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FOREWORD

Approximately fourteen years ago | was privileged to attend a conference in Japan
whose title now escapes me, but whose scope covered a broad spectrum of modern
technology. One lecturer has stood out in my memory over the years. He was Dr.
Sekimoto, a Japanese businessman and eminent scientist whose specialty was in
the field of communications. In his career at NEC he became President and finally
Chairman of the Board. At the Conference | was particularly impressed by the
content of one of his slides on which the following prophetic handwritten phrase
occurred, “Who dominates materials dominates technology.” The message was
true and unambiguous then and history has simply emphasized its significance.

The ability to dominate materials requires an in-depth knowledge of the science
and technology of crystal growth since crystals, especially single crystals have in-
creasingly become a vital necessity in modern technology. How this domination is
achieved is what this book is about. Crystal Growth is a universal phenomenon in
the field of materials. It has a long history but a significant impetus, which accel-
erated its evolution from “a substance potting art” to a science in its own right,
was the invention of the transistor in 1948, and the subsequent need for high pu-
rity semiconductor single crystals. As a result crystal growth has developed into a
core discipline in materials science.

The evolution of our knowledge of crystal growth requires not only scientific
understanding, but the driving force of applied technology which so often provides
a significant influence in highlighting our lack of scientific knowledge and the
need for a more refined science and indeed the development of new concepts. It is
the knowledge of this balanced scientific evolution which Professor Byrappa and
Professor Ohachi, the editors have achieved in the selection of critically important
materials and technologies.

Both editors have international reputations in crystal growth. Professor Byrappa
is an expert in the field of hydrothermal growth and is well-known for his work on
the growth of complex coordination compounds especially in the field of phos-
phates, silicates, germinates and vanadates. He has carried out extensive pioneer-
ing work in the scientific application of physical chemistry and thermodynamics
to the role of solution media, and the elucidation of the mechanisms of crystal
growth in this difficult field. Such work has been at the forefront of knowledge,
which has transformed the growth of many very difficult crystals from an empiri-
cal art to a controlled engineering science.

Professor Ohachi has extensive experience in the study of crystal growth
mechanisms especially in the field of semiconductors and has been a leading fig-
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ure in unraveling the mechanisms involved in the growth of GaAs by MBE. He is
an expert in the field of ionic conduction in solids and has pioneered many funda-
mental studies in this more exotic field of crystal growth including the crystal
growth of silver from silver chalcogenides using solid-state ionics. His work for
the crystal growth community is also extensive. He has just been appointed Presi-
dent of the Japanese Association of Crystal Growth and held a pivotal position as
Secretary of the recent combined International Conferences on Crystal Growth
and Vapor Growth and Epitaxy (ICCG-13/ICVGE-11) held at Doshisha Univer-
sity, his Alma Mater. In this connection one must mention the role of Professor
Nishinaga, one of the authors, who was Co-Chair of the ICCG-13/ICVGE-11
Conference. He was President of the International Organization of Crystal growth
for the last six years and has just been appointed President of Toyohashi Univer-
sity of Technology.

Crystal growth now embraces an immense field of materials and technologies,
which could not be covered in-depth by any one book. Nevertheless the present
selection of chapters does provide a comprehensive coverage, which has suc-
ceeded in advancing our knowledge of the latest developments in crystal growth.
For this purpose the editors have commissioned a fine selection of authors who are
leading authorities in their respective fields of crystal growth. In broad terms the
coverage deals with electronic materials and optical materials.

The basic science involved in vapor and solution growth provides an excellent
initial introduction for advancing the role of fundamental science in our under-
standing of crystal growth. Also fundamental to our scientific understanding of
hydrothermal growth is the need for detailed modeling with intelligent engineer-
ing. This is now possible thanks to advances in our knowledge of solution chem-
istry, phase equilibria and applied thermodynamics.

One must not miss the significance of the morphology of crystals, which is well
reviewed in connection with mineral crystals. The observation of growth spirals
on the surface of crystals was important evidence used by the late Professor Sir
Charles Frank in his discovery the role dislocations can play in crystal growth.

The electronic materials discussed involve the 111-Vs, the Zn chalcogenides,
diamond and SiC as well as essential thermal modeling that is needed for achiev-
ing the effective growth of this difficult material. The oxides include families of
materials related to lead zirconate titanate (PZT), the perovskites, the vanadates,
bismuth germanate, and lithium niobate. Also, quartz and a range of high tem-
perature non-linear optical materials including the borates as well as BiSrCaCu
and related superconducting compounds are discussed in depth. A very welcome
addition is that of the hydroxyapatite materials involved in biocrystallisation,
which are important in bone development. Also, recent ideas on the growth of
nano crystals are highlighted. A chapter on gemstones enhances the variety of
materials and their compelling interest.

In order to achieve the successful crystal growth of these materials a whole
range of different technologies are needed, they include vertical crystal pulling,
CVD, sublimation and epitaxial growth for MOCVD and MBE. The oxides illus-
trate the full extent of the difficulties that can be encountered in crystal growth and
the wide range of technologies needed to overcome them. In addition to the
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growth technologies mentioned above laser assisted vapor deposition, hydrother-
mal growth solution, as well as flux and Verneuil growth are discussed.

The value of this interesting book lies not just in the increased scientific under-
standing of crystal growth, which one gains but in the extensive knowledge which
is presented on the wide variety of technologies required to achieve application-
quality crystal properties of an ever increasing range of crystals for modern tech-
nology. The reader is cordially invited to explore and assess the crucial role and
significance of crystal growth in the various technologies for him or herself.

J.B. Mullin
U.K.






PREFACE

Crystals are the unacknowledged pillars of modern technology. Crystal growth
can be regarded as an ancient subject, owing to the fact that the crystallization of
salt and sugar was known to the ancient Indian and Chinese civilizations. The
subject of crystal growth was treated as part of crystallography and never had an
independent identity until the last century. The fundamentals of crystal growth
were entirely bestowed upon the morphological studies of the naturally occurring
crystals. Thus began the scientific approach for this subject during the 17th cen-
tury by Kepler, followed by quite a few others like Nicolous Steno, Descartes,
Bartholinus, etc. This type of morphological study slowly led to the understanding
of the atomistic process of crystal growth. Recent bursting research on nanostruc-
tured materials depends on the crystal growth theory and technology.

In the early 20th century, crystal growth evolved as a separate branch of sci-
ence and several theories from Kossel, Donnay-Harker, Volmer and Burton, Ca-
brera and Frank (BCF), etc., were proposed. Although the science of crystal
growth originated through the explanations of Nicolous Steno in 1669, the actual
impetus to this field began after the BCF theory was formulated and also when
there was a great demand for crystals during World War I1. Professor H. Scheel
has dealt with the subject of historical development of crystal growth remarkably
in the first volume of Hydrothermal Crystal Growth, edited by D.T.J. Hurle. Since
there are other books dealing with similar topics, the present book omits the his-
torical aspects and basic techniques of crystal growth and focuses extensively on
the techniques of current importance.

The editors conceived the idea of publishing a volume that covers both theory
and practice together, containing all the latest developments in the area of crystal
growth. The book deals mainly with the crystals of commercial value with an em-
phasis on the science of their growth.

There are 17 chapters in this book, beginning with a chapter by Professor Ichiro
Sunagawa dealing with the growth history of mineral crystals as seen from their
morphological features as a key to the understanding of essential points of funda-
mental growth. The editors are lucky to have contributions from the most eminent
crystal growers like Professors T. Nishinaga, S. Naritsuka, T. Inoue, H. Komatsu,
I. Sunagawa, M. Hosaka, V. Lantto, and a host of others in spite of their busy
schedules. The topics have been selected based on their current significance in this
frontier area of technology and thus there is a wide range of topics including mod-
eling of crystal growth and thermochemical calculations which in turn lead to the
intelligent engineering of the crystal growth processes. We have a perfect blend of
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senior crystal growers with the upcoming talents of the recent generation. The
range of crystals included in this book varies from electronic, electro-optic, pie-
zoelectric, ferroelectric, jewelry, to bioelectric fields. Furthermore, techniques like
MOCVD, hydrothermal, laser assisted, CVD, flux, melt, etc., dealing with the ac-
tual process of crystal growth are discussed.

We hope that this book will be highly valuable to the entire crystal growth
community and remain as an important source for crystal growers, beginners and
specialists alike. The editors greatly acknowledge the help and cooperation ex-
tended by each and every author in this book. Our special thanks go to Professor
Brian Mullin for penning the foreword for this book. Also, thanks to our esteemed
friends like Prof. Masahiro Yoshimura of Tokyo Institute of Technology, Japan;
Prof. Richard E. Riman of Rutgers University, NJ, USA; Prof. Jan Bart of DSM,
The Netherlands; Prof. H. Klapper, Germany; Prof. J.N. Sherwood, UK; Prof.
D.T.J. Hurle, UK; Prof. H. Scheel, Switzerland; Prof. T. Nishinaga, Japan; Prof.
H. Komatsu, Japan; Dr. R. Fornari, Italy; Prof. M. Dudley, USA; Dr. David Bliss,
USA,; Prof. K. Sato, Japan; Prof. T. Duffar, France; Prof. Derek Palmer, UK; Prof.
Keshra Sangwal, Poland; Prof. Rafael Rodriguez Clemente, Spain; Prof. Salvador
Gali, Spain, and many others who have helped us directly or indirectly for the suc-
cessful completion of this useful volume. Also, our indebted thanks to our family
members Dr. K.T. Sunitha Byrappa, Mr. Shayan M. Byrappa, Mr. Nayan M.
Byrappa, Mrs. Michiko Ohachi, Mr. Shinobu Ohachi, and daughters Kyoko and
Keiko for their patience and cooperation.

Lastly, our thanks to all those from William Andrew and Springer publications
associated with the production of this book, especially to Kathy Breed, Keith
Stein, Brent Beckley, Jim Willis, and Nanette Anderson.

June 2002
Editors

K. Byrappa
T. Ohachi
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1 Growth Histories of Mineral Crystals as Seen
from Their Morphological Features

Ichiro Sunagawa

Yamanashi Institute of Gemology and Jewelry Arts, Toukoji-machi 1955-1, Kofu,
400-0808, Japan

1.1 Introduction

The late Sir Charles Frank once said, “If one could understand enough about the
morphology of crystals, he understood essential points of the fundamentals of
crystal growth.” This sentence captures the importance of morphology of crystals
in understanding how crystals nucleate and grow. He also answered in the fol-
lowing haiku to a haiku by Ukichiro Nakaya “A snow flake is a letter to us from
the sky.”

“Diamonds are letters

Still better worth the reading;

We can reach the sky.”

Interest in the morphology of crystals started in the 17th century when Kepler ob-
served elaborately varied dendritic snow crystals in 1611, and Steno was fasci-
nated by the variety of polyhedral forms that rock crystals from Alpine mineral
fissures exhibited. Kepler considered that the building unit of snow crystals, in
spite of their varied forms, was spheres of equal size. Steno gave an explanation in
terms of growth rate anisotropy for his observations that the same mineral, rock
crystal, could take a variety of polyhedral forms in his treatise published in 1669.
Kepler’s idea was the origin of structural crystallography, and Steno’s explanation
was the starting point of the science of crystal growth.

Interest and understanding of the morphology of crystals which started in the
17th century, independently one of dendritic forms and the other of polyhedral
forms bounded by flat faces, have now advanced to a state to be understood from a
unique viewpoint, the atomistic process of crystal growth. This is due to the de-
velopment of the science of crystal growth in the 20th century, particularly after
the 1950s. For simple and pure model systems, it is now possible to explain at the
atomistic level why and how the same crystal can take a variety of forms, from
dendritic, hopper, to polyhedral forms, and why different crystal species exhibit
different characteristic forms or Habitus. How our understanding of morphology
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and growth mechanism of crystals has developed since the time of Kepler and
Steno has recently been summarized by Sunagawa [1].

Both snow crystals and rock crystals are naturally formed crystals under un-
controlled, fluctuating, and often sharply changing growth conditions. Any min-
eral crystals constituting the solid earth and planetary bodies were formed under
such conditions and in impure, complicated, and complex systems. Also inorganic
and organic crystals are formed in various organs and cells of animate bodies,
through biological processes necessary to sustain life or to eliminate unnecessary
waste compounds. How crystals nucleate and grow, and how their forms are con-
trolled in such complicated and complex systems are problems still waiting for
proper answers at the atomistic level.

The temperature and pressure conditions of mineral formation have been esti-
mated based on equilibrium thermodynamics and phase relations. Information
about conditions of mineral formation may be obtainable assuming that any geo-
logical systems have already reached the equilibrium state. However, crystals can
neither nucleate nor grow under equilibrium condition. Driving forces, namely
conditions deviating from the equilibrium state, are necessary to realize nucleation
and growth of crystals. In natural crystallization, growth rates may fluctuate or
abruptly change during their growth processes, and morphology and element par-
titioning are influenced accordingly. Crystals may be partially dissolved during
the process of formation, or experience transformation in their post growth histo-
ries.

We are unable to observe in situ the growth or post growth process of mineral
formation, but we can investigate samples that experienced these processes, pro-
vided that these processes are recorded in the samples in some form and can be
visualized by appropriate methods. In nearly perfect single crystals, these are re-
corded in the form of various physical imperfections and chemical heterogeneities,
preserving the records of morphological evolution during the growth or post
growth processes. Information obtainable from such samples is equally important
and informative in understanding the formation of solid earth and planetary mate-
rials, provided that such information can be evaluated properly.

Since the morphology of a crystal appears through growth or dissolution proc-
esses, and is controlled by both internal (structural) and external (growth or dis-
solution parameters) factors, morphological features of crystals are the most useful
information in deciding the growth or post growth history that a crystal experi-
enced, since both growth and dissolution uniquely take place on the solid-liquid
interface, that is, crystal surfaces and surface microtopographs of crystal faces of-
fer useful information on how the crystal grew or partially dissolved at an atomis-
tic level. Various optical microscopy and interferometry techniques, such as phase
contrast microscopy (PCM), differential interference contrast microscopy (DISM)
and interferometries, atomic force microscopy (AFM), and scanning tunneling mi-
croscopy (STM) can visualize and measure growth steps of nanometer height.
External morphology (crystal habit or Habitus and Tracht) is a result and reflec-
tion of crystal growth. Depending on growth conditions, the same crystal species
may show different external forms. Morphological changes and accompanied
variation in element partitioning are recorded in single crystals in the form of
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growth banding, growth sectors, and sector boundaries. Generation and spatial
distribution of dislocations and other lattice defects in single crystals are also re-
cords of what happened during the growth process. Inclusions serve as informative
indicators of growth and environmental conditions. At present we have various
sophisticated methods to visualize and analyze these physical imperfections and
chemical inhomogeneities, such as X-ray topography, laser-beam tomography,
cathodoluminescence tomography, electron-probe microanalyzer, micro-focused
X-ray fluorescence, and so forth.

It is the purpose of this chapter to demonstrate how one can decode letters sent
from the deep interior of the earth, based on the analyses of morphological fea-
tures recorded in mineral crystals. For this purpose, the author has selected dia-
mond crystals as a representative example of crystal growth taking place in deep-
seated magma and in the subduction zone, beryl crystals occurring in pegmatites
which represent crystallization in super-critical liquid phase at the latest stage of
magmatic solidification, and traphice ruby formed by contact metasomatism due
to intrusion of a granitic magma into carbonate rocks. The author has deliberately
selected gem minerals in this chapter, since they occur as nearly perfect single
crystals, and information obtained on such crystals serves as very useful diagnos-
tic features in distinguishing natural from synthetic gemstones.

Following this introduction, the present understanding of morphological aspects
of crystals will be briefly summarized in Section 1.2. Then discussions on dia-
mond, beryl, and trapiche ruby will be presented in their respective sections. In
this chapter, descriptions and discussions on mineral crystals formed by regional
metamorphism and sedimentogenesis are excluded, since these were treated in
[2,3].

1.2 Morphology of Crystals

Growth and dissolution of crystals uniquely take place on the surfaces of a crystal,
that is on the solid-liquid (ambient phase) interface. Depending on the structure of
an interface (rough or smooth), the growth mechanism, and thus the relations be-
tween the driving force and growth rate are different. The growth mechanisms can
be classified into three types depending on interface roughness: adhesive type for
rough interface, two-dimensional nucleation growth, and spiral growth for smooth
interface. The interface roughness (smooth or how rough) is different depending
on crystallographic directions, which are related to the crystal structure. The inter-
face structure transforms from smooth to rough with increasing growth tempera-
ture (thermodynamic roughening transition) and driving force (kinetic roughening
transition). Under the conditions where a smooth interface is assumed, growth
proceeds tangentially parallel to the interface, and the crystal will take a polyhe-
dral or hopper (skeletal) morphology bounded by crystallographic flat faces. Un-
der conditions where a rough interface is assumed, the crystal is bounded by
rounded noncrystallographic interfaces. If morphological instability occurs on
such a rough interface, the crystal takes dendritic form. By further increasing the
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driving force, spherulitic and fractal patterns will appear through aggregation of
polycrystals. Summarizing these, the relations among polyhedral, hopper, den-
dritic, spherulitic, and fractal morphologies may be represented as schematically
shown in Fig. 1.1, which represents only one section of events. Positions of * and
** indicate where growth mechanism and morphology changes are different de-
pending on crystallographic directions, ambient phases, solute-solvent interaction
energies, and other factors. The analysis and discussion of these problems are
given in [1-4].

In mineral formation, crystals nucleate and grow in impure, complicated, and
complex systems, and the growth conditions are not controlled, but variable. There
may be abrupt changes or gentle fluctuations in growth parameters during the
growth or post growth process. External forms, perfections, and element parti-
tioning change accordingly, and the changes are recorded in various forms of
physical imperfection and chemical inhomogeneity in single crystals.

When a crystal grows in a closed system, the driving force diminishes monoto-
nously as growth proceeds. As a result, starting from dendritic morphology ap-
pearing at the earlier stage and under higher driving force conditions, the mor-
phology transforms to a polyhedral one. Within a polyhedral single crystal, record
of dendritic growth may be discernible surrounded by straight growth banding
(Fig. 1.2a), if a bisected sample is investigated by appropriate methods to reveal

SMOOTH ROUGH
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Fig. 1.1. Morphologies of single crystals (polyhedral, hopper, dendritic) and polycrystalline
aggregates (spherulitic and fractal) in relation to growth rate R, driving force, interface
roughness (smooth and rough) and growth mechanisms. Curve a represents the spiral
growth, curve b the two-dimensional nucleation growth, and curve c adhesive-type growth
mechanisms. The critical points * and ** are the points where the predominant growth
mechanism changes [4]
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Fig. 1.2. Expected internal morphologies in single crystals due to the change of growth pa-
rameters during the formation of a single crystal. Arrows in respective R vs. AWkT dia-
grams indicate the route of change of driving force conditions during the growth process.
Broken lines represent growth banding formed by smooth interface growth, and solid lines
dendritic or fibrous textures which appeared by rough interface growth [4]

faint heterogeneity and imperfection. If a magma containing polyhedral crystal is
uplifted, the growth condition changes abruptly to another condition under which
dendritic growth or partial dissolution will take place. Surrounding a clear single
crystalline core, a mantle portion with fibrous texture will be formed (Fig. 1.2b),
or a rounded discontinuous outline will be recorded in a single crystal (Fig. 1.2d).
Various internal morphologies may be expected to be seen depending on the
changes of parameters. Figure 1.2 schematically illustrates some of these internal
morphologies.

Similarly, since interface roughness and growth kinetics are different in different
crystallographic directions, growth sectors appear in a single crystal. Depending on
relative growth rates in neighboring sectors, various forms of growth sector bounda-
ries appear, some examples of which are schematically shown in Fig. 1.3.
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Fig. 1.3. Various growth sector boundaries: Upper three figures show expected growth
sector boundaries in relation to relative growth rates R, and Rg. Lower two figures show
actually observed growth sector boundaries [4]

Growth rates within one growth sector, and also among crystallographically
equivalent growth sectors are neither constant nor uniform, which results in the
formation of growth banding. Since both thermodynamic and kinetic parameters
contribute to growth banding, growth sectors which control element partitioning
may be visualized by various techniques, including X-ray topography, cathodolu-
minescence tomography, element mapping techniques using EPMA, XFA, and
other spectroscopies.

Polyhedral crystals appear principally by a spiral growth mechanism under
conditions shown below * in Fig. 1.1. Spiral step patterns of molecular height are
observable on as-grown low index crystal faces. The morphology of growth spi-
rals varies depending on different crystallographic faces, and on growth parame-
ters. They offer useful information to evaluate how and under what condition the
crystal grew. Similarly, surface microtopographs of crystal faces, such as dissolu-
tion steps and etch figures, tell us information relating to the dissolution process.

In terms of morphological features of crystals, the following are included in this
chapter, which demonstrate how growth, dissolution, or transformation of natural
crystals proceeded:

1. External morphology (polyhedral, hopper, and dendritic forms of single crys-
tals, or spherulitic and fractal forms of polycrystalline aggregates)

2. Morphology of polyhedral crystals (crystal habit, Habitus and Tracht [4])

3. Surface microtopography of crystal faces (spiral step patterns, dissolution steps,
etch figures [4])

. Growth sectors, sector boundaries

. Growth banding

. Element partitioning associated with the above

(o2 S I



1 Growth Histories of Mineral Crystals 7

1.3 Diamond

The origin of natural diamonds has been an enduring subject of interest and con-
troversy. Some believe that they were formed in magmas in the mantle, others ar-
gue mantle metasomatic origin. There are also some who argue that carbonados
(polycrystalline aggregate of diamonds) were formed near the earth’s surface by
radiogenetic energy, and some even assume cosmic dust origin for carbonados.
Some believe the mantle originated inorganic carbon as the carbon source for
diamond formation, and others suggest organic carbon origin derived from sub-
ducted oceanic sediments.

Natural diamonds occur in a variety of forms, to which different variety names
have been given. The names include, in addition to single crystalline diamond,
ballas, coated stone, bort, shot bort, hailstone bort, framesite, stewartite, and car-
bonado. Only single crystalline stones and coated stones have been used for gem
purpose, others have been used for industrial purposes. Orlov [5] classified natural
diamonds into ten types on the morphological basis, whereas Sunagawa [6] classi-
fied them into three major types, based on the relation between morphology and
driving force as shown in Fig. 1.1. According to Sunagawa’s classification, dia-
monds of single crystalline type are formed under small driving force conditions,
below ** in Fig. 1.1, polycrystalline type are formed under much higher driving
force conditions, above **, and coated stone and cuboid are those that experienced
two different driving force conditions. The three types are schematically illus-
trated in Fig. 1.4.

Extensive X-ray topographic and cathodoluminescence tomographic investiga-
tions have been made principally on gem quality single crystalline diamonds, and
secondarily on cuboid and polycrystalline diamonds [7,8]. Commonly observed
dislocation distributions in single crystalline diamonds are those originating from
the center of a crystal, and radiating nearly perpendicular to {111}, with disloca-
tion direction <110>. Growth banding in such crystals is in most cases straight and
parallel to {111}. These suggest that natural diamond crystals of single crystalline
type grew freely in a fluid phase, that is in magma, by the spiral growth mecha-
nism. In fact, the spiral growth was proved on an octahedral crystal from Siberia,
by correlating the growth step pattern on as-grown {111} faces and outcrops of
dislocations which were identified as screw type [8].

In contrast to single crystalline type, most polycrystalline type diamonds except
for carbonado show a spherulitic radiating texture consisting of fibrous thin dia-
mond needles and other interstitial minerals. Such textural characteristics repre-
sent formation under high driving force conditions. The mantle portion of coated
stones and cuboids show basically the same texture as those of polycrystalline ag-
gregate, surrounding a clear central single crystalline core. Thus, it is considered
that the central clear single crystalline core portion and fibrous mantle portion
were formed under different driving force conditions. Namely, the core portion
grew in magma under small driving force conditions, then the magma containing
the diamond crystals was uplifted, and on the core fibrous growth of diamond took
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Fig. 1.4. Three types of morphologies encountered among natural diamonds. Top four fig-
ures show morphologies of single crystalline type, middle four those of polycrystalline
type, and the bottom two those of diamond crystals which experienced two different growth
parameters

place under higher driving force conditions. Similar textures are commonly ob-
served on phenocrysts of various rock-forming minerals in volcanic rocks, which
experienced similar magmatic solidification history, and diamond of this type is
no exception. For the origin of carbonado, a randomly oriented polycrystalline
type, arguments are still not settled.

Tiny diamond crystals, less than a few tens of microns across, were reported to
occur in crystals of garnet and zircon in ultra-high-pressure metamorphic rocks
formed in a subduction zone [9]. Similar occurrences of micro-diamonds have
been reported at many localities. Ultra-high-pressure metamorphic rocks are the
third type of environment where diamonds were formed, in addition to the previ-
ously known two types, ultramafic suite (kimberlite and lamproite) and eclogitic
suite.

These micro-diamonds occur sporadically in the grains of silicate minerals
formed by metamorphism, and in very high content (much higher than in kimber-
lite or lamproite). Although simple octahedral crystals are found among these mi-
cro-diamonds, many of them take cuboid form or forms of polycrystalline aggre-
gates. Their cuboid faces are rugged and not crystallographic {100} faces, unlike
{111} faces, which are smooth. Thus a term *cuboid’ and not cubic is given here.
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When diamond crystals grow in nature, only the {111} faces behave as a
smooth interface on which spiral growth can take place, and the {100} faces be-
have as rough interfaces [6]. Namely, under the conditions of natural diamond
formation, the position of ** in Fig. 1.1 for {100} is much closer to the origin than
for {111}. This implies that under high driving force conditions, rough cuboid
faces appear first, followed by the appearance of smooth {111} faces on which
spiral growth takes place. It is reasonable to expect a higher proportion of cuboid
or spherulites, and higher concentration of diamond in ultra-high-pressure meta-
morphic rocks due to subduction as judged from the following. The original
source for ultra-high-pressure metamorphic rocks are subducted slabs, consisting
of oceanic crust and sediments, which contain organic carbon. Since the melting
temperature of silicate-carbon eutectic is lowered, liquid droplets are formed spo-
radically in solid silicate mineral grains. If diamond crystallization takes place
within such liquid droplets, a higher content of source carbon and higher driving
force conditions can be assumed for diamond formation than in a larger scale
magma. It is natural to expect a higher content of diamond and higher proportion
of cuboid or spherulitic forms than simple octahedral crystals in ultra-high-
pressure metamorphic rocks than in ultramafic magmas.

When solvent components are different, the morphology of crystals can be dif-
ferent, since the difference in solute-solvent interaction energies modifies the
morphology. In the case of synthetic diamond under high pressure and tempera-
ture conditions using metals or alloys as solvent, both {111} and {100} behave as
smooth interfaces. Growth spirals have been observed on both faces. In the case of
natural diamond, only the {111} faces behave as smooth interfaces on which
growth spirals are expected, whereas {100} faces behave as rough interfaces. The
difference in growth mechanism and morphological characteristics between natu-
ral and synthetic diamonds serve as diagnostic features, since their morphologies
are recorded in the form of internal morphologies, which remain unchanged by
later cutting and polishing processes and can be visualized by cathodolumines-
cence (CL) tomography [10].

Recently, evidence to prove the presence of seed crystal in gem quality single
crystalline diamond has been reported [11]. The presence of seed crystal was
proven on the basis of X-ray topographic and cathodoluminescence tomographic
investigations of three brilliant cut stones. One round brilliant stone shows the or-
dinary spatial distribution of dislocations, which originate from a point center and
radiate in bundles perpendicular to the {111} surface. The dislocation directions
are parallel to <110>. A pair of round and pear-shaped brilliants, which proved to
have been cut from the same rought, show entirely different dislocation distribu-
tions. The core portion with cuboid form is detected in the two brilliants as a
square discontinuity line on X-ray topographs. Dislocations mostly generate from
the boundary between the core and major portion, and radiate in bundles in <100>
directions in the major portion of the brilliants. The concentration of CL emitting
centers is high and uniformly surrounds the core-major portion boundary. Figure
1.5a,b show X-ray topographs and Fig. 1.5c shows a CL tomograph around the
core portion. This type of dislocation generation and element partitioning is uni-
versally observed when a seed crystal is used in growing larger single crystals.
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Fig. 1.5. X-ray topographs (a and b) and cathodoluminescence tomograph (c) of core por-
tion of a round (a) and pear-shaped (b and c) brilliant cut diamonds. (a) and (b) are plan and
profile views, respectively, (c) is a plan view. White arrows in (a) indicate the boundary of
the core portion [10]
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The observations described above indicate that the core portion was formed
elsewhere and later transported into a new growth environment where the core
acted as a seed for further growth under lower driving force conditions. This was
the first evidence to verify the presence of seed crystal in the formation of natural
diamond crystals.

The most likely place where the core portion was formed is in subducted ultra-
high-pressure metamorphic rocks. Assuming that ultra-high-pressure metamorphic
rock containing micro-diamond crystals of cuboid form was subducted further and
eventually trapped into a magma, where further growth of diamond took place, the
presence of a seed crystal in the natural diamond formation can be understood rea-
sonably. It is impressive to see the whole circulation history taking place in plate,
subduction, and mantle convection, within a small cut stone of diamond.

Natural diamond crystals were formed at a depth greater than 100-120 km, then
rapidly uplifted to the Earth’s surface by kimberlite or lamproite magma, and
quenched metastably by adiabatic expansion due to volcanic eruption of the
magma. During uplifting, they passed through the thermodynamic conditions un-
favorable for diamond; also they received severe stress. All these processes are re-
corded in the form of surface microtopographs, external forms of crystals, dislo-
cation nature, precipitation textures, and so forth. Most natural diamond crystals

Table 1.1. Morphological Features Observed on Natural Diamond Crystals Indicating Dis-
solution Process

0]

External Forms

(m
{111} Surfaces

D)

Dodecahedroidal Surfaces

Rounded corners and edges
Curved surfaces

Curved hexaoctahedral
forms

Curved dodecahedroidal
forms

Trigons (mostly negatively
oriented to the trainagle of
(111) face) are universally

observed on {111} surface.

Both point bottomed (P
type) and flat bottomed (F
type) are seen correspond-
ing to etch pits at surface

outcrops of dislocations and

point defect, respectively.
Deep and shallow trigons
are present in both P and F
types; respectively name
PD, PS, FD and FS types.
Depending on etching con-
dition, trigons may show
change their orientations
and forms from truncated

Scaly surface

Network ditches
Superimposed ring or cir-
cular patterns

negative tirgons, hexagons,
truncated positive trigons to
positive trigons.
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show morphological characteristics as summarized in Table 1.1, which are due to
partial dissolution during the uplifting process. However, there are rare cases in
which crystals received only a very little dissolution, preserving their as-grown
surfaces. On such crystals, triangular growth hillocks can be observed, as the ex-
ample shown in Fig. 1.6. The summits of these hillocks correspond to the outcrops
of dislocations, where we see tiny trigons (triangular etch pits with opposite ori-
entation to the triangle of the {111} face). Dissolution proceeded very weakly, at-
tacking only the outcrops of dislocations. In this particular case, dissolution fea-
tures are observed together with growth features. But, on most natural diamond
crystals, dissolution proceeded more severely, and as-grown surface microtopog-
raphs are entirely erased out. Figure 1.7 shows an example of such surface micro-
topographs.

Fig. 1.6. Mosaic phase contrast photomicrograph of a (111) face of an octahedral diamond
crystal from Siberia, which received only a slight dissolution. Note triangular growth hill-
ocks with the same orientation as the triangle of the (111) face, and a tiny triangular pit
(opposite orientation; trigon) at the respective summit of the former growth hillocks. The
thinnest growth layers, which consist of growth hillocks, have a step height of less than 0.5
nm. Bar = 200 um
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Fig. 1.7. DICM photomicrograph of triangular etch pits (trigons) on a (111) face (a). Bar =
0.1 mm. (b) Rounded morphology of natural diamond crystals. Both features are due to dis-
solution

1.4 Beryl

Pegmatite is a lenticular or vein form of discordant igneous rock mass or cutting in
the surrounding strata, and produces much larger and more perfect crystals than
those in mother rocks. It is also a treasure box of unusual mineral species con-
taining large cations. Crystals grow in a void in solidifying magma due to the con-
centration of volatile components and large cations, which cannot find the sites in
the structure of rock-forming minerals. Various gem quality crystals and radioac-
tive or rare earth minerals occur in pegmatite. As a representative example to in-
vestigate how crystals grow in pegmatites, the author has selected beryl
(Be,AlLSizO,,) crystals from several pegmatite localities, and investigated their
surface microtopographs, spatial distribution of dislocations, inclusions, and
growth banding [12]. Beryl is the most persistent mineral among 8 beryllium-
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Fig. 1.8. DICM photomicrograph of elemental growth spirals on (0001) face of a beryl

crystal from Minas Gerais, Brazil. Bar = 500 um. Small dots are etch pits selectively
formed at dislocation outcrops [12]

containing minerals of 18 minerals belonging to the BeO-Al,0,-SiO,-H,0
(BASH) system [13], and its stability field ranges from about 320° to 680°C in
temperature and up to 10 kbar in pressure. It is therefore assumed that beryl repre-
sents the conditions covering the major range of pegmatite formation.

Many beryl crystals show partially dissolved morphological features, rounded
corners and edges or pencil-like tapered prismatic forms, but some crystals pre-
serve their as-grown crystal faces. On such as-grown {0001} and {1010} faces,
one observes elemental growth spirals with unit cell height, originating either from
an isolated or group of dislocations. These growth spirals are essentially polygonal
in form following the symmetry of respective faces, and the values of step separa-
tion versus step height are in the range of 10* to 10°. This means that the spirals
have profiles of 10,000 m to 1,000,000 m flat terrace and 1 m cliff. This also indi-
cates conditions of very small driving force, and diluted ambient phase, probably a
supercritical vapor phase [14].

Figure 1.8 is a representative growth spiral on a {0001} face. Small dots are
etch pits formed selectively at the outcrops of dislocations, both active and inac-
tive for the spiral growth.

Figure 1.9 shows an X-ray topograph (a), a photomicrograph under crossed
polarizers before (b) and after etching (c) of a section cut parallel to the (0001)
face of a beryl crystal from Arasuai, Minas Gerais, Brazil. From this set of photo-
graphs, we obtain information relevant to the growth process of the beryl crystal,
which is summarized below.

1. There are three types of dislocations: one parallel to (labeled A), the second
perpendicular to (labeled B), and the third inclined to (labeled C) the (0001)
face. Dislocations A originate from inclusions trapped at the discontinuity
boundary in contrast on the X-ray topograph. Dislocations B give strain bire-
fringence under crossed polarizers (Fig. 1.9b), and dislocations C form etched
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tunnels with pits on the terminations. Most of these dislocations are considered
to have acted as growth centers to produce elemental growth spirals on the
(0001) (B and less probably C) and (1010) faces (A).

2. At least three stages of intermission and associated changes of morphology are
discernible during the growth process of this particular crystal. Two disconti-
nuities in contrast are discernible on the X-ray topograph of Fig. 1.9a, the out-
lines, that is the morphology of this beryl crystal change at these discontinui-
ties. Partial dissolution is also discerned from the rounded outline of the second
discontinuity line, where inclusion entrapment is seen, and from which disloca-
tions A generates.

3. Growth rates are markedly different among crystallographically equivalent di-
rections, as judged from the width between the successive discontinuity lines.
For example, the growth rates in +al and —a2 directions are nearly twice those
in —al and +a2 directions, respectively. This indicates that there was a directional
flow of the fluid phase, and the direction changed during the growth process.

Figure 1.10 shows a mosaic photograph (a) of a prismatic crystal immersed
in n-methylaniline solution with RI = 1.5702, taken under crossed polarizers,
and the corresponding sketch (b), as well as an X-ray topograph of another
similar prismatic crystal (c). From Fig. 1.10, one can see the following growth
history for beryl crystals.

4. There were at least five stages of partial dissolution followed by regrowth dur-
ing the growth process of the crystal shown in Fig. 10a and b, indicated by la-
bels A to E. Rounded corners of hexagonal prismatic outline, truncating the
straight growth banding, show the presence of a partial dissolution period. The
subsequent regrowth period is witnessed by transformation from the rounded
outline to the straight banding parallel to the hexagonal dipyramidal faces,
which eventually disappear from the crystal. The crystal takes on a hexagonal
prismatic habit bounded by the {0001} and {1010} faces alone, when the con-
dition is stabilized.

5. From Fig. 1.10c, it is seen that many bundles of dislocations generate on the
surface of prismatic crystal where discontinuities are seen in the contrast image
of the X-ray topograph. The dislocations run nearly perpendicular to the prism
faces. The outcrops of these dislocations on the {1010} faces are considered to
have acted as sources for growth spirals on the prism faces.

6. In Fig. 1.10a, tube-like inclusions and dislocations are seen running parallel to
the c-axis. They originate from solid inclusions present on the boundary surface
between partial dissolution and regrowth periods.

Figure 1.11a and b are the polarization photomicrographs of the tube-like two-
phase inclusions and negative crystals running parallel to the c-axis. It is seen that
the two-phase inclusions are formed behind solid inclusions of platy form, proba-
bly mica flakes, adhered on the surface when regrowth started after partial disso-
lution. The negative crystal in Fig. 1.11b appeared by growth on the wall of an in-
clusion from the entrapped mother liquid. An interesting point is that dislocations
parallel to the c-axis are generated at the tip of tube-like inclusions, when enclo-
sure failed.
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Fig. 1.9. X-ray topograph (a) and photomicrographs taken under crossed polarizers before
(b) and after (c) etching of a section parallel to the (0001) face of a beryl crystal from Ara-
suai, Minas Gerais, Brazil. Bar = 1 mm. Arrow with label of g indicates g-vector [12]
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Fig. 1.10. (a) Mosaic photomicrograph under crossed polarizers, (left) and the correspond-
ing sketch (middle) showing the internal texture of a hexagonal prismatic beryl crystal from
Hefferman’s mine, Australia. Labels A to F indicate the stages where partial dissolution or
change of conditions took place. (Right) X-ray topograph of another prismatic beryl crystal
from the same locality. Arrows indicate the positions of generation of dislocations running
perpendicular to the prism faces. Arrow g indicates g vector. Bar = 1 mm [12]

Fig. 1.11. (a) Photomicrograph of tube-like two-phase inclusions formed behind solid in-
clusions indicated by arrows. (b) Strain field (arrow A) around a dislocation generated from
a misfit in the incorporation of the inclusion and negative growth banding (arrows X). LI is
a two-phase inclusion [12]
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From the preceding explanation, we may consider the growth process of beryl
crystals in pegmatitic conditions in the following manner. Crystallization of min-
erals in pegmatite does not take place in a closed system under static conditions.
Directional inflows of nutrients into a void formed in a solidifying magma took
place many times, resulting in partial dissolution and regrowth of crystals. At the
onset of regrowth, solid inclusions were trapped on the surface, which formed
tube-like two-phase inclusions and generated dislocations. Dislocations thus gen-
erated acted as self-perpetuating step sources of spiral growth on both the {0001}
and {1010} faces. Hexagonal dipyramidal faces appeared only during the re-
growth period, and are taken as transient faces.

1.5 Trapiche Ruby

When a magma intrudes into pre-existing strata, contact metamorphism takes
place and mineral crystals are newly formed, which are stable phases for the new
pressure and temperature conditions. Since magma intrusions supply higher tem-
perature and additional compositions, such processes are customarily called con-
tact metasomatism. How nucleation and growth of newly formed crystals take
place in the pre-existing solid rocks under such conditions has not been thoroughly
understood. It has been a subject of controversy whether the crystallization should
be regarded as solid-state crystallization or a solution growth dissolution-
precipitation process.

Trapiche ruby is an unusual type of ruby crystal showing unique textures,
which resemble a sugar cane crushing gear. Trapiche is a Spanish word for such
gears, and was originally applied to emerald crystals from Chivor and Muzo, Co-
lumbia showing similar texture. Trapiche emerald occurs in hydrothermally meta-
somatized country slates around calcite-emerald veins cutting into the slate strata
[15]. Trapiche ruby occurs in contact metasomatized carbonate strata in the Mong
Hsu mining area, Myanmar [16].

In Fig. 1.12, schematic diagrams of textures seen in both trapiche emerald and
ruby are compared [17]. Different terms have been used to describe the textures
seen in Fig. 1.12, but we adopt the terminology given for trapiche ruby in this fig-
ure.

Trapiche ruby occurs in the form of barrel-shaped prisms, with internal texture
characterized by a core, six arms extending along the <1010> direction, and
branches there from running parallel to the z axes, with six clear ruby growth sec-
tors. The barrel-shaped crystal is bounded by basal {0001} and tapered prism
{1120} faces, although for the latter faces very high indexed scalenohedral faces,
like {14 14 28 3} were assigned in [16].

The arms and branches are yellow, white, or black in color and translucent to
opaque. Through EPMA analysis, it was confirmed that these portions consist of
several mineral phases, corundum, carbonate, and tiny unidentified K-Al-Fe-Ti
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Trapiche Emerald Trapiche Ruby
Massau and Jackson, 1970 Present Study

Fig. 1.12. Schematic illustration of textures and terms used to denote respective portions in
trapiche emerald (a) [15] and trapiche ruby [16]. From [17]

silicate mineral grains [16]. The pattern shown by the arms and branches is typical
for dendritic growth, such as snow dendrites. The six growth sectors are triangular
or trapezohedral in form, and transparent to translucent red in color, and consist of
pure ruby single phase. The growth sectors appear filling the interstices of arms
and branches. The core portion is in most cases black and opaque and mineralogi-
cally and texturally the same as the arms and branches, but in rare cases a hexago-
nal prismatic clear ruby core portion is present.

The problems we intend to understand here are how such textures were formed,
how element partitioning was governed, and how long it took to form the present
size in the contact metasomatic condition.

The arms run from a central point or from six corners of a central hexagonal
core to the six corners of a hexagonal prism, nearly parallel to the {0001} face,
with about 5° bending toward the center. The arms and branches extend from the
core with similar texture as the arms in most samples, but the arms start from the
corners of the core hexagon and branches from the core-growth sector boundaries
when a clear ruby core is present. The boundary of the hexagonal core and the six
growth sectors are thus rugged and splintered. The branches show similar appear-
ance in color, transparency, and mineral compositions as the arms. Six growth
sectors consist of corundum single phase, but color-zoning parallel to tapered
prism faces is also observed.

It has been well established that a dendritic pattern appears due to morphologi-
cal instability [18] of the growing rough interface, where an adhesive type growth
mechanism operates. The arms and branches can be taken as representing such
rough interface growth. In contrast to this, a layer-by-layer growth mechanism on
the {0001} and {1120} faces form growth sectors. Namely these two faces be-
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haved as smooth interfaces during their formation. Therefore, it can be assumed
that both interfacial roughness and growth mechanisms were different in the for-
mation of portions of arms and branches and of growth sectors.

By means of X-ray microfluorescence analysis (XRMF) and electron micro-
probe analysis (EPMA), elemental mapping was performed on slices cut perpen-
dicular to the c-axis. The results clearly indicated a marked difference in chemis-
try and mineralogy between arms and branches, and growth sectors. Important
differences between the two portions noticed in the element mappings are:

1. The arms and branches are composed of polyphases; corundum, carbonate, and
silicate. But the corundum in these parts is chemically homogeneous, showing
no chemical zoning from the root to the tip of an arm or a branch. The Chro-
mium (Cr) content in corundum in these parts is constant and much lower than
in the corundum in the growth sectors. The Cr content in corundum is nearly
the same or at the most two times higher than that in carbonate or silicate grains
coexisting in the arms and branches.

2. The growth sectors consist of single phase ruby, but distinct chemical zoning in
Cr content, and less distinct Ti content are seen parallel to the tapered prism
faces. The Cr content in the growth sectors is much higher than in the arms and
branches, and ranges from 0.60 to 1.70%. The Cr content in the growth sectors
sharply increases more than 8 times at the boundary between the central core
and growth sectors. It gradually decreases going outward, namely as growth
proceeded and increases slightly again followed by sharp decrease at latest
stage.

3. The black and opaque core portion shows the same character as that of the arms
and branches, whereas the clear hexagonal core resembles that of the growth
sectors except for Cr zoning.

Figure 1.13 shows plots of EPMA point analyses along the A-A, B-B lines and
section 2 in Fig. 1.13a. All analyses were performed with beam diameter 1 um; A
and B, point separation, 20 um, 1.5-1.6 mm extension; section 2, point separation
3 um, extension 300 um. Figure 1.13 clearly indicates the above summaries.

From the textural and chemical characteristics described above, the author con-
cludes the following:

a. The arms and branches are formed by dendritic growth by an adhesive-type
growth mechanism on the rough interface, during which eutectic-type multi-
phase precipitation took place.

b. The growth sectors are formed by a layer-by-layer growth mechanism on the
smooth interface, principally the {0001} and {1120} faces, and a later or con-
current filling-in process of interstices of earlier formed dendrite arms and
branches.

c. Elemental partitioning was governed by thermodynamic parameters during the
dendritic growth stage on rough interfaces, and by Kinetics (growth rates) dur-
ing the formation of growth sectors.

d. Dendritic growth took place under higher driving force conditions, followed by
a filling-in process of the interstices of arms and branches through a layer-by-
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layer growth mechanism. The filling-in process took place either concurrently
with dendritic growth or slightly later, since the concentration at the root of the
dendrites is depleted.

e. Depending on the conditions, layer-by-layer growth may sometimes precede
dendritic growth, forming a hexagonal core of single phase ruby, on which
dendritic growth followed by layer-by-layer growth takes place.

f. The present size of the trapiche ruby was formed during the dendritic growth
stage, and thus in a very short time.

In Fig. 1.14, superimposing the routes and textural changes of trapiche rubies
on Fig. 1.1 illustrates the above discussions.
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Fig. 1.13. Positions of scans A, B, and 1-3 (a), and corresponding plots of microprove
analyses of Al,O, (AL), Cr,0O, (CR) and TiO, (TI). Core indicates opaque core portion, arm
and br indicate, respectively, arms and branches [17]
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SMOOTH &= = ROUGH

Fig. 1.14. Schematic diagram showing two routes 1 and 2 for trapiche ruby without (route
1) and with clear ruby core (route 2), superimposed on Fig. 1.1 [17]

1.6 Summary

Diamond, beryl, and trapiche ruby are used to demonstrate how the present under-
standing of growth, morphology, and perfection of crystals can be used to decode
the letters sent from the depths of the earth. The same concept is applicable to
other earth and planetary processes, as well as to organic and inorganic crystal
formation in animate bodies.
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2.1 Various Crystal Growth Processes

For a crystal to grow, a seed crystal capable of maintaining a stable condition in a
melt, solution, or vapor phase must first be produced. In vapor deposition, the sub-
strate serves as the seed crystal. The process by which a seed crystal is born and
grows into a nucleus is called the nucleation process, which plays an important
role in the process of crystal growth. The seed requires the formation of a three-
dimensional nucleus, but because the workings of three-dimensional nucleation
are analogous to those for two-dimensional nucleation, only the latter is treated
here. In this part of the book, we will discuss what happens after a nucleus has
formed and the crystal has grown in size, specifically, how crystals grow and at
what speeds [1,2,5].

2.1.1 Driving force

For crystals to grow, some driving force is required. We first define this driving
force. The conditions in any given system change according to the laws of ther-
modynamics in such a manner that the free energy in the whole of the system de-
creases. This means that any decrease in free energy associated with the crystalli-
zation process works to promote the growth of crystals. Namely, the difference
Au = u, — U, between the chemical potential u,,, of a melt, solution, or vapor phase
(the growth medium) and the chemical potential u, of the crystalline phase be-
comes a driving force towards crystal growth. In the nucleation process, the num-
ber of atoms that form a surface or interface is as important as the number of at-
oms that form crystals because those forming a surface supply the energy needed
to grow the crystals. After a nucleus forms and the crystal grows to a sufficient
extent, the contribution of the interface energies can be ignored and the difference
in bulk free energy in each phase becomes the difference in chemical potential.
Therefore, a difference in chemical potential in various growth environments can
be associated with measurable, physical quantities as shown below.
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When the growth medium is a melt, the molten and crystalline phases coexist in
a stable state if the system is at the melting point T, If the temperature falls below
T, Crystals grow. That is, the level of supercooling AT = T, — T becomes the
driving force for crystal growth. The relationship between the level of supercool-
ing AT and A can be expressed as follows:

A =LAT/T, 2.1)

Here, L is the latent heat of melting.

In the case where the growth medium is a vapor, crystals will grow when the
vapor pressure p is higher than the equilibrium or saturated vapor pressure p,, and
then the level of supersaturation o = (p — p.) / p. becomes the driving force. A dif-
ference in chemical potential between the vapor phase and the crystal phase based
on vapor pressure can be expressed as follows:

Ap=ksT log(p/p.) (2.2)

Therefore, the relationship between Au and the level of supersaturation o can be
expressed as follows:

At =kgT log(l + ¢) = ksTo 2.3)

Here, kg is Boltzmann’s constant.

If the growth medium is a solution, the threshold concentration of solutes that
can be dissolved into the liquid (i.e., the concentration C, of a saturated solution)
is used as the criterion. The level of supersaturation o = (C — C.)/ C,, which can be
calculated from C, and the actual solute concentration C, can be defined as the
driving force. The relationships of the chemical potential differences between the
solution phase and the crystal phase can be expressed as follows:

Al=ksT log(C/Cy) (2.4)

At=ksTlog(l + 0) = keTo (2.5)

In a typical crystal growth experiment, the supersaturation o becomes positive by
lowering the system temperature to decrease the concentration C, of the saturated
solution instead of increasing the concentration C.

There is also a mechanism for solid-phase growth that occurs when a poly-
crystal that formed through the agglomeration of small crystal grains is then sub-
jected to heat and pressure, and then grows into a large single crystal. In this case,
the growth driving force can be expressed as the distortion or intergranular energy
in crystal grains. However, this chapter focuses on the growth of crystals that are
surrounded by vapor or other fluid growth media: we do not deal with solid-phase
growth.

Although a growth unit can be an atom, molecule, or a larger cluster, we will
routinely use an atom as the unit of growth in this book.
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2.1.2 Rate-determining process

The next question to address is the actual growth mechanism, or how crystals
grow when put under certain driving forces. In general, crystals grow in three dif-
ferent processes as shown below:

1. Atoms and molecules are introduced into the crystal phase through an interface
between the crystals and the growth medium. This is called the interface, or
surface, kinetic process.

2. Atoms and molecules in the growth medium are supplied to the growth inter-
face, or crystal surface. This stage is called the volume diffusion process.

3. Latent heat generated at the growth interface during crystallization is removed.

The growth rate is determined by the rate at which the crystals pass through
each of these processes. The process that has the largest impact on the overall rate
of growth is clearly the process in which the rate of growth is the slowest. This
particular process is therefore known as the rate-determining process. Exactly
which of the processes becomes the rate-determining process depends on the
growth environment and the growth conditions. To accurately identify the rate-
determining process, the points described below must be considered.

If the environment is a melt, the number density of atoms in the melt and the
analogous density of atoms in the crystal are considered to be approximately the
same (known as a dense environment phase). Therefore, process (2) is not the
rate-determining process. Also, because the growth interfaces of almost all sub-
stances grown in a melt are not flat if viewed on an atomic scale, the orientation
time during which the atoms are contained in the crystals is not a factor that af-
fects the rate. Thus, process (1) can be ignored and process (3) is the rate-
determining process.

If the growth medium is vapor or solution, many of the crystals in it will grow
as polyhedrons. Although this will be described later in greater detail, in this case
the growth interface is flat on an atomic scale. Therefore, the rate-determining step
is the interface kinetic process (1) because the orientation time for this particular
process is sufficiently long compared with both the atom-supply process (2) and
the heat removal process (3). Process (2) can be ignored if a crystal grows in vapor
because the concentration in the growth medium is sufficiently low, and thus vol-
ume diffusion can take place easily. If the crystals grow in a solution, the concen-
tration of solute atoms in the growth medium is lower than that in the crystals, but
the density of the solution itself is almost equal to that of the crystal. Therefore,
the volume diffusion coefficient is estimated to be smaller by two orders of mag-
nitude than that of the mixed gas phase, so it is not necessarily appropriate in this
case to ignore process (2). This point will be discussed in greater detail in the sec-
tion that describes growth in a solution.

Because the density of solute atoms in a vapor or solution phase is sufficiently
low compared to that in crystals, vapor and solution phases are called thin growth
media. However, the density of atoms in the environment surrounding the crystals
is significantly different from that of the atoms in the crystals, so one phase can be
clearly distinguished from the other at a boundary (surface). In this chapter, we
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will restrict our discussion to the mechanism of crystal growth seen in relation to a
thin growth medium.

2.2 Vapor Growth

Atoms that leave the vapor phase and enter the surfaces of crystals give up almost
all of their energy to the crystals in the form of kinetic energy. Therefore, they are
captured on the surface as adatoms. There are also some atoms that jump back into
the vapor phase. This raises the question of how we can identify the atoms that
have been included within the crystal phase from those that have not. It is pre-
sumed that a sufficiently large number of atoms, which is defined as N, coalesce to
form a bulky crystal. The decrease in AE per atom in potential energy resulting
from interatomic binding can be calculated using the following formula:

A]\é = ;zni(bi =0, (2.6)

Here, ¢; is the binding energy of the nearest neighbor atoms with position la-
beled by i. n; is the number of nearest neighbor atoms for the atom at position i.
The facter 1/2 means that two atoms bound to each other share the energy gain
produced by their interatomic bond. Therefore, if there is an energy gain larger
than ¢ ,, when the atoms enter the surfaces of the crystals, we can consider that
these atoms have been included within the crystals. If we observe the actual sur-
faces of the crystals, an energy gain of ¢ ,, is seen when an atom enters the bent
portion K, a kink site, which has a size of one atom and exists along the step S-T.
This has a thickness of one atomic layer on the surface, as shown in Fig. 2.1. Fig-
ure 2.1 shows the (001) plane of a simple cubic lattice. This energy gain principle
also applies to a plane that has a different orientation or any plane in the other
crystal lattices. Table 2.1 shows a list of some values of ¢, for various crystal
lattices with particular consideration given to the second nearest neighbor. The
kink does not disappear when atoms are added to it; it only slides along a step [3,
4]. This point is important because we cannot observe the same phenomenon at
other surface positions. For example, consider the lattice point H (surface va-
cancy) shown in Fig. 2.1. If atoms enter this point H, they can have an energy gain
greater than when they enter at a kink position. The point H (surface vacancy) dis-
appears the instant they enter it. Therefore, their chance to contribute to the
growth of the crystal is lost. The kink position is also called the half-crystal posi-
tion, which means that the binding energy of atoms at the kink position is half that
of the internal atoms in the bulk crystal. Supposing that the surface shown in Fig.
2.1 is made by cutting a bulk crystal into two parts, then the surface of one cut
crystal has the same number of steps and kinks as that of the other cut crystal sur-
face.

The number of atoms that leave the vapor phase and enter the surface of a
crystal per unit time per unit area is p/v‘zmnkBT . Here, p is the vapor pressure, m
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Fig. 2.1. Surface structure of Kossel model

Table 2.1. Binding Energies for Various Crystal Lattices

Lattice P

Simple cubic 30, + 60,
Face center cubic 60, + 30,
Body center cubic 40, + 30,
Diamond lattice 20, + 60,
Hexagonal 60, + 30,

is the mass of an atom, kg is Boltzmann’s constant, and T is temperature. The
greatest growth rate occurs if all of the incident atoms condense into the crystal. It
must be kept in mind, however, that atoms on the surfaces of crystals can jump out
into the vapor phase if heat fluctuations cause them to acquire energy larger than
the adsorption energy. Therefore, the growth rate can be estimated based on the
difference between the number of atoms entering the surfaces of the crystals and
that of atoms jumping back out into the vapor phase. Because the growth rate is
zero in an equilibrium, or saturated, state, the number of atoms jumping out of the
surfaces is equal to that of the atoms entering the surfaces. Therefore, the number
of atoms jumping out of the surfaces of the crystals is pe/\fznmky'r per unit time
per unit area under the equilibrium vapor pressure p,.

Because the number of atoms that jump out is not dependent on vapor pressure,
the maximum growth rate at any given vapor pressure p can be calculated using
the following formula:

Qp

_p=r) _ o = .

2mmk ;T 2mmk, T
Here, Q is the atomic volume. This formula is called the Hertz-Knudsen formula.
It must be noted that the maximum growth rate calculated with this formula is
proportional to the supersaturation, o = (p — p.)/p., Which is the growth driving
force in the vapor phase.

@.7)

max
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The maximum growth rate quoted above is obtained under the condition where
all atoms leaving the vapor phase and entering the surfaces of the crystals are then
included within the crystalline phase. This total containment can occur if the sur-
faces of the crystals are uneven and rough, or if all of the lattice points are at kink
positions (or at positions where an even greater energy gain can be obtained
through crystallization). This growth pattern is called adhesive growth. The differ-
ent types of roughness relating to crystal surfaces can be classified into geometri-
cal roughness and the roughness caused by a roughening transition. The geometri-
cal roughness is the type seen on the (111) plane of a simple cubic lattice or other
high-index plane. Specifically, a lattice plane exposed after a crystal is cut in half
is rough and uneven if viewed from the point of view of geometry. The roughness
caused by a roughening transition is the sort of unevenness seen on a plane that
initially had a smooth surface at low temperature, but which developed a rough
surface after it was exposed to its critical temperature Ty or higher, and then trans-
formed into a different phase.

Rough, uneven planes grow at the maximum growth rate R,..,, but they disap-
pear as the crystals grow large. As they disappear, the crystals retain only flat,
smooth surfaces, and their external form becomes a polyhedron enclosed by such
smooth planes. These planes are called singular surfaces; the interatomic binding
in these planes is strong, and they have a high roughening temperature. They are
usually low-index planes, such as those of simple cubic lattices (001). Considering
the observations above, a key factor in the growth of crystals in the vapor phase is
whether flat, smooth singular surfaces can develop or not. (See Fig. 2.2.)

A singular surface does not have kinks where atoms are contained in a crystal-
line phase. Hence, for a singular surface to grow, steps that contain kinks must ap-
pear. The two-dimensional nucleus formation and screw dislocation methods are
both used as a means of providing a singular surface with steps. These will be de-
scribed in more detail later in this book.

Once a step is provided on a singular surface, atoms enter the kinks and crys-
tallization begins. Atoms that enter a flat plane (terrace) are first adsorbed onto the
surface of the plane as explained earlier. These adatoms reside on the surface until
they acquire the required adsorption energy E,, which is created through heat
fluctuations. The average residence time 7, can be expressed using E, as follows:

T,= v exp(E,/ ke T) (2.8)

Here, v is a frequency term of the adatoms. During the residence time z,, the
adatoms do not stay fixed in the same position; they diffuse over the surface. If
these adatoms on the terrace diffuse sufficiently and reach a kink before they
desorb into the vapor phase, they can then be acquired by the crystal phase. As-
suming that the activation energy for the adatoms diffusing on the surface is Eg,
which is the energy needed to move adatoms to an adjacent lattice point, the sur-
face diffusion coefficient D, can be defined as follows:

D, = a2v exp(—Ey/ksT) (2.9)
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Fig. 2.2. Disappearance of rough surface

Here, a is the lattice constant. The average distance A, that the adatoms diffuse
during the residence time 7, can be calculated using Einstein’s expression Dz, = A2
as follows:

A = a exp[(E, — Ey )/ 2ksT ] (2.10)

E. is smaller than E, and has a typical magnitude such that A, ~10? a if the crys-
tals are growing in the vapor phase. This means that atoms entering a position at a
distance of A, or less from a kink can contribute to the growth, indicating that sur-
face diffusion plays an important role in growth in the vapor phase.

As described above, atoms entering a terrace near to a step provided on a sin-
gular surface can diffuse across the surface, reach a kink and become included in
the crystal. This growth mechanism is called the Kossel mechanism [3].

Once the adatoms attach at a kink, the kink moves forward a step. As this
movement of the kink takes place repeatedly, the step moves forward across the
surface and this is the way that the crystal growth process proceeds. This growth
pattern is called lateral growth and differs from the adhesive growth mentioned
previously. To determine the growth rate of this growth mechanism, it is necessary
to identify the forward speed of a step, also called the step velocity.

2.2.1 Step velocity

Velocity of advance of a single step

A straight step that does not contain a kink has an advantage in terms of energy;
however, this is a disadvantage in terms of entropy. Therefore, a step will contain
a certain number of kinks at finite temperatures. We find that the average distance
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between neighboring kinks is far smaller than the average surface diffusion dis-
tance A, of the adatoms. Thus, if the kink density is sufficiently high, a step func-
tions as a sort of hole through which adatoms can be drawn in an unbroken flow.

To determine the step velocity, the quantity of atoms drawn onto the growth
front must be calculated. Interactions between the vapor phase and the surface
should first be examined. Based on the difference between the number of atoms
entering kink sites after leaving the vapor and the number of atoms leaving the
surface, the net flow j, per unit time per unit area crossing from the vapor phase to
the surface can be expressed as follows (Fig. 2.3):

j=—= =L (2.11)
2amk,T T,
Here, n is the density of adatoms adsorbed onto the surface. On the other hand,
the surface diffusion flow of adatoms per unit time per unit area j, can be calcu-
lated based on the two-dimensional gradient of density n as follows:

js=-Dggrad ng (2.12)

Using the above equation, the following continuity equation can be calculated re-
garding the density of atoms adsorbed onto the surface:

M _ divj + ), (2.13)
ot ‘
Here, divergence is two-dimensional. Because the step velocity calculated in this
way is much slower than the surface diffusion speed of adatoms, the movement of
a step can be ignored.

If we can obtain a solution for the steady state (dn, /dt = 0) of this continuity
equation, the density distribution n ¢ of the adatoms can be determined. Because a
step is effectively a hole through which atoms are drawn in one unbroken flow, n
is uniform in the direction parallel to the step and is dependent only on its distance
x from the step.

In an equilibrium state, there is no surface diffusion flow and the number of at-
oms arriving and the number of atoms leaving are balanced; thus j, = 0. Therefore,
from Eq. (2.11), the equilibrium density of adatoms n is

__ P (2.14)

At a point far from the step (x = >> 1), the quantity of atoms entering and the
number that are leaving is also balanced, even in a state of supersaturation, which
results in j, = 0. If we define the level of supersaturation of the adatoms as o, (x) =
(ng (X) = ng)/ng, then o, () is equal to the level of supersaturation of the vapor
phase o = (p — p.)/p.. On the other hand, the density of adatoms n(0) at the step
position (x = 0) can be considered to be equal to the equilibrium density ng. This
is because there are no energy barriers when the atoms are contained in the kink
position, and the atoms in the crystal can interact fully with the adatoms.

In summary, assuming that the density of adatoms is ¢(x) = o — o (x), we should
calculate the following equation using the boundary conditions in (2.16) below.
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Fig. 2.3. Motion of a step and adatoms

A2d%¢/dx = ¢ (2.15)
The boundary conditions are:
¢(0)=0
2.16
6(=)=0 (210)

The solution that we derive is ¢(x) = o exp(—x/ A,). Therefore, the density of
adatoms can be calculated as follows:

N (X) =Nget (n s— N se)[l - exp(_X/ﬂ's)] (217)

Here, n, is the density of adatoms that matches the vapor pressure p. The step ve-
locity v,, can be obtained from the gradient at that step position as follows:
_ 2D, dn, 27, P.

v

: (2.18)

o
n, dx _, n, 2mmk,T

Here, n, (= 1/a?) is the density of lattice points on the surfaces of the crystals. The
factor of 2 appears here because we assume there are flows running from both
sides of a step. We should also note here that the step velocity v., is proportional to
both supersaturation o, which is the driving force for growth, and is proportional
to 24,. The step velocity can then be obtained from the simple assumption that all
atoms entering at a point which is a distance of A, or less away from a step (i.e., an
area 2/, wide) diffuse over the surface, reach a step and are included in the crystal,
but atoms entering at a point farther away than A, cannot reach a step and hence do
not contribute to the growth. The step velocity obtained based on this simple as-
sumption is consistent with the results described above. Therefore, we can refer to
areas of A in width on both sides of a step as the capture areas.
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Velocity of advance of parallel steps at regular intervals

We can observe that many steps caused by screw-dislocations (to be explained
later in this book) are formed nearly parallel to each other at regular intervals on
the actual surfaces of the crystals. By applying the above assumption, we can es-
timate that the forward speed of these steps is slower than that of a single step be-
cause the capture areas of each step will overlap if the interval A between neigh-
boring steps is smaller than 22,. Assuming that n (x) equals the equilibrium
density ng, at x = 0, A, we can obtain n using the following equation:

n () =n, +(n, —n,) O AIDIA] (2.19)
cosh[A/2/4,]

Therefore, the step velocity can be expressed based on the above equation as fol-

lows:

A
v(A)=v_ tanh( 2 ) (2.20)
If 2>> 24, the step velocity v(4) of parallel steps at regular intervals A are equal
to that of a single step v... On the contrary, if A << 24, we obtain v(1) = v., A/ 24,
and we can assume that the capture area of each step has become equal to the in-
terval A between steps.

Parallel steps at regular intervals can move forward by a specified step interval
A during a set time period t, which can be calculated using 7 = A/v(2). Because
the surface of the crystal grows by one layer during this time period, the growth
rate R can be calculated as follows, providing that the thickness of one layer is d:

R(A) ~4_(p-p)224, tanh(l1 ] (2.21)

v Jommk,T A 22,

Here, Q =d/n, is the atomic volume. This growth rate R (1) increases in propor-
tion as the step interval A decreases. At the point where 1 << 24, R (1) becomes
equal to the maximum growth rate R, which can be calculated using the Hertz-
Knudsen formula (2.7). If the capture area spreads all over the surface, the growth
rate becomes a maximum, even if the surface is not uneven or does not have many
kinks.

Velocity of a curved step

So far we have assumed that a step is straight (the width is partly uneven since a
step contains many kinks). An actual step, however, is curved. In the case of a step
on the surface of a crystal, a loss in the step energy per unit length y can occur be-
cause a chain of atomic binding is terminated on the edges of a step.

If a step curves or bends, the step energy per unit length becomes large com-
pared to that of a straight step. As a result, the equilibrium vapor pressure p, (p)
for a step with a curvature of radius p becomes larger than the equilibrium vapor
pressure p, of a straight step. Providing that the level of supersaturation is o, (p) =

(pe (P) - pe)/pe [5]
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k,T

c.(p)= exp( 14 J—l (2.22)
pryky

The equilibrium density of adatoms at the step position is consistent with the

result obtained using the above equation. To obtain the forward speed v(p) of a

step with a curvature of radius p, Eq. (2.15) is converted to a polar form to calcu-

late the density distribution of adatoms under the above boundary condition, and

the result is substituted into Eq. (2.18):

All-o(p)/o] (2.23)
2ply(p/A)K, (p/A,)
Here, 1, and K, are class-1 and class-2 deformation Bessel functions, respectively.

In the range where the conditions p << A, and o >>1 can be satisfied, v(p) can be
approximated as follows:

v(p)=

wm:mp—%) (2.24)

Here, p. is the radius of curvature of a step that neither advances nor retracts when
exposed to a supersaturation of level o. p, is called the critical radius of curvature.

- 14 2.25
P nok,Tlog(1+0) (2.29)

If the density of kinks on a step is low and the step cannot then be regarded as a
hole through which atoms are drawn in one continuous flow, or if a resistance ex-
ists when adatoms are contained in kinks, thereby making it difficult to consider
the density of adatoms to be an equilibrium value, it then becomes necessary to
make some modifications to this derivation [5].

As described previously, the formation of a two-dimensional nucleus or of a
screw dislocation are two mechanisms that can provide the surface of a crystal
with a step. In the following section, we explain how a crystal grows after it has
acquired a step.

2.2.2 Mechanism of two-dimensional nucleation growth

Frequency of two-dimensional nucleus formation

As explained in the section that describes how the step velocity can be calculated,
atoms that enter the surface and those that leave the surface are in equilibrium;
adatoms exist in a certain density and they are moving about on the surface.
Therefore, they can collide and attach to each other. As these collisions and at-
tachments take place repeatedly, many adatoms congregate and form a two-
dimensional cluster. A small cluster might lose atoms and disappear, but if a clus-
ter is exposed to fluctuations and increases in size, the probability that it will sur-
vive becomes higher. If the probability that a certain nucleus could increase in size
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Fig. 2.4. Cluster on the flat surface (two-dimensional nucleus)

is equal to the probability that it could decrease, then such a nucleus is called a
critical nucleus. To understand the size of such a cluster more clearly, we will at-
tempt to estimate its size by assuming that the shape of a two-dimensional cluster
is circular (Fig. 2.4).

We must keep a watch on the whole system, including the crystal and the
growth medium. When a cluster forms on a flat crystal face, all of the atoms can
be considered to be in crystalline form except those along the fringe of the cluster.
The free energy decreases by the difference between the chemical potential of the
growth medium and that of the crystal phase, —Au per atom. Atoms along the
fringe of a cluster are exposed to external turbulence, and they behave in such a
manner that they disturb the process of cluster formation. The loss in the step en-
ergy per unit length needed to form this edge is defined as 7 and the radius of the
cluster is defined as r. The number of atoms that comprise a cluster is approxi-
mately zr’ng, and the circumference is 2zr. Therefore, the increase of AG(r) in
free energy in the whole system can be expressed as follows:

AG(r) = —mr?ng Au+ 2zry (2.26)

Here, the Boltzmann factor exp[-AG(r) /kgT] is proportional to the probability of
survival of a cluster with a radius of r. When a cluster has a radius of p* or larger,
which will serve to maximize AG(r), the probability of its survival increases. A
cluster having a radius of p" or smaller will decrease in size. This radius p* is
known as the two-dimensional radius of a critical nucleus. The two-dimensional
radius of a critical nucleus p~, and the maximum value AG " of the free energy can
be expressed based on maximum value conditions as follows (Fig. 2.5):

pi= ¥ = 4 (2.27)

nyAu  nyk,Tlog(l+0)

2
G = Ty (2.28)
nokyTlog(1+0)
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Fig. 2.5. Change of the free energy with cleating the disk cluster

Although the system is in a nonequilibrium state, nucleus formation seldom oc-
curs. Assuming that the process proceeds according to the theory of equilibrium
distribution, the density N ™ of a critical nucleus can be calculated as follows,
where the density of a single atom is defined as n,:

N™ = n, exp(-AG 7k;T) (2.29)
Assuming that a nucleus becomes stable when one extra atom is added to it, as
assumed by Volmer and Weber [6], one adatom moves to an adjacent lattice point

with a frequency of D,/a 2. Taking this into consideration, the frequency v* can be
calculated using the following equation:

v =2mp" D,/an, (2.30)
Therefore J, the frequency of nucleus formation, can be calculated as follows:
J=v*N"=2mp" (D, /a)n¢ exp(-AG “/kgT) (2.31)

This approach assumes that the process proceeds according to the theory of equi-
librium distribution. Becker, Doring [7] and Zeldvich [8] demonstrated that the
density of a critical nucleus in a stable state is lower than that in a state of equilib-
rium distribution. The value presented by them is smaller by Z (the Zeldvich fac-
tor, shown below) than J in the above equation. The Zeldvich factor Z can be cal-
culated as follows:

Z={AG(i") /4nkgT « i" }2
Here, i ” is the number of atoms that comprise a critical nucleus. Therefore,

2 1/2 Y ' (2.32)
J(0o)=D, n;{log(l+0)} “exp| -7 T /log(1+0)
B
As is apparent from Eq. (2.32), the frequency of two-dimensional nucleus for-
mation J is extremely low if the level of supersaturation is low, but it quickly in-
creases as the level of supersaturation rises. The formation of two-dimensional nu-
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clei and the frequency of nucleus formation is observable if the level of supersatu-
ration is over 10% [5].

Two-dimensional nucleus formation and growth rate

As a two-dimensional nucleus that forms with a frequency J spreads with a step
velocity v, layers are formed and a plane is completed. Therefore, J and v are fac-
tors that determine the growth pattern of crystals [1].

Providing that the area of the surface of a crystal is S, the waiting time t,, during
which a two-dimensional nucleus forms on the surface is t, = 1/JS. On the other
hand, the approximate time t; during which the fringe of an already formed two-
dimensional nucleus spreads with a step velocity v and covers the whole surface of
a crystal can be estimated as t, = +/S /v. Growth patterns of two-dimensional nuclei
can be classified into two different mechanisms as follows, depending on the rela-
tionship between t,, and t..

Ift, >>tg
Because a nucleus that has been formed after a long waiting time quickly spreads
over the whole surface, one two-dimensional nucleus alone contributes to the
growth of one layer. This growth pattern is known as single nucleation growth.
The growth rate R, [6] is:

R,, = dJS (2.33)

In this growth mechanism, it should be noted that the growth rate is proportional
to the area of the surface of the crystal S.

If t, << t,, many two-dimensional nuclei form one after another, all over the
surface. They spread and couple with each other and develop layers. This growth
pattern is known as multinucleation growth. Two-dimensional nuclei can also
form on existing nuclei that are already spreading; this particular growth pattern is
called multinucleation multilayer growth.

If the average distance that a nucleus travels before it couples with an adjacent
nucleus during the multinuclear growth process is A, the time 7 that it takes for
this nucleus to travel this average distance is 7 = yA/v. On the other hand, two-
dimensional nuclei form in an area A with the waiting time defined as 7, and thus
steady, consistent growth can be achieved. Therefore, 7 = 1/JA becomes true.
From this equation, we can obtained the following:

1 1/3
T=
()

Because the formation of one layer takes place in time 7, the growth rate R, can
be expressed as follows:

Rpm=d/t=dJ¥By# (2.34)

We should note that the growth rate is not dependent on the area S. Area A is
called the territory of influence per stable nucleus.
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Fig. 2.6. Supersaturation dependence of the growth rate

In the case of multinuclear multilayer growth, the waiting time 7' from when
the first nucleus forms to when the next nucleus forms on top of the first one can
be estimated using the following equation:

[ty de=1 (2.35)

The rate obtained using this equation is the same as that obtained for multinuclear
growth [9].

The level of supersaturation is low under the particular condition t,, >> t,, under
which single nucleus growth occurs. The growth rate is so slow that it is not
observable. Therefore, any two-dimensional growth that is observable is either
multinuclear growth or multinuclear multilayer growth. Fig. 2.6 shows how the
level of supersaturation affects the growth rate. When the level of supersaturation is
low, the rate is almost zero. As it increases, the rate quickly increases. If the level of
supersaturation is low, an accurate value can be obtained using the above equation.
If the level is high, an overestimated value will be obtained. (See section 2.3.1 d.)

2.2.3 Mechanism of spiral growth

In the majority of cases however, the growth of two-dimensional nuclei is observ-
able at a low level of supersaturation, even if we hardly expected the growth to
happen. This is because many crystals grow according to a spiral growth mecha-
nism, which is closely associated with the screw dislocation.

Real crystals are not perfect crystals, and they contain defects in varying de-
grees. If the end of screw dislocation, which is a line defect, is exposed on the sur-
face of a crystal, a step extending from this exposed end to the edge of the crystal
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(a)

Fig. 2.7. Spiral growth by screw dislocation

surface is formed, as shown in Fig. 2.7. Although this step continues to move for-
ward, it never disappears. Therefore, steps do not need to be supplied to allow
two-dimensional nucleus formation. Growth will continue at a low level of super-
saturation without any additional supply of steps. This growth mechanism is called
the Frank mechanism, after F. C. Frank who first developed this theory [10].

As the step created by the screw dislocation continues to move forward, it
reaches out from the point where it intersects with the surface and soon forms a
spiral pattern. This is because the point where it emerges is fixed. Because the
forward speed at which a curved step travels in the direction normal to the line can
be calculated using Eq. (2.24), the shape of a step can be determined. On a curved
coordinate system (r, 8) with the center of the spiral as the origin, an approximate
stationary solution can be calculated as follows [5]:

log[l+ " J:Z(Hl 0+ vt .
3P 3 2pc(1+ 3)

According to this equation, the movement of the step can be represented as being
very close to an Archimedean spiral under the condition where r « 6. Far from the

(2.36)
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center of this spiral, the steps are aligned nearly parallel to each other with step
interval A:

A=4r(1+1R3)p, = 20p, (2.37)

(The value 20p. was later corrected to 19p, by Cabrera and others [14].) The step
interval 2 is proportional to the critical radius of curvature, p.. This is because the
spiral movement continues until the radius of curvature p. of a step in the center
becomes p.. If the step interval 4 in a parallel step line is determined, the growth
rate can be obtained, as previously explained, and the growth rate R, of a step
moving according to the spiral growth mechanism can be calculated as follows:

_(p=p)Q0c” tanh[cl ) (2.38)

Y 2mmk,T o, c
Here, the level of supersaturation o, is introduced as a parameter, which can be
defined as follows:

A 10y

T o=__""
22, nyk zTA,

If we examine the dependence of growth rates on the level of supersaturation with
reference to the results obtained using Eq. (2.38), we note that R, is proportional
to o if the level of supersaturation is low (o << 6y), and Ry, is proportional to ¢
and equal to R, if the level of supersaturation is high (¢ >> o), as shown in Fig.
2.6. If the level of supersaturation is high, we should note the following point: If
the level of supersaturation becomes high, the step interval becomes smaller and
many adatoms in the center of the spiral are assimilated into the surrounding steps.

This causes the actual level of supersaturation to decrease below o, the radius
of curvature of a step in the center becomes large, and the step interval A in-
creases. Therefore, the growth rate drops below the estimated value. Any steps
generated by a step itself cause the density to decrease, and eventually the growth
rate to increase, which is called the back-force or back-stress effect. This phe-
nomenon was pointed out by Cabrera and others [11], and was analyzed by Van
der Erden and others [12] in greater detail.

To obtain a reliable, approximate value, the center radius p. of a spiral should
not be estimated from the level of supersaturation ¢ in the vapor phase. Instead,
we should estimate it from the level of surface supersaturation o (p., 0) in the
center, assuming that there is a circular step with a radius p.. We will not discuss
this in detail here.

So far we have only dealt with the type of step that is created from one screw
dislocation, and which has a height equal to that of a single atom. However, men-
tion must be made of the fact that in the actual crystal formation process, complex
steps can be created through a combination of screw dislocations of the same or of
different types, and a step which is several atoms in height can be created through
screw dislocations with a Burgers vector of one or greater. The points discussed
here have already been analyzed in great detail by Burton, Cabrera, and Frank.
The theory developed by them is called the BCF theory.

o, = (2.39)
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2.3 Growth of a Crystal in a Solution

In this section we discuss the mechanism of the growth of a crystal in solution.
Although the density of a solution phase is higher than that of a vapor phase, the
density of each growth unit (dissolved atom) in a solution phase is low. Therefore,
the theory that each individual growth unit is contained in a crystal phase still
holds true [1]. For a crystal to grow in a solution, the principle that soluble atoms
can be easily dissolved into a solvate (solvation) must be used. Therefore, desol-
vation must take place when dissolved atoms are included into a crystal. This ap-
plies to the growth of a crystal in the vapor phase in which a strong interaction
with the vapor occurs, as is the case in the chemical vapor deposition (CVD) proc-
ess. In the case of growth in the vapor phase, the process where atoms are supplied
from the growth medium could be ignored. In the case of growth in a solution, the
diffusion coefficient of the atoms dissolved in the solution is far smaller than that
in the vapor phase. Therefore, the density of atoms varies greatly in solution, so
the process by which the dissolved atoms are supplied from the growth medium
cannot be ignored, and the process of diffusion of dissolved atoms in a solution
must be examined.

2.3.1 Solvation effects and growth rates

Diffusion in a solution [2]

Although the diffusion of dissolved atoms in a solution is taken into consideration,
it is almost impossible to apply the BCF theory strictly from the analytical view-
point. Therefore, two different approaches were taken. First, we conceived the
volume diffusion model, which assumes a condition where the surface diffusion is
totally ignored and the dissolved atoms are taken out of solution and placed di-
rectly onto kink positions. The second model is the surface diffusion model, which
assumes that the condition for the BCF theory is applied to the neighborhood of an
interface, through simplification of the volume diffusion. There is also the coupled
bulk-surface diffusion model of Gilmer, Ghez, and Cabrera [13].

The first approach is based on the assumption that the volume diffusion coeffi-
cient D, is larger than the surface diffusion coefficient Dy in the case of growth in
a solution, whereas the second approach maintains that desolvation should not
take place with all atoms simultaneously. Instead, the atoms should first be ad-
sorbed onto the surface of a crystal to allow them to diffuse over the surface, and
then they should migrate into kink positions, which is effectively step-by-step
desolvation. When designing an experiment to observe the growth of a crystal in a
solution, the solution is often stirred and therefore the level of supersaturation ¢
(namely, density C) in an area remote from the surface of the crystal by a distance
of & or more, is defined as a constant value that is controlled for the duration of the
experiment.

In an attempt to develop a volume diffusion model, Chernov [15] inferred a dif-
fusion field through analysis using the conformal transformation method, on the
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assumption that linear steps are formed at a regular interval A on the surface of the
crystal. The boundary condition was defined as follows:

The volume diffusion flow D (dC /dr) , - , that arrives into a radius r = a (ap-
proximately equal to the lattice constant) with a step as its origin is equal to the
atomic flow 4 [C (a) — C,] entering a crystal phase from any point where there is a step.
Namely,

(ac) B
Dl— | =pB,Ca)-C,] (2.40)
o )_,

Here, C, is the equilibrium density and S, is the rate constant. These are termed
the Kinetic coefficients of a step. Fig. 2.8 shows the diffusion field qualitatively:
the dotted line is the isosbestic line. Using Eq. (2.40), the rate of step movement v
can be calculated. Also, using Eq. (2.37), the step interval A can be calculated.
Therefore, the following equation can be established, based on the spiral growth
rate R} = av/A, which was obtained using the volume diffusion model:

; a’k,TC, o;
RY, =B, jy ‘ (;
1+(ﬁga/D)log{ %05, sinh(o-E JJ
a o,

Here, yis the step energy, a is the lattice constant, and o is the level of supersatu-
ration in the solution. Because there are only a few cases in which this approach
can be applied, it is recommended that you refer to the original work for greater
detail. Here we should only mention that the square law R, «< o2 applies if o <<
0, and the linearity law R, «< o applies if o>> o, which is characteristic of spiral
growth.

On the other hand, we also have the surface diffusion model, as created by
Bennema and others [16,17]. As shown in Fig. 2.9, this model assumes that the
isosbestic point in a solution is parallel to an interface, and that the diffusion field
is one-dimensional. The reasoning behind this assumption can be explained as
follows: For the dissolved atoms to diffuse in a solution towards kink positions
and then become included in the crystalline phase, layers of solvates on atoms
must be removed. The activation energy AG needed for desolvation is far larger
than the AG, needed for volume diffusion (see Fig. 2.10). Therefore, it is incon-
ceivable to think of a flow running from a solution directly to a step from the
standpoint of kinetics. On the other hand, if the dissolved atoms first adsorb onto
the surface of the crystal, diffuse over the surface, and then enter kinks, the acti-
vation energy needed for desolvation can be divided into the energy for adsorbing
onto the surface AG,.,, and the energy for leaving the surface and entering the
kinks AG2.

Therefore, the atoms can move more smoothly by traveling this route rather
than taking the route of entering kinks directly. The relaxation time 7 g, = V™
exp(AGgeson /KT ) needed for atoms to adsorb onto the surface is sufficiently longer
than 74 = v eXp(AGgeson /KT ), Which is needed for atoms to diffuse in a solution.
Therefore, the dissolved atoms become stagnant on the surface of the crystal, and

(2.41)
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the solute density becomes uniform along its surface; that is the isosbestic surface
is parallel to the surface of the crystal.
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Fig. 2.8. Distribution of concentration for the volume diffusion model. The dotted line is
the isosbestic line.

X
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Fig. 2.9. Distribution of supersaturation for the surface diffusion model by Bennema. There
are steps at the cross point.



2 Theory of Crystal Growth from Vapor and Solution 45

(a)

28

S A AGd Solvated state
o L
=

g

é P12

\J_________________-————.—_" ————— Crystal state
Kink
Position
(b)

>

a1

=

[:¥]

=

[-¥]

=

g

&

Position

Fig. 2.10. Potential energy of desolvation

Modifying the BCF theory

The level of supersaturation at a point 6 away from an interface is defined as o,
and a point which is one lattice constant a away from an interface is defined by o;.
The excitation energy needed to allow atoms to enter kinks is AGS¢. Therefore, it
can be assumed that a kink position, which can be considered as identical to a step
because a step has many kinks, has a supersaturation o,. If we use the same ap-
proach as that used for growth in the vapor phase, the net flow J, from the solution
to the surface of the crystal can be calculated as follows. Assuming that the solute
density directly above the surface is C; and the equilibrium density of the surface

is C,:
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‘Jv =a (C - Ce )V eXp(_A(-?"desolv/kBT ) = aCe 14 exp(_AGdesolv/kBT ) (Gl - O—k) (242)

Therefore, a counterpart equation to Eq. (2.21) for the growth in a vapor phase is

22, A
Ry = aCéQI' 2 tanh[%J:l(Gi -0,) (2.43)

desolv

However, the surface diffusion distance A is not controlled by the adsorption en-
ergy E,, but depends on the excitation energy AGg.,q needed for desolvation. Ac-
cording to the result obtained from AGg.,, >> E,, the value of A, is nearly as long
as the length that we found in the case of growth in the vapor phase.

The growth rate Ry that is determined from the volume diffusion in a solution
can be calculated using the volume diffusion coefficient D, as follows:
o -0,

R,; =DCQ

(2.44)

Lastly, the rate R,;,,, Which is determined by the speed that atoms enter the kink

positions, can be calculated using the flow of atoms into kinks per unit length of

step J, as follows:

2an,Q
AT,
Here, n, is the equilibrium density at the kink position, and 7, is the relaxation time

that atoms require before they enter kinks.

5, = v exp(AGS /K T)

R ZZQ/MA- =

o, (2.45)

Because these three growth rates must be equal in a steady state, we have the fol-
lowing equation:
R (0 — 67) = Recr (0i — 64) = Rinic (0%) (2.46)

The growth rate R can be calculated using the following equation, which takes the
results from o= (o - ¢;) + (0, — ;) + o into account:

-1
g COuf B a0 h 2an)
Tiesorw | T 24, 24, T peaa 24

desolv

The first term is the resistance resulting from the volume diffusion, the second
term is the resistance resulting from the surface diffusion mechanism, and the
third term is the kink resistance. Although the second term is always greater than
unity, the first and second terms are considered to be << 1 in a system in which the
solvation effects are significant. Therefore, the assumptions of c— o0;= o, 0, =0
are valid, and we can approximate as follows:

CQa 2 A
R=_"¢ * tanh| .
Tdcwlv ¢ ‘[’ o [2‘L J (2 48)

s

Because the step interval A in spiral growth is 20p,, which was calculated for
growth in the vapor phase, the growth rate can be calculated as follows:
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2
R =C "tanh("lJ (2.49)
o, c
o, =10-L-4%
kyT A,
C = Ctel /Tde.mlv

In the region where the level of supersaturation is low, that is, where o << oy, the
growth rate is proportional to the supersaturation squared. In the region where the
level of supersaturation is high, that is, where o >> oy, growth rate is proportional
to the supersaturation. If an interface has many steps and the surface is rough, the
growth rate can be calculated using the following equation, which is called the
Wilson-Frenkel Formula:

Rinax = @V exp (—AGyeson 'ks T) C. Q0 (2.50)

Two-dimensional nucleation growth

As far as the basic concept of the growth mechanism from a two-dimensional nu-
cleation is concerned, growth in a solution is the same as growth in the vapor
phase. However, for growth in a solution, the following equation is used, which
contains the solution density C and the equilibrium density C, to obtain the driving
force Au:

Au=kgT log(l + o), c=(C-C,)/C, (2.51)

Including desolvation effects, the frequency v* at which one adatom is included
into a critical nucleus can be expressed as follows:

v_ o D, .
v*=2mp’ 5> exp (~aGg k) (2.52)
The growth speed of multinuclear multilayer growth (7/3)¥%v2® J** can be calculated
using the above equation in combination with the following:

R, = Ac % exp[-AG "/ 3ksT ] (2.53)
13
A= (271'% ) %C
3 a

Here it is assumed that o0 << 1, so log (1 + o) ~ o, and ¢, results from the desolva-
tion effects [17].

The energy needed to form a critical nucleus AG * governs the frequency of
two-dimensional nucleus formation, and it is greatly influenced by a reduction in
step energy of a two-dimensional nucleus y. Because atoms in a step can interact
with the solutes when growing in a solution, it is expected that the step energy yis
smaller by one order of magnitude than that for growth in the vapor phase. Solva-
tion effects work to inhibit growth if a crystal undergoes the spiral growth process,
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whereas they work to promote growth if a crystal undergoes two-dimensional nu-
cleus growth.

Figure 2.11 illustrates the spiral growth formula (2.49) based on the step energy
YI(neksT) = 0.2, A, = 100a, the rate constant C = 10~* mm/sec, ¢, = 107, and the
two-dimensional nucleus growth formula (2.53). The two-dimensional nucleus
growth formula does not include the effects of the slowdown of migration speeds
that result from a decrease in the level of supersaturation on a terrace when the
interval A between steps becomes smaller than A, Neither does it include the de-
creased frequency of two-dimensional nucleus formation (back-force effects),
which results from a decrease in the level of supersaturation on a two-dimensional
nucleus when a two-dimensional nucleus is growing. Therefore, the result given
by this formula may exceed the maximum growth rate given by the Wilson-
Frenkel formula. However, at a level of supersaturation of 0.7% or lower, it is es-
timated that the growth rate can be measured correctly. Unlike growth in the vapor
phase, realistic growth rates can be obtained at such low supersaturations.

Back-force effects

If the level of supersaturation becomes high and nucleus formation occurs fre-
quently, the intervals between the creation of steps becomes small. If multinuclear
multilayer growth is taking place, the crystal should be growing while straight
steps are forming at an interval A if this is taking place at a location remote from
where the nucleus forms. For a crystal to grow in a steady state, the growth rate
R(A), which is determined by A, must be equal to the rate of nucleus formation, R,
In Eq. (2.53), R, is the migration speed of steps at the fringe of the nucleus v... The
migration rate v,, should be slower than the migration rate v (1) of steps being
formed at an interval A. Therefore, a minor modification must be made by replac-
ing v, with v(A). If this modification is made, the growth rate of two-dimensional
nucleus formation does not exceed the maximum growth rate given by the Wilson-
Frenkel formula. However, calculations must be done using specific numerical
values. Besides this, the presence of steps was ignored in our estimation of the
frequency of nucleus formation; therefore, the supersaturation is overestimated. In
the case of steps near a nucleus, their speed of movement is slower than v (1) and
the step interval is less than A because the curvature cannot be ignored, that is after
a nucleus forms, the next nucleus will form on a cluster that has a radius smaller
than A. Assuming that the cluster is circular and that its radius is p, the level of su-
persaturation o, (0) in the center of the cluster can be expressed using the level of
supersaturation of an interface o; as follows:

0,(0,p) = 6,- (06— 0.4 (0) 1o (p12) (2.54)

Here, o, (p) is the equilibrium level of supersaturation of a circular step that has a
radius of curvature of p and |, is a class-1 Bessel function.
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Fig. 2.11. Growth rate for a solution growth

Therefore, to estimate the frequency of nucleus formation, the level of super-
saturation o (0,4) at the center of a disk with a radius of curvature of at least A
must be used. In Fig. 2.11, the thick line shows the growth rates obtained by
making these modifications and performing numerical calculations. This indicates
that the result obtained using the back-force effects deviates from that obtained
using the formula (2.53) if the supersaturation is low. Also, these growth rates ex-
ceed the rates of spiral growth. This is because the introduction of the back-force
effect was insufficient. For further details, refer to Reference 18.

2.3.2 Handling of polyhedral finite crystals [2,19]

When a crystal is still small and growing slowly at a moderate supersaturation in
solution or in the vapor phase, its form is a clear-cut polyhedron. If the level of
supersaturation is increased as the crystal grows in size, we can observe an osse-
ous crystal or a dendriform crystal, which looks like a snow crystal. Using the
conventional approach, where the surface of the crystal is infinitely large, we can-
not explain this phenomenon. We should note that there is a limit to the size of a
polyhedral crystal, and we will discuss here the stability of such a crystal. Al-
though growth in a solution is taken as an example, the observations presented
here can also be applied to growth from a gas mixture in the vapor phase.
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Berg effects

It is well known that a crystal extracted from a lean or rarefied growth medium
will be a polyhedral crystal. This means that the crystal is undergoing epitaxial
growth, with the growth rate determined at the interfaces. Berg [20] examined a
crystal undergoing epitaxial growth to verify the density, or supersaturation, dis-
tribution in a solution using the light interference technique. He found that the
density distribution is not uniform at the interface of a crystal, and that the density
is high at the edges and smallest in the center, as shown in Fig. 2.12. This is called
the Berg effect. If the migration speed of each point at an interface is proportional
to the local supersaturation, then the edges grow more than the other regions, and
therefore a polyhedron cannot be maintained.

(b) i C(x()‘—(
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Fig. 2.12. Solute density distribution in a solution

Stable growth

Here we assume that a crystal is a cube with side of length L. Because the growth
rate is very slow, the distribution, C, of solute density in a solution is considered to
be in a quasistationary state (stationary distribution), that is:

AC=0 (2.55)

Boundary conditions include the density C_, specified at a sufficiently remote point
(the solution is not stirred), as well as the uniform density gradient (dC/dn) in the
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direction of a normal line on the surface, which can be calculated with the fol-

lowing equation:
«C) (2.56)
an surface

Eq. (2.56) means that the growth rate to be determined by the volume diffusion
flow must be uniform at any point on the surface when a polyhedral crystal grows.
The growth rate can be expressed as follows:

Rp (X) = QDq (2.57)

Here, Q is the volume of a dissolved atom and D is the volume diffusion coeffi-
cient. If space is two-dimensional, this equation can be solved holomorphically
using the conformal transformation method [21]. If space is three-dimensional, it
must be solved numerically. If the solutions of the equation f(x, vy, z) are obtained
in advance under each condition of L = 1, g = 1, C_ = 0, then solutions for L, g,
and C,, can be calculated based on the linearity of the Laplace formula by using
the following equation:

C(x,y,2)=C_+qLf(x/L,y/L, z/L) (2.58)

Here, although f is negative, the f-coefficient is equal to a value obtained by multi-

plying the growth speed q by the crystal size L. The greater the magnitude of gL,

the larger the difference between the density in the center and that at the edges.
Focusing on the surface kinetics, the growth rate at each point of an interface is

R(X)=av(X)/A(x) =p(x) - v(X) (2.59)

Here, v is the migration rate of a step, A is the interval between steps, a is the lat-
tice constant, and p(x) = a/A (x) is the tilt of an interface from the low-index plane.
Hereafter, the center of the plane is defined as x = 0 and an edge is defined as x =
1. v(x), A (x), and p(x) are not uniform on an interface. According to Eq. (2.59), a
polyhedron cannot be maintained unless these parameters are uniform across each
face. If fluctuations in the migration rate v (x) of a step can be compensated by the
local tilt p(x) of an interface, it becomes possible to maintain a polyhedron [22].
Because v (x) actually becomes higher at the edges and slower in the center due to
the nonuniformity in the supersaturation (Fig. 2.13), an interface should be tilted
more toward the center of the plane.

A step-source that produces a step must then be determined. To create a step
source, two mechanisms are conceivable: the formation of a two-dimensional nu-
cleus and the activation of a screw dislocation. If a step source is created by a
screw dislocation, the crystal seed is exposed around the center of an interface in
the majority of cases. In this case, the growth rate near the step source is governed
by the level of supersaturation o (0) in the center of the plane, and Eq. (2.49) is
used with o replaced by o (0). If the formation of a two-dimensional nucleus is the
step source, the growth rate is governed by the level of supersaturation at the
edges o (1), where the level of supersaturation is highest. To obtain the growth
rate at the edges, Eq. (2.53) is used, with o replaced by o(1).
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R, and R, are generally not equal. Therefore, a plane must be covered by steps

that are generated by higher-value step sources. That is,
Rk = max {Rsv Rn}

In this equation, R, must be equal to the growth rate R, which is determined by
the diffusion flow. It is evident that Ry (o.., L, q) is a function of the supersatura-
tion at a remote point o.., the size of the crystal L, and the density gradient q. Ad-
ditionally, R, (o, L, q) is a function of ¢, L, and q in terms of the supersaturation
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Fig. 2.13. Distribution of supersaturation and a surface morphology
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at the interface. Therefore, if the values of o, and L are known, the growth rate q
can be determined. At the same time, the step source can be identified as well as
its external form.

Therefore, the criticality condition that determines the step source can be ex-
pressed as follows:

R{c(0; oo, L'} =R {o(1; o, L)} (2.61)
Figure 2.14 shows the supersaturation at remote points o> along the abscissa
and the crystal size along the ordinate. The base values in the diffusion field are
approximately f(0) = —-0.9 and f(1) = —0.7. The curved line A shows the critical
levels of supersaturation that may transform step sources in the stable growth re-
gion. Because it is difficult for the formation of a two-dimensional nucleus to take
place where the supersaturation is low, the screw dislocation governed by the su-
persaturation o (0) on the surface center becomes the step source, and the external
form of the crystal becomes convex. A screw dislocation can produce a concave
surface too (see Fig. 2.9a of Nelson and Knight). On the other hand, if the level of
supersaturation at a remote point is increased, the level of supersaturation at the
edges becomes high, and the formation of a two-dimensional nucleus governed by
o (1) becomes the step source. In this case, the external form of the crystal sur-
faces becomes concave.

Occurrence of unstable conditions

As Eg. (2.58) suggests, the nonuniformity in the supersaturation increases if the
size of a crystal becomes large, or if the growth rate q becomes too high.

R(X) =p(x) - v(X) = Rp = constant (2.62)

At the point where the above conditional expression holds true, the crystal is un-
able to maintain its polyhedral form and consequently cannot grow with uniform
flux across the face. This is because, technically, this is not a growth instability; it
is a uniform-flux impossibility. The cause of this is that the migration rate of a
step becomes dependent on not only the supersaturation o, but also the step inter-
val 4; thus, the growth rates of local interfaces reach a maximum, even if the tilt of
the plane around the center is increased. Therefore, the criticality condition for
stable (or “uniform”) growth can be expressed as follows:

Rua (0)=C0(0; 0", L™) =R, [o(1; 02, L™)] (2.63)

The dotted line of the criticality curve B in Fig. 2.14 shows stable growth with-
out including the back-force effects (Eq. 2.53), whereas the thick solid line in-
cludes the back-force effects. As is apparent from this figure, we could postulate
that the back-force effects are a key factor responsible for allowing a small crystal
to grow in a stable way while still maintaining a polyhedral form. At point a of the
criticality curve, the supersaturation at the edge of the crystal surface is about
0.64% and at point b it is around 0.84%. This level of supersaturation at the inter-
face is much lower than the value of 2.3% at a remote point. Although A, was de-
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fined as being equal to 100a in this calculation, the growth rate becomes slow if
the surface diffusion distance becomes short. Therefore, the stable region moves
off to the side, where the level of supersaturation is high.

In the course of studying growth in an unstable region, an equation was intro-
duced for verifying how the external form of a crystal develops over time. This is
a new topic that has many applications to the formation of crystal forms [24-26].
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3 Epitaxial Growth of IlI-V Compounds
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3.1 Introduction

The first event that showed the importance of 111-V epitaxy was the success of Al-
ferov in 1969 in fabricating a cw laser diode that operated at room temperature by
liquid phase epitaxy (LPE). For this, he received the Nobel Prize in physics in
2000 with two other scientists. LPE, which was proposed by Nelson [1], makes
high quality, thin-film semiconductors. In I11-V LPE, the compounds are grown
from group-111 metal solution on a substrate, which gives highly stoichiometric,
thin, pure, and perfect films.

The next important event in the history of 111-V epitaxy is the invention of a
high electron mobility transistor (HEMT) by Mimura et al. [2], which was made
by molecular beam epitaxy (MBE). They used the idea of modulation doping,
which was originally proposed by Dingle et al. [3].

The growth technology of high quality and ultra-thin 111-V films of about 10
nm thickness was required for the fabrication of HEMT. At that time, such films
could be grown only by MBE. Almost at the same time, the technology of metal
organic chemical vapor deposition (MOCVD) was developed and employed for
growing high quality thin films. Without MBE and MOCVD, neither HEMT nor
high performance laser diodes such as quantum well (QW) and multi-quantum
well (MQW) lasers could be made.

Recent success in growing high quality GaN and related compounds was made
by Amano et al. [4] by using a low temperature buffer layer on sapphire in
MOCVD. The huge improvement in crystal quality thus realized made it possible
to get p-type GaN. The success of p-GaN was a real breakthrough for making
blue-ultraviolet lasers and light emitting diodes.

In this chapter, we focus on MBE and MOCVD as examples of epitaxy because
they are the major technologies in 111-V epitaxy.
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3.2 MBE of Ill-V Compounds

In molecular beam epitaxy (MBE), the growth is conducted under an ultra-high
vacuum of up to 10 ~107° Pa. Under such a high vacuum, O,, CO,, H,0, and N,
contamination on the growing surface can be negligible. This makes it possible to
reduce the growth rate down to nm/sec, so that precise control of the growth
thickness is possible.

As described in the next section, MBE uses a Knudsen cell (or effusion cell)
from which growth elements are evaporated. By opening and closing the shutter in
front of the Knudsen cell, the operator can abruptly switch on or off the fluxes;
hence, sharp interfaces between successively grown layers are possible.

Another important advantage of MBE is that in situ monitoring of the growing
surface is possible. Reflection high-energy electron diffraction (RHEED) is one of
the most powerful tools used to see the flatness and atomic structure of the surface
during growth. Furthermore, intensity oscillation of the RHEED signal accurately
measures the growth rate in A/sec.

3.2.1 MBE system

Figure 3.1 shows a schematic of a conventional MBE machine. An ion-sputtering
pump evacuates the growth chamber to a high vacuum, typically. To keep the
chamber at high vacuum during the growth, a liquid N, shroud like that shown in
the figure is employed. An electron beam is aimed at the substrate, then the dif-
fracted beam strikes a fluorescent screen. In the case of GaAs MBE, at first the
substrate is heated at high temperature under arsenic pressure to remove the oxide
layer. Because the oxide evaporation happens at around 580°C and this event can
be monitored by RHEED, the oxide removal can be used to calibrate the tem-
perature of the substrate. Then, after setting the substrate temperature at the re-
quired value, the Ga shutter is opened to start the growth. To grow (Ga, Al)As,
one opens the shutters of both Ga and Al cells. Choosing Ga and Al cell tempera-
tures varies the composition of the alloy. An n-type and p-type GaAs layer can be
grown by opening the shutter of the Si cell and Be cell, respectively.

Sample exchange should be carried out keeping the growth chamber at high
vacuum. This can be done employing either a two-chamber or a three-chamber
system. Figure 3.1 shows a two-chamber system, which is composed of a growth
chamber and a preparation chamber. The preparation chamber is also evacuated at
high vacuum and the second sample is already installed inside. After the experi-
ment, without breaking the vacuum, the grown sample is transferred through the
gate valve to the preparation chamber, and the next sample is transferred to the
growth chamber by a transfer rod. Thus, a high vacuum is kept for a long time un-
til a problem occurs in the chamber. In such a case, the chamber should be opened
to the air during the repair. When source materials such as Ga, As, Al are finished,
the growth chamber should be opened and new sources recharged.
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Fig. 3.1. Schematic illustration of the conventional two-chamber MBE

3.2.2 RHEED intensity oscillation

RHEED intensity oscillations (hereafter, RHEED oscillations) provide extremely
important information about the growth in real time. Already in 1980, it was re-
ported that an AES (Auger Electron Spectroscopy) signal shows oscillation as the
growth thickness of a thin film is increased [5]. Just after this work, Harris et al.
reported that the RHEED intensity oscillates as the film thickness is increased in
GaAs MBE, and they showed that the period coincides with the time for mono-
layer growth [6]. One year later, Gronwald and Henzlan observed intensity oscil-
lations of the low energy electron diffraction (LEED) signal during the MBE of Si
on a (111) substrate, and confirmed that the period coincides with the growth time
of (111) double layers [7].

In 1983, Neave et al. studied RHEED oscillations of GaAs in more detail, and
concluded that this oscillation is caused by the birth and spread of 2D-nuclei that
happen repeatedly during growth [8].

Schematics of this process from Neave et al. are given in Fig. 3.2 and 3.3. As
shown in Fig. 3.2, just after the shutter of a Ga cell is opened, the intensity drops
sharply while it recovers to a value slightly below the previous peak. Figure 3.3
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shows what happens during one period of the oscillation. Here, 6 is the coverage
of the surface. Before growth, the surface of the substrate, in this case (001), is
very flat as shown in (a). This can be realized by preparing the surface of the sub-
strate exactly (< 0.01°) oriented to (001). Then, the steps supplied from misori-
ented substrate can be nearly eliminated. As the growth starts, 2D-nuclei are gen-
erated on the substrate as shown in (b). The electron beam is partly scattered by
the 2D nuclei and lost resulting in the decrease of the RHEED intensity. As growth
proceeds, many 2D nuclei are generated (c), and the intensity is further decreased.
However, those 2D nuclei start to coalesce to form a continuous layer (d) and as
the flatness is recovered the intensity begins to increase. When the coalescence is
completed the intensity increases to the initial value. In the experiment, as we see
in Fig. 3.2, the recovery of the intensity is not complete. This happens because
2D-nucleation of the second layer starts on the surface like that in Fig. 3.3 (d).
Due to this, this growing surface becomes rough as growth proceeds. However,
the surface flatness is recovered when the Ga shutter is closed and the growth is
stopped as shown in Fig. 3.2.

RHEED oscillations can be used to control the growth thickness on the order of
a monolayer and actually is a very powerful tool used to fabricate sophisticated
electronic and optical devices with complicated structures. RHEED oscillations
are also a very powerful tool for studying the elementary growth process of MBE
because it can detect the birth and spread of 2D-nuclei under various growth con-
ditions.

Ga shutter open

L/ __ Ambient light increase

Ga shutter closed

RHEED Intensity (arb. units)

Ambient light
decrease

] 1 1 1 J
0 5 10 15 20 25
Time (sec)

g. 3.2. RHEED intensity oscillation observed in MBE of GaAs [8]
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Fig. 3.3. lllustrations of the surface during MBE in 2D-nucleation growth mode. 6 denotes
the surface coverage [8].

3.2.3 Surface diffusion and stepped surface
According to BCF theory [9], the adatom concentration nyy) on a vicinal
(stepped) surface shown in Fig. 3.4 is given by

Nny(y) =I5+ (Ngep— JT5)COSN(Y/A,)/cosh(A, /2)) (3.1)

where J, T, A5, Ny, and A, are respectively the incident flux of growing atoms, the
re-evaporation time, the diffusion length for re-evaporation, the adatom concen-
tration near the step edge, and the interstep distance.
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Fig. 3.4. Vicinal (stepped) surface

ny(y) is schematically shown in Figs. 3.5 and 3.6 respectively for A, >> A, and
Ao << A If A, is much larger than A, ny(y) increases as a function of distance from
a step edge and saturates at a constant value after a certain distance, as shown in
Fig. 3.5. On the other hand if A, << A, one can neglect the evaporation of adatoms
from the surface and ny(y) is given by

Ny(Y) = Nep + (IR 78D[L — (2y/Ao)’] 3.2

In this case, ny(y) is parabolic as shown in Fig. 3.6. In 111-V MBE, the vapor pres-
sure of a group Il element is very low at the growth temperature and A, << A, is
usually established.

|
Mg
2

Fig. 3.5. n(y) as a function of the position between steps for A, >> A,
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Fig. 3.6. ny(y) for A, << A,

3.2.4 2D-nucleation and step flow modes

In 1985, Neave et al. did an important experiment [10]. They used a slightly
misoriented (001) GaAs as a substrate and observed the surface by RHEED during
MBE growth of GaAs. The result is shown in Fig. 3.7. They found that as the
growth temperature increased, RHEED oscillations vanished at a certain tem-
perature. They explained the reason for the vanishing oscillations as follows.
When the temperature is low and the adatom migration velocity is slow, it takes
time for the adatom to reach the step edge and thus the adatoms can instead cluster
to form 2D-nuclei. This causes the RHEED oscillation as shown in the bottom
figure of Fig. 3.7 (a). On the other hand, when the growth temperature is high,
adatoms can move very fast to easily reach the step edge before contacting other
adatoms. In this case, all adatoms go to the step edges without forming the 2D-
nuclei as shown in the top figure of Fig. 3.7 (a). Under their growth condition, the
critical temperature for the mode transition T, is 590°C. Above this temperature,
all steps advance in one direction and this mode of the growth is called step flow.
On the other hand, below this temperature, 2D-nuclei are generated between steps
and as growth proceeds, they coalesce to each other to form a new layer. This
growth mode is called the 2D-nucleation growth mode.

From this experiment, Neave et al. calculated the surface diffusion length as a
function of temperature as follows. They assumed at the critical temperature for
the mode transition the diffusion length becomes equal to the step distance, A,.
This assumption gives

Ao = m, (3.3)

where T is some kind of relaxation time and D, is the surface diffusion coefficient.
For the numerical value of 1, they used the monolayer growth time.
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Fig. 3.7. Change of growth modes between 2D-nucleation and step flow. (a) Illustrations of
the surface for the two modes, (b) RHEED oscillations and growth temperature [10]

With Eq. 3.3, they calculated D, as a function of growth temperature. However,
there is no physical meaning of the diffusion length for monolayer growth. In-
stead, t should be used as an average nucleation time. Namely, if adatoms can dif-
fuse in a longer distance than A, the adatoms can reach the step edge before gen-
erating nuclei and the growth occurs in step flow mode. Hence, the critical
condition for the mode transition should be

7\40 = VD, Ty, (3.4)

where T, is an average time for one adatom to form a nucleus. If the size of the
critical nucleus is two atoms, t1,,. becomes identical with a collision time T.
However, this assumption may not be true for all cases so we have to derive a
more reliable equation.

Before doing this, we will estimate D,. If we employ the equation given by
Neave et al., we get D, ~ 10™2¢cm?/sec with A, = 10 nm and t = 1 s. On the other
hand, a typical value of t,,. is 1 msec, which gives D, ~ 10 cm?/sec. This value is
10° larger than Neave’s value. Hence, we have to study this problem more carefully.

Figure 3.8 shows the distribution of interface supersaturation between two
steps. In this figure, we assumed