conversion of inosinic acid to adenylic acid (Figure 26b) 
amino group is introduced by condensation of the 6-hydroxyl gr 
with aspartate to form adenylosuccinic acid (cf. reactions V11 an 
VIII, Figure 26a). The overall reaction, catalysed by an enzym 
isolated from E. colig5 is alleged to involve the purine nucleosid 
triphosphate GTP. Conversion of inosinic acid to guanylic acid in 
volves first oxidation to xanthilic acid, catalysed by an NAD-depend 
dehydrogenase, and then amination of the xanthine base, at 
2-position, by glutamine in the presence of ATP. 

E. Amino Sugars 

I. General 

A number of amino sugars and N-acyl derivatives of amino suga 
occur widelyg6* 97 in mucopolysaccharides, e.g. in bacterial cell walls 
the skeletal structure of arthropods (chitin), animal cartilage a 
bone, in bacterial antibioticsg8 and on the exterior of red blood ce 
where they are concerned with the antigen-antibody reactions, on th 
basis of which individuals are classified into blood groups. Th  
mucopolysaccharides are crosslinked polymers containing more th 
one sugar derivative and frequently occurring in association wi 
protein and polypeptide material. Hyaluronic acid, for exampl 
found in skin and bone, is a crosslinked polymer of glucuronic aci 
and N-acetylglucosamine; cartilage contains chondroitin, a p01 
of glucuronic acid and N-acetylgalactosamine sulphate. Some 
terial cell walls contain crosslinked polymers of N-acetylglucosamm 
alternate carbohydrate units having a lactyl side-chain substituted on 
the C,,, of the ring (N-acetylmurarnic acid), and such cell walls are 
attacked by the enzyme lysozyme, mentioned in section IV. Th  
lactyl side-chain of N-acetylmuramic acid is frequently linked to a 
peptide chain commonly containing both D- and L-alanine, D-glutamic 
acid and L-lysine 99 (Figure 27). 

A group of compounds, called the sialic acids, are N- and 0-acyl 
derivatives of neuraminic acid, itself a derivative of D-mannosamine 
(Figure 28). The sialic 99 acids are widely distributed (e.g. in egg yolk, 

" 

human semen and in blood serum) both free and bound to the 
polysaccharide part of most, if not all, mucoproteins. They are closely 
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I 
D-alanine - 

N-acetylmuramyl peptide N-acetylglucosamine 

FIGURE 27. Type of polysaccharide structure found in some 
bacterial cell walls. 

COOH COOH 
I I 

HO-C -+ C=O 
l 

pyruvic acid 

I I 0 
H3C-C----- , 

H-!-OH 
I H o - L H  

H-C-OH I 
l H-C-OH 
CHzOH H- -OH 

N-acetylneuraminic acid 
A 
l 
CH20H 

concerned with preventing agglutination of blood cells, (the response 
to bacterial or virus infection or the introduction of any foreign 
material which produces an antigen-antibody reaction). There is now 
evidence that neuraminic acid derivatives also occur in association 
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esters of N-acetylgalactosamine or N-acetylmannosamine, have been 
reported lol- lo3. 
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with some enzymes, e.g. placental alkaline phosphatase and prostatic 
acid phosphatase. 

2. Biosynthesis of amino sugars 
The most common amino sugars, glucosamine, galactosamine and 

mannosamine, have a common 
intermediates of the main glycolys 
carbon dioxide and water). The a 
amide group of glutamine. The re 
and glutamine (equation 33) is 'unusual' in th 
ATP (see section V.B). Enzymes catalysing this reaction hav 

@OH~C yOy;yH 
OH 

8-D-fructofuranose-6-phosphate 

D-glucosamine 

isolated from Neurospora crassa, E. coli 
that glucosamine was form 
glutamine are presumably 
isomerase in the crude bacterial extr 
The amino sugar is acetylated in the presence of acetyl coenz 
A (Figure 29), the most common biological acetylating agent. 

The reactions by which glucosamine (or N-acetylglucosamine) 
converted to galactosamine, by inversion at C,,,, or mannosamine, 
inversion at C,,,, are complex. Epimerisation does not occur at 
simple hexosamine phosphate level 
at the C,,, position of the 
triphosphate (uridine or thy 
diphosphoamino (or N-acylamino) 
catalysing epimerisation of uridine ( 
of glucosamine, to form the nucleos 
amine, or of N-acetylglucosamine, to form the nucleoside diphosphate 

R = H, coenzyme A 
R = CH3C0, acetyl coenzyme A 

FIGURE 29. 

FIGURE 30. Uridine diphosphoglucosamine. 

Recent work on the structure and biosynthesis of bacterial cell walls 
has given some indication of the way in which the crosslinked poly- 
saccharide components are formed. There are several justifications 
for including here a brief account of work in this field. Firstly, certain 
antibiotics (e.g. the penicillins, bacitracin A, novabiocin) are known 
specifically to inhibit bacterial cell-wall synthesis. If, as seems likely, the 
inhibition is of an enzyme-catalysed reaction, a knowledge of the 
particular substrates involved might lead to the design of more 
powerful bactericidal agents. Secondly, the particular type of cell 
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wall to be described is the substrate for the enzyme lysozyme already 
discussed in section 2. Thirdly, the enzymes catalysing certain of the 
steps to be outlined below are of considerable interest from a mecha- 
nistic point of view. They show a high degree of substrate specificiv 
and the substrates are chemically more complex than those discussed 
in previous sections. The mechanisms of catalysis by such enzymes may 
well be analogous to the hydrolytic reaction catalysed by lysozyme, 
the protein providing an extensive environment within which correct 
orientation of the substrates is a stringent prerequisite for reaction to 
occur. 

The cell wall of Staphylococcus aureus contains the alternate 
acetylglucosamine, N-acetylmuramyl peptide structure illustrated 
Figure 27.* Studies of the biosynthesis of this 
are largely due to Strominger and his collabo 
considerable insight into the steps involve 
glucosamine is formed as a hexose-6-phosphat 
derivative is not a substrate for enzymes ca 
thesis. The hexose unit is incorporated into 
uridine diphosphate ester of N-acetylglucosa 
diphosphate esters of glucosamine or N-acetylglucosamine (Figure 30) 
are formed by reaction between uridine triph 
l-phosphates which must, in turn, be formed 
hexose-6-phosphates (cf. equations 33 and 34). 

Hexosamine- I -phosphate + UTP _' 
Uridine diphosphohexosamine + Pyrophosphate (34) 

The second hexose unit, muramic acid, is apparently formed at the 
nucleoside diphosphate ester level but the course of this reaction is not 
well understood. The lactyl side-chain may well be introduced by 
condensation of uridine diphospho-N-acetylglucosamine and phos- 
phoenol pyruvate, liberating inorganic phosphate. The pentapeptide 
side-chain of the muramyl peptide unit is formed by stepwise addition 
of the first three amino acids, to uridine diphospho-N-acetylmuramic - * 

acid, in the presence of ATP and either magnesium or manganese 
ions, one mole each of ADP and inorganic phosphate being formed for 
each amino acid added, and final addition of the dipeptide D-alanyl- 

* * 

D-alanine, again in the presence of ATP. The separate enzymes I 
* The figure illustrates a P 1 :4  glycosidic link between successive hexose 

I 
units but it is possible that 1 : 6 links are also present in cell-wall material from 
different microorganisms. v 
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catalysing each addition have been partly purified104.105. Only the 
completed nucleoside diphospho-N-acetylmuramyl pentapeptide acts 
as a substrate for cell-wall synthesis. Particulate, cell-free preparations 
from Staphylococcus aureus which catalyse a reaction between the 
nucleoside diphosphate esters of N-acetylglucosamine and N-acetyl- 
muramyl pentapeptide to form 'cell-wall-like' material have been 
obtainedlo6. 

The metabolism of N-acetylmannosamine and its relation to the 
formation of the sialic acids (derivatives of neuraminic acid) are not 
well understood. The subject has been reviewed by Rosemanlo7. 

F. Miscellaneous Amino Compounds and Derivatives 

There are a number of amino compounds, of immense biological 
importance, which cannot be classified with the compounds so far 
discussed. I t  is intended, in this section, to discuss the possible origins 
of some of these compounds and also to give a brief account of the 
biosynthesis of certain important heterocyclic systems which are 
derived from the simple amino compounds already discussed. 

I. VitaminsloB 

The familiar word vitamin derives from 'vital amine', the term 
being introduced in 1912 following the recognition that certain 
diseases could be prevented by addition to the diet of some compounds 
originally believed to be amines. Later it was revealed that not only 
are these compounds not all amines but some contain no nitrogen at 
all, such as the 'fat-soluble' A, D, K and E groups and vitamin C. 
The water-soluble vitamins (B group), all contain nitrogen, and 
appear to function, in more or less well-understood ways, as cofactors 
for enzyme-catalysed metabolic reactions, hence the limitation of the 
present discussion to members of this group and their derivatives. 

a. Vitamin B, (thiamine). (Figure 3 1 a). The pyrimidine and thiaz- 
ole rings of thiamin are formed separately but the origins of the two 
rings are not yet known. I t  is presumed that the pyrimidine ring is 
formed from orotic acid but no information is yet available concerning 
the introduction of the 4-amino group. Two possible routes to the 
thiazole ring are given in Figure 3 lb. The two ring systems are linked 
by a reaction between the pyrimidine pyrophosphate and the thiazole 
monophosphate. The product is hydrolysed to free thiamine before 
conversion to a pyrophosphate, in which form vitamin B, is a cofactor 
for an enzyme catalysing the reversible decarboxylation of pyruvate. 
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b. Vitamin B, (ribojavine). The two nitrogen-containing rings of the 
isoalloxazine system of riboflavine (Figure 32) are derived from 
adenine. The routes to the dimethylbenzo ring and the ribityl side- 
chain are unknown. The two derivatives of riboflavine (Figure 2c) 
which occur as the cofactors in flavoprotein enzymes catalysing 
oxidation-reduction reactions (e.g. amino acid oxidases) act as 
hydrogen acceptors. The addition of two hydrogen atoms across the 
conjugated double bonds between N,,, and N(lo, gives the reduced 
flavin ring shown in Figure 2d. 

factor. 

CH20H 
I 

H-C-OH 
I 

FIGURE 3 1a. Thiamin. 

562 Barbara E. C. Banks 

Imine formation between pyruvate and the amino substituent in the 
pyrimidine ring was at one time suggested as a possible step in de- 
carboxylation but this idea has since been abandoned. The reaction is 
now believed to involve nucleophilic attack o 
pyruvate by an anion formed by loss of a pro 
in the thiazole ring. Details of the mechanism need not concern 
since no amino group is involved in either the substrate or the co- 

NHa 
methionine 

I 
NH2-CHCOOH 

I HN-CH-COOH 
__j 

CH2CH2COOH I I 
HOOC-CH-HC, ,CH-CH,COOH 

glutamate I S 
NH2 

FIGURE 32. Riboflavine. 

c. Vitamin B, (pyridoxine). (Figure 5a). No information is yet 
available on the biosynthesis of pyridoxine. The phosphorylated 
derivatives of pyridoxine (see Figures 5b and c) which act as cofactors 
for enzymes catalysing certain reactions of a-amino acids, have al- 
ready been discussed (sections 1V.C and V.C). 

d. Vitamin B,, (cyanocobalamin). The somewhat formidable structure 
of Vitamin B is given in Figure 33. The 5 : 6 dimethylbenzimidazole l 2  
nucleotide unit is probably joined, through the l-amino-2-propanol 
bridge formed by decarboxylation of threonine, to the preformed 
corrin nucleus. The corrin nucleus is itself a modification of the 
porphyrin ring system which occurs commonly, for example in 
haemoglobin, chlorophyll and in the cytochromes. Compounds 
containing the tetrapyrrole ring system probably have a common 
origin (see section V.F.2). The acid amide groups in the corrin side- 
chains may be formed by transamidation between glutamine and the 

19 + C.A.G. 
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FIGURE 33. Vitamin B,,. 

acetic acid and propionic acid side-chains which are correctly arranged 
about the porphyrin rings of uroporphyrin I11 (Figure 39). 

Vitamin B,, was first identified as the antipernicious anaemia 
factor, present in whole liver. Only recently has it been shown that, 
in common with other members of the B group of vitamins, a deriva- 
tive of cyanocobalamin (having the cyanide group replaced by 
adenosine) is a cofactor for certain enzymes, in particular, those 
catalysing the isomerisation of glutamate to 8-methyl aspartateloB 
(bacteria) and of the methylmalonyl derivative of coenzyme A 
(Figure 29) to succinyl CoA1lOJ1l. It has been suggested that both 
isomerisations involve cyclic intermediates and that the enzyme- 
cofactor complexes may stabilise carbanions formed on cleavage of the 
rings in these intermediates. 

e. Vitamin H (biotin). The biosynthetic route to bio tin (Figure 34) is 
unknown, but there is indirect evidence that desthiobiotin is an 

intermediate and that the side-chain originates in pimelic acid. 
Biotin is involved in certain decarboxylation reactions and in the 
deamination of some amino acids, e.g. aspartate, serine and threonine. 

FIGURE 34. Biotin. 

f. Vitamin B, (pantothenic acid). The precursors of pantothenic acid 
(Figure 35) are pantoic acid (from or-ketovaleric acid) and 8-alanine 
(a decarboxylation product of aspartate). A bacterial enzyme112, 
pantothenic acid synthetase, catalyses the condensation of these two 
compounds to form pantothenic acid. 

Pantothenic acid is a constituent of the CoA molecule (Figure 29), 
the biosynthesis of which is summarised in Figure 35. Only the 
sulphydryl group of CoA is known to be directly involved in trans- 
acetylation reactions. The function of the remainder of the molecule 
is obscure. 

g. Folic acid. The structure of folic acid is given in Figure 13. The 
compound is formed by condensation between p-aminobenzoic acid 
and glutamic acid followed by a second condensation reaction with a 
substituted pteridine. The pteridine nucleus appears to originate from 
the purine ring system, probably by a route related to that involved 
in the formation of the isoalloxazine ring system of riboflavin. 

A reduced form of folic acid (tetrahydrofolic acid, FH,) is active 
in so-called one-carbon metabolism. A formyl group may be sub- 
stituted on NC5, or NClo, and the N,5,-N,10, methenyl derivative 
(Figure 36) is also active. Reactions involving the introduction of 
one-carbon fragments include the conversion of glycine to serine 
(Section V.C.3), ethanolamine to choline (Section V.C.3) and the 
introduction of C,,, of the purine nucleus (Section V.D.3). 

h. Nicotinamide. The route to the precursor of nicotinamide, 
nicotinic acid, is different in animals and bacteria. In animals (see 
Figure 37) tryptophane is converted to nicotinic acid by a series of 
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CH3 &H 

pantothenic acid 

0 

AH LH, AH 
pantothenic acid-4'-phosphate 

NH,CHCH.SH 

C o o H  , l ATp 
C 

Cysteine 

reactions in which first the five-membered ring is opened, the resulting 
carbon side-chain in the six-membered ring is oxidised and fragmented; 
the six-membered ring is then opened and reformed to give a quinolinic 
acid. In bacteria, the carbon skeleton of nicotinic acid is formed from 
a three-carbon unit (e.g. glycerol) and a four-carbon dicarboxylic 
acid113. 

The formation of nicotinamide from nicotinic acid occurs at the 
nucleotide leve1114. Nicotinic acid first reacts with phosphoribosyl 
pyrophosphate to form nicotinic acid mononucleotide and inorganic 
pyrophosphate. The mononucleotide then reacts with ATP to form a 
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CH2 
I 
COOH 

FIGURE 36. N(5), N,lo,-methyl tetrahydrofolic acid. 

COCHzCHNH2COOH 
~ 7 ~ ~ 2 ~ ~ ~ ~ 2 ~ ~ ~ ~  + a N , C H O  

H H 
tryptophane 

-HCOOH +H20 l 
qCOrH2CH NHCOOH i +o, acOCH2cH NH&OOH 

+ NADPH 
+H+  NH2 . . 

6~ kynurenine 

3-hydroxyanthranilic acid - H,O! 

COOH 

COOH . . 
nicotinic acid quinolinic acid 

FIGURE 37. Biosynthesis of nicotinic acid (animals). 
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dinucleotide (and pyrophosphate) and the nicotinic acid-adenine 
dinucleotide then reacts with glutamine (and ATP) to give nicotina- 
mide-adenine dinucleotide. Nicotinamide-adenine dinucleotides 
(Figure 2a) are the cofactors for many enzymes. 

Addition of hydrogen to the oxidised form of NAD (or NADP) 
occurs at the 4-position of the pyridine ring (Figure 2b). It is known, 
from deuterium isotope studies, that the reduction is stereospecific, 
implying that the link between enzyme protein and cofactor is such 
that free rotation about the pyridine nitrogen nucleotide bond is 
prevented. Dehydrogenases can be classified into two groups showing 
different stereospecificity with respect to reduction of the nicotin- 
amide ring. 

2. Pyrrole-containing compounds 

A number of biologically important compounds contain substituted 
pyrroles in cyclic or linear array. With the exception of the corrin 
nucleus of vitamin B,, in which one methylene bridge is missing, the 
cyclic tetrapyrroles can be regarded as derivatives of the parent 
porphin, the structure of which is given in Figure 38. The porphyrins 

FIGURE 38. Porphin. 

are classified in terms of the types of substituents on the pyrrole rings 
(positions 1 to 8). For example, the coproporphyrins have one methyl 
and one propionic acid group on each ring; the uroporphyrins (Figure 
39) have the methyl groups replaced by acetic acid groups and in 
protoporphyrins (in haem, and modified in chlorophyll) the groups 
are variously acetic acid, propionic acid, methyl and vinyl. The linear, 
bile pigments are breakdown products of porphyrins. 
All pyrrole-containing compounds have a common origin, the 

pyrrole ring itself being formed from glycine and the succinyl deriva- 
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tive of coenzyme A which condense to form a-amino-p-ketoadipic 
acid. This undergoes a-decarboxylation to form 8-aminolaevulinic 
acid, two molecules of which condense to give a pyrrole ring which 
already carries the acetic and propionic acid side-chains found in the 
uroporphyrins (Figure 39). Subsequent polymerisation of four-sub- 
stituted pyrroles with the loss of ammonia from the methylamine 
side-chains gives the reduced precursor of the uroporphyrins. The 
methyl and vinyl side-chains of copro- and protoporphyrins are formed 
by decarboxylation of acetic acid side-chains and oxidation and 
decarboxylation of propionic acid side-chains respectively. The metal 
ion present in haem compounds and in cytochromes (iron), in chloro- 
phylls (magnesium), and in cyanocobalamine (cobalt), is apparently 
introduced after the porphyrin (or corrin) nucleus has been formed. 

3. Plant alkaloids 
The biosynthesis of plant alkaloids has recently been well reviewed 

by Bu'Lock115 and will therefore be considered very briefly. It is not 
possible to make general statements about the mechanism of biosyn- 
thesis of this large and varied class of compounds, partly because of the 
incomplete state of knowledge of any individual routes. Tracer 
studies have contributed much information in this field but perhaps 
more has resulted from hypotheses, based on inductive reasoning, 
resulting from the observation that certain common units occur 
within complex organic structures. The alkaloids appear to be derived 
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largely from only a small number of amino acids. For example, 
ornithine contributes the C,N unit to the pyrrolidine alkaloids such 
as hyoscyamine (Figure 40a) while lysine contributes the C,N units 
to the piperidine alkaloids such as lupinine (Figure 40b). Alkaloids 
such as morphine (Figure 40c) and belladine, contain C, C, N (phenyl- 
ethylamine units) derived from the aromatic amino acids, phenyl- 
alanine and tyrosine. The fifth amino acid to contribute significantly to 
alkaloid biosynthesis is tryptophane, from which are derived the 
so-called indole alkaloids such as strychnine and yohimbine. 

FIGURE 40a. Hyoscyamine. FIGURE 40b. Lupinine. 

RGURE 4 0 ~ .  Morphine. 

VI. THE  FORMATION OF  NITROGEN-CONTAINING 
WASTE PRODUCTS 

The reactions of amino compounds, considered so far, have been 
largely concerned with the production of essential cell constituents 
from ingested material. The remaining section is concerned with 
those reactions by which excess amino compounds are converted first 
to ammonia and then to common excretion products. The division 
between biosynthetic and degradative reactions is not clear cut as 
can be seen from the fact that the reaction catalysed by the enzyme 
glutamic dehydrogenase produces ammonia and has already been 
discussed in sections I1 and 1V.B. Oxidative deamination of the 
D-amino acids has also been discussed (section V.A) because the 
reverse of this reaction appears to be the main route bv which D-amino 
acids are formed in mi&iorganisms but it is also believed to be the 
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main route by which D-amino acids are broken down in animals. 
Apart from the routes which have already been discussed, two main 
types of reaction lead to the production of ammonia. 

A. Production of Ammonia 

I. L-Amino acid oxidases 

The original observation by Krebs116, that homogenates of mam- 
malian liver and kidney catalysed the oxidation of both D- and L- 

amino acids, was followed by a number ofattempts to purify individual 
amino acid oxidases. Although a crystalline, non-specific D-amino 
acid oxidase has been isolated from kidney, the only evidence for the 
existence, in mammals, of a single enzyme catalysing the oxidative 
deamination of L-amino acids, comes from an early report by Blanchard 
and coworkers117. This particular flavoprotein, isolated from rat 
kidney, is odd for two reasons: (a) it shows a higher oxidative activity 
towards some a-hydroxy acids (e.g. L-lactic acid) than to L-amino 
acids and (b) the catalytic activity is very low compared with most 
other enzymes. The amounts of this enzyme in kidney homogenates 
are certainly too small to account for Krebs' original observations of 
the oxidation of L-amino acids. I t  is now generally believed that 
L-amino acid oxidation by mammalian tissue homogenates is due to 
the coupling of two enzyme-catalysed reactions, the first a trans- 
amination between the L-amino acid substrates and a-ketoglutaric 
acid and the second, deamination of the resulting glutamic acid, 
catalysed by glutamic dehydrogenase (Section 1V.B). This is probably 
the principal route, in mammals, to the production of ammonia from 
excess amino acids. 

The highest L-amino acid oxidase activity is found in the venoms of 
a variety of snakes, the enzyme being present to the extent of up to 3% 
of dried, whole venom in some species. Crystalline enzymes (both 
flavoproteins) have been isolated from the venoms of water moc- 
casin 118 (Ancistrodon piscivorus) and rattle snake llg (Crotalus adamanteus) 
and shown to be similar with respect to molecular weight (130,000) 
and flavin content (2 moles FAD/mole protein). The enzymes are not 
substrate-specific but are more active with the L-isomers of methionine, 
leucine, tryptophan, phenylalanine and tyrosine than with other 
L-amino acids. The reactions catalysed by L-amino acid oxidase are 
formally the same as those discussed in section V.A (reactions 23-26) 
but, as is the case for the D-amino acid oxidase, the mechanism of 

19* 
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oxidative deamination remains obscure. The function of large quanti- 
ties of L-amino acid oxidase in snake venom is quite unknown. 

L-Amino acid oxidase activity has been detected in a variety of 
moulds, yeasts and bacteria, but the enzymes from these sources have 
not been well characterised. A partly purified enzyme from Proteus 
vulgaris laO is curious in that it does not apparently produce hydrogen 
peroxide in the presence of molecular oxygen (equations 22-26) and 
absence of catalase. 

2. Amine oxidases2* 
The enzymes catalysing the oxidation of naturally occurring amines, 

according to equation (35), found in both plants and animals, were 

RCHzNHz + Oa + HzO RCHO + NH3 + H20 (35) 
originally classed as monoamine oxidases and diamine oxidases. 
Recent work has shown that, although there are two separate types of 
enzymes, the difference between them does not Lie in the number of 
amino groups in the substrates. The substrate specificities are, in 
both cases, more complex. There are two main types of monoamine 
oxidases, the intracellular, mitochondrial enzyme (present to a 
significant extent in liver tissue) and the extracellular, soluble enzymes 
present in the blood serum, particularly that of ruminants. The 
former are poorly characterised as proteins because of the common 
problem of solubilising normally particulate enzymes. (A fifty-eight 
fold purification of the beef mitochondrial enzyme was recently 
reported121.) The enzyme acts on simple aliphatic amines (with the 
exception of methylamine and ethylamine) according to equation (35) 
and catalyses the oxidation of such physiologically important amines 
as serotonin, tyramine and norepinephrine (section V.C). I t  also 
oxidises secondary and tertiary N-methyl derivatives of amines, e.g. 
epinephrine and N,N-dimethyltryptamine, producing methylamine 
and dimethylamine in place of ammonia, and slowly attacks such 
diamines as cadaverine (formed by decarboxylation of lysine) and 
some long-chain diamines (Cl4, Cl, and Cl,). Histamine is also oxi- 
dised slowly in the presence of the mitochondrial monoamine oxidase. 
The enzyme is believed to contain functional copper and also, possibly, 
a flavin c ~ f a c t o r l ~ ~ .  Final decision on these points must await further 
purification of the enzyme. The activity of 'monoamine oxidase' is 
unaffected by reagents known to inhibit pyridoxal phosphate-depen- 
dent, enzyme-catalysed reactions. 

Soluble amine oxidases have been crystallised from the blood serum 
of beef123 and pigs124. In  both cases the properties of the purified 
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enzyme were notably different from those of the mitochondrial 
enzymes, both in regard to substrate specificity and cofactor require- 
ment. The beef plasma enzyme, although classified as a monoamine 
oxidase, does act on certain diamines, in particular spermine and 
spermidine, (amines found in seminal fluid and apparently derived 
from putrescine, the decarboxylation product of ornithine). The 
oxidation products from spermine and spermidine are a dialdehyde 
and a monoaldehyde respectivelyla5 (equations 36 and 37). The en- 

zyme crystallised from pig plasma has been called ' benzylamine 
oxidase' 12* in spite of the fact that it acts equally well with mescaline 
(2,3,4-trimethoxyphenyl ethylamine) and also oxidises histamine (at 
approximately half the rate). The enzyme from beef plasma acts on 
the same monoamine substrates. Unlike the mitochondrial enzymes, 
neither plasma enzyme will oxidise N-methyl derivatives of amines 
and this is consistent with the recent finding that the plasma amine 
oxidases contain tightly bound pyridoxal-5'-phosphate. (The sug- 
gestion that pyridoxal phosphate might be involved in amine oxidation 
was made as long ago as 19491a6.) I t  is an unusual finding, in that 
other pyridoxal phosphate-dependent enzymes catalyse reactions of 
amino acids, rather than amines.* I t  is now suggested that the re- 
actions catalysed by plasma amine oxidases occur by Schiff's base 
formation between primary amino groups in the substrates and the 
aldehyde group of pyridoxal phosphate. The involvement of a 
pyridoxal cofactor could explain the known sensitivity of plasma 
amine oxidases to carbonyl reagents such as cyanide. The plasma 
oxidase is also believed to contain copper (3 g atoms per mole of 
protein, mol. wt. .~200,000.) An amine oxidase present in pea 
seedlings also contains copperla7 and is sensitive to carbonyl reagents, 
but there is no direct evidence for the presence of bound pyridoxal 
phosphate. 

The enzymic activity originally attributed to a diamine oxidase was 
first observed in pig kidney and later shown to be fairly widespread in 
animals, plants and microorganisms. The enzyme catalyses the 

* The exception being muscle phosphorylase which contains pyridoxal 
phosphate, the function of which remains obscure. 
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oxidation of the diamine decarboxylation products from arginine, 
(agmatine), lysine, (cadaverine) and ornithine, (putrescine) and the 
more complex diamines spermine and spermidine. The oxidation 
products are amine aldehydes which might be expected to cyclise. 
The amine aldehyde from cadaverine would cyclise to an oxidised 
precursor of piperidine (equation 38). The enzyme appears to be 

mitochondrial but is more readily solubilised than the mitochondrial 
monoamine oxidase. The recent report lZ8 of a substantial purification 
(1000-fold) of the enzyme from pig kidney suggests also that the 
enzyme contains both copper and firmly bound pyridoxal phosphate. 
There has been some controversy regarding the possible identity of 
the diamine oxidase with histaminase, the enzyme catalysing the 
oxidation of histamine to irnidazole acetaldehydelZ9. (It should be 
noted that histamine is not a diamine, a fact which underlines the 
unsatisfactory nature of the original classification of amine oxidases.) 
The most recent datalZ8 shows that the ratio of the activities with 
respect to diamine substrates and histamine, remains constant through- 
out the purification of the pig kidney ' diamine oxidase'. 

3. Miscellaneous reactions 

The production of ammonia by non-oxidative processes is of less 
general importance. Enzymes catalysing non-oxidative deamination 
are relatively substrate-specific. 

a. Amino acid dehydrmes. The two hydroxyamino acids, serine and 
threonine, are both dehydrated and deaminated in the presence of 
specific dehydrases. I t  has been suggested130 that the reaction may 
involve dehydration, to give a, /3- or /3,y-unsaturated amino acids, 
followed by rearrangement, to the corresponding imino acids, and 
hydrolysis to an a-keto acid and amonia (equation 39). The dehydrases 

CH CH-CH-COOH 5 CH,=CH-CH-COOH 
l 

H NH, 
threonine (39) 

+ H10 
NH3 + CH3-CH2-C-COOH t CH3-CHa-C-COOH 

I I 
0 

I1 
NH 

a-ketobutyrate 

present in Neurospora c r m ~ a l ~ ~ ,  E. ~ o l i l ~ ~  and sheep liver are said to 

be pyridoxal phosphate dependent. A recent report 134 suggests that 
the threonine dehydrase of sheep liver may normally be present to 
variable extents as an inactive complex with serine. Threonine 
dehydrase activity could be demonstrated after heat treatment to 
remove serine. 

b. Typtophanme. The breakdown of tryptophane to indole, pyruv- 
ate and ammonia, is catalysed by a bacterial enzyme which requires 
pyridoxal phosphate as a cofactor (equation 40). 

c. Cysteine de~ulphydrrrrel~~. Removal of hydrogen sulphide from 
cysteine is accompanied by non-oxidative deamination (equation 4 1). 
The reaction is analogous to the dehydration and deamination of the 
hydroxy amino acids and is catalysed by pyridoxal phosphate-depen- 
dent enzymes present in some mammalian tissues and some micro- 
organisms. 

d. Deamination of purines andpyrimidines. The amino substituents in the 
purines, guanine and adenine, and the pyrimidine, cytosine, are not 
apparently lost by deamination of the free bases. Enzymes catalysing 
non-oxidative deamination of the corresponding nucleosides have been 
demonstrated in liver and other tissues, while the enzyme adenylic 
deaminase, present in muscle, converts the nucleotide adenylic acid 
to the deaminated analogue, inosinic acid. 
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B. Formation of Excretory Products 

The discussion in this last section is limited to the fate of the 
ammonia, produced by deamination of amino compounds, in animals. 
Excretion is a function not normally attributed to plants or to micro- 
organisms, a fact which may reflect the greater economy of these 
simpler life forms in regard to the utilisation of ingested nitrogen 
compounds. I n  animals, the general efficiency with which ingested 
nitrogenous materials are used to maintain a healthy state of existence 
is relatively low. I n  addition, the turnover of such essential nitrogenous 
compounds as proteins and nucleic acids is relatively rapid. The main 
problem is the efficient conversion of excess amino compounds to 
non-toxic products excreted in the urine. The toxicity of ammonia, 
particularly in the central nervous system of higher animals, has 
already been noted and it has long been recognised that the level of 
free ammonia in the tissues, in blood and in urine, is only significant in 
certain cases of metabolic disorder. 

The principal nitrogenous excretion product is urea in mammals 
and most aquatic species, and uric acid in birds and reptiles. There 
are, of course, a number of exceptions to this generalisation. The 
Dalmation dog, for example, excretes significant quantities of uric 
acid while spiders excrete guanine in place of uric acid. Other species 
are known to show different behaviour in the course of their develop- 
ment, e.g. tadpoles and chicken embryos form ammonia, while frogs 
and hens produce urea and uric acid respectively. Certain lower 
aquatic species lose ammonia directly, a simple diffusion process 
replacing the complex excretory systems of higher animals. 

The main routes by which surplus amino compounds are converted 
to urea and uric acid, are considered below. 

I. Urea formation 

I t  was suggested, by Krebs and Henseleit 1 3 ~  more than thirty years 
ago, that urea is formed (primarily in liver tissue), by a cycle of 
reactions between the basic amino acids, ornithine, citrulline and 
arginine. The original scheme, given in Figure 41, is now known to 
be oversimplified. Other intermediates are involved, and enzymes 
catalysing the individual steps in the reaction have been purified and 
partly characterised. The reactions involved are as follows: 

(a) Formation of carbamyl phosphate from ammonia, carbon 
dioxide and adenosine triphosphate (ATP). The reaction is catalysed 
by carbamyl phosphate synthetase which requires two cofactors, i.e. 
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COOH ~ H N H ~  
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ornithinet- COOH ~ O O H  

citrulline arginine 
I 

FIGURE 41. Formation of urea. 

magnesium ions and an N-acyl derivative of glutamate. Two moles of 
ATP are broken down in the course of the reaction (equation 42). 
Equilibrium lies towards carbamyl phosphate formation. The mech- 
anism of the reaction is obscure. 

CO2 + NH3 + 2 ATP + NH2C(=O)OP03H2 + 2 ADP + H3P0, (42) 

(b) Elimination of inorganic phosphate between carbamyl phos- 
phate and ornithine to give citrulline. The reaction (equation 43) is 
catalysed by ornithine transcarbamylase which has been purified from 
liver tissue of rat and ox. 

I 
COOH 

ornithine LoOH 
citrulline 

(C) The formation of arginine from citrulline can be represented 
formally by equation (44). However, the reaction neither occurs in 
one step nor involves free ammonia. Ratnerl3' and her colleagues 
have shown that arginine formation requires the presence of both 
aspartate and ATP and that reaction occurs through the intermediate 
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~ H N H ,  

C o o H  

citrulline 

CHNH, 
C o o H  

arginine 

argininosuccinate, (see also section V.D). The formation of the 
intermediate involves the production of adenosine monophosphate 
and inorganic pyrophosphate (equation 45). The enzyme catalysing 

NHa NH COOH 
\ 

C = O  COOH 
\\ c - N H - L  

/ l 
NHa-CH NH 

/ 
+ ATP + 1 

CH, 

+ CHa C o o H  
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~ O O H  

I 
CHNH, 

~ O O H  COOH I 

citrulline aspartate argininosuccinate 

this reaction (argininosuccinate synthetase) is inhibited by inorganic 
pyrophosphate. The presence, in liver, of an inorganic pyrophos- 
phatase is presumed to prevent inhibition, under physiological con- 
ditions. Cleavage of argininosuccinate to produce arginine and 
fumaric acid (equation 46) is catalysed by a second enzyme, arginino- 
succinase. 

N H COOH N H 
\ I \ 

/C-NH-CH 
C-NH2 COOH 

N H 
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/ I 
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cHNHa CHNH, c o o H  I 
l 
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I 
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(d) Arginine is hydrolysed to produce urea and regenerate ornithine 
(equation 47). The enzyme catalysing this reaction (arginase) is 
activated by some divalent metal ions, e.g. Ni2 +, Co2 +, Mn2 +. 

Although the present discussion is limited to reactions catalysed by 
liver enzymes, it may be noted that analogous enzymic activities 
have been demonstrated in both plants and microorganisms. 

2. Ur ic  acid formation 

Although uric acid is known to be the main nitrogenous excretion 
product in birds and in reptiles, the route by which it is formed from 
excess amino compounds is not well understood. Uric acid is also the 
end product of purine breakdown in man and is excreted as such, 
while in subprimate mammals, the purine ring is further oxidised 
to produce first, allantoin and, in some species, eventually urea. 
The interrelationship between these compounds is illustrated in Figure 
42. 

Adenine 

Guanine 
N 

OH 
xanthine 

OH 
uric acid 

urea H H 

+ 
CH0  I 
I 
COOH 

glyoxylic acid allantoic acid al lantoin 

FIGURE 4 
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VII. GLOSSARY OF ABBREVIATIONS 
NAD +, NADH Refer to the oxidised and reduced forms of the 
,ADP+, N m P H  } nicotinamide-adenine dinucleotide cofactors of 

certain enzymes (see Figures 2a, b) . 
FP, FPH, Refer to flavoprotein enzymes in which the flavin 

may be flavin mononucleotide (FMN) or flavin- 
adenine dinucleotide (FAD) (see Figures 2c, d). 

Pal, Pam Refer to the aldehyde and amine derivatives of 
pyridoxine (vitamin B,) (see Figures 5a, by c). 

FH4 Tetrahydrofolic acid (Figure 13). 
ATP Adenosine triphosphate (Figure 17). 
GTP Guanosine triphosphate. 
CO A Coenzyme A (Figure 29). 

In Figures 1 and 16, names of amino acids are indicated by the first 
three letters only. Thus glu represents glutarnic acid and phe represents 
phenylalanine. 

  he nomenclature used in this chapter for metabolites which con- 
tain carboxylic acid groups and for phosphate esters is imprecise 
since the relevant ionisation states in vivo are, in general, ill-defined. 
a-Keto acids and acidic amino acids are, therefore, referred to as 
a-ketoglutarate, aspartate etc., but it is not intended to imply that all 
carboxylic acid groups are necessarily fully ionised under all con- 
ditions. In the text, esters of orthosphosphoric acid, orthophosphoric 
acid itself and pyrophosphoric acid are referred to simply as phos- 
phates (e.g. adenosine triphosphate), inorganic phosphate and in- 
organic pyrophosphate respectively, whereas in the figures, phosphate 
groups are generally shown, incorrectly, as being unionised (e.g. as 
X-OPO,H,). In no case can the cation associated with an ionised 
group be specified. 
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VII. REFERENCES . 

The title reactions can be grouped into several classes depending 
on the existence, and nature, of intermediates. The following sections 
summarise the most important examples, but the extent of the litera- 
ture precludes an exhaustive treatment. Often, especially for minor 
topics, questions of historicity and priority will be ignored and 
citation will be made to articles containing discussion of earlier work. 

I. REARRANGEMENTS ACCOMPANYING DEAMlNATlON 

A. Ionic Intermediates 
In the generally accepted mechanism for deamination of primary 

alkylamines with nitrosating agents, the transiently formed diazonium 
ion loses nitrogen, with neither solvent nor neighbouring groupJ 
assistance to give an unsolvated carbonium ion which is negligibly 
encumbered by the departing molecule and has no counter ion in the 
vicinity1. This high-energy or 'hot' ion differs from the formally 
identical but solvated species typically generated in an SN1 reaction by 
undergoing a wider spectrum of reactions, some of which, however, are 
attendant on partial or almost complete s~ lva t ion~-~ .  Other interpreta- 
tions require the intervention of diazoalkanesa or diazohy- 
droxides2* or the direct decomposition at the diazonium ion stage 
to productsl1,l2; but the last two distinctions may be semantic, for 
the energy profiles for the different mechanisms (exhibiting shallow 
minima for the various intermediates), must be almost indistinguish- 
able; especiallywhen smoothed out by the thermal energy of the system. 
Nevertheless, the carbonium ion mechanism is usually considered to 
accommodate the data most satisfactorily1. 
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Much of the evidence for hot ions has been adduced from the study 
of rearrangements accompanying deamination, and in this review we 
will assume the existence of such intermediates. Classical ions, which 
can be represented by one or a series of equilibrating structures in 
which the charge is largely localised on one carbon and the normal 
covalencies occur, and also non-classical ions with charge delocalisa- 
tion and partial bonding are both believed to exist in deamination. 
The existence of the latter in reactions generally, has been disputed 13, 

but there is considerable stereochemical evidence, particularly for 
bridged substrates, that cannot be convincingly interpreted on the 
classical model14; although in many cases a decision as to whether 
the non-classical species are intermediates or merely transition states 
is difficult. Unfortunately, kinetic evidence for mesomeric cations, 
perhaps the best criterion15, is unavailable because deamination 
occurs after the rate-determining step of the reaction sequence, but 
we will follow the literature and often assign non-classical inter- 
mediates, on admittedly, minimal evidence, and will represent them 
using the partial-bond symbolism, despite recent objections to this 16. 

Deaminations have usually been conducted in acetous or aqueous 
media, at 0 to 30°, yielding olefins and either acetates or alcohols 
respectively. For uniformity, all reactions forming acetates will be 
referred to alcohol products in the following sections, and the reaction 
conditions will only be mentioned when mechanistically significant. 

B. Acyclic Amines 
Deamination of short-chain primary alkylamines with nitrous acid 

has long been known to give not only an enhanced (25-30%) yield of 
olefin compared with the analogous SN1 reactions of halides, but also 
rearranged products absent from the latter. The proportion of re- 
arranged alcohols falls with increasing h o m o l ~ g y l ~ - ~ ~  (Table 1) and 

TABLE 1 .  Rearranged products from nitrous deamination of alkylamines17-19. 

R in RNHz n-Pr n-Bu i-Bu n-Oct n-Non n-Dec 
7, Rearranged ROH 58 34 75 ,25  5  0 0 
Isomer formed is0 S 4 J S - - 

(conditions: aqueous or aqueous-acetic acids) 

competition of the 1,2-methyl and hydride shifts responsible for the 
rearrangement with direct SN1 and E l  is very dependent on condi- 
tions: e.g. the proportion of rearranged product from n-propylamine 
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falls from 58y0 in totally aqueous solvent to 31y0 in aqueous dimethyl- 
formamide6* 7. Later it was appreciated that the driving force of these 
Wagner-Meerwein-like isomerisations (which can also involve aryl 
shifts) was the tendency, usually only capable of fruition in hot ions, 
of the initially formed ion to rearrange to a more stable secondary or 
tertiary ion. Thus normal and iso substrates yield secondary and 
tertiary products respectively, whereas secondary substrates never 
form normal productsz0. Sometimes the hot-ion model seems inade- 
quate 20-iso :S: t product from isobutylamine changes from 10 : 19: 71 
in water to 23:21:56 in 7 N aqueous sodium thiocyanate, and the 
ratio of alkyl thiocyanate and isothiocyanate products also suggests 
that the anion participates in C-N cleavage to some extent. 

Analogous rearrangements accompany related deaminations (re- 
action l) ,  in which the similarity of products under comparable 
conditions suggests a common intermediate 6 *  7. 21* zz; the slight 
differences being attributable to the (necessarily) different reaction 

HNO,, 0" n-PrNH, -1 

temperatures. Only about 1% isoalcohol results from decomposition 
of diazopropane in ethereal acid 7, probably owing to the formation 
of specifically orientated ion pairs in these non-solvating conditions 

(e.g. R$,OAC, when acetic acid was the catalyst) which inhibit 
rearrangement. In  more polar media, ion dissociation simulates the 
situation in nitrous deamination and permits extensive rearrange- 
ment. I t  is interesting that at the other end of the solvation scale, the 
nitrous deamination, under completely aqueous conditions, of sub- 
strates that initially form stabilised carbonium ions (e.g. t-amines) 
gives little rearrangement117. Here the relatively stable ion initially 
formed may solvate to form a 'cold' ion before rearrangement can 
occur; or it may orientate an incipient hydroxide ion from the solvent 
shell to act as a counter ion at the diazonium-forming stage. 

The pyrolyses of N-nitroso-N-acetylamines also probably generate 
ion pairs in the usual non-polar reaction media, e.g. p-cymene, for 
little rearrangement is reported z 3 n 6 4 .  Diazoalkanes, formed by elimina- 
tion from diazohydroxides, are unlikely intermediates in nitrous 
deamination, for neither ethylamine nor isobutylamine gives labelled 
products when the reaction is conducted in deuterated media: these 
observations also exclude n-complex intermediates lg. 24. 
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Tracer studies have shown that a proportion of the apparently 
unrearranged product can result from 1,2-shifts (Table 2). About goy0 

TABLE 2. Rearrangement in deamination of p-substituted ethylamines. 

, , 

(4 (B) 
(C* represents 14C) 

R H Ph p-MeOCBH4 p-HOCHzCH,0CaH4 

70 B 1.5 2 7 45 40 
References 24 25, 26 25 ,26  2 7 

of the p-anisyl compound must have reacted through the bridged ion 
or transition state 1, whereas such a route was much less favoured for 
hydrogen migration. Early investigations of n-propylamine z8. 29* 30 

reported 9% rearrangement of 14C tracer from C,,, exclusively to 
C,,, and so excluded methyl shifts in favour of 1,3- or successive 1,2- 
hydride migrations. An n.m.r. study31 of products from deuterated 
substrate indicated 1,3-migration (reaction 2) and was considered to 

rule out the intermediacy of equilibrating cyclopropanes (2) 3z. The 
existence of the latter are also inconsistent with the 14C studies, but 
re in~est igat ion~~ has led to a reappraisal in that not only a lower 
proportion (about 4%) of tracer rearrangement, but also nearly equal 
migration to C,,, and C,,,, was demonstrated. These, and concurrent 
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studies on deuterated and tritiated substrates 34, are inconsistent with 
the 1,3-shift occurring entirely through open classical ions, and favour 
2 as specific intermediates (rather than transition states) which can 
give up to 10% cyclopropane in addition to the usual products35. 
Isolation of cyclopropane-d2 and -d, in comparable amounts from 
decomposition of ytrideuterated n-propylamine supports this view 36. 

Certain other alkylamines give up to 15y0 cyclopropanes under con- 
ditions not favourable to diazoalkane formation and its subsequent 
carbenoid decomposition, and presumably in all cases proton loss 
from bridged ions similar to 2 leads to products, but it is difficult to 
rationalise the relative ease of cyclisation and 1,2- and 1,3-shifts in 
these compounds in any convincing manner3?. 

Reactions of neo-pentyl derivatives, based on a skeleton well kno 
for rearrangement tendencies in SN1, are summarised in Table 3. 

TABLE 3. Deamination of neo-pentyl-like structures. 

Compound yo Rearrangement Migrating group Referen 

Me3CCH2NH, (3) 
Me3CCHPhNH2 (4) 
Et3CCHPhNH2 (5) 
RaCPhCHPhNH2 (6) 
(fi-MeOC6H,)3CCH2NH, (7) 
Ph3CCH2NH2 (8) 

expected, 3 gives products derived from a tertiary ion, but the first- " 
formed ion from 4 is stabilised by the phenyl group. Such a substituent 
cannot prevent rearrangement when steric congestion at Cc2) is re- 
lieved in so doing, as in 5, or when phenyl migration is possible as in 6. v 

The size and relative order of rearrangement in 7 and 8 is also sur- 
prising. 14C Labelling of the l-position of 3 leads to f-pentanol with 
tracer solely located at C(B)40, indicating a 1,2-methyl shift rather than 
hydride migration via open ions or protonated cyclopropanes, in 
contrast with the situation for n-propylamine (reaction 3). Other 
differences between the two substrates are that 3 yields no cyclo- 
propane, but gives larger quantities of rearranged olefins41. Other 
tracer studies of alkylamines have demonstrated similar skeletal 
migrations 42* 43. 
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L c-c-c-c r *  
C. Semipinucols 

1 $2-Aminoalcohols (semipinacols) undergo aryl, alkyl, and hydride 
shifts on treatment with nitrosating agents, and 1,2-diamines behave 
ana log~us ly~~.  The former class gives similar products to those of the 
corresponding pinacol rearrangement (reaction 4), but with the 

\ / l C C  + Rl-C-C-R4 etc. 

2 I l I I  
R2 0 

OH 

R1 R3 R1 
\ 

C-C / S \  
/R3 i 

C C  4 R=--C- -R3 etc. 

w"J I\R4 "R4 
II I 
0 R4 

OH NH, H 

important modification of hot-ion formation; although the product 
distribution from particular substrates in the two reactions may be 
identical if the hot ion can be solvated before it reacts further4=, and 
here glycols and epoxides may p red~mina t e~~ .  1,3-, 1,4-, and some 
1,2-aminoalcohols give up to 20y0 fragmentation (reaction 5), even 
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when phenyl migration is occurring at the same time46; and such 
cleavage may follow hydride migration (reaction 6) 47. Poorly solvating 

media, e.g. dioxan, inhibit rearrangement, even when phenyl migra- 
tion is possible 48. 49 ; presumably ionic aggregation here, occurs even 
for nitrous deamination (see section I.B), facilitated by the low 
dielectric constant and the orientating effect on the solvation sheath 
caused by the neighbouring hydroxyl group. 

D. Stereochemistry 

The fragmentary data50 available for normal and semipinacolic 
deamination was once held to indicate strictly stereospecific migration 
that was synchronous with, or followed shortly after, C-N fission to 
give inversion at the terminus. More recent work has modified this 
conclusion, although the stereochemical consequences at the migrating 
group and the migration origin have still remained largely uneluci- 
dated. 

A reexamination of the original data indicates up to 12y0 retention 
of configuration accompanying inversion, and a brilliant radio- and 
stereochemical study with specific 14C labelling showed that the 
labelled group migrated exclusively with inversion, whereas a second, 
identical but unlabelled group migrated with retention (reaction 
7) 519 52. These results were convincingly interpreted, as shown, on the 
basis of classical carbonium ions which rearranged to products before 
complete rotation around the central C-C bond could be achieved, 
and non-classical intermediates or rearrangement synchronous with 
nitrogen loss were excluded. The anti-periplanar* relationship between 
the migrating and leaving groups implied by this scheme is certainly 
consistent with the last mechanism, but the consensus of opinion, here 
and in other examples, is that the anti relationship enables maximum 
overlap between the bond electrons of the migrating group and the 

* For the purpose of this review, anti-periplanar, syn-periplanar, and syn-clid 
relationships between two bonds linked to adjacent atoms refer to conformations 
with dihedral angles of 180°, 0 to 15", and 15 to 90° respectively. For more 
complete definitions see reference 398. 

19) 

88% 

Glycol 

Ph* 

(inverted) (retained) 

freshly formed emptyp orbital on C(,,. Rotation of the ion into other 
conformations than those shown would have given retention with the 
labelled phenyl having migrated. 

Earlier 14C studies (reaction 8) had demonstrated that the ap- 

(10) (8) 
Ph migration and (H migration) (CH, migration) ( ""rearranged ) 

I parently unrearranged product 10 had tracer distributed equally 
A? between the two carbons indicated53, and although this was con- 

sistent with phenyl migration through a non-classical intermediate 
similar to 1, the initial formation of a classical ion was preferred for 
such an exothermic process as deamination, with (presumed) lack of 
neighbouring group participation. Much evidence for non-classical 
phenonium ions is available in SN1 54, but stereospecific 'equilibrating' 
rearrangement of the above type is necessary, although not sufficient, 
evidence for proving such intermediates in deamination. 

I 
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Extensive tracer and stereochemical studies on deaminations, or 
semipinacolic rearrangements, and on thermal decompositions of the 
N-nitroso- N-acetyl derivatives, of 1,2-, 2,2-, and 1 ,2,2-polyarylalkyl- 
amines are all consistent with schemes similar to (7), involving classical 
ions which largely invert their configuration at the terminus owing to: 
(a) steric shielding of the positive centre and (b) the similar rates of 
migration and rotation about the central bond55-58. The schemes in 
general, and factor (b) in particular have been criticised59 as being 
based on an incorrect ground-state conformation, but computer 
analysis of the data from several reactions supports the o 
 proposal^^^*^^, and indicates rate ratios (see reaction 7) : k,/k, 
to 1.8; kJk, = 1.1 to 2.3. As the energy barrier62 for step 
about 0.006 to 1.15 kcal/mole, the rate of migration can be rea 
estimated. 

Extension of these conclusions to non-arylated substrates is un 
certain as the classical ion may be especially stabilised in these ra 
unusual structures, and the route utilised may well depend on 
reaction conditions. Deamination of 2-amino-3-phenylbutan 
results in stereospecific migration of phenyl with inversion at the 
origin and terminus (owing to the symmetry of the molecule this 
rearrangement could only be detected by optical analysis), but the 
accompanying methyl shift resulted in only about 16y0 inversion at 
the migration origin63. A bridged ion 12 (reaction 9) was proposed 

here, and also for the phenyl shift, which in the former, but not latter 
case, either reacted with inversion at the migration origin to give 
products, or first formed a new classical ion which gave racemic 
products. It was also recognised that the partial stereospecificity of the 
methyl shift may result from predominant attack on a classical ion 
from the less sterically hindered side. At present a decision is not 
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possible between the two mechanisms, although 12, in contradistinc- 
tion to phenonium ions, seems more likely as a transition state than an 
intermediate. Less ambiguous was the observation that threo-l1 gave 
32% methyl, 24% phenyl, and 24% hydrogen migration, whereas 
the eythro isomer gave 6, 68, and 207, respectively. These values are 
in excellent accord with the calculated conformational populations of 
the substrates, (reaction 10) and with the proposal that an anti- 

periplanar relationship between migrating and leaving groups is 
required. Although this is again consistent with a mechanism where 
migration is synchronous with nitrogen loss from the diazonium ion, 
the consensus of opinion again is that it refers to a carbonium ion 
mechanism in which the migration rate is considerably greater than 
the rate of rotation about the central bond, i.e. analogous to reac- 
tion (7), with no rotation of the first-formed ion. 

E. Migratory Aptitudes 
The ease of migration of groups in the pinacol rearrangement varies 

in a consistent and interpretable manner over a several hundred-fold 
range, but little selectivity is shown in migration to a hot ionic centre. 
Accordingly, the relative migratory aptitude (determined by product 
analyses of substrates carrying groups to be compared in equivalent 
positions) for p-anisy1:phenyl falls from about 500:l in the former 
reaction, to 1.6: 1 in semipinacolic deamination, and such values are 
typical forp-substituted aryl groups, irrespective of the polarity of the 
para s u b s t i t ~ e n t ~ . ~ ~ .  Discrimination between possible migrating 
groups is also negligible in deamination of 2,2-diarylethylamine~~~. 
and N-nitroso- N-acetylamines ' ; for example ratios for o-, m-, or p-tolyl 

~ O + C . A . G .  
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to phenyl are all 1.2 : 1. Phenyl has a very much greater migratory 
tendency in SN1 than have methyl or hydride ions, in fact the latter 
have been rarely observed to shift, but in certain deaminations the 
phenyl : methyl migratory aptitude is only about 6, and phenyl : hydride 
about 1825326. Alkyl groups also probably have similar aptitudes in 
deamination; e.g. PhCH2=CH, = 2 : 1 66. AH* for hydride shift in 
isobutylamine is 2.5 kcal/mole less than that for methyl shiftlQ, but 
the AS* factor favours the latter process by some 5 kcal/mole. The 
latter factor probably illustrates the small tendency of hydrogen to be 
situated anti periplanar to the leaving group in the ground-state 
conformations : a much bulkier group usually occupies this position. 

In all these compounds, ground-state conformations are equally 
probable with either of the competing and compared migrating 
groups in the favourable anti-periplanar orientation to the amino 
group, but in certain diastereoisomers cis interactions between bulky 
non-migrating groups attached to the two asymmetric carbons cause 
different groups in each isomer to be favourably oriented in the 
ground state and the closely related (both electronically and struc- 
turally) transition state. Thus migration occurs predominantly as 
shown in 13 and 14 (p-An = p-Anisyl), (reaction 1 l), such that any 

'cis effect' of neighbouring aryl and methyl is eliminatedG7. Other 
unusual relative aptitudes, e.g. Ph > a-TolylG8, Ph > NaphthylGg, 
and t-Bu - PhTO, also reflect the favoured ground-state conformation 
rather than inherent migrational ability, and again indicate (on the 
basis of the carbonium ion model) the preference for migration within, 
rather than rotation of, the initially formed ion. 
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F. Cycloalkylamines : Ring Expansion 
Alicyclic analogues of the above reactions were discovered in 1901 

(Demjanov rearrangement of amines) and 1937 (Tiffeneau rearrange- 
ment of aminoalcohols), but although scores of examples have been 
recordedT1, few mechanistic studies are available. These reactions, 
shown in (12) and (13), usually give good (30-607J and sometimes 
excellent ( > 80%) yields of rearranged alcohols or ketones and 

olefins, accompanied by unrearranged products, and three- to twelve- 
membered carbocyclic rings have been thus expanded: maximum 
rearrangement occurring with the five to seven membe~-ed~ l -~~ .  As a 
carbon<arbon (ring) bond will predominantly be anti periplanar to 
the leaving group in the substrate, the hindered rearrangement of the 
larger rings probably reflects an unfavourable entropy factor in the 
actual migration step, caused by the need to change the conformation 
of the original ring, when its span is flexed to a new terminus. 

The Tiffeneau reaction possesses two properties favouring ring 
expansion : 
(i) No hydrogen is available at C(2, to compete with migration of 

ring-bond electrons. 

(ii) A protonated carbonyl group, )c-OH, is formed on ring 
expansion which is a comparatively stable carbonium ion. 
Consequently expansion is usually more complete, with less 
olefinic by-products, than in the Demjanov process. In synthesis, 
the Tiffeneau method is especially valuable for ring enlargement 
of ketones (see reaction 13). 

These rearrangements are again manifestations of the tendency to 
form a more stable carbonium ion. Both ring-bond and hydride shifts 
(in Demjanov conditions) can occur (reaction 14) T4, but the latter are 
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usually unimportant as they require an unfavourable ground-state 
conformation, even though they lead to a tertiary ion. Nevertheless up 
to 20% tertiary alcohol results from l-cyclopentylethylamine 15, and 
hydride shift can be readily demonstrated in non-rearranged products 
by tracer studies; for example l-14C-cyclohexylamine gives a mixture 
of 1-14C- and 2-14C-cyclohexano176. Methyl and phenyl substituents 
at C,,) can migrate more efficiently than hydrogen in competition 
with ring expansion, as their greater size ensures a greater proportion 
of the ground state having these groups anti to the amino group. Thus 
15 (R = CH,) gives 2-methylcycloheptano1 (67y0) and l-ethylcyclo- 
hexanol ( l  l %) ; the latter derived from methyl shift719 17; whereas 
15 (R = Ph) gives only products of phenyl migration78. A C(1,- 
attached alkyl or phenyl group stabilises the ion initially formed in 

Demjanov deamination and so inhibits ring expansion, even in small 
rings where strain is released by the latter p r o ~ e s s ~ ~ * ~ ~ , ~ ~ .  An in- 
tervening methylene group between the ring and the ionic centre (in 
3-cycloalkylpropylamines) has the same effect ll. Tiffeneau reactions 
are much less affected by such factors, having stronger driving 
forces, and 16 gives over 50% ring expansion, and the corresponding 
I-methylated amine of the cyclohexane series even more71.83. Bulky 
alkyl groups at or the axiallequatorial nature of the aminoethyl 
group (in conformationally fixed 4-t-butyl- l -hydroxy- l-methylamino- 
cyclohexanes) do not prevent up to 8 0 x  ring e ~ p a n s i o n ~ ~ .  

Asymmetrically substituted rings can expand in two ways to give 
position isomers, the proportions of which can usually be rationalised 
by conformational considerations as to which ring bond is suitably 
placed for migration (however, see reaction 15)11. Demjanov- 
Tiffeneau reactions can be applied to bicyclics (reaction 

Reaction (16) is a general route applicable to the c-D rings of ster- 
o i d ~ ~ ~ ,  and to N-, 0-, and S-heterocyclics n. 85. However, certain 
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electronegative substituents (2- and 4-Cl, F, and COOEt) inhibit 
ring expansion in six- and even four-membered rings ll. perhaps 
by favouring direct decomposition in the diazonium ion stage. 

G. Cycloalkylamines : Ring Contraction 

In a few structures, the most stable ion results from ring contraction, 
rather than expansion. Cleavage of the strained ion from cyclo- 
propylamineS8 is a particular case, and 14C labelling has elucidated 
the mechanism (reaction 17) 89. The bicyclic (17) reacts analogously to 

~~0:' 
(C* = '4C) 

give 2-hydroxycycloheptenegO, but the ion derived from cyclopropyl- 
methylamine is much more stable (see section I), and the strained 18 
gives little rearranged product gl. 
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True contraction is stimulated by a 2-phenyl substituent in cyclo- 
hexylamine (reaction 18), which enables a benzyl cation to be formed, 
but not by 4-phenyl, 4- or 2-alkyl groups79. It leads to the major pro- 
duct from 1,2-aminoalcohols in which the amino group is fixed 
equatorially either by incorporation into a tram-decalin skeletong2 or 
by the use of a t-butyl conformational-holding group in cyclohexanes 1°. 

The latter reactions are the consequences of the combination of a 
suitably orientated CorC(c3, bond, and the possibility of forming a 
protonated carbonyl group (reaction 19) ; when the amino group was 

fixed axially no contraction took place. tram-2-Hydroxycyclohexyl- 
amine (OH, NH, both equatorial in the ground state) gives almost 
exclusively the ring-contracted aldehyde for the same  reason^^^.^^^, 
but the cis isomer (with a major proportion of NH, equatorial) gives 
70y0 contracted and 30% unrearranged p r o d ~ c t s ~ ~ - ~ ~ .  Originally it 
was believed that these last products corresponded to the conforma- 
tional populations of the cis starting material, but recent work1° 
refutes this and interprets products in terms of the equilibrium 
conformations of diazohydroxides which are supposed to decompose 
directly to a carbonium ion and to by-pass the diazonium ion. It  is 
not yet clear how general this mechanism is in aliphatic deamination. 

The usual deamination mechanism is considered 97 to be energeti- 
cally unfavourable for these substrates, as it would generate a positive 
centre adjacent to the positive end of the carbonyl dipole, and re- 
arrangement synchronous with nitrogen loss from the diazonium ion is 
suggested, to allow incipient charge on C(,, to be delocalised. A 
detailed product study of 19 delineates three types of bond rearrange- 
ment (reaction 20) 97. The cyclopentane carboxylic acid may also be 
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formed by direct rearrangement of the ketone hydrate (reaction 21) 
but a Favorskii-type mechanism (reaction 22) was excluded by the 

COOH 

observation that 2-amino-6,6-dimethylcyclohexanone and 19 both 
give similar products. 1,3-Transannular elimination of hydrogen 
to form the bicyclic ketone as in reaction (20), was also demonstrate@ 
in a reinvestigation of products from cyclohexylamine which revealed 
2y0 (3.1 .O)-bicyclohexaneg7. 133. This may indicate that part, at. 
least, of this substrate decomposes via the diazonium ion with no 
formation of the hot carbonium ion, as the 2-methyl derivative of 19, 
which might be expected to be able to react by the carbonium ion 
mechanism, gives only unrearranged productsg8. 

Straight-chain a-aminoketones rearrange analogously to alkyl- 
amines by means of methyl shiftsg8, but 20 does not undergo 2,6- 
hydride shift similar to that occurring in the bornylamines (see 
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section 1.J). The ring opens to a classical ion 21 with good charge 
separation, and some 1,3-hydrogen elimination takes place (reaction 
23) 07. Similar reactions are reported for other bicyclicsQ9. 

I. Non-classical Ions from Monocyclic Amines 
As outlined in section I.D, there is no compelling evidence for non- 

classical intermediates in the deamination of acyclic amines, but a 
series of tracer and stereochemical studies have led many workers to 
postulate their existence in the alicyclic field loo. 129. In forming 
mesomeric cations monocyclic, and especially bicyclic, ions have 
important advantages over open-chain compounds as the latter must 
sustain a large entropy loss in order to achieve the restricted orienta- 
tion for electron delocalisation. 

Cyclopropylmethylamine (22) would either be expected to undergo 
ring expansion to cyclobutyl derivatives or cleavage to allylic products 
in order to gain advantage from secondary or mesomeric ion formation, 
but the situation is much more complex. Reaction (24) shows pro- 
ducts and tracer distribution from I-14C-labelled substratelOl. I t  is 
interesting that cyclobutylamine gives the same proportions of pro- 
ducts although the equilibrium position of 23 and 24 is nearly 100% 
in favour of the latterlOl, and that 2-phenylated 22 gives 97% ring 
expansion via a benzylic ionlo2. A simple view of the expansion is 
that the p orbital of C,,, in the carbonium ion overlaps with one of the 
'banana' orbitals of the three-membered ring (reaction 25) such that 
C,,, of 22 becomes C(=, of 24, but the tracer distribution shows that an 
intermediate must intervene in which C(2,, C,,,, and C(4, of 24 become 

10. Rearrangements Involving Amino Groups 603 

(4870) (47%) 
(figures give Y0 distribution oftracer) 
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nearly, but not exactly, geometrically equivalent, as must C,,,, C,,,, 
and C,,, of 23. No classical species fulfills the role, but a scheme of 
rapidly, but not instantaneously interconverting non-classical ions 
was proposed (reaction 26). I t  is important to appreciate that 25, 

for example, is shorthand notation for a complicated orbital diagram: 
the geometry of this ion is probably 26, wherein the 2p orbitals of 
C,,,, C,,,, and C,,, overlap to form a bonding molecular orbital 
(containing two electrons) and two vacant antibonding orbitals 1°l. 

Symmetrical ions such as 27 are believed to play a minor role as 
intermediates, except possibly in the interconversions of 25 and its 
two isomers. Deamination (and S,]) of other cyclopropyl derivatives 
have been similarly interpreted lo3, although in some structures tracer 
work indicates little scrambling from C,,,, and an almost classical ion, 
with a nearly localised charge, is likely (reaction 27) lo4. 

10. Rearrangements Involving Amino Groups 605 

An interesting product from 2-cyclopropylethylamine is cyclo- 
pentanol, which is believed to result from irreversible migration of the 
ring to C,,, (reaction 28), although the reactions are complicated by 

much isotope scrambling from C,,, and probably proceed through 
non-classical intermediateslo5. 

1. Non-classical Ions from Bicyclic Amines 
1 Solvolyses and deaminations of exo- and endo-norbornyl (28) and 

norbornenyl derivatives labelled with 14C at C,,, and C,3, have been 
held to indicate non-classical intermediates (reaction 29) l o 6 v 1  07. If 29 

was the sole intermediate, tracer would appear at C,,, and C,7, in the 
product, but substantial, although not equivalent amounts were found 
at all positions except C,,,. This distribution was accommodated by 
postulating a 2,6-hydride shift linking non-classical ions 29 and 30, 

I via the special non-classical symmetrical species 31 (reaction 30), and 
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so achieving a system whereby partial or total equilibration of tracer 
in all positions except C(4, could be realised, before destruction of the 
intermediates by solvolysis. However, there is no evidence that 31 
is anything but a transition state in the equilibration of 29 and 30, 
which could both be classical. The above scheme would yield racemic 
products, and a claim to optically active products led to the proposal 
of equilibrating classical ions lo8, but this work has been validly criti- 
cised on both experimental and theoretical grounds log, and the con- 
sensus of opinion favours non-classical intermediates, although not 
necessarily the existence of 31100. 

More recently, analyses of tracer distribution or optical activity, 
and geometric structure (i.e. end0 or exo) of products from various 
bicyclic amines have presented evidence for non-classical inter- 
mediateslo0.113. A typical example is shown in reaction (31) llO. In 
both non-solvating (to carbonium ions) acetic acid and solvating 
aqueous conditions, only exo product could be detected and such 
stereospecificity is difficult to interpret on a classical mechanism loo, 

wherein 32 is directly destroyed by solvolysis. Optical examination of 

products was not made but a non-classical ion would lead to active exo 
product whereas the endo-exo mixture from 32 would be racernic. For 
other systems it has been adduced that both classical and non-classical 
ions act as precursors of products: for example 33 gives optically active 
products and this rules out the symmetrical 34 as sole intermediate. 
Detailed analysis suggests reaction (32) ll1. The epimeric exo-amine, 
although forming a formally identical carbonium ion, utilises a 
different sequence of classical and non-classical intermediates which 
are only converted into those of reaction (32) with difficulty, and 
which lead to entirely different products112. 

Particularly well studied is the bornylamine system. Both bornyl- 
amine (35), and its epimer (36), give camphene (37) and tricyclene 
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(38) on dearnination in aqueous or acetous ~ o l v e n t s l l ~ * ~ ~ ~ ,  and the 
former is optically pure, i.e. there is no evidence for Nametkin or 
2,6-hydride shifts. However, 35 gives up to 10% of monocyclic products 
39, whereas its epimer gives none (reaction 33). The corresponding 

fencyhlamines behave similarly l16. I t  is unlikely that the ring opening 
occurs by a synchronous elimination-type mechanism in the ion 40, 
for as the preferred dihedral angle of either 0" or 180" between the 
participating bonds cannot be achieved (owing to the rigid geometry) 
in either the end0 or exo isomer, each isomer should behave similarly. 
Also, perfect eclipsing (dihedral angle - 0) of the leaving group and a 
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p-hydrogen on C(3, takes place, but no bornene (43) is formed. 
Intervention of 41 is also unlikely, for such ions almost certainly 
mediate in the acid-catalysed rearrangement of a-pinene and largely 
partition to isoborneol (42), which again is absent from deamina- 
tionlOO. I t  seems more likely that 35 forms a hot carbonium ion but the 
orientation of the developingp orbital on C(,, is unfavourable for such 
participation of the C(1,-C(6, bond as would lead directly to a non- 
classical ion, 44, that would in turn lead to 37 and 38. Rather, a 
proportion of the initially formed classical ion partitions to 39 before 

being converted into 44, and thence to 37 and 38. In contrast, the 
incipient carbonium ion from 36 is perfectly orientated for C(1,-C(6, 
bond participation and a smooth transition to products via 44 by- 
passes any ring opening. The stereo requirements of the neighbouring 
group participation are thus identical with those in the well-known 
solvolyses of bornyl and isobornyl chloride loo; although ring opening 
is not reported from the latter. Another interesting feature of the bornyl 
system is that decomposition of N-nitroso-N-acetylbornylamines, acid 
treatment of the diazoalkanes, and nitrous deamination of amines, all 
give different proportions of products115 (see section 1.B). Although 
acetic acid was the solvent in all cases, apparently different degrees of 
ion aggregation took place. 

Although non-classical intermediates are likely in the above 
bicyclics, comparison with solvolyses of corresponding halides and 
tosylates indicates generally less skeletal rearrangement, for example in 
norbornyl, endo- and exo-norbornenyl, and norcamphenylamines 
With less rigid substrates, non-classical behaviour may be less import- 
ant. Deuterium labelling of cis- and tram45 indicated that only 
unrearranged products and products of 1,2-hydride shift occurred, 
and that 1,3-valence rearrangement to give 46 was not detectedllg. 
Classical ions which react sufficiently rapidly to be encumbered by 
departing nitrogen account for the non-stereospecificity of products. 
Here, as opposed to the previously considered bicyclics, the low free 
energy of decomposition of the classical ion severely limits the time 
available for acquisition of vibrational energy in the mode producing 

10. Rearrangements Involving Amino Groups 609 

motion towards formation of 46. Valence rearrangement is also not 
detected in systems with the cyclopropyl and ionic centre held in 
rigid, non-orthogonal positions (reaction 34) 120. 

Unrearranged + 

K. Allylamines 
Products of nitrous deamination of allylamines in acetic acidlZ1 

indicate that the mesomeric ion found in SN1 for analogous halides is 
not generated. Thus primary alcohols are formed rather than the 
secondary or tertiary isomers expected fro- facile double-bond 
rearrangement. Apparently, the hot ion has its p orbital at C(1, 
orientated at a dihedral angle > 0°, and probably - 90" with the rr 
orbital of the double bond, and solvolysis is more rapid than align- 
ment to ensure overlap. In more aqueous media such alignment, 
permitted by partial or entire solvation of the carbonium centre, is 
allowed and products typical of SN1 are obtained122. 

Ring size controls the dihedral angle in cyclic allylamines. 47 
is held with the orbitals overlapping and extensive ring enlarge- 
ment caused by an allyl-type shift resultslZ3 (reaction 35); but the 

cis and t r a m  
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method 111 
van Slyke method 11 1 

of aromatic amines 306 
Dimethylamine, basicity 171 
Dimethylaniline, basicity 187 
Dimroth reaction 657 
1,3-Dipolar species 724 
Dipole moments, of aliphatic amines 

17 

and free-energy change 163, 172, $' 
177 4 

and heat capacity change 164, 172, 
177 E 

Dissociation constants, of silver ion/ 
amine complexes 200 

of trimethylboron/amine complexes 
197 

Dithiocarbenes, reaction with olefins 
708 v. 

1,3-Dithiolium salts, deprotonation ,! 
708 + 

Electrolytic cleavage, of acyl-type 
protecting groups 670, 671, 676 

of amines 437 
Electron bond, delocalized 10 

localized, n-electron 9 
two-electron 7 

Electron configuration, most probable, 
of beryllium 6 
of boron 6 
of carbon 6 

Electronic displacement sequence 
216 - - -  

Electronic distribution in aniline, by 
the Hdckel method 23 - 

by the Pariser and Parr approxima- r; 
tion 23 ? 

molecular diagrams 23, 24 
Electronic spectra, of the f i  electrons .d' 

95 
Electronic structure, loges of bonds 6 : 

loges of cores 6 
notion of 'loge' 2 
of ammonia 9 
of benzene 19,20 
of diborane 10 
of methane 8 
of the helium atom 1 
of the lithium molecule 6 
of the N-H bond 15 

Electronic transitions, in aniline, ex- 
perimental and theoretical 32 

in phenylenediamines 33 

Electronic transitions-cont. 
in several amino-substituted N- 

heterocycles 33 
in S-triaminobenzene 33 

Electron indistinguishability 5 
Electron spin 2 
Electron spin resonance spectra, of a 

radical-cation 738, 740 
of base-catalyzed azoxy coupling 

reaction 397 
Electron trajectories 2 
Electron transfer, from ethylene to 

oxygen 730 
in iodine/tetraaminoethylene re- 

action 739 
in solution 733 
in sulfur/tetraaminoethylene reac- 

tion 728 
in tetraaminoethylenes 73 1, 741- 

744 
resulting in covalent-bond forma- 

tion 737 
Electron-transfer system, in nitrogen 

fixation 5 13 
Elimination, in amine oxides 423-425 

in nitrous acid deamination reac- 
tions 471 

of nitrogen 440-480 
a-Elimination, in nitrosoamide de- 

composition 445 
in nitrous acid deamination 473 

p-Elimination, in nitrosoamide de- 
composition 444 

cis Elimination, in the Cope elimina- 
tion 424 

in the Hofmann elimination 415 
Enzymes, containing a flavine co- 

factor 514 
in catalysis, glutamic dehydrogen- 

ase 507 
mechanism 506 

lysozyme, in bacterial cell-wall 
attack 556 

structure of lysozyme 506 
Equilibrium constants, for o-amino- 

benzoic acid ionization 223 
for amino-substituted triphenyl- 

methanol 229 
Ethanolamine, basicity 178 
Ethylenediamine, basicity 178 
Exchange reactions 260 

Ferredoxin, in nitrogen fixation 
516 

Fischer-Hepp rearrangement 636 

Folic acid 565 
structure 534 

Force constant, of ammonia 17 
Formamidinium salt, by cleavage of 

tetraaminoethylenes 7 17 
in tetraaminoethylene formation 

704, 712, 713 
Formylation, with dimethylformamide 

290 
with formamide 289 
with formic acid esters 290 

Fragmentation, of 1,2-aminoalcoh~ls 
59 1 

Free radicals, in nitrosoamide de- 
composition 443 

in nitrosyl chloride deaminations 
482 

in oxidations by t-butyl hydro 
peroxide 333-335 

Friedel-Crafts acylations 259 
Friedel-Crafts alkylations 259 
Front-side exchange in nitrous acid 

deaminations 470 

Gabriel synthesis of primary amines 
54 

Glutamic decarboxylase, activity in 
higher plants 543 

Glutamic dehydrogenase, as catalyst 
of metabolic processes 507 

amino acid formation 5 1 1, 5 19, 520 
Glutamine, destruction of 542 

in metabolic processes 540 
Grignard reagents, for amine pre- 

paration 60, 61 
for separation of tertiary amine 51 
in active-hydrogen determination 
97 -. 

in methylation of weakly basic 
amines 46 

in reduction, of azides 68 
of dialkyl cyanamide 55 
of nitro compounds 66, 67 
of oximes 69 

Half-wave potentials, for oxygen re- 
duction to superoxide ion 730 

for tetrakis(dimethy1amino)ethylene 
oxidation 739 

Haloamines 303, 304 
Halogenation, by hypochlorous acid 

or salts 302, 304 
bv N-chloro- or N-bromosuccinim- 

ide 303 
in ring of aromatic amines 12 1 
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Halogenation-cont. 
leading to fluoroamines 303 
of aromatic amines 256-258 
of vinyl acetylenic amine 248 

Hammett acidity function-see Acidity 
function 

Hammett and Brcansted equations 
390 

Hammett and Swain-Scott equations 
39 1 

Hammett constants 370. 385. 396 

+ + 
effect on fi-NMe, and fi-NH, in- 

ductive values 2 18 
in alcohol-amine mixtures 162 
in aminophenols 228 
in aromatic amides 245 
in aromatic amino acids and esters 

225, 243 
influence on properties 1 16- 1 18 
in Schiff bases 354 
stabilization of ammonium ion by . -- > ~ - -  137 for fi-NR, groups 242' 

non-linear 371, 373 Hydrogen-bond lengths 142 
reaction 2 14, 2 15 Hydrolytic cleavage, of acyl-type pro- 
substituent 214-216 tecting groups 670-672, 674, 677 

contribution of induction 220 of urethane-type protecting groups 
rnn 
OOL electrophilic and nucleophilic 

Hydrophobic hydration 166, 173 constants 2 18, 2 19 
Hammett equation, for o-aminoben- p-Hydroxyethylamine, detection 94 

zoic acid ionization 223 
for calculation of the f i -NM~,  group 

substituent constant 2 17 
for electron-deficient side-chain re- 

actions 2 18 
Hammick reaction 705 
Hinsberg synthesis of amines 54 
Hofmann elimination, cis elimination 

415 
exhaustive methylation, in natural 

product degradation 410 
mechanism 41 1 

El,, 41 1 
E2 412, 413 
ylide 414 

Hofmann-Loffler reaction 656 
Hofmann-Martius rearrangement 635 

W-complex mechanism 636 
Hofmann rearrangement 628 

comparison with the Curtius pro- 
cess 629 

Hormones 543 
norepinephrine and epinephrine 

546 - -- 
Hydantoin exchange, in amino acid 

derivatives 657 
Hydration, of acetylenic amines 

248 
Hydrazine derivatives, reduction 68 
Hydrazones, conversion to primary 

amines 69 
oxidation 710 

Hydride shifts, in deamination 464, 
587, 591, 610 

Hydrogen bonding, effect on amino 
acid acidity value 223 

Imidazolium salts, catalysts of the 
, benzoin condensation 723 

deuterium exchange in 705 
Imines, from an azide and ethylene ,* 725, 726 

reduction of 68 
Inductive effect, comparison of groups 

208 
field effect 208 
in aniline 2 10 
including inductometric effect 207 
in electrophilic attack of unsatura- 

ted ammonium compounds 247 
in exchange reactions 26 1 
of alkyl groups 209, 2 13 
of amino groups 207 
of electron-attracting groups 168 
of positively charged nitrogen sub- 

stituents 225 
on amino acid dissociation 222, 224 
on basicity of m- and fi-substituted 

anilines 181 
on basicity of substituted alkyl- 

amines 176 
Infrared spectra, of primary and 

secondary amines 17, 1 1 1-1 13 
d-U Interaction 706 
Intramolecular inversion, in nitroso- 

amide decomposition 449 
in nitrous acid deaminations 469 

Ionization constants, of aliphatic 
amino acids 22 1-223 

of aminophenols 226 
of aromatic amino acids 223-226 
of nitrogen bases 227, 228 
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Ion pair, vibrationally excited in nuclear magnetic resonance spectra 
deamination 465, 472 1 13 . . 

Ion-pair mechanism, in halogenation Raman spectra 1 1 1 
257 Nicotinamide, biosynthesis 566 

Isomerization, of primary amino hal- Nitramine rearrangement 639-642 
ides 231 W-bond mechanism 640 

caned-radical mechanism 640 
Leuckart reaction of reductive alkyl- cyclic transition-state mechanism 

ation 300 
Lossen rearrangement 629 

64 1 
Nitration, of aromatic amines 12 1, 

252 
rate of 253 

Mannich reaction 30 1 Nitrification, of organic amino com- 
Mass spectroscopy, in analysis 8 M 5  pounds 519 

in structure determination 127 Nitriles, conversion to primary amines 
Meisenheimer rearrangement 425, KO 

426, 622 
Mesomeric effect, in amines 207 

of various substituents 169 
on basicity of substituted anilines 

181, 190 
Methylaniline, basicity 187 
1,2-Methyl shifts, in deamination 587, 

59 1 
Migratory aptitudes, in deamination 

595 
Molecular energy, Koopman's ap- 

proximation 14 
Molecular-orbital calculations, for 

dissociation of tetrakis(dimethy1- 
amino) ethylene 715, 739, 740 

for the Stevens rearrangement 621 
of C&N and G--C bond orders for 

an oxamidinium ion 741 
Molecular orbitals, of ammonia 13 

of benzene 22 
Muramic acid, formation 560 
Mutations, caused by nitrous acid 

486 

Naphthols, conversion into amines 
43-45 

the Bucherer reaction 43 
l-Naphthylamine, basicity 193 
Neighboring-group participation-see 

Anchimeric assistance 
N-H bond, electronic structure 15 

formation involving electron trans- 
fer 15 

in analysis 96 
infrared spectra 1 11-1 13 

combination bending and stretch- 
ing modes 1 12 

deformation modes 112 
stretching vibration 17, 1 12 

"0 

Nitroarylation, in analysis 102 
Nitro compounds, reduction 66, 67 
Nitrogen fixation, connection with 

carbohydrate metabolism 513 
in amino acid formation 5 1 1-5 1 7 

Nitrosamine, formation 305, 307, 3 l8  
reversibility 3 17 

Nitrosation, abnormal products of 101 
acid-catalyzed, involving the nitro- 

sonium ion 3 12 
involving the nitrous acidium ion 

311 
by acyl nitrites 3 17 
by dinitrogen tetroxide 3 17 
by nitric oxide 318 
by nitros~l halides 30S3  10 
by nitrous anhydride 30&308 
in analysis 101 
inertia of tertiary amines towards 

Q 1 0  
J L J  

mechanism 305 
of aromatic amines 255 
perchloric acid-catalyzed 3 13 

Nitrosoamides, displacement reactions 
445 

front-side exchange 446 
intramolecular inversion 449 
mechanism of decomposition 444, 

453 
a-elimination 445 
p-elimination 444 

solvent cage interactions 448 
N=N bond, formation in condensa- 

tion reactions 364-366, 395-398 
geometrical isomerism 366 

Nuclear magnetic resonance spectra, 
chemical shifts of NH groups 1 13 

chemical shifts of NR groups 125, 
126 
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N.m.r. spectra-cont. 
in active-hydrogen determination 

97 
in qn-anti assignments 363 
of N-H resonance bands 1 13 
of Schiff bases 353 
solvent effects 363 

Nucleophilicity, of the amino group in 
haloamines 232, 233 

Optical activity, retention in the 
Stevens rearrangement 4 18 

Optical-rotatory dispersion, in con- 
figuration assignment 136 

of amino acids 134, 135 
Orientational control, in exchange 

reactions 260 
in halogenation 257, 263 
in tritylation 263 
of disubstituted benzenes 263 

Orientational effect 250, 251 
Orton rearrangement 637 
Oxamidinium salts 734-737 

from tetraaminoethylenes 721, 722 
hydrolysis of 73 1 
reaction with concentrated base 

733 
Oxidation, by diacyl peroxides 327- 

333 
mechanism 328, 332 
of primary amines 333 
of secondary amines 327-330 
of tertiary amines 330-332 

by hydroperoxides-peroxyacids 
and hydrogen peroxide 321- 
32 7 

catalysis 322, 325 
mechanism 324 
of primary aliphatic amines 32 1- 

323 
of primary aromatic amines 323- 

325 
of secondary amines 325, 326 
of tertiary amines 326, 327 

by miscellaneous reagents 338 
by ozone 335-337 
by potassium permanganate 337 
by tert-butyl hydroperoxide 333- 

335 
radical mechanism 334, 335 

in analysis 94 
reaction with hypochlorites 95 

Oxidative cleavage of acyl-type pro- 
tecting groups 670, 671 

of tertiary amines 429 

Oximes formation by condensation 
reactions 367-389 

reduction accompanied by rear- 
rangement 69 

Partial rate factor 25 1 
Pauli principle 4 
p-Phenylenediamine, basicity 183 
Phenylhydroxylamine rearrangement 

638 
Phenylsulfamic acid rearrangement 

650 
Phospholipid material 548 
Photoamination 42, 43 
Photochemical cleavage of amina 

439 
Photochemical deaminaton 484 
Phthaloylation, in analysis 99 
Plant alkaloids, biosynthesis 569 
Polar effect, of amine substituents 

206-2 13 
on electrophilic aromatic substitu- 

tion 250 
on rate of phthalide ring opening 

244 
on validity of Hammett constants 

214 
~olonovski reaction 622 
Porphin, structure 568 
Protecting groups-see also Amino 

group, protection and Amine de- 
rivatives 

removal, by electrolysis 670, 671, 
676 

by hydrazinolysis 674 
by hydrolysis 670-672, 674, 677, 

682 
by oxidation 670, 671 
by reduction 670, 671, 676, 678, 

682 
 roto ode halogen at ions 263 
Protodemetalylations 262 
Pschorr reactions 6 1 1 
Purines, biosynthesis 552 
Pyridoxal-5'-phosphate, as cofactor in 

enzyme catalysis 523, 543 
Pyridoxamine-5'-phosphate, as co- 

factor in enzyme catalysis 523 
Pyrimidines, biosynthesis 552 
Pyrolysis, of amides 483 

of N-nitroso-N-acetylamines 588 

Quaternary compounds, amine dis- 
placement from 416, 41 7 

analysis of 122, 123 
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Quaternary compounds--cont. 
formation from alkyl halides 45- 

50 
Hofmann elimination 409-416 
rearrangements of 41 7423, 612- 

62 3 
Quaternization, abnormal products 

with alkylating agents 94 
abnormal products with chloro- 

form 93 

Radical-cations, by oxidation of tetra- 
aminoethylenes 727, 730, 733, 
736, 737 

Raman spectra, of N-H bond 1 1 1 
Rearrangements-see also specific re- 

arrangements 
accompanying deamination 473, 

586-6 12 
criterion for intermolecularity 634 
intermolecular aromatic 634-638 
intramolecular aromatic 639-650 
involving SNi displacements 654- 

656 
of amine oxides 425, 426 
of g-haloamines 23 1 
of phenylnitroamine 252 
of quaternary compounds 41 7423, 

612-623 
with migration to electron-deficient 

nitrogen 623-634 
Redox system, in amino acid forma- 

tion 513 
Reductive alkylation, by Clarke- 

Eschweiler method 69 
by Dtlepine method 69 
leading to primary amines 299 
of aldehydes and ketones 298, 300, 

30 1 
of amines 68, 69 
of an alcohol 300 

Reductive cleavage, of acyl-type pro- 
tecting groups 670, 671, 676, 678 

of amines, by catalytic hydrogeno- 
lys? 436 

by d~fluoroamine 438 
by electrolytic method 437 
by Emde reactions 436 
by hydroxylamine-0-sulfonic acid 

438 
bv ~hotochemical methods 439 

of u'rdthane-type protecting groups 
682 

Resonance effect, change due to sub- 
stitution 2 13 

comprising mesomeric and electro- 
meric effects 207 

due to the amine lone pair 207 
in amino-substituted triphenylme- 

than01 229 
in aniline 2 10 
of meta substituents 2 19 
on amino acids acidity 223 
on aminophenols acidity 226 
on aminopyridines basicity 228 
on aromatic amino acids esterifi- 

cation 244 
on aromatic amino acid esters 

hydrolysis 242 
on carbonyl group in condensation 

reactions 385 
on p-substituted a-bromostyrenes 

solvolysis 236 
reflected by Hammett constants 

2 l6 
Retention of configuration, in nitroso- 

amide decomposition 446, 447 
in nitrous acid deaminations 462, 

468 
in triazene deaminations 460 

Ring contraction, in cycloalkylamine 
deamination 599 

Ring expansion, in cycloalkylamine 
deamination 597-599 

Ritter reaction for primary amines 
52 

Salt effect, on nitrosation 312 
Schiff bases, base-catalyzed tauto- 

merism of 360 
formation, 351, 367, 381 

enzymatic 392 
mechanism of 367 
metal ions in 355 

hydrogen bonding in 354 
hydrolysis by strong acid 381 
structure of 353 

Schmidt rearrangement 630, 63 1 
Separation, of primary, secondary and 

tertiary amines 50-52 
of tertiary amine from quaterniza- 

tion product 5 1 
Sequence inversion in peptides 657 
Skeletal rearrangement, in nitrosoam- 

ide decomposition 441 
in nitrous acid deaminations 464 
in triazene deaminations 4 0  

Solute-solvent interaction 165 
Solvation, of positively charged nitro- 

gen groups 2 17 
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Solvation energy 29 
Solvent cage reactions, in nitrous acid 

deaminations 47 1 
Solvent effect, in ozonolysis 336 
Sommelet-Hauser rearrangement 

42M23 
Sommelet rearrangement 61 7-62 1 

ylide mechanism 61 9 
Spin forbiddenness 730 

of the singlet oxygen-to-ground 
transition 732 

Stereochemistry, configuration assign- 
ment 136-138 

of deamination 592-595 
the nitrogen atom as asymmetric 

center 133, 134 
Stereospecificity, of cyclohexylamine 

deamination 475 
Steric effect, in nitrosation 255 

in nucleophilic aromatic substitu- 
tion by amines 56 

in o-substituted aromatic amino 
acids 225 

in protodehalogenations 263 
in tritiation 261 
mechanism of 169, 1 70 
of NMe,, NHMe and NH, in sub- 

stitution reactions 238 
of the solvated and unsolvated elec- 

tron pair 139 
on alkylation of amines 47 
on basicity, of aminobiphenyls 193 

of amino derivatives of polynu- 
clear hydrocarbons 195 

of o-substituted anilines 184, 186 
of secondary and tertiary alkyl- 

and arylanilines 187, 189 
on hydrolysis of aromatic amino 

acid esters 241 
on resonance 2 1 1-2 13 
on solvation 2 12, 223 
on stability of trimethylboron/amine 

complexes 197 
on validity of Hammett constants 

214 
the Brunings-Corwin effect 141 

Stevens rearrangement 4 1 7-4 19,6 12- 
617 

migratory aptitude 61 3 
molecular-orbital calculations for 

62 1 
transannular 6 17 

Substituent effect, in nitration 253 
in nitrosation 314 
on basicity 176-179, 181-187 
on inductive effect 209 
on reactivity of C=N linkage 352 

Sulfonation, of aromatic amines 255, 
256 

Sulfonylation, in analysis 10 1 
Surface-tension effect, of seven-mem- 

bered ring 232 

Taft substituent constants 2 19 
Tautomerism, azo-hydrazone 366 
azo-hydrazone-ene-hydrazine 360 
in Schiff base, base-catalyzed 360 
of pyrroles 108 
phenol-imine-keto-amine 353 

Temperature-jump technique, for 
transamination rate study 53 1 

Template reactions, equilibrium 356 
kinetic 356, 357 

Tetraaminoethylenes 701-745 
dissociation of 7 14-7 16 
melting or boiling points of 7 1 1-7 13 
preparation of 702, 71 1-7 13 

Tetrathioethylenes, formation from 
1,3-dithiolium salts 708 

Thiamine 705, 716, 723 
Thiazolium salts, as catalysts of the 

benzoin condensation 723 
deprotonation of 708, 726 
deuterium exchange in 705 

Tiffeneau rearrangement 597 
Toxicity, of ammonia 508 
Transamidation, interconversion of 

asparagine and glutamine 541 
Transamination 485 

enzymatic 395 
in amino acid formation 5 1 1, 52 1- 

536 
mechanism 523-531 

in Mannich bases 432 
metal ions in 393 

Transannular migration, in deamina- 
tion 610 

in the Stevens rearrangement 6 1 7 
Transimination 383 

enzymatic 384 
Transpeptidation 658 
Trimethylamine, basicity 17 1 

Stieglitz rearrangement 633 
Structure-reactivity relationship 2 14- 

22 1 bathochromic shifts 128 

Ultraviolet spectra, of unsaturated 
amines 128-1 31 
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Ultraviolet spectra--cont. 
electronic shifts 128 
long-range conjugation 13 1 

Urea. formation in excretorv svstems , , 
576-579 

Wohler's svnthesis of 656 
Uric acid, formation in excretory 

systems 579 

Vibrational spectra, of C N  bonds 
1 l5 
stretching vibrations 1 15 

of N-Me bands 96 
of the Me,N group bands 96 
of the N-H bond 1 1 1 

combination of bending and 
stretching modes 1 12 

deformation modes 1 12 
stretching modes 1 12 

of the p electrons 95 

Virtual orbitals 32 
Vitamin B,, effect on transaminase 

activity 522 
Vitamin B,,, structure 564 
Von Braun cyanogen bromide reac- 

tion, in natural product degrada- 
tion 428 

Waener-Meerwein-like isomerizations " 
588 

Wave function, cakulation of 11-15 
for ammonia 12 

Ylids, dimerization of 71 6, 718, 745 
from azidinium salts 709 
from thiazolium salts 710 
in hydrazone oxidation 710 

Zwitterionic inner salt, of amino acids 
69 1 


