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Preface

Over the last 37 years, thousands of spacecraft have been
launched into orbit for scientific, commercial, environmental, and na-
tional security purposes. One consequence of this activity has been the
creation of a large population of debris—artificial space objects that serve
no useful function—in orbit around the Earth. Much of this debris will
remain in orbit for hundreds of years or more, posing a long-term hazard
to future space activities. Currently, the hazard is fairly low; there are no
confirmed instances of orbital debris seriously damaging or destroying a
spacecraft. However, continuing space operations and collisions between
objects already in orbit are likely to generate additional debris faster than
natural forces remove it, potentially increasing the debris hazard in some
orbital regions to levels that could seriously jeopardize operations in
those regions.

To acquire an unbiased technical assessment of (1) the research
needed to better understand the debris environument, (2) the necessity
and means of protecting spacecraft against the debris environment, and
(3) potential methods of reducing the future debris hazard, the National
Aeronautics and Space Administration asked the National Research
Council to form an international committee to examine the orbital debris
issue. The committee was asked to draw upon available data and analy-
ses to

* characterize the current debris environment,

* project how this environment might change in the absence of new
measures to alleviate debris proliferation,

* examine ongoing alleviation activities,

vii
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viii PREFACE

* explore measures to address the problem, and
+ develop recommendations on technical methods to address the
problems of debris proliferation.

In the summer of 1993, the National Research Council formed a com-
mittee of 11 technical experts from six spacefaring nations to perform this
task. This report, which draws upon existing research, the expertise of
committee members, and material presented in the study’s November
1993 workshop, represents that committee’s consensus view.

The committee strove to ensure that the study focused on technical
issues. This report does not suggest appropriate funding levels for fu-
ture debris research, propose specific protective measures for particular
spacecraft, or lay out detailed implementation strategies for techniques
to contain the future debris hazard. Decisions on such matters involve
political and economic as well as technical considerations and must be
made by entities capable of weighing all these factors. Rather, this report
seeks to provide engineers, scientists, and policy makers with the sound
technical information and advice upon which such decisions must be
based.

The committee would like to thank the many experts who briefed the
committee, participated in the study’s workshop, or in other ways helped
us over the course of this study. I would like to personally thank the
members of the comumittee for their hard work and dedication in devel-
oping this report. Finally, this project could not have been completed
without the dedication and efficiency of the staff of the Aeronautics and
Space Engineering Board. In particular, I want especially to thank Paul
Shawecross, the Study Director, whose hard work, technical knowledge,
organizational skills, writing and editing ability, and ever-present posi-
tive attitude have been key to a successful outcome.

George Gleghorn
Chair
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Executive Summary

Space activities in Earth orbit are increasingly indispens-
able to our civilization. Orbiting spacecraft serve vital roles as commumni-
cations links, navigation beacons, scientific investigation platforms, and
providers of remote sensing data for weather, climate, land use, and na-
tional security purposes. The spacecraft that perform these tasks are
concentrated in a few orbital regions, including low Earth orbit (LEQ),
semisynchronous orbit, and geosynchronous Earth orbit (GEQ). These
orbital regions represent valuable resources because they have character-
istics that enable spacecraft operating within them to execute their mis-
sions more effectively.

Functional spacecraft share the near-Earth environment with natural
meteoroids and the orbital debris that has been generated by past space
activities. Meteoroids orbit the Sun and rapidly pass through and leave
the near-Earth region (or burn up in the Earth’s atmosphere), resulting in
a fairly continual flux of meteoroids on spacecraft in Earth orbit. In con-
trast, artificial debris objects (including nonfunctional spacecraft, spent
rocket bodies, mission-related objects, the products of spacecraft surface
deterioration, and fragments from spacecraft and rocket body breakups)
orbit the Earth and will remain in orbit until atmospheric drag and other
perturbing forces eventually cause their orbits to decay into the atmo-
sphere. Since atmospheric drag decreases as altitude increases, large de-
bris in orbits above about 600 km can remain in orbit for tens, thousands,
or even millions of years.

Although the uncontrolled reentry of some orbital debris could po-
tentially pose a hazard to activities on the Earth’s surface, the major

1
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2 ORBITAL DEBRIS

hazard posed by debris is to space operations. Although the current
hazard to most space activities from debris is low, growth in the amount
of debris threatens to make some valuable orbital regions increasingly
inhospitable to space operations over the next few decades. A respon-
sible approach to orbital debris will require continuing efforts to increase
our knowledge of the current and future debris population, the develop-
ment of tools to aid spacecraft designers in protecting spacecraft against
the debris hazard, and international implementation of appropriate mea-
sures to minimize the creation of additional debris.

CHARACTERIZING THE DEBRIS
ENVIRONMENT

The debris environment is difficult to characterize accurately. First,
the debris population changes continually as new debris is created and
existing debris reenters the Earth’s atmosphere. Detection of such
changes requires that measurements of the debris environment be up-
dated periodically. Second, only the largest objects can be repeatedly
tracked by ground-based sensors; tracking of the numerous smaller pieces
of debris is much more difficult. The U.S. and Russian space surveillance
systems are able to track and catalog virtually all objects larger than 20 cm
diameter in LEO. However, as altitude increases, the minimum-sized
object that these systems are capable of tracking increases, until at GEO
only objects larger than about 1 meter in diameter are presently cataloged.

Characterization of the debris population that cannot be cataloged
must thus be accomplished by sampling the orbital debris flux at particu-
lar locations and times and using these data as a basis for estimating the
characteristics of the general population. The flux can be sampled either
directly (with spacecraft surfaces that are struck by debris) or remotely
(by using ground- or space-based radars or optical telescopes that record
debris passing through their fields of view). Presently, ground-based
remote sensing is the most effective method for sampling the medium-
sized (approximate diameter 1 mm-10 cm) debris population, and in situ
impact sampling is the most effective method for measuring the small
(approximate diameter <1 mm) debris population.

Current measurements of the debris environment contain gaps, such
as a lack of information on objects smaller than 1 meter in diameter in
GEQ, on the small debris population at altitudes above 600 km, and on
the medium-sized debris population above LEO. There are, however,
several promising means for better characterizing the debris population.
For example, large-aperture optical telescopes or telescopes equipped
with charge-coupled devices could be employed to improve cataloging
of large (approximate diameter >10 c¢m) debris in orbits above LEO,
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shorter-wavelength radars situated at low latitudes could be used to im-
prove our knowledge of the medium-sized debris population in LEO,
and active impact detectors deployed at altitudes above 600 km could
extend our knowledge of the distribution of the small debris population.

Using such means to better characterize the orbital debris environ-
ment and applying the knowledge thus acquired can increase the cost-
effectiveness of efforts both to reduce the future debris population and to
protect spacecraft from debris. This is not to suggest an effort to charac-
terize all debris in all orbits; rather, characterization efforts should aim at
providing information needed to fill critical gaps in the data. To focus
this effort the committee recommends that an international group be formed (1)
to advise the space community about areas in the orbital debris field needing
further investigation and (2) to suggest potential investigation methods.

As an interim set of debris characterization research priorities, the
committee recommends the following:

* models of the future debris environment should be further improved,

* uncataloged debris in LEO should be carefully studied,

* further studies should be conducted to better understand the GEQ debris
environment,

* g strategy should be developed to gain an understanding of the sources
and evolution of the small debris population, and

* the data acquired from this research should be compiled into a standard
population characterization reference model.

To improve the efficiency of orbital debris research, the committee rec-
ommends exploring the creation of an international system for collecting, stor-
ing, and distributing data on orbital debris. Finally, to ensure the accuracy of
the data produced by these efforts, the committee recommends that the or-
bital debris community exercise more peer review over its research.

HAZARD TO SPACE OPERATIONS
FROM DEBRIS

The natural meteoroid environment does not pose a serious hazard
to well-designed spacecraft in Earth orbit. However, there are now or-
ders of magnitude more large orbital debris objects than large meteor-
oids in the near-Earth area at any given time. Although measurements of
the medium-sized debris envirorment are sparse, the population of me-
dium-sized orbital debris also appears to be greater than the population
of medium-sized micrometeoroids in the regions of LEO where measure-
ments have been made.

Spacecraft are much more likely to collide with smaller debris than
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with larger objects. In LEQ, the probability of collision with debris in
each size range is believed typically to increase by more than a factor of
100 for every factor of 10 decrease in size over most of the medium to
small debris size ranges. (For example, LEO spacecraft are probably at
least 100 times more likely to be struck by 1-mm-diameter objects than by
l-cm-diameter objects.) In the orbital altitude most densely populated
with debris (between 900 and 1,000 km), models suggest that a typical
spacecrdft (10-square-meter cross-sectional area) has only about one
chance in 1,000 of colliding with a large debris object over the spacecraft’s
10-year functional lifetime. The chance of colliding with 1- to 10-cm de-
bris over the same period, however, is estimated to be about 1 in 100, a
collision with 1-mm to 1-cm diameter debris is believed to be likely, and
frequent collisions with debris smaller than 1 mm will occur.

The chance of colliding with debris varies greatly with orbital alti-
tude and, to a lesser extent, with orbital inclination. Based on the best
available data, the probability of colliding with large or medium-sized
debris in LEO is at least 100 times greater than the average probability in
GEO and is likely to be 1,000 times greater than the probability in less-
used orbital regions. Even within LEO, the collision probability varies
greatly with altitude; for example, the chance of collision with medium-
sized or large debris is probably higher by a factor of 50 at 900-km alti-
tude than at 250 kin. Measurements of small debris are so limited that it
is unclear whether this population follows a similar altitude distribution.

The damage that a collision with debris can cause to a spacecraft
depends on the kinetic energy released in the collision, the design of the
spacecraft, and the geometry of the collision. Due to the typically high
relative velocities of the objects involved, collisions in orbit can be highly
energetic. For example, a 1-kg object involved in a (typical for LEO) 10-
km/s collision will impact with the same relative kinetic energy (about
100 M]) as a fully loaded 35,000-kg truck moving at 190 km/h. If the
kinetic energy released in a collision is large enough compared to the
mass of the objects involved, a catastrophic breakup will occur. In such a
breakup, numerous fragments capable of causing further catastrophic
breakups could be produced. A 1-kg object impacting at 10 km/s, for
example, is probably capable of catastrophically breaking up a 1,000-kg
spacecraft if it strikes a high-density element in the spacecraft. In such a
breakup, numerous fragments larger than 1 kg would be created.

Even if a collision does not fragment a spacecraft, the impact may
generate a variety of other damage modes (e.g., spallation, rupturing,
leakage, and deformation) possibly degrading spacecraft performance or
causing spacecraft failure. In LEO, debris as small as a few millimeters in
diameter can puncture unprotected fuel lines and damage other sensitive
components, and debris smaller than 1 mm in diameter can erode ther-
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mal surfaces and optics. The effect of debris impact on a particular space-
craft is strongly dependent on the spacecraft’s design; debris is far more
likely to damage unprotected spacecraft than those that were designed
with due consideration of the meteoroid and orbital debris environment.
Components that are difficult to protect from debris (including photovol-
taic arrays, suites of communications antennas, and sensors) may, how-
ever, be at risk even in a well-designed spacecraft.

Assessments of the damage caused by debris impact are needed to
(1) design spacecraft components and shielding capable of surviving de-
bris impact, and (2) better understand the effect of collisions on the evo-
lution of the future debris population. Since it is very difficult to gather
data from the rare impacts of medium-sized or large debris in space,
assessment of the potential damage such impacts can cause is accom-
plished primarily through ground-based experimental testing and ana-
lytic/numeric methods. Experimental hypervelocity impact testing gen-
erally provides the majority of information for such assessments; analytic
and numeric tools currently mainly supplement and extend experimen-
tal results.

Current hypervelocity impact facilities cannot, however, simulate all
relevant debris compositions, shapes, and velocities, and data on the vul-
nerability of different spacecraft components to debris impact are lim-
ited. Although analytical and numerical techniques can be used to pre-
dict impact damage for regimes that hypervelocity testing cannot
simulate, these predictions can be inaccurate unless they are based on
experimental data. Unfortunately, many of the experimental data are not
available due to the general inaccessibility of hypervelocity facility capa-
bilities and the impact data generated at these facilities. As a result of
these limitations, current spacecraft protection systems may not provide
their desired level of protection, and current models of the effects of colli-
sions on the future debris population may be inaccurate.

To facilitate the development of improved models of debris impact
damage and enable the development of improved debris shielding, the
committee recommends the continuation of research to characterize the effects of
hypervelocity impacts in the following areas:

* further development of techniques to launch projectiles to the
velocities typical of collisions in LEO;

* improved models of the properties of new spacecraft materials;

* studies of impact damage effects on critical spacecraft components;

* development of analytical tools consistent over a range of debris impact
velocities, shapes, and compositions; and

* improved models of catastrophic space object breakup due to debris
impact.
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To reduce duplication of effort and speed this research, a handbook
describing the capabilities of international hypervelocity testing facilities should
be developed. This handbook would serve to increase opportunities for
sharing data generated at different facilities.

DESIGNING FOR THE DEBRIS
ENVIRONMENT

Although large uncertainties remain, an improved understanding of
the debris environment, combined with (1) the growing availability of
analytic and experimental tools to quantify the threat to a spacecraft from
debris and (2) the development of techniques to protect against debris
impacts, has made it feasible for designers to assess the debris hazard
and attempt to protect their spacecraft appropriately.

Most spacecraft designers are, however, unaware of these tools and
techniques, and very few understand all of the assumptions on which
they are based. Such understanding is important because these tools and
techniques may incorporate models that have not yet been clearly vali-
dated. For this reason, the committee recommends that a guide for spacecraft
designers—including information on environmental prediction, damage assess-
ment, and passive and operational protection schemes—should be developed and
distributed widely.

A spacecraft’s basic structure should be the first line of defense
against the debris hazard, but if necessary, active, passive, and opera-
tional techniques can be employed to provide additional protection. Pas-
sive protection (shielding) of critical components is one viable means of
protection. Shield development continues to decrease the mass of shield-
ing required to protect against debris, though it is uncertain how well
these shields will protect against the full range of debris sizes, shapes,
and compositions. Operational protection schemes, such as the use of
redundant components, may also be appropriate for some spacecraft.
Such schemes can add weight and cost but can also protect the spacecraft
against non-debris-related failures. Active protection measures, such as
on-orbit collision avoidance, are typically expensive and difficult to
implement effectively.

REDUCING THE FUTURE DEBRIS HAZARD

If the only additions to the future debris population were rocket bod-
ies, nonfunctional spacecraft, mission-related debris, and the products of
explosions and surface deterioration, the space object population would
probably continue its roughly linear growth. However, several models
that use different methodologies and different assumptions predict that
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collisions between space objects will add a potentially large and expo-
nentially growing number of new debris objects to this population. Be-
cause of the numerous uncertainties involved in existing models of the
debris environment, it is premature to suggest exactly when such colli-
sional growth will begin to occur; it may already be under way, or it may
not begin for several decades.

Collisional growth is most likely to occur in regions that (1) have a
high debris flux, (2) do not experience a high level of atmospheric drag,
and (3) have high typical collision velocities. Experts believe that two
LEO regions that meet these criteria, at around 900- to 1,000-km and
1,500-km altitude, have already exceeded their “critical density,” the point
at which more fragments will be generated by collisions than will be
removed by atmospheric drag, even if no further objects are added. Po-
tential exponential growth in the debris population of these regions could
force spacecraft designers and operators to take countermeasures against
the threat posed by debris or face a heightened risk of losing spacecraft
capability due to impacts. Because fragments from collisions in regions
experiencing collisional growth may become widely distributed, the col-
lision hazard may be raised even in regions not now threatened by colli-
sional growth.

There are many possible ways to reduce the hazards posed by debris
to future space operations. These include actions taken as a spacecraft
enters orbit, during its operations, and after its functional lifetime. The
active removal of space debris (e.g., the use of debris collection robots or
“sweepers”), however, will not be an economical means of reducing the
debris hazard in the foreseeable future. Design of future spacecraft and
launch vehicles for end-of-life passivation, autonomous deorbiting, or-
bital lifetime reduction, and reorbiting are generally far more economical
ways of reducing the collision hazard.

Growth in the debris hazard can be abated significantly without ex-
orbitant costs by reducing the number of breakups of spacecraft and
rocket bodies and, to a lesser degree, by ending or sharply reducing the
amount of mission-related debris released during spacecraft deployment
and operations. Such measures, however, will not reduce the total mass
of objects in orbit. Since the total mass of objects in orbit is a key determi-
nant of the rate of future collisional population growth, it will be neces-
sary to take measures to remove spacecraft and rocket bodies from some
crowded orbital regions at the end of their functional lifetimes in order to
reduce the potential for exponential growth of the debris population.

Various methods have been proposed to remove spacecraft and
rocket bodies from crowded orbital regions at the end of their functional
lifetimes. In lower-altitude orbits, it is often possible to deorbit or reduce
the orbital lifetime of spacecraft or rocket bodies, typically through a
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final propulsive maneuver. Although direct deorbiting into the Earth’s
atmosphere eliminates debris from orbit rapidly, it requires more fuel
than maneuvering to reduce orbital lifetime. In orbital regions that are
too high above the atmosphere for economical deorbiting or orbital life-
time reduction maneuvers, spacecraft or rocket bodies can be moved to
“disposal orbits” a safe distance away from valuable orbital regions at
the end of their functional lifetimes. Disposal orbits are not a viable
alternative within LEO because perturbing forces make all such orbits
unstable; objects in LEO disposal orbits will eventually cross heavily traf-
ficked orbital regions. Neither the committee nor the wider debris com-
munity can agree on whether disposal orbits should be used by all space-
craft and rocket bodies in GEO.

As with other environmental issues, decisions on the adoption and
implementation of particular debris reduction methods must balance po-
litical and economic as well as technical factors and thus must be made in
forums that are capable of balancing all of these factors. Since implemen-
tation of debris mitigation measures can impose additional costs on space
operations, international rules are needed to ensure that those engaging
in debris mitigation activities are not penalized. For this reason, the com-
mittee recommends that the spacefaring nations develop and implement debris
reduction methods on a multilateral basis.

Given the long development cycle for new space vehicles with de-
bris-minimizing features, the technical development, cost-benefit assess-
ments, and international discussions required to implement countermea-
sures should start as soon as possible. Although these multilateral
discussions cannot be conducted on a purely technical basis, it is crucial
that they be based on sound technical advice. The committee’s consensus
technical assessment of the actions that should be taken to reduce future growth
in the debris hazard, based on our current understanding of the debris environ-
ment and of the costs and benefits of various mitigation measures, is represented
in the following recommendations:

*» Space system developers should adopt design requirements to dissipate
on-board energy sources to ensure that spacecraft or rocket bodies do not explode
after their functional lifetimes.

¢ The release of mission-related objects during spacecraft deployment and
operations should be avoided whenever possible.

* Spacecraft and rocket bodies should be designed to minimize the uninten-
tional release of surface materials, including paint and other thermal control
materials, both during and after their functional lifetimes.

e Intentional breakups in orbit (especially those expected to produce a large
amount of debris) should be avoided if at all possible. No intentional breakups
expected to produce numerous debris with orbital lifetimes longer than a few
years should be conducted in Earth orbit.
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* Spacecraft and rocket bodies in LEO and in highly elliptical orbits pass-
ing through LEO should either be removed from LEQ or have their orbital life-
time reduced at the end of their functional lifetime.

* The use of GEO disposal orbits should be studied further. Until such
studies produce a verifiably superior long-term strategy for dealing with the
GEO debris hazard, operators of GEO spacecraft and rocket bodies should be
encouraged to reorbit their spacecraft at the end of their functional lifetimes if
they are capable of safely performing a reorbiting maneuver to a disposal orbit at
least 300 km from GEO.

The threat that orbital debris poses to international space activities is
presently not large, but it may be on the verge of becoming significant. If
and when it does, the consequences could be very costly—and extremely
difficult to reverse. By contrast, the cost of reducing the growth of the
hazard can be relatively low, involving specialized data collection and
research along with cooperation and information sharing among the de-
velopers and users of space hardware. The committee believes that space-
faring nations should take judicious, timely steps now to understand the
risk and agree on ways to reduce it.
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Introduction

The volume of space surrounding the Earth has never
been empty. Even before the 1957 launch of Sputnik, a rain of particles of
various sizes passed constantly through near-Earth space. The hazard to
functional spacecraft from such naturally occurring meteoroids, however,
is low; simple shielding techniques can protect against the vast majority
of these predominantly small particles, and the chance of a spacecraft
colliding with a meteoroid laxge enough to cause serious damage is re-
mote.

Since the beginning of space flight, however, the collision hazard in
Earth orbit has steadily increased as the number of artificial objects orbit-
ing the Earth has grown. More than 4,500 spacecraft have been launched
into space since 1957; nearly 2,200 remain in orbit. Of these, about 450
are still functional; the rest can no longer carry out their missions and are
considered debris. Nonfunctional spacecraft, however, constitute only a
small fraction of the debris orbiting the Earth. They share Earth orbit
with spent rocket bodies; the lens caps, bolts, and other “mission-related
debris” released into space during a spacecraft’s deployment and opera-
tion; aluminum oxide particles from the exhaust of solid rocket motors;
paint chips from space object surfaces; and the numerous fragmentary
objects generated by the more than 120 spacecraft and rocket body break-
ups that have occurred in orbit. Figure 1 depicts the range of objects in
space, including various types of debris.

It is clear that this artificial orbital debris can potentially endanger
functional spacecraft. In orbits near the Earth, colliding objects typically
will have a relative velocity of more than 10 km/s. At these speeds,

11
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Space Objects
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FIGURE 1 Classes of space objects.

collision with objects as small as a centimeter in diameter could damage
or prove fatal to most spacecraft, depending on where the impact occurs.
Impacts with the much more numerous debris particles that are a milli-
meter or less in diameter can damage optics, degrade surface coatings, or
even crack windows.

There have not yet been any confirmed incidents in which collision
with orbital debris has severely damaged or destroyed a spacecraft, but
there have been a number of spacecraft malfunctions and breakups that
might have been caused by impacts with debris. Smaller debris particles
have certainly pitted windows (of the U.S. Space Shuttle and the Salyut
and Mir space stations) and marred the surfaces of spacecraft such as the
Solar Maximum Mission spacecraft (Solar Max) and the Long Duration
Exposure Facility (LDEF). This type of low-grade damage is probably
very widespread in low Earth orbit (LEO), but much of it goes undetec-
ted, because most spacecraft are not returned to Earth for examination.

Since the late 1970s, studies of the debris population using modeling
techniques have predicted that the hazard from orbital debris is likely to
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grow in time unless deliberate actions are taken to minimize the creation
of new debris. This predicted increased hazard will force spacecraft de-
signers and operators to take countermeasures against the threat of de-
bris or to face a heightened risk of losing spacecraft capability due to
impacts. Projected future increases in the debris hazard already have
had an effect on the design of LEO spacecraft (such as the International
Space Station) that are large and have long projected functional lifetimes
and, thus, a significant probability of colliding with damaging debris.

Concern about the orbital debris hazard has grown in the last de-
cade. A number of events, including the breakup of several rocket upper
stages and the replacement of Shuttle windows after impacts by small
particles, helped to increase awareness of the problem, as did the need to
factor space debris considerations into the design of Space Station Free-
dom. Reports by the American Institute of Aeronautics and Astronautics
(AIAA), the European Space Agency (ESA), the U.S. Interagency Group
on Space, the International Academy of Astronautics (IAA), and the Ja-
pan Society for Aeronautical and Space Sciences also served to define the
problem better and to offer some suggestions on its mitigation.

Knowledge about orbital debris also has grown over the last few
years. New data on the debris population have been gathered from a
multitude of sources, ranging from LDEF, the European Retrievable Car-
rier (EURECA), and Mir—all of which collected data from the impacts of
small debris in space—to the Haystack radar, which collected data on
previously undetectable medium-sized debris. These new data have
served to improve the models used to estimate the current characteristics
and predicted growth of the overall debris population.

Despite these efforts, there remains much that we do not know about
orbital debris. The primary reason is the fundamental difficulty of study-
ing small, fast-moving, often dark objects orbiting hundreds or thousands
of kilometers above the Earth. Our knowledge also is limited because

BOX 1 Other Effects of Orhital Debris

n aictdition 10 presenting a collision hezard o space operation: orbital debrig
can olso have other detrimental effects. For examnie dabris can affect astronom-
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fields of view. 0 addition, debris reentenng the atmosphers can potentially harm
people and oroperty on the dround, in the past, this has been a minor hazard,
Since moo reentering debns objects burn Lo completely in the atmosohers,
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Knowr.
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much of the data on debris to date have been collected as a by-product of
non-debris-related investigations that have covered limited ranges of de-
bris size and altitude for limited time frames. As a result, there are gaps-
in our understanding of the debris population: for example, estimates of
the important population of LEO debris with diameters in the range of 1
mm to 10 cm still vary by a factor of two or more; we know that breakups
have occurred in geosynchronous Earth orbit (GEO) only because tele-
scopes happened to be looking at spacecraft when they broke up; most
debris experts were surprised when LDEF data suggested the existence
of a significant population of small debris in elliptical orbits; and there
are no meaningful measurements of debris smaller than 1 mm at alti-
tudes higher than 600 km.

Although there is still a great deal of work to be done in defining the
current and future debris environment, enough data have been gathered
and analyses performed that we are beginning to understand better the
overall magnitude of the orbital debris problem. In addition, the broader
space community is becoming aware that debris is a serious issue, and a
consensus is building that actions must be taken now to preserve the
space environment for the future. The challenge that we now face is to
implement an appropriate set of actions to respond to the issues raised
by orbital debris. This is not a simple problem, and it will not have a
simple solution. A responsible approach to orbital debris will require

e continuing measurement and modeling efforts to increase our
knowledge of the current and future debris population;

e the development of tools to aid spacecraft designers in protecting
their spacecraft appropriately against the existing debris hazard; and

» widespread implementation of appropriate measures to minimize
the creation of additional debris.

This report seeks to provide some guidance on how to achieve these
goals.
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Space Operations and the
Space Environment

SPACE OPERATIONS

In the 37 years since the launch of Sputnik 1, space op-
erations have become an integral component of the world’s economy,
scientific activities, and security systems. Orbital debris is inextricably
linked with these operations: debris is created in the course of these
operations and is important because it poses a potential threat to future
operations. Understanding some of the characteristics of historical, cur-
rent, and future space operations is thus essential to understanding the
overall debris problem.

Today, spacecraft owned by 23 nations and several international or-
ganizations (representing more than 100 countries) support a wide vari-
ety of important missions, including communications, navigation, me-
teorology, geodesy and geophysics, remote sensing, search and rescue,
materials and life sciences, astrophysics, and national security. A broad
spectrum of simple and sophisticated functional spacecraft, with masses
ranging from tens of kilograms to tens of metric tons and operational
lives ranging from one week to more than ten years are employed to
carry out these space activities.

These spacecraft are placed into orbit by a wide variety of launch
vehicles. These launch vehicles, which may be either solid or liquid fu-
eled, use multiple stages (some of which may themselves go into orbit) to
place spacecraft into their desired orbit. Some spacecraft retain the stage
used to perform their orbital insertion maneuver, and most spacecraft
have some propulsive capability for attitude control and performing or-

17
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BOX 1-1 Examples of Heavily Used Orbital Regions
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bital corrections. These spacecraft are placed into orbits from which they
can accomplish their particular mission effectively, resulting in a highly
nonuniform distribution of spacecraft about the Earth. Box 1-1 lists three
heavily used orbital regions and some of the reasons why they are used.
(Additional information about these and other orbital regions is contained
in the Glossary.) A few spacecraft each year are launched out of Earth
orbit and into interplanetary space; the hazard to future space operations
from these probes is utterly negligible.

The distribution of spacecraft around the Earth at the start of 1994 1s
displayed in Figure 1-1. This distribution is not static; as missions, tech-
nologies, and available launch vehicles change, the distribution of func-
tional spacecraft also changes. For example, over the past three decades,
the annual percentage of new space missions to orbits above LEO has
been increasing; in 1993, High Earth Orbits (HEOs) were the final desti-
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nation of 42 percent of successful launchings worldwide. Proposed fu-
ture constellations of communications spacecraft in LEO may reverse this
trend.

Figure 1-1 reveals a few characteristics of the current spacecraft popu-
lation. Most spacecraft reside in LEQ, but there are three significant
concentrations in higher orbits. There is a concentration of spacecraft
(performing Earth observation and communications missions) in GEQ.
A second concentration in and near circular semisynchronous orbits is
made up of spacecraft from the U.S. Global Positioning System (GPS)
and the Russian Global Navigation Satellite System. There is also a sig-
nificant population of spacecraft in highly elliptical Molniya-type orbits,
including Commonwealth of Independent States (CIS) early warning and
communications constellations. (In this report, we will refer to pre-1992
space activities of the former USSR as “Soviet” and those of 1992 and
later as either “Russian” or of the CIS, as appropriate.) In LEQ, notable
peaks exist around 1,400 to 1,500 km (due in part to a constellation of
Russian communication spacecraft and debris from three breakups of
Delta rocket bodies) and 900 to 1,000 km (due in part to Sun-synchronous
remote sensing and navigation spacecraft and their associated debris).
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FIGURE 1-1 Spacecraft population in Earth orbit, 1994, SOURCE: Prepared by
Kaman Sciences based in part on U.S. Space Command Satellite Catalog,.
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Most space activities involving humans occur below about 600 km; there
are currently few spacecraft in these low orbits because atmospheric drag
at these altitudes causes fairly rapid orbital decay.

TYPES OF ORBITAL DEBRIS

The more than 3,600 space missions since 1957 have left a legacy of
thousands of large and perhaps tens of millions of medium-sized debris
objects in near-Earth space. Unlike meteoroids, which pass through and
leave the near-Earth area, artificial space debris orbit the Earth and may
remain in orbit for long periods of time. Of the 23,000 space objects
officially cataloged by the U.S. Space Surveillance Network (55N) since
the beginning of the space age, nearly one-third remain in orbit about the
Earth; the majority of these are expected to stay in orbit for tens or hun-
dreds of years. The increasing population of cataloged space objects 1s
represented in Figure 1-2. It is imperative to note that this figure shows
only the objects large enough to be repeatedly tracked by ground-based
radar. The vast majority of debris is too small to be tracked and is not
represented in the figure.

Objects in Earth orbit that are not functional spacecraft are consid-
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FIGURE 1-2 On-orbit cataloged population (corrected for delayed cataloging).
SOURCE: Prepared by Kaman Sciences Corporation based in part on U.5. Space
Command Satellite Catalog. '
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Box 1-2 Debris Size Conventions
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ered debris. Spacecraft that are passive, serving as platforms for laser
ranging experiments, atmospheric density measurements, or calibration
of space surveillance sensors are considered functional, as are spacecraft
that are currently in a reserve or standby status and may be reactivated
in the future to continue their mission. Each other type of object in Earth
orbit may be classified as belonging to one of four types of debris: non-
functional spacecraft, rocket bodies, mission-related debris, and fragmen-
tation debris. Figure 1-3 indicates the relative numbers of cataloged func-
tional spacecraft and debris as of March 1994, More than 90% of these
cataloged space objects are of U.S. or Soviet/CIS origin, while the re-
mainder belong to nearly 30 other countries or organizations.

Nonfunctional Spacecraft

Functional spacecraft represent only about one-fifth of the spacecraft
population in Earth orbit—the large majority of orbiting spacecraft are
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~

FUNCTIONAL SPACECRAFT  (6%)

NON-FUNCTIONAL
SPACECRAFT  (22%)

FRAGMENTATIQ
DEBRIS  (42%)

ROCKET BODIES (17%)
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FIGURE 1-3 Cataloged space objects by category, 1994. SOURCE: Prepared by
Kaman Sciences Corporation based in part on U.S. Space Command Satellite Cat-
alog.

nonfunctional. With very few exceptions, functional spacecraft that reach
their end of life (EOL), through either termination or malfunction, are left
in their former orbit or are transferred to slightly higher or lower alti-
tudes (i.e., are reorbited). Typically, EOL reorbiting maneuvers are per-
formed only by geosynchronous or semisynchronous spacecraft and by
LEO spacecraft carrying nuclear materials. Historically, these EOL ma-
neuvers have almost always resulted in longer orbital lifetimes. Only
crewed vehicles and a few other spacecraft (e.g., reconnaissance or space
station related) in very low orbits are normally returned to Earth at the
conclusion of their missions.

- BOX 1-3 Museum Piece in Orbit

The oidest nonfunctional spacecralt in ot s the 1 5-kg Vanguard | space-
craft, which was launched by'the United States on March 17, 1958, and ceased
to firiction i 1964, Vanguard | now resides in an eliiptica) orbe of 650 km by
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Rocket Bodies

The majority of functional spacecraft are accompanied into Earth or-
bit by one or more stages (or “rocket bodies”) of the vehicles that
launched them. Usually only one rocket body is left in orbit for missions
to LEO, but the launch vehicle of a high-altitude spacecraft such as GOES
(Geostationary Operational Environmental Satellite) may release up to
three separate rocket bodies in different orbits along the way to its final
destination. Relatively few spacecraft types (e.g., the U.S. National QOce-
aruc and Atmospheric Administration and Defense Meteorological Satel-
lite Program meteorological spacecraft and Soviet nuclear-powered ocean
reconnaissance spacecraft) are designed to retain their orbital insertion
stages and leave no independent rocket bodies. Figure 1-4 depicts the
rocket bodies and other large debris placed into various orbits in the
course of a Proton launch vehicle’s delivery of a payload to GEQ.

The presence of rocket bodies in orbit is of particular importance to
the future evolution of the Earth’s debris population due to their charac-
teristically large dimensions and to the potentially explosive residual pro-
pellants and other energy sources they may contain. Although the larg-
est stages, which are generally used to deliver spacecraft and any
additional stages into LEO, usually reenter the atmosphere rapidly,
smaller stages used to transfer spacecraft into higher orbits and insert

TWO FAIRINGS SUBORBITAL __, /B
{LIFETIME <20 MIN.) H

TWO MISSION-
RELATED OBJECTS, ——
200 X 36,000 KM .
(LIFETIME 6-36 MONTHS)

o—. PAYLOAD, GEOSYNCHRONOUS
(LIFETIME =1 MILLION YRS)

FOURTH STAGE, NEARLY GEOSYNCHRONOUS
(LIFETIME =1 MILLION YRS}

)-*——- ADAPTOR, 200 KM CIR (LIFETIME <4 DAYS)

»—— THIRD STAGE, 200 KM CIR
(LIFETIME <=4 DAYS)

+—0u. SECOND STAGE, SUBORBITAL
(LIFETIME < 20 MIN)

+— FIRST STAGE, SUBORBITAL
(LIFETIME = 20 MIN)

TOTAL CATALOGED OBJECTS PER LAUNCH : SIX

FIGURE 1-4 Typical debris produced in a Proton launch to GEQ. SOURCE:
Teledyne Brown Engineering.



Orbital Debris: A Technical Assessment (1995)
http://www.nap.edu/openbook/0309051258/html/24.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

24 ORBITAL DEBRIS

them into those orbits may remain in orbit for long periods of time. Many
of these rocket bodies are in orbits that intersect those used by functional
spacecraft.

Mission-Related Debris

Other space objects, referred to as mission-related debris, may be
released as a result of a spacecraft’s deployment, activation, and opera-
tion. Parts of explosive bolts, spring release mechanisms, or spin-up de-
vices may be ejected during the staging and spacecraft separation pro-
cess. Shortly after entering orbit, the spacecraft may release cords
securing solar panels and other appendages or eject protective coverings
from payload and attitude control sensors. The amount of debris re-
leased can be quite large; a detailed study of the debris released by one
Russian launch mission revealed that 76 separate objects were released
into orbit from either the launch vehicle or the spacecraft. Numerous
debris may also be created during a spacecraft’s active life. For example,
during the first eight years of its operation, more than 200 pieces of mis-
sion-related debris linked with the Mir space station were cataloged. Al-
though the occasional item accidentally dropped by a cosmonaut or as-
tronaut may be newsworthy, the majority of this type of debris is
intentionally dumped refuse. Since mission-related debris are often rela-
tively small, only the larger items can be detected and cataloged by
present-day ground-based surveillance networks.

Another type of mission-related debris comes from the operation of
solid rocket motors normally used as final transfer stages, particularly on
GEO missions. Current solid rocket fuel usually employs significant
quantities of aluminum mixed with the propellant to dampen burn rate
instabilities. However, during the burning process, large numbers of
aluminum oxide (A1,0,) particles are formed and ejected through a wide
range of flight path angles at velocities up to 4 km/s. These particles are
generally believed to be no larger than 10 microns in diameter, but as
many as 102 may be created during the firing of a single solid rocket
motor, depending on the distribution of sizes produced. While the or-
bital lifetimes of individual particles are relatively short, a considerable
average population js suggested by examinations of impacts on exposed
spacecraft surfaces. More than 25 solid rocket motor firings were con-
ducted in orbit during 1993.

More recently, attention has been drawn to another side effect of
solid rocket motors. Ground tests indicate that in addition to the large
number of small particles, a smaller number of 1-cm or larger lumps of
ALO, are also ejected during nominal burns. The only indication of the
existence of such objects are data from ground tests carried out at
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Marshall Space Flight Center, Alabama, and the Amold Engineering and
Development Center (Siebold et al., 1993). These medium-sized particles,
which have lower characteristic ejection velocities and smaller area-to-
mass ratios than the smaller particles, may also be longer-lived than the
small particles and could pose a long-term hazard to other Earth-orbiting
space objects.

Fragmentation Debris

Fragmentation debris—the single largest element of the cataloged
Earth-orbiting space object population—consists of space objects created
during breakups and the products of deterioration. Breakups are typi-
cally destructive events that generate numerous smaller objects with a
wide range of initial velocities. Breakups may be accidental (e.g., due to
a propulsion system malfunction) or the result of intentional actions (e.g.,
space weapons tests). They may be caused by internal explosions or by
an unplanned or deliberate collision with another orbiting object.

Since 1961, more than 120 known breakups have resulted in approxi-
mately 8,100 cataloged items of fragmentation debris, more than 3,100 of
which remain in orbit. Fragmentation debris thus currently makes up
more than 40 percent of the U.S. space object catalog (and undoubtedly
represents an even larger fraction of uncataloged objects). The most in-
tensive breakup on record was the 1987 breakup of the Soviet Kosmos
1813, which generated approximately 850 fragments detectable from the
Earth. The fragmentation debris released from a breakup will be ejected
at a variety of initial velocities. As a result of their varying velocities, the
fragments will spread out into a toroidal cloud that will eventually ex-
pand until it is bounded only by the limits of the maximum inclinations
and altitudes of the debris. This process is illustrated in Figure 1-5. The
rate at which the toroidal cloud evolves depends on both the original
spacecraft’s orbital characteristics and the velocity imparted to the frag-
ments; in general, the greater the spread of the initial velocity of the
fragments, the faster will the evolution occur.

In contrast, debris fragments that are the product of deterioration usu-
ally separate at low relative velocity from a spacecraft or rocket body that
remains essentially intact. Products of deterioration large enough to be
detected from Earth are occasionally seen—probably such items as thermal
blankets, protective shields, or solar panels. Most such deterioration is be-
lieved to be the result of harsh environmental factors, such as atomic oxy-
gen, radiation, and thermal cycling. During 1993 the still-functional COBE
(Cosmic Background Explorer) spacecraft released at least 40 objects detect-
able from Earth—possibly debonded thermal blanket segments—in a nine-
month period, perhaps as a result of thermal shock.
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FIGURE 1-5 Evolution of
a debris cloud. SOURCE:
Kaman Sciences Corpora-
tion.

Phase 1

Phase 2

Another serious degradation problem involves the flaking of small
paint chips as a space object ages under the influence of solar radiation,
atomic oxygen, and other forces. Paint, which is used extensively on
both spacecraft and rocket bodies for thermal control reasons, can dete-
riorate severely in space, sometimes in a matter of only a few years. The
potential magnitude of the problem was not fully recognized until the
1983 flight of the STS-7 Space Shuttle mission, when an impact crater on
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Box 1-4 ﬁegraﬁatian Debrls F‘rom LDEF
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| (ML blanketsion the space- facing end came partially loose when the Kaptonape
Holdirg themite the spacecraft, became brittle in the ultravioler light exposure.
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{See er'all] 1990; Adams.et 2., 1994 Several solar array specimens feach of
which was approximately 5/<m by 10 cm) also came loose, from [ IDEF. These
specimens were mounted on Kapton subwal:eﬁ that were erodad By atomic oy
gern exposure. (Whitaker.and Young, 19971}, The astronauts or board the shurtle
visually identtified {and filmed: one of the released solar array specimens as they|
Vapproached LDEF during its retrieval mission The fiims from this mission alsc
show & cloud;of smail particles surrounding £DEF. (

an orbiter window was apparently caused by a paint chip smaller than a
millimeter in diameter. Subsequent analyses of spacecraft components
returned from LEO have confirmed the presence of a large population of
paint particles, even though the orbits of individual particles decay quite
rapidly.

PERTURBATION FORCES AFFECTING
SPACE OBJECTS

Once in orbit, debris is affected by perturbing forces that can alter its
trajectory and even remove it completely from orbit. Other than the
gravitational attraction of the Earth, the primary forces acting on a space
object in lower orbits (below about 800 km) are atmospheric drag and
gravitational perturbations from the Earth. These gravitational perturba-
tions, however, although affecting some orbital parameters, do not gen-
erally strongly affect orbital lifetime. For space objects in higher orbits,
solar and lunar gravitational influences become more important factors,
Small debris can also be affected by solar radiation pressure, plasma drag,
and electrodynamic forces, although the effects of plasma drag and elec-
trodynamic forces are typically dwarfed by the effects of solar radiation
pressure. '

The rate at which a space object loses altitude is a function of its
mass, its average cross-sectional area impinging on the atmosphere, and
the atmospheric density. Although the Earth’s atmosphere technically
extends to great heights, its retarding effect on space objects falls off rap-
idly with increasing altitude. Atmospheric density at a given altitude,
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however, is not constant and can vary significantly (particularly at less
than 1,000 km) due to atmospheric heating associated with the 11-year
solar cycle. This natural phenomenon has the effect of accelerating the
orbital decay of debris during periods of solar maximum (increased sun-
spot activity and energy emissions). During the last two peaks in the
solar cycle, the total cataloged space object population actually declined,
because the rate of orbital decay exceeded the rate of space object genera-
tion via new launches and fragmentations.

Figure 1-6, which displays the predicted orbital lifetimes for a num-
ber of different objects in circular LEOs at different periods in the solar
cycle, illustrates the importance of cross-sectional-area-to-mass ratio, alti-
tude, and solar activity in determining orbital lifetimes in LEO. First,
objects with low ratios of cross-sectional area to mass decay much more
slowly than objects with high area-to-mass ratios. Second, objects at low
altitude experience more rapid orbital decay than objects at high altitude.
Finally, objects decay much more rapidly during periods of solar maxi-
mum than during the solar minimum.

Solar-lunar gravitational perturbations primarily affect the orbital
lifetimes of space objects in highly elliptical orbits (e.g., Molniya-class or
Geostationary Transfer Orbits [GTO]). Depending on the alignments of
the space object’s orbital plane with the Moon and the Sun, these forces
can either accelerate or decelerate the orbital decay process substantially.
For example, a GTO rocket body could reenter the Earth’s atmosphere
within a few months or remain in orbit for more than a century, depend-
ing on the position of the Sun and the Moon at the time of its injection
into transfer orbit. GEQ missions launched by the CIS routinely take
advantage of these forces to limit the lifetime of GTO debris to less than
three years, with many objects decaying in less than six months.

Solar radiation pressure normally induces a noticeable effect on a
space object’s orbit if that object possesses a large area-to-mass ratio.
These effects can lead to an increase in the eccentricity of the orbit, which
in turn leads to more rapid decay if the resulting lower perigee exposes
the space object to significantly greater atmospheric density levels. Insu-
lation materials and inflatable space objects are often strongly affected by
solar radiation pressure. Debris from the ruptured Pageos balloon, for
example, exhibited strong orbital perturbations due to solar radiation
pressure, as has some debris from more conventional fragmentations.

The combination of all of these forces has caused approximately
16,000 cataloged objects to reenter the atmosphere since the beginning of
the space era. In recent years, an average of two to three space objects
large enough to be cataloged (as well as numerous smaller debris par-
ticles) reenter the Earth’s atmosphere each day. Over the course of a
year, this amounts to hundreds of metric tons of material. This material is
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FIGURE 1-6 Orbital decay time versus altitude. SOURCE: National Aeronau-

tics and Space Administration.

composed primarily of large objects that were launched into low orbits
(most of the mass is in the form of large multiton rocket bodies) and
small objects with high cross-sectional-area-to-mass ratios. Seldom do
any large objects initially placed into orbits higher than 600 km reenter

the atmosphere.
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FINDING

Finding 1: Orbital debris travels in a variety of orbits and is affected by
various perturbation forces, including the effects of the Earth’s atmo-
sphere, gravitational perturbation effects, and solar radiation pressure.
As orbital altitude increases, the effect of the atmosphere in accelerating
orbital decay becomes small, and typical large objects in orbits higher
than approximately 600 km can remain in orbit for tens, hundreds, or
even thousands of years.

REFERENCES

Adams, [.H., L.P. Beahm, and A.J. Tylka. 1991. Preliminary results from the heavy ions in
space experiment. P. 377 in NASA. Conference Publication 3134, LDEF—69 Months in
Space: Proceedings of the First Post-Retrieval Symposium, Kissimmee, Florida, June
2-8. A.S. Levine, ed. Hampton, Virginia: NASA Langley Research Center.

See, T., M. Allbrooks, D. Atkinson, C. Simon, and M. Zolensky. 1990. Meteoroid and Debris
Impact Features Documented on the Long Duration Exposure Facility: A Preliminary
Report. NASA JSC #24608. Houston, Texas: NASA Johnson Space Center.

Siebold, K.H., M.]. Matney, G.W. Ojakangas, and B.]. Andersor. 1993. Risk analysis of 1-2
¢m debris population for solid rocket motors and mitigation possibilities for geotrans-
fer orbits. Pp. 349-351 in Proceedings of the First European Conference on Space De-
bris, Darmstadt, Germany, April 5-7. Darmstadt: European Space Operations Center.

U.S. Space Command. 1994. U.S, Space Command Satellite Catalog. Cheyenne Mountain
Air Force Base, Colorado: U.5. Space Command.

Whitaker, A F., and L.E. Young. 1991. An overview of the first results on the Solar Array
Materials Passive LDEF Experiment (SAMPLE), A0171. P. 1241 in NASA Conference
Publication 3134, LDEF-69 Months in Space: Proceedings of the First Post-Retrieval
Symposium, Kissimmee, Florida, June 2-8. A.S. Levine, ed. Hampton, Virginia: NASA
Langley Research Center.



Orbital Debris: A Technical Assessment (1995) . .
http://www.nap.edu/openbook/0309051258/html/31.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

2

Methods for Characterization

Information about the orbital debris environment is
needed to determine the current and future hazard to space operations
from debris. Unfortunately, the debris environment is difficult to char-
acterize accurately. Only the largest debris objects can be repeatedly tracked
by ground-based sensors; detection and tracking of the numerous smaller
pieces of debris is much more difficult. A variety of measurement tech-
niques have been developed, however, that enable statistical estimates to
be made of the number and characteristics of some size ranges of smaller
debris iterns in some orbits. These estimates rely on scientific and engi-
neering models of population characteristics. More complex models are
used to estimate the characteristics of the future debris population.

TRACKING AND CATALOGING ORBITAL DEBRIS

Current Capabilities

A small percentage of debris in orbit is tracked and cataloged. The
orbital parameters (e.g., period, inclination, apogee, and perigee) of these
objects are entered into a catalog, generally along with information on
the object’s origin—only objects with known origins are entered into the
catalog—and its radar or optical cross section. These data can then be
used for such purposes as predicting potential collisions and recognizing
space object breakups. Cataloging space objects requires an expensive
network of sensors capable of observing objects periodically to deter-
mine any changes in their orbital elements and of continually performing
orbit determination computations.

31
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Currently, only two systems in the world have the necessary net-
work of ground-based sensors and computational capability to carry out
this task. One, the Space Surveillance Network (SSN), is operated by the
United States under the control of the U.S. Space Command; the other,
the Space Surveillance System (SSS), is operated by the Russian military
(see Box 2-1). The primary purpose of each system is to detect objects
that present a military threat; thus, although each is capable of detecting
certain types of debris, neither system is optimized to perform the task of
maintaining a debris catalog.

BOX 2.1 The Russian and U.S. Space
Surveillance Systems
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The ease with which a particular space object can be tracked depends
on its optical or radar cross section (RC3) as well as its orbital param-
eters. In general, objects with larger optical or RCSs are more easily
detectable than objects with smaller cross sections. Both the optical and
the radar cross sections of particular space objects can vary greatly—
which is not surprising for a collection of irregular-shaped objects. Un-
certainty in the relation of RCS to actual size means that the smallest
objects that these systems are able to catalog is uncertain, but since few
objects in the SSS or SSN catalogs have an RCS of less than about 0.01
square meter, the commonly reported minimum trackable size has been
10 cm in diameter. '

Recent radar range calibration of fragments produced in the labora-
tory, combined with measurements by short-wavelength radar and by
ground telescopes (Henize and Stanley, 1990), have provided additional
insight into the limiting size of the objects maintained in the catalog.
These data indicate that for LEO orbital inclinations above about 30 de-
grees, the U.S. catalog contains some objects as small as 10 co but is not
complete at this size range. The catalog for LEO objects with inclinations
greater than 30 degrees, however, is estimated to be 90 to 99 percent
complete for objects larger than 20 em.

As orbital altitude increases, the minimum size of debris that can be
detected by ground-based sensors increases. However, this does not
mean that the minimum-sized object that can be cafaloged increases
steadily with altitude. The opportunity for repeated observations and
the predictability of an object’s position in orbit also increase with alti-
tude, making the maintenance of the orbital elements of a high-altitude
detected object easier. Consequently, for altitudes below about 2,000 krhn,
there is no simple statement of the limiting size of the catalog, other than
that it is in the 10- to 30-cm range. However, radar detection sensitivity
rapidly decreases with increasing altitude, and by 5,000 km the smallest

BOX 2.2 Comparison of the SSN and 535 Catalogs
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objects detectable by radar are about 1 meter in diameter. Above 5,000
km, optical telescopes become the primary sensors; these have the sensi-
tivity to track meter-sized objects in GEO—though this does not mean
that all meter-sized objects in GEO are cataloged.

Current space surveillance systems have difficulties in cataloging
some space objects in highly elliptical orbits and low-inclination orbits.
Objects in highly elliptical orbits are difficult to detect because they spend
a large fraction of their time at very high altitudes, while objects in low-
inclination orbits are more difficult to detect because of the relative lack
of sensors (in either network) at low latitudes. Recent experiments by the
U.5. Space Command confirmed the SSN’s difficulty in cataloging space
objects in low-inclination and high-eccentricity orbits (Pearce et al., in
press; Clark and Pearce, 1993). It should be emphasized that these pecu-
liarities do not represent deficiencies in the way the networks perform
their normal mission of maintaining a catalog for military reasons, but
rather reflect the fact that they were not designed to characterize the
space debris population.

Improving Tracking and Cataloging Capabilities

International cooperation might present an opportunity to make
some improvement in the catalogs without significant expenditure. The
555 and the SSN both routinely track objects not found in the other’s
catalog, so sharing catalog data will improve the completeness of both
catalogs. (It is not at all clear, however, that sharing catalog data would
increase the accuracy with which the orbital parameters of cataloged ob-
jects are known.) Since both the 555 and the SSN have similar limita-
tions, it is already clear that information sharing between the two sys-
tems would not significantly increase the size of the catalog or improve
detection of medium-sized debris. There is also a potential obstacle to
such collaboration in that there axe legitimate security reasons for not
sharing all data received from national surveillance networks; this may
not be a major issue because both networks are capable of editing data
before sharing them.

One factor that limits the ability of most space surveillance sensors to
detect smaller debris is that they were not designed to detect small ob-
jects. Most space surveillance radars operate in the UHF and VHF ranges;
debris smaller than about 10 cm in diameter are in the Rayleigh scatter-
ing region for these frequencies and are thus not easily detected, and the
record of their orbital elements is not easily kept current. A National
Aeronautics and Space Administration (NASA) study on the possible
protection of the Space Station against debris concluded that 10 cm was
an inherent limit for the current sensors of the SSN and that these sensors
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could not easily be modified to improve sensitivity (NASA, 1990). The

Russian SSS is currently working to increase its capability to observe
small objects with exjsting sensors, focusing research on lowering the
sensitivity thresholds of its current radars and on developing new meth-
ods to acquire weak signals using narrow-angle and narrow-beam sen-
sors and making full use of existing data regarding the space object’s
motion. While this research may allow the SSS to track somewhat smaller
debris, radars operating at much shorter wavelengths (e.g., 3 cm wave-
length to detect 1 cm diameter objects in LEQ) will ultimately be required
to detect debris significantly smaller than 10 ¢cm in diameter.

Increasing the accuracy of predictions of the future location of objects
in LEO is another means of improving tracking and cataloging capabili-
ties. Such improvement is a necessary requirement for the development
of an effective collision warning capability in LEO; increased accuracy is
required to keep the number of false alarms for such a system low, since
moving spacecraft is a task not undertaken lightly. (Collision warning
schemes are discussed in some detail in Chapter 7.) Currently, uncer-
tainty in the future location of objects due to atmospheric drag is the
major limitation on catalog accuracy in LEO. This unavoidable uncer-
tainty is due to variability in the density of the upper atmosphere and
uncertainty about objects” orbital attitude (and thus the cross-sectional
area they present to the atmosphere) and normally dwarfs inaccuracies
caused by observation errors and errors in propagation theory. As is
shown in Figure 2-2, atmospheric drag retardation along the orbital track
of medium to large space objects in 300- to 600-km-altitude orbits can
range up to hundreds of kilometers per day.

The most optimistic estimate of the accuracy with which atmospheric
drag can be determined is +15 percent; consequently a prediction error
(which cannot be calibrated) of several kilometers per day is typically
accumulated. Keeping the number of false alarms for a LEO collision
warning system at a tolerable level thus requires frequent reobservations
of debris objects. (Collision warning systems for objects in regions where
atmospheric drag is less critical would not have this limitation; in GEO,
for example, errors in estimates of objects’ initial positions would be re-
sponsible for the majority of false alarms.) Improvements in propagation
accuracy could be achieved by positioning sensors to minimize the re-
quired propagation time and by improving understanding of upper-at-
mospheric density fluctuations.

Improving the ability to track and catalog objects in orbits above
LEO is basically a matter of improving the sensors (both radar and opti-
cal) used to detect high-altitude objects and acquiring enough data from
these sensors to determine the orbital parameters of the objects they de-
tect. Detecting objects that are less bright (because they either are smaller,
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FIGURE 2-2 One day along-track drag retardation for a random sample of cata-
loged objects at 300-600 km. SOURCE: U.5. Naval Space Command Satellite
Catalog.

are further away, or have a lower albedo) might be accomplished with
either larger-aperture telescopes or telescopes equipped with charge-
coupled devices (CCDs). Siting debris-detecting sensors at Jow latitudes
could allow a broad variety of objects, including those in low-inclination
orbits, to be detected. Finally, increasing the number of sensors avail-
able to detect debris would allow for better tracking of cataloged objects
and for more searches for uncataloged objects.
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SAMPLING ORBITAL DEBRIS

Since it is currently impossible to track all debris in orbit, measuring
and characterizing the uncataloged debris population must be carried
out by sampling the debris flux at particular locations and times and
using the data as a basis for estimating the characteristics of the general
population. The orbital debris flux can be sampled either directly (with
spacecraft surfaces that are later returned to Earth for examination) or
remotely (using ground- or space-based radars or optical telescopes that
record debris as it passes through their fields of view). Although sam-
pling—combined with predictive models—can be used to provide im-
portant clues to the nature of debris populations that are not included in
the catalog, it is important that the limitations of the technique, including
any sampling biases, be taken into account. For example, rather than
portraying the steady-state small debris population in LEO, in situ mea-
surements of small debris particles acquired by examining returned
spacecraft surfaces portray only the average debris flux along a particu-
lar orbit during a particular time frame.

Remote Sampling from Earth

Optical Sensors

At first glance, the use of ground-based telescopes to sample the de-
bris population seems like a promising technique. Such sampling is usu-
ally carried out by pointing the telescope in a fixed direction and count-
ing objects as they pass through its field of view. A 1l-meter diameter
telescope in darkness can theoretically detect a sunlit metal sphere 1 cm
in diameter at 900-km distance. If this were all there was to the problem,
data from optical sensors could be used to estimate the population of
objects larger than 1 cm in diameter in orbits up to 900 km.

Unfortunately, most debris fragments reflect much less light than a
metal sphere; typically only about 10 percent of the light is reflected. In
addition, objects in LEO have angular velocities of at least 0.5 degree per
second when viewed from the ground, which further increases the diffi-
culty of optical detection. Finally, there can be difficulty in discriminat-
ing between debris and the luminosity caused by meteors interacting
with the atmosphere. Theoretically, this last problem can be solved com-
pletely by using two telescopes and determining the object’s altitude with
the measured parallax, or solved partially by using the object’s angular
velocity to approximate its altitude.

Despite these drawbacks, ground-based telescopes engaged in sam-
pling have provided some valuable information on the LEO population
of debris around 10 cm in diameter. Tests to detect uncataloged debris in
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LEO with ground-based telescopes have been carried out by NASA (in
cooperation with the Massachusetts Institute of Technology’s Lincoln
Laboratory and the U.S. Space Comunand) since 1983. These tests used
electro-optical telescopes of approximately one 1-m diameter and, as
mentioned earlier, aided in the determination of the approximate size
ranges of debris contained in the SSN catalog. Although the exact size of
debris detectable by these telescopes is not certain since they measure
pieces of debris with a variety of unknown reflectivities, the average mini-
mum object size detectable is slightly smaller than 10 cm (Kessler, 1993).

Ground-based telescopes also can be used to sample the space debris
population above LEQ. The limited efforts to sample the HEO popula-
tion to date include surveys of GEO by the Russian Academy of Sciences
and NASA, and surveys of GTO performed by ground-based electro-
optical deep-space sensors sites. Tests to observe objects in the geostation-
ary orbit with ground-based optical sensors have detected uncataloged
objects, but there have been no comprehensive surveys of the geosta-
tionary ring and the size of its uncataloged population remains unclear.

Many of the features suggested earlier for improving the tracking
and cataloging of high-altitude debris using optical sensors (e.g., larger
apertures, low-inclination sites, or the use of CCDs) would also be useful
for sampling the debris population. One additional feature particularly
useful for sampling is a wide field of view, which gives an optical sensor
the ability to sample large areas and thus gather more data. This is very
useful in optical sensing, where the need for good lighting conditions can
severely limit the hours a telescope can be used to look for objects in
Earth orbit.

NASA is beginning to use a 3-m diameter “liquid-mirror” telescope
to sample the debris population. Large liquid mirrors can be constructed
relatively inexpensively because they use mercury, spun to keep it in the
necessary parabolic shape, to form their reflecting surface. Such tele-
scopes are constrained to always point vertically; although this makes
some types of observation difficult, it does not hamper debris sampling.
NASA finished construction of its first liquid mirror, which will operate
within the United States, in 1994 and has already obtained stellar images
from the telescope’s temporary site in Houston. A second liquid-mirror
telescope to be sited near the equator is planned. These telescopes should
be able to regularly detect debris down to about 2-cm diameter at alti-
tudes up to 500 km.

Radar Sampling

Short-wavelength ground-based radars also have been used effec-
tively to sample the medium-sized debris population in LEO. Radars
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sample debris in a “beam park” mode (similar to the sampling technique
used by ground telescopes), in which the radar stares in a fixed direction
(preferably vertically to maximize sensitivity) and debris is counted as it
passes through the radar’s field of view. Since 1987, significant amounts
of sampling data have been obtained by using the Arecibo, Goldstone,
and Haystack radars. In addition, the longer-wavelength FGAN and MU
radars have demonstrated the ability to sample the medium and large
debris population, respectively (Mehrholz, 1993; Sato et al., 1992).

In 1989, the Arecibo Observatory’s high-power 10-cm-wavelength
radar and the Goldstone Deep Space Communications Complex’s 3-cm-
wavelength radar were used (with the assistance of other radars) to ob-
tain orbital debris data. Neither radar was designed to track debris, but
both were expected to detect small debris if it existed. In 18 hours of
operation, the Arecibo experiment detected nearly 100 objects larger than
an estimated 0.5 cm in diameter (Thompson et al., 1992). In 48 hours of
observation, the Goldstone radar detected about 150 objects larger than
approximately 0.2 cm in diameter (Goldstein and Randolph, 1990). Be-
cause little effort was made either to accurately define the collection area
of these radars or to properly calibrate them, these data have fairly large
uncertainties. Even so, these experiments demonstrated that data could
be obtained in a beam park mode and that there was a large population
of smaller debris to be detected.

Since 1990, more than 2,400 hours of data have been collected and
analyzed from the Haystack radar (Stansbery et al.,, 1994). This 3-cm-
wavelength radar situated at 42°N latitude can be pointed either verti-
cally or south, 10 or 20 degrees above the horizon. In the vertical mode,
maximum sensitivity is obtained, but detection in LEO is limited to orbits
with inclinations greater than 42 degrees. When the radar is pointed
south, sensitivity is poorer, but LEO objects with inclinations as low as 25
degrees can be detected. The complete data set from the Haystack obser-
vations contains information on the size, altitude, range rate (the rate of
change in the distance from the object to the radar), and direction of
motion of debris at altitudes up to 1,500 km. The data on the direction of
motion can be used to determine an object’s orbital inclination with a
typical uncertainty of about 5 degrees (though uncertainty can be much
higher for objects that are barely detectable). The range rate data can be
used to determine orbital eccentricity when pointed vertically and incli-
nation when pointed near the horizon. In the vertically pointing mode,
the smallest objects detected range from about 0.3 cm at 350 km to 0.7 cm
at 1,400 km. In the south-pointing mode the smallest objects detectable
are larger—typically about 1 cm. Haystack transmits right circularly po-
larized radio waves and receives both left and right circularly polarized
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waves. The polarization of the reflection can be used to infer the general
shape of the objects detected.

Calibration of the data acquired by using sampling radars can be
achieved by a number of techniques. These include radar range mea-
surements of fragments of known size, shape, and mass, and the use of
orbital calibration spheres. The Haystack radar used both of these tech-
niques. In this case, the range measurements indicated that irregular
fragments reflected similarly to spheres but a broad distribution of pos-
sible signal returns must be considered in interpreting the data. Existing
calibration spheres, as well as the Orbital Debris Radar Calibration
Spheres (ODERACS), were also used in calibration.

Future efforts to sample the debris population with ground-based
radars may be the most effective means to collect data on medium-sized
debris in LEO. Improvements in this capability can be achieved by (1)
performing more debris sampling with existing radars; (2) siting new
radars so they can detect low-inclination debris populations; and (3) us-
ing high-powered, short-wavelength radars to detect smaller debris.

Increasing the amount of time that radars spend sampling debris is
basically a problem of allocating the resources needed to carry out addi-
tional searches. Continued sampling efforts with existing radars can in-
crease statistical confidence in existing data and, over time, could pro-
vide information on changes in the debris population. However, the
Haystack, Goldstone, and Arecibo radars, which were not designed to
detect debris, have other users preventing them from being used full-
time for debris detection and are expensive to operate. For these reasons,
the Haystack Auxiliary Radar (HAX) was recently built specifically to
detect debris. HAX, which is located near the Haystack radar, will not be
as sensitive as Haystack, but its slightly larger field of view and lower
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operating costs will allow data on low-altitude, medium-sized debris to
be collected more rapidly and at a lower total expense. Data collection
from this sensor began in 1994.

Locating a similar short-wavelength radar near the equator could
further improve radar debris sampling over the capability of the HAX.
Such a sensor could sample the entire LEO population, rather than just
those objects with higher-inclination orbits. Comparisons between the
populations detected by HAX and an equatorial sensor could also help
iluminate the distribution of uncataloged debris by inclination.

Higher-power and shorter-wavelength radars might also improve
sampling capabilities, although there are limits to such a strategy. A
high-power, 1-cm-wavelength radar with a large antenna, for example,
would be capable of acquiring data on debris as small as 0.1 ¢cm in LEO,
but the construction and operation of such radars could be very expen-
sive. Itis not feasible to detect even smaller debris from Earth by further
decreasing the radar wavelength because the Earth’s atmosphere absorbs
radar signals with wavelengths smaller than about 1 cm.

Remote Sampling from Orbit

Remote sampling of debris from orbit could provide data on debris
that are very difficult to detect from Earth, but there are a number of
difficulties, both technical and economic, in such an approach. The major
advantages of space-based sensors are that they can be much closer to
orbital debris than ground-based sensors and that they do not have to
peer through the Earth’s atmosphere to see the debris. Their major dis-
advantage is the difficulty and cost of developing and deploying the
powerful sensors typically required to detect these relatively small, fast-
moving, and often dark objects.

Although no space-based remote sensor has yet been dedicated to
debris observation, debris has been detected in the course of space-based
astrophysical observations. The Infrared Astronomical Satellite, which
was designed to image deep-space infrared sources, detected possible
debris objects down to 1 mm in size at distances of up to 1,000 km, but
difficulties in calibrating the sensors make extrapolating these results to
the general population very problematic (de Jonge, 1993). The White
Light Coronagraph on Skylab and the Hubble space telescope are also
likely to have detected debris, but their data have not been analyzed for
this purpose.

Many additional space-based remote sensors to detect debris have
been studied and proposed since the late 1970s (Kessler and Cour-Palais,
1978; Neste et al., 1982). Among these are proposals by Russian experts,
who proposed using space-based optoelectronic sensors to detect debris
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X 2-5 Space-Based Remote Sensing of Debris:
An Example
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(Utkin et al., 1993); German experts, who proposed flying optical sensors
on a space station or the U.5. Space Shuttle (Bendisch et al., 1993); and
US. experts. In the United States, NASA (working with Ball Corpora-
tion) has done extensive work on an infrared system for debris detection
and collision warning for the Space Station and has proposed a space-
craft (see Box 2-5) with two small telescopes capable of monitoring the 1-
mm and larger environment (Portree and Loftus, 1993). In addition,
Kaman Sciences Corporation has proposed an optical (visible and infra-
red) debris detection and characterization system for use on the U.S.
Space Shuttle, and the U.S. Department of Energy’s National Laborato-
ries (specifically Sandia, Los Alamos, and Livermore), along with several
companies, have each proposed various sensors (including radar, infra-
red, optical, and LIDAR) as potential space-based debris detection sen-
sors. In early 1995, the U.S. Department of Defense plans to launch its
MSX (Midcourse Space Experiment) spacecraft, which will use ultravio-
let, infrared, and visible light sensors developed for other purposes to
search for uncataloged debris.

Both passive or active remote sensors in orbit could theoretically be
used to detect debris. Passive sensors (such as telescopes) detect objects
by using existing illumination (such as reflected sunlight or the infrared
radiation emitted by heated objects). Active sensors (such as LIDAR or
radar) illuminate an object and detect the reflected illumination. One
advantage of active sensors is that a single active sensor can accurately
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determine an object’s range and the rate at which the range changes. In
contrast, two passive sensors are needed to determine the range of an
object, and even in pairs, current passive sensors would have difficulty in
accurately determining the rate at which the range changes. This does
not rule out the use of passive sensors for debris detection, however,
because range and range rate determinations, while helpful in under-
standing the data collected, are not essential to obtaining useful data.
Passive sensors also require less power than active sensors and have a
smaller loss of sensitivity with range, so they are typically less expensive
and will detect more objects than active sensors.

Since larger objects are easier to detect, the collection area of orbital
remote sensors increases with increasing debris size. Although theoreti-
cally this should allow these sensors to detect a statistically meaningful
sample over a large range of debris sizes, there are practical limitations,
particularly in LEO. For example, small debris can be detected only so
close to the detector that (in LEO) the expected high velocity at which the
objects will pass across the field of view requires rapid readout rates,
which increases noise for certain optical systems and increases the re-
quired data transmission rates for any system (unless on-board process-
ing is used). For these reasons, it is currently difficult to observe small
debris in LEO with space-based remote sensors. In contrast, debris larger
than 1 ¢m can be detected at considerable distances, so the problems
caused by movement across the sensor’s field of view are much less se-
vere. However, in the lower regions of LEQ, it is more practical to detect
debris in this size range from the surface of the Earth (because of the
larger sensors available on the ground). Ground-based sensors may even
be superior for the task of detecting LEO debris significantly smaller than
1 em in diameter; the largest available ground-based radar used to detect
debris (the Goldstone radar) can detect debris as small as 2 mm in diam-
eter. Consequently, space-based remote sensors are likely to add signifi-
cantly to our knowledge of the LEO debris environment only at higher
LEQ altitudes and in latitude bands that are not adequately characterized
by ground-based sensors.

Space-based remote sensors offer more promise in HEOs, particu-
larly GEO. At high altitudes, space-based sensors would be much closer
to the debris being detected than Earth-based sensors and would have to
detect only objects smaller than about a meter in diameter to improve on
current measurements. In addition, objects in GEO would move rela-
tively slowly across a sensor’s field of view, greatly simplifying detec-
tion. However, either multiple sensors or sensors able to move along
the geostationary ring would be needed to observe objects throughout
GEO.
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Impact Sampling

Currently (and for the foreseeable future), space debris particles
smaller than a few millimeters in diameter cannot be detected by using
Earth-based measurement techniques; effective remote sensing of such
particles from orbit may also be infeasible. In situ impact techniques,
however, can be used to sample this population effectively, characteriz-
ing particle sizes and materials as well as orbital distributions and dy-
namics (although such characterizations can be extremely difficult). Such
measurements can be performed either passively, by exposing surfaces
in orbit and then returning them to Earth for examination, or actively, by
using any of a number of techniques ranging from impact detection with
simple semiconductor-based sensors to chemical composition analysis of
impacting particles with complex sensors.

There are a number of limitations on all current approaches to in situ
debris sampling. First, impact detectors can sample only debris that in-
tersects the orbit in which they are traveling. Second, the extent of the
environment measured (in terms of the particle sizes that can be expected
to impact the detector) and the statistical validity of the data are both
dependent on the detector’s total exposed area and the exposure time.
Third, some measure of the impacting particle’s velocity vector or its
composition is needed to identify specific sources of impacting particles
(i-e., whether they are meteoroids or orbital debris), and knowledge of
the particle’s velocity vector is also necessary to determine its pre-impact
orbital parameters. Such knowledge is, however, difficult to acquire.

Passive Measurements

Passive in situ measurements of the debris environment are made by
exposing samples of materials to the space environment and then return-
ing them to Earth. Once on the ground, craters and perforations in the
materials are measured and the diameters and impact velocities of the
particles that caused this damage are estimated. Such data have been
collected from the Apollo capsule windows, from Skylab exposure ex-
periments, from U.S. Space Shuttle windows, from materials returned
from the Solar Maximum Mission spacecraft, from the Salyut and Mir
space stations, from the Palapa and Westar spacecraft, from LDEF, and
from the European Retrievable Carrier (EURECA). Most recently, mate-
rials returned from the repair of the Hubble space telescope were made
available for assessment.

Although these represent a significant number of surfaces over an
extended period of time, the value of the data gathered in these experi-
ments is limited. First, all of these data were acquired at altitudes be-
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tween about 300 and 600 km; consequently, little is known about how the
small debris population varies with altitude. Second, few of the surfaces
returned to Earth for analysis have been adequately calibrated against
one another; this makes analysis of variations in the impacting popula-
tion over time difficult. In addition, passive sensors provide only inte-
grated time-exposure data rather than time-dependent data, so little can
be determined about the effects of solar activity on the small debris popu-
lation or the existence and location of debris “swarms.” Finally, because
the majority of returned surfaces were not designed for debris testing, it
is often difficult to distinguish between the impacts of orbital debris and
micrometeoroids.

The applicability and validity of the damage scaling laws used to
interpret the data from passively exposed detector materials are also an
issue. Historically, the damage scaling laws used to estimate impactor
characteristics from a surface crater or perforation have been derived
empirically or are semiempirical. Different sets of scaling laws for inter-
pretation have been applied to every set of impact data returned to date,
and multiple different scaling laws (e.g., McDonnell and Sullivan, 1992;
NASA, 1970) were used for LDEF and EURECA. Interpretations of im-
pactor size by these different scaling laws vary by up to about a factor of
three for typical “theoretical debris parameters” (e.g., spherical alumi-
num projectiles impacting an aluminum surface at 10-11 km/s); for im-
pacts outside this regime (such as impacts of steel or tantalum objects)
the variations can range up to a factor of about 15 or more. Since the
main basis of models for the sizes of small debris particles comes from
these data, improving scaling laws may be an effective means of improv-
ing models of the debris environment. Recently there has been some ef-
fort toward this end. LDEF debris experiments emphasized the need to
acquire chemical data on impact features; such data helped to improve
damage models as well as estimates of the debris population. LDEF
experiments also resulted in the development of a consistent set of phys-
ics-based scaling laws for all velocities and ductile materials (Watts et al.,
1993). Reevaluation of historical data using these scaling laws could re-
sult in a more reliable data set on which to base environment models for
small debris. These physics-based scaling laws, however, require a thor-
ough understanding of both the materials (impactor and target) and the
impactor shape involved in the impact, so they may not be applicable to
many experiments.

Active Measurements

Active detectors have been used to detect meteoroid impacts since
the early days of space activity. For many years, Salyut space stations
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had active impact detectors (Kuzin, 1993), as did Explorers 16, 23, and 46,
and the Pegasus series of spacecraft in the 1960s (Mulholland, 1993).
There are a wide range of active detectors, from simple impact detectors
to complex chemical composition sensors. The simplest and cheapest
detectors (and the ones most able to be made into large area detection
systems) are acoustic, piezoelectric, pressurized cell, and capacitive dis-
charge impact detectors. These and other simple impact detectors emit a
signal when impacted or perforated. There are also many complex detec-
tors (such as plasma detectors, plasma charge separation systems, optical
photometers, and chemical and spectrum analyzers) that return a wide
range of data regarding the impactor (Atkinson et al., 1993).

Active detectors are able to acquire characterization data that cannot
be obtained by passive means. For example, time-dependent measure-
ments of the environment can be made only with active detectors. Such
measurements provide the necessary data for monitoring short-term
changes in the environment as well as for determining and modeling the
dynamics of environmental processes such as formation, distribution, tar-
get interactions, and orbital decay. The capabilities of active detectors
were made clear by LDEF’s Interplanetary Dust Experiment, which used
very simple active impact detectors (semiconductor capacitors that dis-
charge on impact) to make time-specific measurements of the debris en-
vironment that led to the first detection and monitoring of concentrated
clouds of small debris particles (Mutholland et al., 1991). Active sensors
would also be required for potential future missions such as the detec-
tion of collisions through measurements of the flux of small debris (Pot-
ter, 1993).

A wide range of different types of active detectors can be deployed
together to maximize the data gathered about each debris impact. Such
data include information about the number of impacts per unit time and
area; the time of each impact; and the velocity, size, and material compo-
sition of the impacting particle. Since on-board collection and transmis-
sion of data is possible with active detectors, the return of active detec-
tors to the ground is not necessary; this enables the deployment of active
detectors at any altitude. If a return to Earth is planned, however, active
detectors can be combined with passive detector techniques.

Active detectors typically cost much more than passive detectors.
Complex detection systems incorporating multiple active detector tech-
niques to determine impact velocity and impactor composition, such as
those flown on the recent Japanese Hiten and German Brem-Sat space-
craft (Hiidepohl et al., 1992) and those planned for the Cassini spacecraft
(Ratcliff et al., 1992), can cost hundreds of thousands to millions of dol-
lars to develop and build. However, for specific missions such as detec-
tion and monitoring of orbital debris swarms, simple and relatively inex-
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pensive active detector systems can be built and deployed. For example,
the Clementine 1 interstage adaptor incorporated capacitive discharge
impact detectors similar to those flown on LDEF. Approximately 0.14
square meter of exposed detector area was placed around the circumfer-
ence of the adapter, which was discarded in a highly elliptical orbit
around the Earth. This Orbital Meteoroid and Debris Counter (Kinard,
1993) experiment, which had a total weight of approximately 0.5 kg, op-
erated until the interstage adapter reentered the atmosphere in May 1994.
The total design, development, and integration cost of this experiment
was $200,000.

Active detectors can have a variety of other limitations, depending
on the type of detector. First, complex active detectors are often inther-
ently limited to a few tens of square centimeters of exposed area, can
have high masses (in the tens of kilograms), and require large volumes to
contain the instruments and associated electronics. In addition, active
detectors can suffer from problems with data interpretation and can re-
quire many calibration tests. The majority of recent developmental work
on active detectors has focused on reducing cost and weight for a given
level of performance (e.g., Mulholland, 1993), the development of com-
bined detector systems, and better calibration of currently available de-
tectors (e.g., Kassel and Wortman, 1994).

Extending the Range of In Situ Detectors

In situ detectors have the potential to be used to better characterize
the population of medium-sized debris particles. As discussed previ-
ously, debris particles a few millimeters in diameter (the lower end of the
medium-sized debris range) are very difficult to characterize with even
improved ground-based sensors, and remote sensing of such particles in
LEO would be a difficult and probably costly effort. The basic problem
with detecting these objects via in situ techniques is that (as is discussed
in Chapter 3) the flux of medium-sized objects is much lower than the
flux of small objects. Medium-sized debris will thus impact a given sen-
sor much less often than will small debris, producing much less data to
analyze.

Either very large or very long duration in situ sensors, however, have
the potential to provide an effective means of sampling the medium-
sized debris population by exposing a large enough surface area over a
long enough time for it to be impacted by the relatively sparse flux of
these particles. There are difficulties with very long duration missions,
however: they would obviously not provide data for some time, and their
data would be less valuable because they would represent the average
flux over a long period of time. Very large detectors may thus be the
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best means to conduct in situ impact sampling of the population of me-
dium-sized debris up to a few millimeters in diameter (while also pro-
viding a great deal of data on the small debris population).

Historically, the available exposure area has been limited such that
the largest particle diameters detected by in situ detectors to date have
been approximately 1 mm (on LDEF; See et al., 1990). However, propos-
als have been put forward for achieving much larger exposure areas
(Kuzin, 1993; Strong and Tuzzolino, 1989). Both of these proposals de-
pend on the use of thin-film active detectors that generate a signal when
perforated. The proposal by Strong and Tuzzolino recommended devel-
opment of a spacecraft with tens to hundreds of square meters of detec-
tor area in multiple large deployable arrays (similar to deployable solar
power panels). Based on current predictions of the medium-sized and
small debris flux, these large detectors should collide with a few particles
as large as 1 mm in diameter (as well as numerous particles smaller than
1 mm) annually in LEO (Kuzin, 1993).

The Kuzin proposal recommended the in-orbit modification of the
Progress-M cargo spacecraft used by Russia to support its Mir space sta-
tion operations. The Progress-M would be modified by space station
cosmonatuts, drawing on Russian experience in extravehicular activities
and the construction of large deployable structures. The modifications
would provide power modules and a large deployable detector array
(similar in design to deployable communication and radar antennas) that
could extend several thousands or tens of thousands of square meters of
detector area at space station altitudes. A few debris particles 5 to 10 mm
in diameter, as well as numerous smaller particles, are expected to collide
with (and thus be detected by) such detector areas annually (Kuzin, 1993).

These large-detector concepts are intriguing and technically achiev-
able today, but may be less cost-effective or feasible than other types of
space-based sensors previously discussed and yet not provide more
meaningful data. The primary disadvantage of these large active array
proposals is the cost of the detectors. The feasibility of ensuring a reason-
able orbital lifetime for the detectors at low altitudes (given their poten-
tially high area-to-mass ratios) also needs to be studied. Finally, the po-
tential hazard to other spacecraft from these large arrays may be a
problem.

STRATEGIES TO MEASURE THE
DEBRIS ENVIRONMENT

Figure 2-3 depicts measurements of the LEO debris environment
made since 1980. The major gaps that exist in the altitude and size range
data are apparent, as is the intermittent nature of most of the data gather-
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FIGURE 2-3 Qrbital debris characterization data—diameter versus altitude ver-
sus year. SOURCE: Kaman Sciences Corporation.

ing. (There are actually additional gaps in the data that do not appear in
the figure, such as the paucity of data on debris—particularly small and
medium-sized debris—in low-inclination orbits.) The haphazard nature
of the data is a result of the fact that most measurements of the debris
environment to date were not part of an overall strategy to understand
the environment but rather were gathered whenever measurement op-
portunities arose.

Further ad hoc experiments to measure the debris environment will
add to our knowledge of debris, but cost-effective characterization of the
debris environment (including understanding the time- and altitude-vari-
ant nature of the debris population, the sources of small debris, and the
collision hazard in widely used orbital regions) will require experiments
designed specifically to address these questions. However, there 1s cux-
rently no national or international strategy for implementing experiments
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to maximize our knowledge of the debris environment. Such a strategy
would prioritize the altitude, size, and inclination regimes of highest in-
terest for data collection and would identify the data (such as composi-
tion and size, or orbital eccentricity) that are of interest within each re-
gime. This strategy could provide guidance about which detection
systems would be most worthwhile to deploy on a given spacecraft and
which ground-based sensors could be developed or tasked to observe
particular debris size and altitude ranges.

MODELING ORBITAL DEBRIS

Models of the orbital debris population are needed to fill in gaps in
the existing measurement data, to interpret new data, and to project the
characteristics of the future debris environment. There are two major
classes of debris models in use today. Population characterization mod-
els take information about the orbital elements and other characteristics
of space objects and convert them into measurable parameters such as
flux, detection rate for an instrument, or collision velocity. More com-
plex models are used to understand the future growth in the debris popu-
lation. These model types are not entirely distinct; the output of a model
of one type is often used as the input for a model of the other type.

Population Characterization Models

Population characterization models convert data on the orbital ele-
ments and other characteristics of space objects into measurable param-
eters, such as flux, detection rate for an instrument, or collision probabil-
ity. This conversion is necessary both to help researchers interpret data
collected in experiments that sample the uncataloged orbital debris envi-
ronment and to aid designers in determining the debris hazard to their
spacecraft.

Different types of population characterization models have different
degrees of uncertainty. Determining the probability that an object in a
certain orbit will pass through a particular area of space, for example,
requires few assumptions (Kessler, 1981a). Consequently, the average
rate at which a given set of objects in known or assumed orbits will pass
through a sensor’s field of view or impact another object can be calcu-
lated with an accuracy of a few percent. However, attempts to determine
other characteristics, such as size or albedo, of objects detected by a sen-
sor will usually have a greater uncertainty, due to the variables that con-
tribute to the-sensor’s signal return.

The application of additional population characterization models,
however, can reduce these uncertainties. For example, the diameter of an
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impact crater on a spacecraft surface is related not only to the impacting
object’s mass but also to its velocity (speed and direction), which is re-
Jated to the object’s orbital characteristics. Population characterization
models can thus be employed to predict a probability distribution of ve-
locities from an assumed orbit distribution, which can then be used to
create a probability distribution of particle masses. The impacting object’s
mass can then be estimated from this probability distribution. A similar
method can be used to estimate the size of space objects detected by a
telescope. For a telescope, the brightness of an observed object is a func-
tion of the object’s size, optical properties, and orientation as it passes
through the telescope’s field of view. In this case, population character-
ization models can use expected distributions of optical properties and
orientations to convert the measured distributions of brightnesses into a
distribution of probable sizes.

NASA’s “Engineering Orbital Debris Model” (Kessler et al., 1991),
and the ESA engineering model (Sdunnus and Klinkrad, 1993) are ex-
amples of a particular type of population characterization model used by
spacecraft design engineers. These models predict the flux of orbital
debris that might strike a spacecraft during its lifetime as a function of
debris size and velocity for various spacecraft orbital altitudes and incli-
nations. Although such models are based primarily on measurements of
the orbital debris environment, they use the results of more complex mod-
els to extrapolate these measurements.

This type of model also serves as a “reference model” and is used to
compare measurements and evaluate relative hazards. There are cur-
rently no recognized standard population characterization reference
models; researchers and designers must rely on models that have not
undergone peer review or that may not contain the latest data. This can
potentially lead experimenters to interpret their data improperly or space-
craft designers to improperly assess the hazard to their spacecraft.

Models of the Future Debris Population

The earliest models used to predict the future orbital debris environ-
ment (Kessler and Cour-Palais, 1978; Kessler, 1981b; Su and Kessler, 1985)
built on the population characterization models and combined breakup
models with atmospheric drag models to predict the environment in the
1980s and beyond. These relatively simple models predicted an environ-
ment in the 1990s that is not greatly different from that being measured
today. Currently, more complex models are used to predict the growth
in the orbital debris population. Such models combine a traffic model, a
breakup model, and an orbit propagation model to predict possible fu-
ture orbital debris population states. Two such models in common use
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today are NASA’s EVOLVE (Reynolds, 1993) and the University of
Braunschweig’s CHAIN (Rex and Eichler, 1993). These models take esti-
mates of the current space object population, add new debris from vari-
ous sources (e.g., collisions, explosions, mission-related debris), and
propagate the orbits of these objects over time to create a static descrip-
tion of the debris population at a selected time in the future. (The predic-
tions these models make about the future debris environment are dis-
cussed at length in Chapter 8.)

Each of the component models that goes into such models as
EVOLVE and CHAIN has its own characteristics and uncertainties. A
traffic model keeps track of spacecraft, rocket bodies, and any associated
debris launched into orbit by recording when these objects are placed in
orbit, their sizes and masses, and their initial orbital elements. Some of
these objects will break up into smaller fragments or degrade and release
smaller debris. A breakup model describes the number of fragments gen-
erated in a breakup, as well as the changes in velocity that place them
into slightly different orbits. An orbit propagation model then determines
how the orbits of both intact space objects and space object fragments
change as a function of time.

Traffic Modeling

The growth and evolution of the Earth-orbiting space object popula-
tion will be influenced in large measure by the frequency and character
of future space operations. Space traffic models, coupled with propaga-
tion and breakup models, predict the magnitude and nature of these op-
erations and their effect on the LEO and HEO space object populations.
Traffic models must account for (1) all objects (e.g., spacecraft, rocket
bodies, mission-related debris) to be placed into Earth orbit; (2) the apo-
gee, perigee, and inclination of each object’s orbit; (3) the size and mass
of each object, (4) any planned reorbiting or deorbiting maneuvers at the
end of an object’s functional lifetime; and (5) any stored energy left in the
rocket body or spacecraft that may cause it to explode.

Ideally, space traffic models should look far enough into the future to
assess the impact of actions to curb the growth of the total space object
population. Predicting even the overall level of space activities over such
a time frame, however, is often futile, since very few national or commer-
cial space programs have credible long-range plans extending for more
than 8 to 10 years, and even these plans are affected by programmatic,
technical, and economic trends; changing national and market require-
ments; and advances in technology. As a further complication of the
problem, it is important to know the population in each orbital region, so
that low traffic estimates in one altitude region of the model do not offset
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unanticipated missions in another altitude region. For all of these rea-
sons, space traffic models have historically been poor predictors of future
activities. Nevertheless, scenarios of potential levels of future activity
can be developed and used to evaluate the influence of future launch
activity on population.

Breakup Models

Breakup models are used to characterize the fragments generated in
space object breakups. The results of these models are typically used to
estimate existing debris populations and to predict the future popula-
tion. Most breakup models use the type and amount of energy causing
the breakup of a space object of a given mass to estimate the resulting
fragment distribution. The most useful breakup models are semi-
empirical and incorporate the laws of physics as well as existing data on
breakups in their calculations. However, there are two major difficulties
involved in developing an accurate breakup model. First, no “typical”
amount of debris is generated in an explosion or collision, since there are
many different causes of explosions and many different types of colli-
sions (e.g., two spacecraft colliding head-on will produce more debris
than a collision between a 10-cm fragment and a spacecraft’s solar array).
Second, and perhaps more problematically, there are very few data on
which to base breakup models.

Few experiments have been conducted to improve breakup models;
most available data have been obtained as a byproduct of experiments
with other objectives. Explosion data have been gathered from such
sources as an accidental Atlas missile explosion, munition explosion tests
(Bess, 1975), and explosions in orbit, although recently, some ground-
based explosion tests have been conducted specifically to determine the
velocity and mass distributions of explosion fragments (Fucke, 1993).
Data on collisions are also limited; for many years, the primary sources of
such data were the pioneering work of Bess at the NASA Langley Re-
search Center in 1975 and several series of tests performed for the U.S.
military during the late 1970s and early 1980s. Debris from the military
tests were examined for NASA in the 1980s explicitly to refine the foun-
dation of satellite impact breakup models. The deliberate on-orbit colli-
sions of P-78 and D-180 in the mid 1980s added to this database, though
no significant data are available on the smaller (untrackable) fragments
produced in these tests.

Recently, however, more complete data on the fragments created in a
collision-induced breakup were acquired from tests specifically designed
to improve breakup models. In these tests, the U.S. Defense Nuclear
Agency shot a 150-gram projectile at 6 km/s into parts of an actual space-
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BOX 2-6, Modeling Debris Clouds

Orfze specialized type of breakup model focuses op the dynarics of the debris
clolids formed following @ collision or explosion in orbit IChobatov | 1990] 4 AL
though these moedels do not contribute sinnificantly either to ectimates of rhe

CUrrent popularion or to the understanding of the long-term debris popliation.
they can be useful inlbredicting the shortterm nazard v spacectalt inr orbits rear
where albroakup occurred | Such information is particulariy useful for designers of
spacecraft constellations, who dre interested In ensuring that the treakupof one
spacecraft will not overly endanger other spacecraft in the constellation,

craft and into a full-scale spacecraft model (Hogg et al., 1993). Unfortu-
nately, analysis of the data from these tests was not completed due to a
lack of funding. Consequently they have not resulted in any significant
improvements in most breakup models, although the tests did demon-
strate that breakup models that predicted few small fragments were in-
correct. NASA has recently contracted with Kaman Sciences Corpora-
tion to complete the analysis of these tests.

These data, particularly the data from the in-orbit breakups, shed
light mostly on the characteristics of the larger debris produced. Only
the largest fragments of a breakup in orbit can be tracked, although fairly
accurate velocity and area-to-mass ratios can be determined for these
fragments. Even in ground tests, often only the larger fragments are
recovered, since a great amount of work is required to recover the smaller
pieces. As a result, the amount and the velocities of smaller debris pro-
duced in breakups are not well known.

Propagation Models

Orbit propagation models predict how the orbits of space objects
change as a function of time. This information is used for two major
purposes: determining the location of particular space objects in the rela-
tively near term (typically over a period of a few days or less for pur-
poses of collision avoidance or reentry predictions) and making long-
term (typically over a period of years) predictions about the debris
environment. The short- and long-term propagation tasks have some
common characteristics, but each also faces unique challenges.

Both short- and long-term propagation models must take into ac-
count the various forces acting on space objects in Earth orbit. As de-
scribed in Chapter 1, these include atmospheric drag, solar radiation pres-
sure, gravitational perturbations by the Sun and Moon, and irregularities



Orbital Debris: A Technical Assessment (1995)
http://www.nap.edu/openbook/0309051258/html/56.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

56 ORBITAL DEBRIS

in the gravitational field of the Earth. Fortunately, few objects in Earth
orbit are affected significantly by many of these forces; the particular
forces relevant to each object depend on the object’s orbit and area-to-
mass ratio. Since accurate orbit propagation models that include all forces
acting on an orbiting object can be very computation intensive, most mod-
els take into account only the forces that most strongly atfect the space
objects in a particular orbital region. (For example, in LEO, where oxbital
inclination does not change significantly with time, the long-term propa-
gation task is reduced to determining the changes in orbital perigee and
apogee due to atmospheric drag.)

Accurate short-term deterministic propagation models require that
the forces on an object be known and predictable. The inherent un-
predictability in atmospheric drag (discussed in Chapter 1) thus intro-
duces error into the predictions of short-term deterministic propagation
models for objects in low LEQO orbits (less than about 500 km). Accurate
deterministic predictions in this region for tasks such as collision warn-
ing, which require a high degree of accuracy and propagation of at least a
significant fraction of a day, can be achieved only by making repeated
observations with increasing calculation fidelity as the time to impact
decreases. The Russian 5SS uses such an approach to solve actual tasks
in debris-related contingencies (e.g., space objects about to reenter). Its
approach employs short-term density prediction models utilizing (in ad-
dition to knowledge of solar and geomagnetic activity) data on the cur-
rent drag experienced by other space objects to specify atmospheric den-
sity.

Uncertainty in the day-to-day atmospheric drag is not such a prob-
lem for long-term propagation modeling in LEO, both because much of
the uncertainty can be averaged over time and because long-term models
are not as concerned with objects in the orbits most affected by atmo-
spheric drag (which tend to reenter the atmosphere fairly rapidly). The
long-term uncertainty in atmospheric drag, however, still limits the fidel-
ity of long-term propagation models in LEO. If solar and geomagnetic
activity are known, long-term atmospheric density models are accurate
to within about 20%. However, atmospheric density can vary by more
than a factor of 10 over the 11-year solar cycle, and the level of future
solar cycles is unpredictable. Consequently, only very simple LEO propa-
gation models are normally justified for long-term space object popula-
tion studies.

Although atmospheric drag ceases to be a factor above LEQO, space
objects at higher altitudes are influenced by solar radiation pressure, lu-
nar and solar perturbations, and irregularities in the Earth’s gravity.
These can affect an orbit’s inclination and eccentricity as well as its apo-
gee and perigee altitude, so more complex propagation models are re-
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quired to obtain predictive accuracy. Although such models exist and
are capable of providing sufficient accuracy for long-term modeling, they
require a very large amount of computation. New hardware, however, is
making the calculation-intensive computations much more feasible. It is
not yet clear what approximations could be made to enable the creation
of accurate long-term HEO propagation models that do not require a
large computational capability.

Short-term propagation modeling (for purposes of collision avoid-
ance, etc.) at high altitudes is difficult because of the problems inherent
In tracking objects at such distances. One problem is that only very large
objects at those distances from the Earth can be detected by current space
surveillance sensors. Another is the fairly large uncertainty in the exact
position of detected objects. Although short-term predictions have been
made for GEQO since the 1970s, and avoidance maneuvers have even been
carried out based on this information, the uncertainty in the exact posi-
tion of GEO objects means that the number of false alarms was probably
high.

FINDINGS

Finding 1: The U.S. and Russian space surveillance networks are able to
detect objects down to a size of about 10 em in LEQ. Increasing fractions
of larger objects are tracked so that the LEO debris environment in the
size range greater than 20 cm is adequately characterized by the catalogs.
However, both catalogs underrepresent objects in highly elliptical orbits,
low-inclination orbits, and high-altitude circular orbits. As the orbital
altitude increases, the minimum size of objects cataloged grows, until at
GEO not even all objects with a diameter greater than 1 meter are tracked.

Finding 2: A number of approaches could be used to improve on current
space object catalogs. Sharing catalog data between nations would im-
prove our understanding of the magnitude and distribution of the popu-
lation of large space objects. A network of new short-wavelength radars
would be required to catalog LEO debris significantly smaller than that
currently being tracked. Catalogs of large objects in regions above LEO,
where data are particularly sparse, could be improved with increased
use of large-aperture or CCD-equipped optical sensors. Further analysis
is needed to determine whether sharing data from national space object
catalogs would result in an improved combined catalog.

Finding 3: In situ direct sampling techniques can detect particle sizes up
to about 1 mm in LEQ, but the population of medium-sized debris is
sufficiently sparse that very large collection areas would be required to



Orbital Debris: A Technical Assessment (1995)
http://www.nap.edu/openbook/0309051258/html/58.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

58 ORBITAL DEBRIS

obtain a statistically meaningful sample. Ground-based remote sampling
has been, and will remain for some time, the most effective means of
measuring debris in the medium size ranges.

Finding 4 There has been no systematic approach to sampling space for
orbital debris; most sampling to date has been performed when the op-
portunity arose, resulting in a series of investigations that studied a lim-
ited region of space over a limited amount of time. There is a need for
national or international strategies to help prioritize detector develop-
ment, deployment, data collection, and analysis of historical and new
data. Such strategies are necessary to gain a better understanding of the
sources of small and medium debris and the variations in these popula-
tions with respect to altitude, inclination, and time.

Finding 5: Population characterization models can be used by spacecraft
designers to estimate the debris hazard to their spacecraft. Debris re-
searchers can use them to integrate available data and to provide a frame-
work for predicting the results of future measurements. As new data
become available, existing models should be revised to produce a com-
prehensive, standard, peer-reviewed reference model.

Finding 6: Models predicting the future space object population in Earth
orbit draw on traffic, breakup, and orbit propagation models. These com-
ponent models have large inherent uncertainties; as a result, many char-
acteristics of the future debris population cannot be predicted with preci-
sion. Experience to date with such models has, however, been fairly
positive; relatively simple models from the late 1970s and early 1980s
predicted an environment in the 1990s that is not greatly different from
that being measured today.
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Debris Population Distribution

As discussed in Chapter 2, a variety of techniques have
been developed to characterize the orbital debris environment, but a high
level of uncertainty remains in our understanding of the debris popula-
tion. While extensive data have been acquired on the cataloged popula-
tion, cataloged objects represent only a small fraction of the debris in
orbit; estimates of the populations of uncataloged debris are based on a
limited number of sampling measurements tied together with models.
Any estimates of the overall debris population are thus uncertain; they
are likely to change as new data are acquired. Figure 3-1 presents one
estimate of the total number of objects of various sizes in LEQ, based on
various measurements. Table 3-1 estimates the total orbital debris popu-
lation in each size range and the fraction of the total mass in orbit con-
tributed by objects in each size range.

LARGE DEBRIS

The best-known segment of the debris population is the population
of cataloged large debris. Figure 3-2 is a “snapshot” depiction of the
location of all cataloged debris at a particular moment in time. Some
features of the distribution of the cataloged debris population can al-
ready be seen in this figure, including the concentrations in the GEO ring
and in LEO. Figure 3-3 quantifies Figure 3-2 by portraying the approxi-
mate spatial density of cataloged objects at various altitudes. Clear con-
centrations can be seen at less than 2,000-km altitude (LEO), around
20,000 km (semisynchronous orbit), and at 36,000 km (GEQO).
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FIGURE 3-1 Number of objects in LEO as estimated from various measure-
ments. SOURCE: National Aeronautics and Space Administration.

These concentrations of higher spatial density are due to large num-
bers of objects in near-circular orbits at or near these altitudes. The lower
background level of spatial density visible in Figure 3-3 at altitudes up to
40,000 km is due to objects in highly elliptical orbits with perigees in LEO
and apogees up to 40,000 km. This background spatial density also exists
in LEO, where most highly elliptical orbits have their perigee. Most ob-
jects in highly elliptical orbits are either rocket bodies that placed space-
craft in semisynchronous orbit or GEQ or objects in Molniya-type orbits.
Few objects are cataloged in orbits higher than 40,000 km.

Figures 3-4 and 3-5 indicate the distribution of different types of cata-
loged space objects by mean altitude. At less than 2,000 km, the majority
of cataloged objects are fragmentation debris, but at altitudes between
2,000 and 16,000 km, mission-related debris represents the largest frac-

TABLE 3-1 Approximate Orbital Debris Population by Size

Orbital Debris Number of Percentage of Percentage of
Size Range Objects Objects > 1 mm Total Mass
Large (>10 cm) = 10,000 <0.5 >99.95
Medium (1 mm-10 cm) Perhaps tens

of millions >99.5 <0.05

Small (<1 mm) Trillions - <0.01
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FIGURE 3-2 Cataloged orbital debris. SOURCE: Kaman Sciences Corporation.

tion of cataloged objects; at more than 16,000 km, spacecraft and rocket
bodies constitute the majority. This distribution may, however, be due
more to the reduced capabilities of Earth-based sensors to detect smaller
objects at high altitudes than to any changes in the composition of the
debris population. Within the region below 2,000 km, the distribution of
cataloged objects by altitude is highly nonuniform, with peaks around
900 to 1,000 km and 1,400 to 1,500 km. Although objects in the lowest-
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SOURCE: Kaman Sciences Corporation.
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FIGURE 3-5 High altitude space object population by semi-major axis, 1993.
SOURCE: Prepared by Kaman Sciences Corporation based on U.5. Space Com-
mand Satellite Catalog,.

altitude orbits eventually reenter the atmosphere, this population is aug-
mented by objects from decaying higher-altitude orbits.

Except for those in GEO, most cataloged objects are in orbits with
fairly high inclinations. This means that relative collision velocities for
these objects will be generally higher than orbital velocity. (Collision
velocities are discussed in detail in Chapter 4.) Differing orbital inclina-
tions also cause asymmetric distributions in the LEO satellite population
by latitude. For example, objects in low-inclination orbits do not contrib-
ute to the apparent congestion or bunching of objects in the higher tem-
perate zones, and since few objects are in truly polar orbits (with inclina-
tions of 90 degrees), “holes” in the space object swarm appear over the
Earth’s poles. (This does not, however, mean that high-inclination orbits
will have a lower collision probability; any two circular orbits at the same
altitude will intersect at two points, irrespective of their respective incli-
nations.) Figure 3-6 shows the inclination distribution of cataloged space
objects.

Above LEO, spacecraft in orbits at a particular altitude often have
similar missions, so both they and the debris associated with them (e.g.,
rocket bodies, mission-related debris, fragmentation debris) tend to have
similar inclinations. These high-altitude, high-inclination orbits include
Molniya-type orbits, which typically have inclinations of 63 to 65 degrees
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BOX 3-1 LEO Communications Constellations
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of 66 spacecraft, the Globaistar consieliation of 48 spacecraft, and the Teledesic
constellation Of 840 spacecrafy amend others. | Lalnches o spacecratt fon these
£ONSTELatons couid Degin in the middie 1o fate 1990s I thece conttelanons are
developed, they wit ade significantly to the poptiiation of large objects in LEC,

(though objects in these orbits experience inclination changes of 5 de-
grees) and the orbits near semisynchronous altitude, where inclinations
are about 55 degrees for U.S. spacecraft and 65 degrees for CIS spacecraft.
Space objects in GEQ orbits are originally placed in near-zero inclination
orbits, but once stationkeeping stops, the inclination of a GEO object’s
orbit will vary with time.

Most spacecraft in GEO actively maintain inclinations close to zero
degrees and remain stationary above a given longitude. However, the
orbital planes of nonfunctional spacecraft and other debris, will (due to
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FIGURE 3-6 Inclination distribution of cataloged population. SOURCE: Pre-
pared by Kaman Sciences Corporation, based in part on U.S. Space Command
Satellite Catalog, July 1994.
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FIGURE 3-7 Geosynchronous spatial density by altitude and latitude. SOURCE:
Prepared by Kaman Sciences Corporation based on U.5. Space Command Satel-
lite Catalog, August 1993.

the Earth’s oblateness and third-body gravitational perturbations of the
Sun and Moon) oscillate around a plane tilted 7.3 degrees from the equa-
tor, causing orbital inclination to vary with an amplitude of 14.6 degrees
over a period of about 53 years. In addition, the ellipticity of the Earth’s
equator will cause debris in GEO to drift away from their initial longitu-
dinal position and oscillate around the nearest stable position (either
above 75°E or above 105°W) with a period of more than two years. Asa
result of these forces, the current population of debris in GEO has a mix
of inclinations ranging from 0 to 15 degrees (though fragmentation de-
bris from breakups near GEO may have even higher inclinations) and
orbital planes that intersect throughout the entire geostationary ring. Fig-
ure 3-7 shows the current spatial density of cataloged objects near GEO.

The main distinction between the populations of cataloged and un-
cataloged large debris is more a product of sensor capabilities than of any
inherent differences in the objects. For example, a fragment 30 cm in
diameter that would almost certainly be cataloged if it were in LEO would
not be cataloged if it were in GEQ. However, because spacecraft and
rocket bodies in Earth orbit are generally large enough to track, the un-
cataloged large debris population is composed primarily of mission-
related and fragmentation debris. As discussed in Chapter 2, there is
known to be a population of uncataloged large debris even in LEO, and
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the fraction of objects that are not cataloged generally increases with alti-
tude. It is possible that the total uncataloged population of large orbital
debris could be as numerous as, or more numerous than, the cataloged
population. '

MEDIUM-SIZED DEBRIS

The population of medium-sized (approximately 1 mm to 10 ¢m in
diameter) debris is not nearly as well known as the population of large
debris. As described in Chapter 2, the only measurements of the me-
dium-sized debris population come from sampling of lower-altitude,
higher-inclination LEO orbital regions with ground-based sensors. All
other estimates of the size and characteristics of the medium-sized debris
population are based entirely on extrapolations.

To a first approximation, it might be expected that medium-sized
debris would be found in about the same orbits as large debris, since
most medium-sized debris originates from large objects. However, all
large objects may not contribute equally to the medium-sized debris pop-
ulation; some types of large object (such as rocket bodies that have been a
source of explosive fragmentation) may produce much more debris than
others. In addition, as described in Chapter 1, perturbing forces affect
different sizes of debris differently. Medium-sized debris, which often
has a higher ratio of cross-sectional-area to mass than large debris, will
often be more strongly affected by atmospheric drag and thus will expe-
rience more rapid orbital decay.

Although there are no measurement data proving the origins of me-
dium-sized debris, most likely the population is composed of fragmenta-
tion debris and mission-related objects (since nonfunctional spacecraft
and rocket bodies are obviously large debris). The number of medium-
sized debris objects detected is large compared to the number of large
objects. Since it is generally believed that the majority of this population
cannot be mission-related objects, they are most likely fragmentation de-
bris. Consequently, breakup models can be useful tools in estimating
some characteristics of the medium-sized debris population. Although
there are large uncertainties in predictions of both the number and the
initial velocities—and thus orbital parameters—of medium-sized objects
ejected in a breakup (as described in Chapter 2), it is known that me-
dium-sized fragments will generally be ejected from a catastrophic break-
up with a greater range of initial relative velocities than large breakup
fragments; this will place them into orbits with a wider range of alti-
tudes, inclinations, and eccentricities (Johnson, 1985)

Ground-based sensors, particularly the Haystack radar, have pro-
vided the most detailed information to date on the population of me-
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dium-sized debris objects. Figure 3-8 shows the estimated population
distribution of objects detected by the Haystack radar when parked verti-
cally, as compared with the population distribution of objects in the U.S.
catalog. Interestingly, the data show that for the region measured, the
altitude distribution of medium-sized objects is similar to that of the
larger objects included in the U.S. catalog. There are, however, two sig-
nificant differences: (1) below about 1,000 km the population of medium-
sized objects detected by Haystack declines with decreasing altitude
faster than the population of large cataloged objects; and (2) around 900
to 1,000 km there is a large peak in the population of medium-sized ob-
jects detected by Haystack with no corresponding peak in the population
of large cataloged objects. The first difference is consistent with the ex-
pectation that medium-sized pieces of debris are more strongly affected
by atmospheric drag than larger debris. The peak in the medium-sized
population around 900 to 1,000 km, however, points to a source of debris
other than previously recorded breakups.

The eccentricity and inclination of many of the medium-sized objects
detected by Haystack can also be determined. The data on inclination
versus altitude for the objects detected by the Haystack radar are de-
picted in Figure 3-9. These measurements show that medium-sized de-
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Space Administration.
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bris is more frequently found in low inclination and eccentric orbits than
cataloged large debris and that the large number of objects detected be-
tween 900 and 1,000 km are in near-circular orbits with inclinations
around 65 degrees (Stansbery et al., 1994). The reported detection of
objects with inclinations greater than 110 degrees may be a result of the
high uncertainty in determining inclination for objects that are barely
detectable (as described in Chapter 2).

As mentioned previously, the Haystack data suggest that there may
be major sources of centimeter-sized orbital debris other than previously
recorded breakups. The large number of objects in orbits between 900
and 1,000 km with orbital inclinations between 60 and 70 degrees sug-
gests that there is a significant source of debris in this area. If this source
were breakups, however, the debris would have been spread over a much
wider area than is evidenced by the data. It thus seems possible that
some of this debris may be the result of a previously unmodeled source.
This possibility is supported by the polarization data from Haystack,
which suggests that the objects have relatively smooth and spherical
shapes, rather than the irregular shapes that would typically be created
in a breakup. A combination of orbital and physical characteristics can
be interpreted to suggest that these objects may be tens of thousands of
0.6-2.0 cm diameter liquid droplets of a sodium/potassium coolant leak-
ing from the nonfunctional cores of Russian Radar Ocean Reconnaissance
satellites (Stansbery et al., 1995; Kessler et al., 1995). Less evidence exists
to suggest the sources of other concentrations of debris not predicted by
models (such as the concentration of medium-sized objects detected by
Haystack with inclinations between 25 and 30 degrees—another region
in which few breakups have been observed [Kessler, 1993]).

SMALL DEBRIS

There is an extremely numerous population of small (<1 mm in di-
ameter) debris particles in Earth orbit. Knowledge of the distribution of
these particles comes, as described in Chapter 2, primarily from the ex-
amination of returned spacecraft material from such spacecraft as Solar
Max and the LDEF and a few active measurements made on the LDEF,
the Salyut and Mir space stations, EURECA, and the U.5. Space Shuttle.
Since the returned materials and active measurements are all from space-
craft in orbits of 600 km altitude or less, uncertainty remains on how to
extrapolate these data to higher altitudes. Some models predict that be-
cause of the lessening influence of atmospheric drag, the spatial density
of debris smaller than 1 mm should increase with altitude up to at least
1,000 km.

Like medium-sized debris, small debris is all either mission-related
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objects (e.g. aluminum oxide particles expelled from solid rocket motors)
or fragmentation debris (the product of either breakups or surface dete-
rioration). Aluminum oxide particles from solid rocket motor exhaust are gen-
erally believed to be approximately spherical in shape with a maximum
diameter of about 10 microns. These particles are initially ejected from
rocket bodies at velocities from about 1.5 to 3.5 km/s, depending on the
particle size (smaller particles are generally ejected faster). Most of these
particles rapidly reenter the Earth’s atmosphere, while others (typically
larger particles) are typically sent into a variety of elliptical orbits, de-
pending on where the rocket was fired. Paint chips and similar products of
deterioration are usually much larger than the aluminum oxide particles,
averaging hundreds of microns in diameter. Such debris particles are
released from spacecraft or rocket bodies with virtually no initial ejection
velocities and thus initially share nearly identical orbits with their parent
object. Finally, the products of breakup span the entire range of small (as
well as medium and large) debris sizes and exhibit a variety of shapes.
Small breakup fragments likely experience a larger range of ejection ve-
locities than medium or large fragments, placing them in a wider range
of initial orbits.

Perturbing forces affect the orbits of small debris even more strongly
than the orbits of medium-sized debris. In particular, the typically larger
ratios of cross-sectional-area to mass of small debris means they are more
strongly affected by solar radiation pressures and atmospheric drag.
Analyses conclude that less than 5% of aluminum oxide particles pro-
duced in solid rocket exhaust will remain in orbit after a year (Muller and
Kessler, 1985; Akiba et al., 1990), whereas larger particles produced in
breakups or from deterioration may remain in orbit for a few years.

Active measurements made during the first year of the LDEF's 1984
to 1990 orbital lifetime first indicated the highly dynamic nature of the
small orbital debris environment (though it has since been confirmed by
an experiment on the HITEN spacecraft [Miinzenmayer et al., 1993]).
LDEF’s Interplanetary Dust Experiment (Mulholland et al., 1991), which
was the only experiment on LDEF that measured the time of impact,
showed that most impacts were associated with “orbital debris swarms.”
That is, the sensors would detect a very large increase in flux (three to
five orders of magnitude) lasting for a few minutes. In most cases, these
swarms were detected again at nearly the same point in the LDEF orbit.
These points slowly changed with time (a characteristic of orbital preces-
sion rates), allowing the orbital characteristics of the swarms to be detex-
mined. The existence of these swarms suggests that the six-year “aver-
age” flux measured by the passive LDEF experiments may in fact be very
time dependent, especially for very small debris, of which these swarms
mostly consist.
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A number of possible sources of these debris swarms have been sug-
gested. One is that the swarms may consist of aluminum oxide particles
expelled from solid rocket motors. However, as discussed, such particles
experience rapid orbital decay and could not produce swarms lasting for
several months, such as those observed by LDEF. It has also been sug-
gested that a spent rocket stage might slowly release sufficient dust to
produce the long-lasting swarms (Kessler, 1993). Another possible source
might be paint removed by atomic oxygen erosion from objects in highly
elliptical orbits. Less than a gram of paint per year removed from a
spacecraft would produce a swarm like those detected by LDEF (Kessler,
1990). A final possibility is that the swarms are the result of undetected
breakups, perhaps even of a collision. It has been pointed out (Potter,
1993) that the small particles ejected from a hypervelocity impact between
a medium-sized debris object and a large object could create a debris
cloud having the size distribution of the swarms detected by LDEF.

FINDINGS

Finding 1: The natural meteoroid environment does not pose a serious
hazard to most spacecraft in Earth orbit. However, there are orders of
magnitude more large orbital debris than large meteoroids in Earth orbit.
Although measurements of the medium-sized debris environment are
sparse, the population of medium-sized orbital debris also appears to be
larger than the population of medium-sized micrometeoroids in the re-
gions of LEO where measurements have been made.

Finding 2: In the limited regions where measurements of the medium-
sized debris population have been made, the altitude distribution of the
medium-sized objects shows a strong similarity to that of large cataloged
objects (except at low altitudes where the influence of atmospheric drag
is strong). Measurements of the small debris population, which have
been made only at lower altitudes, are so limited that no conclusions
about their altitude distribution can yet be drawn.

Finding 3: Because (1) the populations of medium and small debris may
change relatively rapidly and (2) our knowledge of these populations
comes largely from extrapolations based on a few measurements and
models, learning more about the sources of medium and small debris
(and improving models with this knowledge) will provide more long-
term information about the debris environment than will determining
the current spatial density in every orbital region of interest. This is
particularly true for the small debris population that (due to short orbital
lifetime) may experience drastic changes in a short period of time.
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Hazards to Space Operations
from Debris

The hazard to space operations from debris is a function
of the nature of those operations and the orbital region in which they
take place. The orbital region is important because the debris flux en-
countered by a spacecraft varies greatly with orbital altitude and, to a
lesser extent, orbital inclination. The nature of the operations is a factor
because the same piece of debris that could cause serious damage to one
type of spacecraft might do little harm to a spacecraft with a different
configuration or orbital attitude.

The first step in determining the hazard to a spacecraft from orbital
debris is to estimate the debris flux for the spacecraft’s orbital region.
This information can then be combined with information on the space-
craft’s configuration and orbital attitude, and with experimental data and
models of the damage caused by hypervelocity impacts, to predict the
likelihood that debris will cause damage to the spacecraft during its func-
tional lifetime. The accuracy of such a prediction will depend on (1) the
degree to which estimates of the debris flux are correct, and (2) the valid-
ity of models used to predict impact damage from debris. As discussed
in Chapters 2 and 3, the debris flux in any particular orbital region can-
not be determined with a great degree of accuracy because of the uncer-
tainty in cutrent assessments of the debris population (particularly the
small, medium-sized, and high-altitude populations). As discussed in
Chapter 5, the accuracy of damage predictions for debris impacts is also
uncertain. Because both of these factors contain uncertainties, any pre-
dictions of the debris hazard to spacecraft will also incorporate a signifi-
cant degree of uncertainty.

79
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CHANCE OF DEBRIS IMPACT

The probability that debris will collide with a given spacecraft de-
pends on the spacecraft’s size and the debris flux through its orbital re-
gion. The effect of spacecraft size on the likelihood of being struck is
simple; the chance of impact is directly proportional to the spacecraft’s
cross-sectional area relative to the debris flux and the amount of time
exposed to the environment. The relationship between the probability of
collision and the orbital region is far more complex, varying significantly
with altitude and to a lesser degree with inclination.

Low Earth Orbit

Although Figure 4-1 oversimplifies the nature of the LEO debris
population, it provides a starting point for estimating the debris impact
probability for spacecraft in LEO by showing how the flux of debris var-
ies with debris size. The main oversimplification is the grouping of data
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FIGURE 4-2 TFlux of LEO cataloged objects, 1994 (assumed velocity 10 km/s).
SOURCE: Prepared by Kaman Sciences Corporation based in part on U.S. Space
Command data.

acquired at a variety of altitude regimes at different times during a seven-
year period. The uncertainty of debris population estimates is, however,
reflected by the error bars in the figure.

Figure 4-1 predicts the average number of collisions with different
sizes of debris that a spacecraft in a “typical” low Earth orbit will experi-
ence in a 10-year orbital lifetime. For example, the probability that a
spacecraft in LEO with a cross-sectional area of 10 square meters will
collide with an object larger than about 1 cm in diameter over its 10-year
functional lifetime can be seen to be somewhere between one in a hun-
dred and one in a thousand. The figure also predicts that the same space-
craft will be struck by about one 1-mm- to 1-cm-diameter particle and
somewhere between 100 and 1,000 particles with diameters between 0.1
mm and 1 mm during this time period.

The chances of a spacecraft in LEO being struck by debris can vary
significantly from those estimates, depending on the spacecraft’s particu-
lar orbit. Figure 4-2 shows the variation in flux for cataloged objects in
LEQO as a function of altitude. While this figure does not show the un-
cataloged debris flux, the Haystack data have shown that uncataloged
debris as small as 0.7 cm in diameter follow a similar distribution to the
cataloged flux throughout much of LEO (as discussed in Chapter 3). Fig-
ure 4-3 shows an estimate by NASA’s EVOLVE model of the flux of large
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FIGURE 4-3 One model’s prediction of the LEO debris hazard. SOURCE:
NASA /Reynolds.

and medium objects in LEO. There are some differences between these
measurements and predictions, but they all show large variations in the
LEO flux (and thus the probability that a spacecraft in LEQ will be struck)
with altitude. For example, at a typical Space Shuttle orbital altitude of
300 km, the flux of both medium and large debris is about 50 times lower
than if it were in an orbit at 1,000-km altitude. (At this altitude, the
collision probability will also vary by more than a factor of two due to
solar activity.) Since data on the altitude variation of the small debris
population do not exist and model predictions vary significantly depend-
ing on the sources of these smaller particles, it is unclear whether the
chance of being struck by small debris also exhibits such a large variation
with altitude. _

Collision probability also varies with orbital inclination, although to
a much lesser extent than it varies with altitude. The variation with
inclination is relatively small because, to a first approximation, two circu-
lar orbits at the same altitude will intersect twice per revolution, irrespec-
tive of their inclinations. More detailed examinations of the variation of
collision probability with inclination (e.g., Kessler, 1981) indicate that col-
lision probability for an orbiting object increases to its maximum value



Orbital Debris: A Technical Assessment (1995) . .
http://www.nap.edu/openbook/0309051258/html/83.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

HAZARDS TO SPACE OPERATIONS FROM DEBRIS 83

when there are objects in orbits with supplementary inclinations. For
example, objects in oxbits with inclinations near 80 degrees have a higher
collision probability due to the large number of objects in Sun-synchro-
nous orbits with inclinations near 100 degrees. (Similarly, objects in those
orbits have higher collision probabilities due to the objects in orbits with
inclinations near 80 degrees.) Since there are very few objects in orbits
with inclinations greater than 120 degrees, objects with inclinations less
than about 60 degrees do not experience a similar rise in collision prob-
ability.

Figure 4-4 shows the “average” variation in collision probability with
inclination for all altitudes below 1,000 km based on the cataloged popu-
lation. Because the orbital inclination distribution varies slightly with
both time and altitude, this variation in collision probability with inclina-
tion will also change as a function of time and altitude. In addition, since
measurements made with the Haystack radar suggest that the medium-
sized debris population is less concentrated in the higher inclinations
than the large debris population (see Chapter 3), the increase in collision
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FIGURE 4-4 Average collision probability variation with orbital inclination for
cataloged LEO objects. SOURCE: National Aeronautics and Space Administra-
tion, based on data from the 1988 U.S. Space Command Catalog.
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BOX 4.1 The Meteoroid Environment
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probability with medium-sized objects at high inclinations may not be as
great as the estimated increase shown (for cataloged objects) in Figure 4-4.

High Earth Orbits

Estimates of collision probabilities in high Earth orbits are less accu-
rate than LEO collision probability estimates due to thesparse informa-
tion available on the HEO debris population. (As described in Chapter
2, there are no measurements above LEO of the small debris population,
the medium-sized debris population, or even the smaller objects in the
large debris population.) It is certain, however, that the chance of colli-
sion with cataloged objects is generally much Jower in HEO than it is in
LEO. As shown in Figure 3-3, the average spatial density of cataloged
objects in even the relatively densely populated semisynchronous and
geosynchronous orbits is about 100 times lower than the average spatial
density of cataloged objects in LEO. In less densely populated high Earth
orbits, the spatial density of cataloged objects is often 1,000 times lower
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FIGURE 4-5 Meteoroid environment at 500 km altitude. SOURCE: Griin et al.,
1985.

than the average LEO spatial density. Although it is unclear how well
the distribution of the uncataloged large and medium-sized debris popu-
lation correlates with the tracked population, it is likely (considering the
known sources and perturbing forces) that the average spatial density of
these populations is also much lower in HEO than in LEO.

For GEO spacecraft, the chance of collision with cataloged objects
decreases sharply with the distance from the geostationary orbit. Figure
4-6 shows how the cataloged space object flux (and thus the probability
of collision with a cataloged object) in the GEO region varies as a func-
tion of altitude above and below GEO. The flux drops by almost a factor
of ten about 50 km above or below the exact geostationary orbit and is
approximately two orders of magnitude lower only 500 km above or
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FIGURE 4-6 GEO cross-sectional area flux (0 = 5 degree latitude, 50-km bins).
SOURCE: Kaman Sciences Corporation.

below GEQ. Spacecraft in an inclined GEO experience about the same
flux as shown in Figure 4-6 because spacecraft in such orbits pass through
the relatively crowded equatorial geostationary band twice a day, no
matter what their inclination.

Because of the difficulty of detecting objects smaller than about a
meter in diameter in GEO or even of detecting breakups that could pro-
duce smaller objects, the collision hazard from uncataloged debris in GEO
is not well known. However, by using the assumption that debris sources
in GEO are similar to debris sources in LEQ, one model (Kessler, 1993)
has predicted that the meteoroid environment will present a greater haz-
ard than the debris environment over the small and medium-sized ranges
even if numerous breakups occur. Figure 4-7 illustrates the results of
that model.

Space objects in highly elliptical orbits experience different collision
probabilities in different parts of their orbit. Objects in Molniya-type
orbits experience a very low debris flux through most of their orbit but
can spend a small portion of their orbit traveling at high velocities
through the relatively intense LEO debris flux. Objects in Molniya orbits
will never pass through GEO, and because of the large perigee changes
they may experience, many no longer pass through LEO after several
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years in orbit. However, objects in geostationary transfer orbits will ex-
perience the LEO debris flux at the perigee of their orbit as well as the
GEO debris flux near their orbit’s apogee when the precession of their
orbit causes it to pass through GEO. (Figure 4-8 depicts the average time
an object in a 27.5 degree inclination GTO will spend in LEO over its
orbital lifetime.) Objects in GTO will spend much less time in geostation-
ary orbit than in LEO because orbital precession causes them to pass
through the narrow geostationary band only infrequently. This is fortu-
nate because objects in GTO pass through GEO at about 2 km/s, much
higher than typical GEO collision velocities.
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EFFECTS OF DEBRIS IMPACT

Impact Conditions

The damage caused by debris impact depends on the size and veloc-
ity of the impacting debris, the configuration and composition of the
spacecraft being struck, the component(s) impacted, and the angle at
which the impactor strikes the spacecraft. To protect their spacecraft
against the debris hazard, designers can calculate typical collision veloci-
ties and impact angles and then, if necessary, modify their spacecraft
design to protect the areas most likely to be struck by debris. While not
perfect, analyses of typical collision velocities and impact angles are based
on the known debris population, so they have less uncertainty than many
of the other elements factored into debris hazard predictions.

Collision velocities vary with orbital altitude and inclination (see Box
4-2). In LEO, collision velocities vary from almost 0 km/s to greater than
15 km/s. Figure 4-9 shows the calculated proportion of collisions (with
cataloged objects) at various velocities as a function of a LEO object’s
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BOX 4.2 -Detem‘ﬁhmg Collision Velocities
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FIGURE 4-9 Calculated collision velocity distribution versus inclination for cat-

aloged objects in LEO (averaged over all LEO altitudes). SOURCE: Calculated
from Kessler et al., 1989.
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inclination. Clearly, the proportion of high-velocity collisions increases
for objects in higher-inclination orbits. If the calculations incorporate the
population of objects detected by the Haystack radar in addition to the
cataloged population, the plotted variation of collision velocity with alti-
tude looks similar to Figure 4-9, but with slightly lower average collision
velocities at all inclinations. In a 51.6-degree-inclination orbit, for ex-
ample, the predicted average collision velocity with cataloged objects is
10.8 kim/s, but the predicted average collision velocity with objects de-
tected by Haystack is 9.2 km/s.

In semisynchronous orbits, orbital velocity is only about 3.9 km/s, so
the maximum collision velocity is 7.8 km/s. In practice, however, be-
cause most spacecraft in these orbits operate in constellations with incli-
nations near 60 degrees, the average collision velocity is closer to 4 km/s.
In GEOQ, collision velocities are lower still, both because of the low orbital
velocities and because the spacecraft and rocket bodies in GEO are trav-
eling in the same direction and have only minor inclination differences
(as discussed in Chapter 3). The long-term average GEO collision veloc-
ity due to the various differences in inclination is about 0.5 km/s, much
less than the average LEO collision velocity (but still about the speed of a
rifle bullet).

The angle at which debris is likely to strike a spacecraft is important
for spacecraft designers interested in protecting sensitive components.
Figure 4-10 predicts the directions from which debris would impact the

LEFT
ﬂ\
TRAILING SPACE LEADING . FORWARD
EDGE END EDGE ” DIRECTION
\
RIGHT

FIGURE 4-10 Direction of orbital debris impact predicted for the LDEF.
SOURCE: M&D SIG NASA Model (Chobotov, 1991).
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LDEF in its 28.5 degree-inclination LEO orbit, based on the same calcula-
tions as Figure 4-9 and with the assumption that the relative velocities in
that figure are due to circular orbits. For the same reasons that typical
collision velocities change with inclination, the distribution of probable
impact angles will be more tightly grouped around the direction of travel
for spacecraft in higher-inclination LEO orbits and will be more widely
distributed in GEO, where inclination differences between space object
orbits are typically small. Debris in highly elliptical orbits may impact
the sides and rear of a spacecraft more frequently than debris in circular
orbits; such impacts were detected on the rear surfaces of LDEF.

Breakups Due to Debris Impact

Certain high-energy collisions may not just incapacitate a spacecraft,
but actually fragment it into many small pieces. Although this distine-
tion may not be important to a spacecraft designer, it is (as discussed in
Chapter 8) very important for the future evolution of the debris popula-
tion. As discussed in Chapter 2, models of such breakups are based on
sparse data and contain large uncertainties. Current estimates indicate
that complete breakup will occur if the ratio of the impactor’s relative
kinetic energy to the mass of the object with which it collides is greater
than about40]/g (McKnight, 1993). For example, a 0.1-kg piece of debris
impacting at 10 km/s would probably not completely fragment the Japa-
nese Astro-D spacecraft (420 kg), but a 0.5-kg piece of debris impacting at
the same velocity probably would. Of course, the particular geometry of

BOX 4-3 Breakup of Space Objects Containing
Radioactive: Materials
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an impact is also important, because if the impactor struck a spacecraft’s
solar panel, for example, it would probably destroy only the panel, rather
than the entire spacecraft (although it might cause the spacecraft to start
spinning).

Breakup models also predict the number and mass of fragments pro-
duced in a catastrophic collision. The mass distribution is also related to
the ratio of the impacting object’s kinetic energy to the mass of the target
space object; as this ratio increases, the number of large fragments pro-
duced also increases. For the example above (a 420-kg spacecraft struck
by a 0.5-kg piece of debris at 13 km/s), models predict that 50 to 100
fragments with masses of greater than 0.5 kg—massive enough to cause a
similar catastrophic breakup—would be produced. Though the total
quantity of smaller fragments created in such a collision is more difficult
to predict, the number of fragments would increase with decreasing frag-
ment size, totaling millions of medium-sized particles.

These fragments will be ejected at a wide range of velocities, which
will place them into a range of new orbits. In general, smaller fragments
will be ejected with a wider range of initial velocities than larger ones
and thus will be sent into a wider range of new orbits. The velocity of
ejected fragments, however, is the most uncertain parameter predicted
by breakup models. Figure 4-11 shows an estimate of how the maximum
ejection velocities of debris produced in a collision are expected to vary
as a function of particle size (Johnson, 1985).

10,000 ¢

g 1,000
z
3
o 100
> .
2 * |mpact velocity 3.5 kim/s
S
[
[}
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1 A A 1 I L J
Tun 10pm 100u.n 1 Tcm 10¢cm 100¢cm

Debris diameter

FIGURE 4-11 Maximum ejection velocities of debris as a function of particle
diameter. SOURCE: Johnson, 1985.
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Structural and Component Damage Caused
by the Impact of Debris

In LEO, the impact of medium-sized debris can severely damage or
destroy smaller spacecraft or major systems of large spacecraft. Box 4-4
illustrates the destructive force of medium-sized debris traveling at typi-
cal LEO collision velocities. In GEQ, typical collision velocities are much
lower—they are comparable to speeds involved in a midair aircraft colli-
sion—so only the largest medium-sized GEO particles are probably ca-
pable of causing serious damage.

Hypervelocity impact can cause various modes of damage to space-
craft, including craters, spallations, perforations, and petaled holes and
cracks, depending on impact conditions and the configuration of the im-
pacted spacecraft; this damage may result in different failure modes de-
pending on the nature of the spacecraft and the location of the impact.
When a piece of medium-sized debris strikes a spacecraft, it can either
penetrate the spacecraft’s skin or leave a crater on the surface. The im-
pact can cause damage even if it does not penetrate the spacecraft’s skin;
reflection of the impact’s shock wave can cause small particles to spall
from the back of the impacted wall. These particles can travel at nearly
the velocity of the impacting object, potentially causing serious damage
to components inside the spacecraft.

If the impacting debris penetrates the spacecraft’s outer skin, its often
fragmented or liquefied remnants will travel into the spacecraft and de-
posit over an area typically significantly larger than the impact hole. The
momentum of the impact can cause impulsive damage including buck-
ling and bending of structural components and the transmission of a
traveling shock wave through the spacecraft’s structure and components.
Table 4-1 shows NASA’s 1970 assessment of the vulnerability of a space-
craft’s subsystems to various modes of hypervelocity impact damage.

The effects of the impact of a 1-cm-diameter aluminum sphere on a
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BOX 4-5 Harards to Crewed Missions

?émraum Of the pressire wall of @ crewed spacecraft can lead 1o the 10ss of
cabin pressure. secondary spail Ipacts on the interior. & lightiflash. and a ores.
stre mulse i addition, eracks created by the imoact exceeding the ontical crack

length for a pressurized module can, under some conditions, lead to catastmphuc
fractiire O the uncontrolled mode of crack propagation KNOWN &s UnEIPPINg.|

ASITONauts or cosmonauts £rgaging in extra-vehicular activities are particllar
I vuinierable 1o/ the irmpact of small debins) On average, debric | mm in diameter
i capable of iperforating ctirrent LS, space suits ICour-Palais, 1998

0.5-cm-thick aluminum spacecraft wall at 10 km/s are illustrative of the
damage that can be caused by debris impact. Such a collision would
fully melt and partially vaporize the impactor and would create a perfo-
ration in the spacecraft wall with an outer diameter of approximately 3.3
cm and an inner hole diameter of approximately 2.7 cm. The peak im-
pact stress caused by the expanding liquid projectile and wall material on
a component located 2.5 cm behind the perforated wall would be ap-
proximately 450 kbar, well above the yield strength for most typical
spacecraft structural materials. The peak impact stress decreases with
the cube of the distance from the wall, so that the loading on a compo-
nent 15 cm behind the wall would only be about 2 kbar (still close to the
yield strength of commonly used aluminum alloys).

Even small impactors can cause component failures. For example, a
particle as small as 0.75-mm diameter impacting 0.5-cm-thick aluminum
housing covering a component such as a solar array pointing/steering
motor could result in the spallation of the internal housing wall, poten-
tially damaging or jamming the motor. At collision velocities of 10 km/s,
particles as small as 1 mm in diameter can perforate a radiator with thin-
walled heat pipes (such as those used for space nuclear reactor cooling).
If (as is the case with some proposed space nuclear reactor designs) the
coolant loop is not designed to allow shutdown of perforated radiator
coolant pipes, a loss of coolant could occur.

Surface Degradation Caused by the
Impact of Debris

Even if the impacts of smaller debris do not cause structural or com-
ponent damage, the craters, spallations, and perforations they produce in
impacted materials can degrade spacecraft surfaces. (Figure 4-12 shows
the surface degradation resulting from an impact into LDEF.) In lami-
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FIGURE 4-12 The largest impact crater on LDEF. The central crater measures
5.2 mm in diameter, but ejecta from the crater are spread out over a much larger
area. Most experts believe this crater was formed as a result of an impact with
orbital debris. SOURCE: National Aeronautics and Space Administration.

nated or multilayered materials, the impact shock can cause delamina-
tions and remove surface coating material far beyond the diammeter of the
crater. In brittle materials, the impact can initiate cracks extending far
beyond the diameter of the crater or perforation. Small debris impacts
may also create localized plasmas, which can cause discharges and fail-
ures in some components such as electronics or solar arrays. In addition,
impact damage may combine with other space environmental effects
(such as those caused by atomic oxygen and ultraviolet light) to cause
more damage to surfaces than each effect could cause individually.
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The spacecraft surface degradation caused by the impact of small
orbital debris particles can lead to deterioration of spacecraft perfor-
mance. With few exceptions, though, performance deterioration models
do not exist, and those that do exist are not standardized. One problem
is that performance losses are not always directly related to the extent of
physical damage caused by debris impact (or to the size of the impacting
particles). The effect of surface degradation from debris impact must
thus be addressed on a case-by-case basis to evaluate changes in compo-
nent and system performance.

Optical surfaces are the spacecraft component perhaps most threat-
ened by surface degradation due to debris impact. Impacts by small
particles (tens to hundreds of microns in diameter) can significantly in-
crease the light scattered from an optic (Watts et al., 1994). This is par-
ticularly important for imaging optics, which usually require very low
levels of optical scatter. Small debris impacts into telescope tubes or opti-
cal baffles can also degrade optical components by releasing large
amounts of particulates (which can temporarily confuse or blind optical
sensors) or contaminants (which can affect the scattering of an optical
$ensor).

Impacts into thermal control components can affect the total avail-
able surface area, potentially affecting thermal conduction and radiation
and exposing protected areas to the space environment. On LDEF,
cratering damage removed approximately 0.26 percent of exposed paint,
but the impact-associated front surface spalls increased the total material

BOX 4-6 The Effect of (bg(‘(ﬁris on Tethers
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removal to as much as 5 percent of the exposed paint areas (Coombs et
al.,, 1992). Such loss of thermal control area is probably a minor issue,
however, because it can be handled easily through oversizing in design.
(Oversizing and other operational protection schemes are discussed in
Chapter 6.) Perforation of thermal control blankets can also damage ther-
mal control systems by delaminating layers and exposing protected com-
ponents to the space environment (Allbrooks and Atkinson, 1992;
Meshishnek et al., 1992),

Finally, small debris impacts can damage spacecraft solar power sys-
tems. Effects of debris impact can range from localized damage to cover
glasses and solar cells to failure of strings of cells. Impacts can perforate
or break exposed spacecraft cabling (including power cables), causing
short circuits or failures. In addition, even small debris impacts can cre-
ate plasmas, which can couple into solar arrays, causing failures (Krueger,
1993). Because of the phenomena associated with perforation through
thin (compared to the impacting particle’s diameter) films, however, the
newer thin-film solar cell technologies are less susceptible to large-scale
damage from small impacts.

FINDINGS

Finding 1: The probability that a spacecraft will be struck by debris is
dependent on the spacecraft’s orbital altitude and, to a lesser extent, its
orbital inclination. The orbital regions where impact with medium or
large debris is most likely are those between about 750- and 1,000-km
altitude and those around 1,500-km altitude. Spacecraft in semi-
synchronous orbits or GEO are, on average, probably about 100 times
less likely to be struck by debris than most LEO spacecraft, and space-
craft not in any of the heavily used orbital regions (LEO, semi-
synchronous orbit, or GEO) are even less likely to collide with debris.

Finding 2: Current models indicate that a collision in orbit will result in
complete breakup if the ratio of the impactor’s relative kinetic energy to
the mass of the object with which it collides is greater than about 40J/g.
In LEO, debris as small as 0.1% of a space object’s mass can cause the
object to break up into many fragments. A typical LEO catastrophic
collision involving a spacecraft may eject tens or hundreds of fragments
large enough to cause a breakup if they collide with another spacecraft.
At higher altitudes, where collision velocities are slower, a much larger
impactor would be needed to cause catastrophic breakup.

Finding 3: Impacting space objects not Jarge enough to break up a space-
craft can still cause significant damage through a variety of mechanisms,
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including perforation, spallation, and impulsive loading. The effect of
debris impact on a particular spacecraft is strongly dependent on the
spacecraft’s design; an impact that could cause a poorly protected space-
craft to fail might do no damage to a well-protected spacecraft. Some
spacecraft components (such as tethers) may, however, be very difficult
to protect effectively.

Finding 4: Small debris impacts can degrade spacecraft surfaces and
components. This degradation might have no effect on a spacecraft’s
capabilities, might reduce its functional lifetime, or might even cause the
fajlure of components, depending on the impacted component and the
energy of the impact. Although the mechanisms for some failures are
obvious (e.g. a fluid leak caused by a hole or the consequences of a wire
being severed), other damage-causing mechanisms and the associated
effects on component performance are not well understood.
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Tools for Damage Assessment
and Prediction

There are three principal methods for assessing and pre-
dicting the damage caused to spacecraft by the impact of orbital debris:
observation of such impacts in space, ground-based hypervelocity im-
pact testing, and analytical or numerical (computer) simulation of im-
pacts. Since it is very difficult to gather data from the rare impacts of
medium-sized or large debris in space, assessment of the potential dam-
age such debris can cause to space systems is accomplished primarily
through experimental testing and analytic/numeric methods. Experi-
mental testing generally provides the majority of information on these
effects; analytic or numerical tools currently mainly supplement and ex-
tend experimental results.

GROUND-BASED HYPERVELOCITY TESTING

Experimental laboratory testing can simulate and/or verify three
major types of orbital debris-related phenomena: (1) the effects of orbital
debris impacts on spacecraft component performance, reliability, lifetime,
and survivability; (2) the capabilities and performance of impact damage
mitigation techniques, such as shielding and shuttering; and (3) the cre-
ation of orbital debris in collision-induced breakups of spacecraft and
rocket bodies. The principal technique used to simulate these phenom-
ena is hypervelocity impact testing.

Ground-based hypervelocity impact testing provides a means to de-
termine how well various components, subsystems, or entire spacecraft
will survive a collision with debris. Since it is infeasible to build entire
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spacecraft to be destroyed in ground tests, most tests are performed on
components or on assemblies of components. Items tested can range
from isolated fuel tanks and wiring harnesses to multicomponent assem-
blies including insulation materials and structural members
(Christiansen, 1990; Christiansen and Ortega, 1990; Whitney, 1993;
Schneider and Stilp, 1993). Although it is economically infeasible to test
all components against all possible combinations of debris impact condi-
tions, critical components can be evaluated with nominal impacts, and
analytic or numerical techniques can then be used to extrapolate these
results to other types of collisions.

Hypervelocity impact tests are also used to test and design debris
shields. As with component testing, it is economically infeasible to test
all possible shield configurations against all possible impact conditions,
so a mixture of experimental testing, analytic methods, and numerical
methods is used. Because the debris threat is not well enough known to
“optimize” debris shielding against any particular type of impactor,
shield designers develop shields to protect spacecraft against a wide
range of impactor sizes, shapes, and velocities without greatly increasing
the spacecraft’s mass.

Finally, impact tests can be performed to examine the creation of
fragmentation debris from breakups caused by hypervelocity collisions
in space. This type of debris creation may play an important role in the
evolution of the future debris population (as discussed in Chapter 8), but
as mentioned in Chapter 2, only a few such tests have been performed to
date. Such tests can be expensive, but since current data are very limited,
a few well-planned and instrumented tests could add considerably to our
knowledge of collision products and provide the basis for better esti-
mates of the future debris population. Again, analytic and numerical
methods can be used to extrapolate the limited test data to a wider range
of possible situations.

The mass and velocity regimes required of an impactor in a hyper-
velocity test vary depending on the objective of the test. Obviously, the
closer the tests come to matching real impactors’ velocities, masses, mate-
rials, and shapes, the more accurate and useful the information acquired
will be. For tests to determine the amount of debris created by a colli-
sion-induced breakup of a space object, it is necessary to use impactors
large enough to fragment the target completely. For tests of spacecraft
components and damage mitigation techniques, it is usually only neces-
sary to use impactors that might feasibly be shielded against. The impac-
tors used in such tests can range from millimeter to centimeter size, with
masses ranging from much less than a gram up to several grams. Impac-
tor shape must also be considered; since many potential debris impactors
are fragments from rocket body or spacecraft explosions, the geometry of
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possible impacting objects can vary greatly. Finally, the tests must simu-
late the typical impact velocities for debris, which can range up to about
15 km/s in LEO and up to about 800 m/s in GEOQ.

Hypervelocity Test Capabilities

A wide range of experimental facilities have some capability to simu-
late orbital debris impact conditions. Table 5-1 summarizes the principal
generally available hypervelocity impact facilities, and Figure 5-1 dis-
plays the capabilities of these facilities in terms of the projectile sizes they
launch and the impact velocities that these projectiles reach. Figure 5-1
also points out size and velocity regimes of debris impacts that could
potentially be shielded against but that cannot be achieved with current
hypervelocity impact capabilities.

As seen in Figure 5-1, the capability exists to perform impact tests
with even fairly large masses at velocities typical of collisions in high-
altitude orbits. The U.S. military has conducted many tests (primarily for
antiaircraft and armor/antiarmor purposes) in these mass and velocity
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TABLE 5-1 Experimental Test Facilities

Maximum

Mass (gm) at Maximum

Maximum Velocity

Velocity (km/s) Spheres Rods
Single stage guns 2,000 1.4 X X
Propellant guns 1,000 2.5 X X
Two-stage light gas guns 0.01 to 250 8 X X
Explosive Techniques
Inhibited shaped charge ~1 ~11
Staged explosives ~0.1 14

Advanced Hypervelocity Launchers
Modified two-stage light 0.2 15.8
gas gun (HVL)

Fast shock tube ~1 ~10

Railgun ~1 ~8 X
Other

Electric discharge gun 0.01 ~20 X

Plasma drag accelerator 1E-07 ~20 X

Van de Graaff accelerator 1E-12 ~100 X

NOTE: Projectile masses and velocities are typical for the given capability. Increased mass
capabilities have been achieved in modified scaled systems. “Other” refers to shapes that
are not controlled (e.g., a slug in a jet tip). For more information on the velocity and size
ranges achievable with various facilities, see Figure 5-1.

regimes. For example, some work done on “hit-to-kill” missile impacts
could possibly be applied to collisions between large bodies at a few
kilometers per second. However, the applicability of these data to orbital
debris issues has not been studied, and in any case, the data may be
considered too sensitive for wide release.

For studies of debris impacts at higher velocities, the standard labo-
ratory tool is the two-stage light gas gun. Conventional light gas guns
come in a variety of sizes and typically can accelerate impacting objects
from less than 1.5 mm to more than 50 mm in diameter to about 8 km/s,
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Plates Other Comments
X Typically used for material property studies. Typical
projectile diameter is 100 mm.
X Typically used for material property studies. Typical
projectile diameter is 90 mm.
X Maximum size is customized for each gun. Microgram

spheres have been launched to about 10.5 km/s using
special designs.

X Projectile length to diameter difficult to control.
(hollow
cylinders)
X Computer analysis required to establish thermodynamic

state. Typically used for material property studies.

X X Computer analysis necessary to characterize thermodynamic
state of the projectile. FPhotography necessary to
characterize projectile shape.

X X 5till in development. Different variations claim capability
to launch gram-size projectiles to several tens of
kilometers per second or 100 projectiles to about 10 km/s.

Still in development stage. Plastic rods have been launched
to velocities approaching 8 km/s.

Thermodynamic state of projectile not well characterized.
Thermodynamic state of projectile not well characterized.
Thermodynamic state of projectile not well characterized.

although some facilities have been able to accelerate smaller particles to
10 km/s or more (often damaging the gun in the process). The standard
projectile used in a two-stage light gas gun is a sphere, although various
other shapes, including thin plates, cylinders, and long rods, can be
launched (Piekutowski, 1986).

Light gas guns cannot launch impactors to the velocities typical of
LEO debris impacts (10-15 ki /s), but several ultrahigh-speed launchers
have been developed that extend the impact velocity range for debris
impact studies. One is a modified light gas gun technique, referred to as
the Hypervelocity Launcher (Chhabildas et al., 1992a). This technique
recently launched 1-mm thick, 6-mm diameter titanium plates to veloci-
ties of 15.8 km/s (Chhabildas, in press). Similarly modified larger light
gas guns have launched 2-mm-thick, 30-mm-diameter titanium plates to
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velocities greater than 10 km/s. This resultant capability covers the ve-
locity and mass regime of a large fraction of space debris (see Figure 5-1)
but is limited to plate-shaped impactors, and numerical methods are
needed to specify the thermodynamic state of the impacting particle. A
technique with the potential to further extend the range of debris impact
studies is the electromagnetic railgun (Asay et al., 1989), which may even-
tually have the capability of launching spheres up to a centimeter in di-
ameter to velocities of 15 km/s.

Launchers using explosives also have potential use in debris studies.
One such technique employs an inhibited shaped-charge explosive to
launch objects with dimensions in the tens of millimeters to velocities of
about 11 km/s (Walker et al., 1992). Velocities relevant to space debris
studies are therefore realizable, but the objects launched by such explo-
sives are typically hollow cylinders with varying length-to-diameter ra-
tios. This unusual shape complicates analysis of the data because ana-
Iytical models for the damage caused by objects of this shape have not
yet been developed. NASA is using a light gas gun to launch hollow
cylinders at velocities of up to 8 km/s in order to learn more about the
damage caused by this type of projectile. Russian investigators (Isbell et
al., 1992) used a different staged-explosive technique to launch thin plates
at high velocities for equation-of-state studies. This method has launched
flat plates with centimeter diameters to velocities greater than 15 km/s.
Finally, Russian and American investigators are developing a fast shock-
tube device with the potential to launch larger flat plates to velocities of
15 km/s.

Other advanced launcher techniques have been developed to extend
the range of small particle impacts to even higher velocities. Plasma
drag launchers can launch microgram particles to velocities of nearly 20
km/s, and electrostatic launchers have extended this range to more than
100 km/s for particle masses of 101° gram (Stradling et al., 1992).
Capacitor discharge techniques can launch thin flyers of metal and
plastic with masses of a few tens of milligrams to velocities of 20 km/s
(Lee et al., 1992). These techniques are most commonly used to simu-
late the damage caused to particular components by the impact of
small debris and micrometeoroid particles. They have not, however,
been widely used to develop damage prediction or degradation mod-
els; such models are based primarily on data analysis of returned
spacecraft surfaces.

Techniques also have been developed to simulate high-velocity de-
bris impacts without actually launching impactors at orbital velocities.
One such technique, developed to overcome the velocity and mass limi-
tations of existing hypervelocity test facilities, is “dissimilar materials”
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BOX 5-1 Twao-Stage Light Gas Guns

Twosstane light gac duns pressirze 2nd accelerate gas to launcn small neajec.
tiles fo highivelocities. A first.stage launch twbe, sypically B0-100 mm in diameter,
Conmtamsia low molecuiar weightigas [such as hydrogen o hellm) pressurized o
& few atmospheres. An explosiveicharge scceierates a beavy piston to about 0.5
ksl wwhichlaccelerates thengas througn @ conical section to alsméller diameter
launch tibe [ihe second stagel containing the projectiiel The accelerared gas

produces a loadingpressure 5f about 10000 stirosoheres which accelerstes tie
projectiie 1o velocities of 810 km/s| The projectile then steikes the target in an
eyvacuated chamber

I the Hypervelocity Launcher thelseconastage rojectile impacts a thirt piate
atthe end of the launch tubel THe profectile s designed to impadt scias o create
A nearly isotropic pressure loading. accelerating e plate to velocities of up to 15
km/s. depending an itsimass,

testing (Holsapple, 1992). This method simulates the impact of alumi-
num particles on aluminum plates at velocities exceeding 12 km/s (where
vaporization of the impacted materials occurs) by impacting cadmium
(or another low-melting-point material) particles on cadmium plates at
velocities of about 6 km/s. This method may be useful in investigating
aspects of hypervelocity impact phenomena encountered during high-
speed impact on aluminum, but determining the extent to which the re-
sults of dissimilar materials testing are applicable to damage prediction
at velocities of about 10 km /s requires further detailed investigation and
evaluation.

Russian investigators have developed a more radical method to simu-
late target conditions produced by ultrahigh-velocity particles; rather
than launching an impactor, they have used electron beams and laser
deposition to simulate the kinetic energy of high-velocity particles
(Anisimov et al., 1985). Researchers in the United States, Germany, and
Israel have also done extensive work on simulating impacts using ion
beams and lasers (Gilath et al., 1992; Krueger, 1993) and have worked on
laser ablation techniques for accelerating particles to high velocities (Trott
and Meeks, 1990). To accurately simulate high-velocity impact, such tech-
niques must not only match the impacting particle’s kinetic energy but
also impart such energy over a similar time frame to that of an impact
and account for such effects of impact as momentum transfer and changes
of state. Currently, these experiments cannot achieve such an accurate
simulation of an impact, so analytic and numerical methods are used to
convert their data into damage assessment predictions.
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Sharing Hypervelocity Impact Information

One of the main reasons for the lack of good models of hypervelocity
impact damage is that hypervelocity test data are not formally shared,
and the capabilities of many facilities involved in hypervelocity testing
are not commonly known. The general inaccessibility of facility capabili-
ties and impact data generated at these facilities has resulted in duplica-
tion of effort, expense, and delays. Although information about the capa-
bilities of laboratory facilities able to study debris impacts can usually be
obtained from a variety of sources, such as published journals, company
brochures, and word of mouth, there is no systematic process for obtain-
ing this information. Detailed information regarding the capabilities of a
specific laboratory is usually acquired through individual visits by re-
searchers. Often, this information is published in trip reports and other
company documentation and is not widely disseminated. This is espe-
cially true of facility capabilities outside the United States and of “alter-
native” techniques for simulating debris impact conditions, such as the
laser and electron-beam facilities that Russian investigators use.

Attempts to disseminate information about the capabilities of hyper-
velocity impact facilities have been made; information on U.S. impact
testing capabilities was at one point compiled in the “Facilities Hand-
book” (Malley and Nicols, 1987). The goal of this handbook was to (1)
determine where impact testing could be conducted; (2) identify “holes”
in test capabilities, facilities, and instrumentation; and (3) provide a
mechanism to identify the most effective test facilities and methods for
filling these holes. There was a great deal of useful information in this
report, but it did not cover all U.S. facilities and covered none outside the
United States. In addition, it did not include “alternative” test facilities,
such as shaped charges, Van de Graaff accelerators, and electron beam
deposition. Finally, distribution was limited to U.S. Air Force facilities,
and the information was not entered into a database for easy retrieval.

Even more pressing than the lack of information about facility capa-
bilities is the general inaccessibility of debris impact data generated at
various facilities. Many test facilities have extensive collections of data
(sometimes going back 30 to 40 years), most of which are not computer-
ized or stored in databases for easy access. Often, these data are pub-
lished in company reports that have limited distribution and are not
archived for public access. In addition, technical information from many
countries is published in journals that are not easily accessible in other
nations or, in some cases, is not published at all because of potential or
past military secrecy constraints. This inaccessibility of a great deal of
data has surely limited the development of good models of debris impact
damage.
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ANALYTICAL AND NUMERICAL MODELING
OF DEBRIS IMPACTS

Analytic/numeric methods of various levels of complexity are used
to predict the response of spacecraft to hypervelocity debris impacts.
Analytic methods developed to aid spacecraft designers in the design of
protective shields are the least complex. These include (1) “ballistic
limit” equations (Cour-Palais, 1986; Herrman and Wilbeck, 1986;
Reimerdes et al., 1993), which calculate the size of a particle stopped by
a particular shield as a function of impact speed, impact angle, and im-
pactor density; and (2) shield sizing equations (Christiansen, 1993),
which provide estimates of shield thicknesses and spacings required to
protect against particles of given sizes, velocities, densities, and impact
angles. Shield sizing equations may incorporate ballistic limit equations
to determine the effects of impact on the individual walls that make up
the shield.

Analytic methods available to spacecraft designers for predicting the
damage caused by impacts, and the effects of that damage, are slightly
more complex. These include (1) impact damage and effects equations
derived from physical principles (Watts et al., 1993, Watts et al., in press)
and (2) semiempirical impact cratering, perforation, and spallation equa-
tions (e.g., Cour-Palais, 1979; Carey et al., 1984; Horz et al., 1994). Other
analytic models that are useful for providing a qualitative understanding
of impact damage include the Grady model (Grady, 1987; Grady and
Passman, 1990), the Tate model (Tate, 1967, 1969), and the Ravid and
Bonder model (Ravid and Bonder, 1983; O'Donoghue et al., 1989).

There are, however, currently no standardized risk assessment mod-
els to determine the probability of component degradation or failure due
to orbital debris impacts. Performance degradation models are also not
standardized and currently exist for only a few component types. Be-
cause of this, spacecraft degradation due to debris impact is currently
modeled by combining basic engineering model predictions of the ex-
pected envirorunent with empirical scaling models for damage predic-
tion. These empirical scaling laws, though, must often be applied via
unproven extrapolations to materials and velocities that were not in- -
cluded in the original data sets on which the empirical models were
based. After predicting damage, simple performance degradation “rules”
relating degradation to damage area can be applied to determine whether
performance will remain within specifications.

Empirical equations based on ballistic limit curves or other experi-
mental data are often used to predict the performance of debris shields.
These equations can produce good results if experimental data have been
generated for similar particle configurations and velocities (Christiansen,
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1993). A current deficiency of these methods is their typically being based
on empirical data obtained over limited velocity and impactor shape re-
gimes. This produces considerable uncertainty in extrapolating these
equations to other materijals, higher velocities, or velocity regimes where
phase changes (such as vaporization) occur.

Numerical simulations also can be used to predict the damage to
spacecraft from debris impacts or to determine the characteristics of the
fragmentation debris released in spacecraft or rocket body breakups.
Some such computer codes, usually referred to as “hydrocodes,” can
model the spacecraft and impact in three dimensions, though many cal-
culations are performed in two dimensions, particularly when the code is
being used for “phenomena scoping” and “parameter sensitivity” calcu-
lations (i.e., to determine the degree to which changes in material proper-
ties would change the size or shape of the impact damage).

The accuracy of results derived from these codes depends on the
resolution with which the components are modeled and the material
models used in the computations. Good models of the properties of
materials and equations of state do not exist for many of the newer
materials used on spacecraft, including many composites, ceramics,
and coatings. If such models are not developed, these codes may have
limited future value. Good material models must also accurately repre-
sent phase changes caused by the impact (such as vaporization) as well
as material strength effects (such as compressive and tensile failure
behavior).

The memory and speed of available computers limited the numerical
resolution of early computer simulations of debris damage. Recent de-
velopments in computer capabilities have mitigated these problems; it is
now possible to model individual components, such as debris shields
and hull plates, with sufficient numerical resolution to predict debris
impact damage (if good material models of all components are used)
with reasonably good accuracy (Hertel et al., 1992; Hertel, 1993;
Farenthold, 1992; and Katayama et al., 1993).

Computer simulations are most reliable, however, when bench-
marked against experimental data obtained with materials, particle
shapes, and velocity regimes similar to those being simulated (Chhabildas
et al., 1992b) and used to interpolate between good experimental data.
Often, though, experimental data are not available, so numerical analyses
provide the only information available for specific impact conditions. In
these cases, predictions of debris impact damage must be used with cau-
tion. When combined, hypervelocity testing and computer modeling are
powerful tools for assessing the survivability of space systems to debris
impacts.
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LIMITATIONS IN DAMAGE ASSESSMENT AND
PREDICTION CAPABILITIES

As Figure 5-1 and Table 5-1 show, the range of capabilities for launch-
ing particles of the correct mass, velocity, and shape to simulate space
debris impacts is limited. This has led to some limitations in current
damage assessment and prediction capabilities that have serious implica-
tions for the debris field. These are (1) that the full variety of debris
shapes and compositions likely to exist in orbit cannot yet be tested in all
velocity regimes, and (2) that there is difficulty in launching larger im-
pactors to typical LEO collision velocities. The first limitation makes
shield design against the actual debris environment difficult. The second
limitation not only reduces the accuracy of damage predictions for the
impact of centimeter-size objects, but also contributes to the uncertainty
in predictions of the future debris population.

Many analytic theories and measures of impact damage, such as the
ballistic limit, are based on the impact of spherical particles. While this is
a reasonable assumption for meteoroid impacts, space debris exhibit a
much wider assortment of shapes. It has been known for some time that
nonspherical impactors can do more damage than spherical impactors in
marny situations. For example, penetration depth and crater volume from
impacts in thick plate targets are strongly influenced by the length of the
projectile along its flight axis (Gehring, 1970). Figure 5-2 illustrates how
crater depth and volume in a thick target can vary by impactor shape.
For Whipple bumper shields (described in Chapter 6), flat plate projec-
tiles are generally more damaging than spherical projectiles of the same
mass and velocity (Boslough et al., 1993). Figure 5-3 illustrates how the
size of the rupture on the backwall of a Whipple bumper shield can vary
greatly with impactor shape. Because of these shape effects, shields de-
signed based on experience with spherical impactors may not be as effec-
tive as predicted in protecting spacecraft from actual orbital debris im-
pacts.

Another weak link in current meteoroid and debris shield develop-
ment efforts is that, because of the limited data available regarding the
distribution of material types in the debris environment, models used for
shielding design generally assume that large objects are composed of
aluminum and small objects are composed of aluminum oxide. Some
debris, however, is composed of higher-density materials; LDEF detected
impacts by stainless steel, copper, and silver particles (Horz and
Bernhard, 1992). This is a problem because a shield that is designed to
withstand only aluminum projectiles could potentially be perforated by
high-density debris or meteoroids.

It is not feasible, however, to solve these problems by testing shields
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FIGURE 5-2 Variation of crater size with impactor shape for a thick target.
SOURCE: Gehring, 1970.

and other components against all possible debris shapes and composi-
tions (and sizes, masses, or velocities). Instead, analytic and numerical
methods can be used to extend a limited set of experimental results to
other configurations, shapes, compositions, etc., to identify worst-case
conditions that can be used in the design of spacecraft protection sys-
tems. If these computer simulations are validated with sufficient experi-
mental data, reasonable confidence could then be assigned to the com-
puted results. This approach could increase the reliability of a given
protection system and minimize the possibility of serious over- or under-
design.

The inability to launch large impactors at typical LEO collision ve-
locities not only causes the same type of problems described above but
also limits the accuracy of breakup models. Currently, masses capable of
breaking up even the smallest spacecraft can be launched only to low
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velocities (<7 km/s). Because of this lack of capability, all breakup mod-
els use data from tests at impact velocities lower than the typical LEO
collision velocities. In addition, few facilities can perform large-scale
collision tests in a controlled environment. (A very large chamber ca-
pable of conducting both explosion- and collision-induced breakup ex-
periments has, however, been constructed in Russia [Fortov, 1993].) As
mentioned in Chapter 2, without a controlled environment, data on the
distribution of small particles generated by a breakup are suspect and
data on the breakup-induced velocities of any size particle become diffi-
cult to obtain.

FINDINGS

Finding 1: High confidence in the validity of (1) assessments of the re-
sponse of spacecraft components and shield configurations to debris im-
pacts and (2) component and shield qualification and acceptance tests
can presently be provided only by hypervelocity impact testing, but cur-
rent hypervelocity impact facilities cannot simulate the full range of de-
bris impactor sizes, compositions, shapes, and velocities. As a result,
spacecraft protection systems currently are designed to resist the type of
projectiles that can be launched by these facilities (most typically alumi-
num spheres). Because actual debris objects typically have more com-
plex shapes that are very likely to do more damage than spheres at LEO
collision velocities, current spacecraft surfaces and shield designs may
not provide the desired level of protection.

Finding 2. Facilities in a number of nations are capable of carrying out
hypervelocity impact tests for debris research but information about and
access to these facilities is often difficult to obtain, there is no coordinated
interfacility approach to either impact research or new facility develop-
ment, and the results of experiments are not widely available. The gen-
eral inaccessibility of facility capabilities and of the impact data gener-
ated at these facilities has resulted in considerable duplication of effort,
slowing the development of good models of debris impact damage.

Finding 3: Analytical models can be used to design spacecraft shielding
and to predict impact damage for regimes that hypervelocity testing can-
not simulate. Numerical simulations can be useful tools for predicting
damage to spacecraft and determining the characteristics of breakup de-
bris. Unless both of these methods are validated by comparison to ex-
perimental data, however, significant variability in predicted results can
occur. When used together, hypervelocity testing and computer model-
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ing are powerful tools for assessing the survivability of space systems to
debris impacts.
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Designing for the Debrls
Environment

As shown in Chapter 4, orbital debris poses a potential
hazard to spacecraft in Earth orbit. Although a few measures to reduce
the creation of new debris already have been taken, and it appears hkely
that more will follow, these efforts generally aim at averting major in-
creases in—rather than actually reducing—the future debris population.
Therefore, the only foreseeable significant reductions in the debris popu-
lation will be those caused by orbital decay. The result is that even if
measures are taken to minimize the creation of new debris, a debris haz-
ard to spacecraft will exist for many years in most orbits. If measures to
reduce the creation of new debris are not taken, the debris hazard in
many orbits will increase (as discussed in Chapter 8). In any case, space-
craft designers and operators will have to deal with a debris hazard far
into the future.

In the past, most spacecraft designers did not consider the debris
hazard as a design consideration, due perhaps to a general lack of aware-
ness of the threat, the low level of the perceived hazard, or an unwilling-
ness to undertake the seemingly large research task of quantifying the
risk and determining appropriate means to protect their spacecraft. Al-
though large uncertainties still remain, an improved understanding of
the debris environment, combined with the growing availability of ana-
lytic and experimental tools to quantify the threat to a spacecraft from
debris and the development of techniques to protect against debris im-
pacts, now makes it feasible for designers to assess the debris hazard and
protect their spacecraft appropriately.

For spacecraft designers and operators, the decision whether and how
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to protect their spacecraft against debris impact must involve balancing
the risk and cost of damage from debris impact against the expense of
implementing measures to protect against debris. The final decision will
be different for each spacecraft because the hazard, acceptable risk, and
cost of protection will vary depending on the spacecraft’s orbit, configu-
ration, and particular mission. One factor that will not vary greatly is
that the earlier debris considerations are factored into the design process,
the less costly will any necessary modifications be. Early in the design
process, designers can modify aspects of the design to meet debris-re-
lated requirements at a minimum cost; later, however, the many design
choices that have already been made and cannot easily be changed con-
strain further design changes.

Determining the need for (and extent of) protective measures against
debris is a three-step process. First, the hazard from debris must be
calculated by determining the size-dependent debris flux that the space-
craft is likely to experience and then determining the probability that the
flux will damage the spacecraft. Second, the effectiveness of various pro-
tective methods (such as shielding or component rearrangement) that
could be used to reduce the hazard must be determined. The final step is
to look at the results of these two analyses and consider the tolerable
level of hazard for the spacecraft, to determine the costs and benefits of
implementing protective measures. As illustrated in Box 6-1, the final
decision on protecting a spacecraft will vary greatly depending on the
spacecraft involved and the level of hazard acceptable to the designers
and operators.

DETERMINING THE HAZARD FROM DEBRIS

To quantify the threat of orbital debris to a spacecraft, designers must
analyze the particular debris environment in their spacecraft’s orbit, as
well as the spacecraft’s vulnerability to that environment. A number of
analytic and experimental tools that can be very helpful in carrying out
these tasks are now available to designers. It is important, though, that
spacecraft designers who use these tools recognize the assumptions in-
corporated in them so that they fully understand the uncertainties associ-
ated with their output.

The overall flux of orbital debris that a spacecraft will experience is
largely a function of the spacecraft’s size, orbital altitude, inclination, and
attitude; the duration of the mission; and the current level of solar activ-
ity. As discussed in Chapter 2, a number of orbital debris environmental
models that designers can use to estimate the debris flux on spacecraft
have been created. One detailed engineering model has been developed
by scientists at NASA (Kessler et al., 1989) and is being used by NASA,
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BOX 6-1 Design Responses to the Debris Hazard:
Three Examples

Internationat Space Station: Pecaiise of the exrremely high value of the
spacecralt and the desire (o protect the neople that will mnabit it the internation:
aliSpace Station desicn cequirernents are that the probability that debris impact
will carise alcntical faliire must be fess than, 0.5% per year,

Geostationary Communications Spacecrafti Die to the fow perceived
Hezard in the geostationary orpit, fio spacecraft in GEO are known to have design
requirements specificaliy for protection againstdebrs imoscrs thouch they are
designed 1o sUnvive the micrometeoroid ervironment.

RADARSAT: The RADARSATSpacecrafiis designed 1o be latnched into an
OIDRA regime with & high debris fiux, The response of the RADARSAT designers
is presented in some derail at the end of this chapter.

ESA, the National Space Development Agency of Japan, and the Russian
Space Agency in the design of the International Space Station (Kessler et
al., 1994). A simplified version of this model, accessible on the EnviroNET
database (Lauriente and Hoegy, 1990), can predict the cumulative debris
flux of a given size on a spacecraft surface in any LEO. The ESA Refer-
ence Mode] for Space Debris and Meteoroids is also available in an ana-
lytic form useful for spacecraft designers (Sdunnus and Klinkrad, 1993).

Once the debris flux and the distribution of impact angles have been
estimated, the number of impacts on specific spacecraft components can
be predicted. This process involves determining the location of each
component relative to all the others and to the incoming space debris, to
see how components shield one another and to determine where and at
what angles debris is likely to strike each component. NASA’s BUMPER
probability analysis code (Christiansen, 1993), which was developed for
the analysis of Space Station Freedom and has since been applied to the
U.S. shuttle orbiter, LDEF, Mir, and the proposed International Space
Station, can be used to link the debris (and meteoroid) environment with
the spacecraft’s geometry and penetration equations to determine the
perforation hazard to each part of the spacecraft and to size shielding to
prevent such perforations. However, BUMPER can only predict perfora-
tion hole size; it cannot predict other types of impact damage.

Other models, analyses, or impact tests are needed to assess the prob-
ability of component failures due to impact damage effects. As described
in Chapter 5, this can be accomplished through numerical or analytical
methods, by subjecting some components to actual hypervelocity im-
pacts, or through a combination of both approaches. As described in



Orbital Debris: A Technical Assessment (1995)
http://www.nap.edu/openbook/0309051258/html/122.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

122 ORBITAL DEBRIS

Chapter 4, several different impact effects should be considered when
making such assessments. These include

e the effect of perforations on the overall performance of the system;

¢ damage resulting from high-velocity fragments, plasmas, and im-
pulsive loads generated by the debris impact;

» the extent and effect of surface degradation from debris impact;

* the growth of impact damage features over time; and

* damage to critical components leading to spacecraft loss.

The performance of shielding and operational protection techniques in
preventing these types of damage from debris impact can also be ex-
plored.

Finally, the vulnerability of the spacecraft to debris can be deter-
mined by combining the probability of failure of its various components
due to debris impact. This includes accounting for the redundancy of
components and their criticality to the spacecraft. If the vulnerability of
the spacecraft is found to be unacceptable, various protective measures
can be taken to decrease the threat to the spacecraft as a whole, or at least
to protect its more vulnerable components.

DAMAGE PROTECTION TECHNIQUES

Passive, active, or operational protection schemes can be used to pro-
tect spacecraft from debris impact damage. Passive protection generally
consists of shielding a spacecraft or its critical components. Active protec-
tion schemes use sensors to provide advanced warning of impact and
then protect critical components or move the spacecraft to avoid the po-
tential impact. Operational protection schemes change the design of a
spacecraft to allow for graceful degradation or change a spacecraft’s op-
erations to reduce the overall hazard to the mission. Designers who wish
to protect their spacecraft from debris impact must trade off the costs and
the benefits of each method to determine the appropriate method or
methods with which to protect the spacecraft.

Passive Protection

Passive protection typically involves the shielding of a spacecraft
against debris impact. As a result of the size distribution of objects in
Earth orbit (as illustrated in Figure 4-1), spacecraft are much more likely
to be struck by small debris than by medium-sized debris; the chance of
being struck by large debris is lower still. For obvious reasons, the mass
of shielding needed to protect a spacecraft against larger, more energetic
objects increases with the objects’ size; this growth in shield mass will
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increase a spacecraft’s launch costs or decrease its payload mass. The
decision to shield a spacecraft and the determination of how much shield-
ing is necessary require that the acceptable level of risk (i.e., the probabil-
ity of collision with an object large enough to damage the spacecraft) be
balanced against the added mass (and thus cost) required to protect the
spacecraft against various debris size ranges.

In practice, the basic spacecraft structure, which must be more mas-
sive than is needed in space simply to withstand launch loads, often
becomes the primary “shield” against debris. Only if this structure is
incapable of providing sufficient protection should additional shielding
be considered. If additional shielding of components is required, exist-
ing components on spacecraft often can be augmented to serve as debris
shields. For example, component walls can be thickened or layers of
particle-breaking material can be added to thermal blankets covering the
exterior of a spacecraft. Although this type of modification will not pro-
vide as much protection as the equivalent mass of specially designed
shields, it generally results in smaller increases in spacecraft volume, com-
plexity, and cost.

If specially designed shields are deemed necessary, the driving issue
is to minimize mass, size, and cost, while maximizing protection against
debris impact damage. Two basic types of shields, monolithic and spaced
(Whipple bumper), are used; new variations on both continue to be de-
veloped. The basic advantages of monolithic shields are their simplicity
and low volume. Whipple bumper shields, however, will generally pro-
vide far better protection against high-velocity orbital debris than the
same mass of monolithic shielding.

Monolithic shields are typically used to protect against small mass
and lower-velocity impacts. In such impacts, the projectile’s impact en-
ergy is low enough that it typically does not break up, and the shield is
effective because its mass is sufficient to absorb and distribute the impact
energy. At higher collision velocities, however, impacting objects often
break apart on impact; at typical LEO collision velocities, an impacting
object will generally melt or vaporize. Fragmented or melted impactors
will either cause a large spherical crater or perforate the shield, depend-
ing on shield thickness. While monolithic shields can protect against
high-velocity impacts, the monolithic shield thickness required to pre-
vent perforation increases with approximately the two-thirds power of
the collision velocity (see, for example, Swift, 1982; Cour-Palais, 1985;
1987).

At impact velocities greater than 2 to 3 km/s, a Whipple shield gen-
erally becomes more efficient (in terms of stopping debris per unit mass)
than a monolithic shield. Experimental and theoretical evidence shows
that at typical meteoroid impact velocities in LEO, Whipple bumpers



Orbital Debris: A Technical Assessment (1995)
http://www.nap.edu/openbook/0309051258/html/124.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

124 ORBITAL DEBRIS

provide protection equivalent to monolithic shields 10 to 20 times their
mass (Swift, 1982). As illustrated in Figure 6-1, when a high-velocity
projectile strikes a Whipple shield, the interaction with the bumper sends
a shock wave through the projectile, initiating projectile breakup, melt-
ing, or vaporization. Smaller, reduced-velocity particles then travel be-
tween the bumper and the catcher and impact a larger area on the catcher.
This spreads the total impact energy over a large area and ensures that
each individual particle has relatively little energy or momentum, allow-
ing the catcher to be much thinner than a monolithic shield.

Whipple bumper shields must protect against not only the high-speed
particles that will break apart or vaporize on impact with the bumper but
also the slower-moving objects that will simply perforate the bumper
and strike the catcher still intact. A spaced shield with a thick monolithic
catcher is thus required to protect against the entire range of debris ve-

SHOCK FRONT
IN PROJECTILE

SHOCK FRONT
IN BUMPER

SPALLATION

3_ H Z z MAIN STRUCTURE E

(¢) (d)

FIGURE 6-1 Projectile interacting with a spaced
shield. (a) impact onto a thin bumper plate, (b) pene-
tration, (c) subsequent formation of a spallation cone,
and (d) loading transmitted by the cone to the catch-
er. SOURCE: Riney, 1970.
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locities. In this type of shield, the thickness of the catcher is driven by the
largest and fastest impactor expected to reach it without being broken
apart by the bumper. The bumper is sized according to the highest-
energy impactor expected, and the spacing between the two is designed
to optimize distribution of projectile energy.

Several variations of Whipple bumpers are currently being devel-
oped and studied. These improvements, including the multilayer
NEXTEL shield (Cour-Palais and Crews, 1990) and the mesh bumper
shield (Christiansen and Kerr, 1993), reduce the mass of shielding needed
to protect against a given environment and/or reduce the secondary
ejecta produced by impacts into shields. Various shielding studies for
the International Space Station, including a single aluminum Whipple
bumper, a double aluminum bumper, and a stuffed Whipple bumper
have also been conducted at ESA, NASA, and the National Space Devel-
opment Agency of Japan (Christiansen, 1994; Ito, 1994; Lambert, 1994).

Active Protection

Active protection systems use sensors to warn of impending debris
impact and mechanisms or motors to protect critical components or to
move the spacecraft away from the potential impact. The only active
protection schemes employed to date in space have involved using
ground-based sensors to alert crewed or GEO spacecraft of potential col-
lisions with cataloged objects; the spacecraft can then fire maneuvering
rockets to safely avoid the objects. Other methods of active protection
have been proposed, however. Some involve detecting oncoming small
debris with on-board sensors and then either closing shutters over sensi-
tive components or rotating the spacecraft so that the sensitive compo-
nents are not struck. Still more technologically audacious active protec-
tion schemes involve shooting free-flying shields or directed energy
weapons (lasers, plasmas, etc.) at oncoming debris to divert or fragment
it before it strikes the spacecraft (Schall, 1993; Settecerri and Beraun, 1993).

All active protection mechanisms require advance detection and
warning. Because debris may approach a spacecraft at velocities of
greater than 10 km/s in LEO, most require warning when a potential
impactor is hundreds of kilometers from the spacecraft to allow the space-
craft time to respond (i.e, safely maneuver, rotate within operating limits,
fire at the impactor). The necessary detection and tracking capabilities to
provide this warning can theoretically be supplied either by on-board
sensors or by ground-based space surveillance systems.

Detecting debris with spacecraft-based remote sensors has been dis-
cussed in Chapter 2. Using such sensors even to detect debris is a diffi-
cult task; using them for collision warning is extremely demanding. In
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BROX 6-2 Space-based Sensors and Collision
Avoidance Maneuvers

_ Space-based sensors may not be capable of providing sufficiently nmety and
| Brclirate warnings for most spacecraft 1o maneuver fo aveld oncoming debris,
| For example) leven if o 11000-kg spacecraft in LEO were equipped with a serscr
| system capable of warning the, spacecraft of an impending collision at 1 00-kem
distance with stech Bccuracy that the spacecraft couid avoid the debris by moving
| onily 25 meters the spacecrafiwould still nave oniy about 5 seconas to move the
| 25 merers,

SUch & maneuver would cequire @ rocker engine wiith & tarust of 2 KNL IIn
| comoarison. rypical statortkeeping rockets have a srrGst of | N IF @ 375,000:kg
| Space station had to serform the same maneuver, it would tieed o rocket with
| 750/KN . of thrust [about the same as the secorid stage of an Arlane 4 launch
vehicie]. Additionally, acceleration for such a maneuver would: probably exceed
| the permissible Gdoading on extended structures (sucr as'soiar panels), increas,
Ing the distance at whichithe debris was detected would rediuice bothy the bropul:
| sive thrust reguired and the resulting Guoading,

this role, the sensors must not only detect the oncoming object but also
acquire enough position information to determine if it'will hit the space-
craft, and they must do all of this fast enough to allow the spacecraft
sufficient time to react (see Box 6-2). This problem is much simpler if the
sensor is located on the spacecraft to be protected. However, the physi-
cal requirements of systems able to detect medium-sized debris at suffi-
cient distances (and time) to allow action to be taken could be very de-
manding. For example, a space-based radar would require extremely
high power levels; optics would have to be tens to hundreds of centime-
ters in diameter. The sensors would also require wide fields of view to
detect all incoming debris.

Data from ground-based surveillance systems, on the other hand,
have already been used for collision warning. As described in Box 6-3,
space surveillance organizations use these data to project objects” future
locations and to alert spacecraft if they will pass close by, or possibly
collide with, another object. For this reason, ground-based collision warn-
ing systems, unlike space-based systems, have no problem providing suf-
ficient warning time; they are, however, limited to warning of debris
large enough to track from the Earth (currently the minimum size track-
able is about 10 cm in diameter, as discussed in Chapter 2) and are lim-
ited in predictive accuracy.

Effective ground-based collision warning requires three main ele-
ments. First, the catalog must contain a significant fraction of the hazard-
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ous debris that could intersect the orbit of the spacecraft. Second, the
system must provide sufficiently accurate information so that the ratio of
false to real alarms does not require the spacecraft to make an excessive
number of avoidance maneuvers. Finally, the spacecraft must be able to
respond to the system’s warning by moving out of the oncoming object’s
path (requiring both an effective maneuvering capability and a timely
warning) or by employing other active protection measures.

Current collision warning capabilities do not meet these require-
ments. First, current Catalogs are incomplete in size ranges less than 20
cm and thus cannot warn against the majority of potentially hazardous
debris objects. In addition, uncertainty in predicting the future location
of both objects potentially involved in a collision, due to the unpredict-
able nature of the upper atmosphere (described in Chapter 1), means that
a high ratio of unnecessary to necessary maneuvers is inevitable. This
uncertainty also prevents accurate prediction of collisions with sufficient
advance warning for most current spacecraft to execute an avoidance
maneuver.

Designers of such high-value missions as the International Space Sta-
tion have explored the development of a collision warning system for
debris down to 1 cm in diameter. Such a system would require a net-
work of short-wavelength radars and propagation of the expected orbit
of the objects with significantly more accuracy than currently achieved
by either the 555 or the SSN. One estimate of the cost of such a network
1s $1 billion, with yearly operating costs of about $100 million (Loftus and
Stansbery, 1993).

In summary, the sensor capabilities required for active protection

BOX 6-3 U.S. Space Shuttle Collision Avoidance

As A Dart of (ts reassessment of operating procedures after the Challeriger
accident, NASA developed a collision avoidance. pracedure fon the Space Shittle,
Before the launch. the SSN arnaivees the focation of cataloged debris for thelfirse
four rcfy five' mours of the mission to determinie if any will passiclose 1o the shuttle.
When the shuttle is i orbit] ithe SSN will notify, NASA'f & cataloged ebject s
predicted ito pass within 5 km radially or 25 km along the orbital frack lofithe
shuttiel If the predicted.distance closes to 2 km radially orib ke along the track,
theishuttlewill perform & collision-avoidance manelverif it does not compromise
either. primary. payload or:mission objectives,  Thesshuttle requires, 45 sminutes
Warning to plan and perform A collision-avoidance mermeuver [General Account:
ing Officel 19901 Erom 1989, \when this procedure was implemented. through
Febrliary 1994 the shiitie received four notifications and. performed three Colli:
sioravoidance mareuvers {Stich, 1994).
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schemes are both technically challenging and expensive and thus would
probably be used only for crewed or other highly valued spacecratt. Even
with an effective collision warning system in place, however, many ac-
tive protection methods may still be infeasible. The shoot-back schemes,
for example, require far more power (perhaps tens of kilowatts) than
most spacecraft can generate, and as discussed, maneuvering away from
debris in the short-notice warning case can require high-thrust rockets
and sturdy spacecraft design.

Operational Protection

Operational protection, including oversizing, redundancy, and mis-
sion/architecture design, is currently the most commonly used impact
protection method in the spacecraft design community. Most operational
protection schemes in place, however, were not implemented to deal with
the debris hazard but rather to minimize the chance of mission failure
due to component failure from any cause. To turn this logic around, a
secondary advantage of operational techniques is that they not only pro-
tect against the debris hazard but also protect the spacecraft against fail-
ures unrelated to debris impact.

One operational protection approach is to design for “graceful degra-
dation” so that, although a component may be operating out of its speci-
fied ranges, the degraded performance does not cause complete break-
down or mission failure. A typical example is thermal control, which
depends on the reflective and absorptive properties of surface materials.
Surface degradation can cause the temperature-controlled item to gradu-
ally approach and exceed designed temperature limits (usually the hotter
limit). The operational protection approach is to design the thermal sur-
face so that it initially provides more than enough thermal control and
then to design the components underneath so that they too degrade
gracefully when out of limits, thus increasing the safety margin. Over-
sizing can also be used for solar panels and other components to allow a
given amount of degradation while retaining the required performance
levels.

Another operational protection technique is redundancy, which is
used primarily for electronic and propulsion components. This approach
involves duplication of components in two or more places on the space-
craft so that if one component fails, another can take its place. Redun-
dancy can even be applied to entire spacecraft constellations; the U.S.
Global Positioning System utilizes this approach by maintaining more
spacecraft in orbit than needed at any one time.

A third operational technique is to trade off system performance cxi-
teria with the orbital altitude and attitude in which the spacecraft will
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FIGURE 6-2 Expected number of window replacements for U.S. Space Shuttle
at various orbital attitudes. SOURCE: NASA Johnson Space Center.

operate. One example of this is redesigning a mission so that a sensitive
component functions facing the rear, rather than in the direction of mo-
tion, to reduce the flux on that component. Although mission require-
ments for the pointing of sensitive components make this approach in-
feasible for many missions, it can occasionally be employed. Figure 6-2
illustrates how orbital attitude changes the number of expected impacts
on U.S. Space Shuttle windows. Space Shuttle Rule 2-77 states that the
shuttle should use the orientation that causes the least number of win-
dow impacts unless it compromises mission objectives (NASA, 1993a).
The space shuttle also uses orbits believed to have a lower flux of debris
whenever possible; mission designs must keep shuttle orbital altitudes
below 320 km whenever possible without compromising high-priority
objectives (NASA, 1993b).

FINDINGS

Finding 1. Improved abilities to assess the hazard to spacecraft from
orbital debris and, if necessary and feasible, to incorporate some protec-
tive measures to avoid spacecraft and component degradation or loss,
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BOX 6-4 Designing for the Debris Environment:
The RADARSAT Example

| Ihe Canadian RADARSAL Is a 3 000g, threeaxs stabilized spacecraft with
| about 5'square meters of frontal surface. It will be placed int a sunesyricnronous
| orbitwith an aifitide of 790 kim ang an indlination of 98 5 degrees for @ desighed
| Bunictonal lifetime of five yedrs) Because the orbital reqime intoiwhich theispace:
| craft will be launened is believed to have o high debris Aux and the initial RADAR.
. SAT design exposed many components ro the space environment, the designers
| performed an assessment of the debris hazard to the soacecraft,
| First, using NASA's EnviroNET, the designers predicted the approximate fitix of
| space deoris on the spacecraft) given the RADARSAT orbit narameters and config.
uratior, | This provided lan estirnate of the mumber of impacts expected on the
| leading face of the spacecraft with respect to debris size.| The expected velocity
| and impact angle distributions for impacting particies were then determined us.
Ing 2 NASA model of the LEG environment (Kessler et al, 1989). These Indicated
| At one lamim particie and a farger number of smaller cbjecrs would impeact the
| spaceceofts leading stirface duringlits fiveyear mission. [Of course, as described
in Chapter 3 any estimates of smiall debris popuiations in this orbiai regime are
bates on significant extrapolations from existing data )| it as calculated hat
oSt Impacts would occurwith velotities In tnel 13- to 15 50y range, with
irmpact angles in the range of 5ito 30 degrees fmeasured from e direction of
motion). <
Using this nformation; spacecrait components were examiped anatically 1o
determine;theirvilnerability to impacts. ' The payload module contained electrcr.
‘o comoonents behind honeycomb shear penels, so Bnalysis of the module fo-
ctised on determining whether the shear panels sufficiently shielded the sleciron.
ics. | mypervelocityl impact equations indicated that the components. were
adequately shielded ;,0On the bus module, However, mostof the sensitive equip
ment was mounted, on’ the ontside, of ithe honeycombd' shear panels and was
therefore protected only by miultiayer insulation (ML) thermal blankets, separat.
2d from thie shear ipanels by 15 to 25 cm, A anaiysis was oerformed to deter-
mine the vulnerability of each, component {including not only electronic equip-
ment,/ but ialsa ! cable! harnesses between boxes. and ioropulsion subsystem
nardware) and theri tolcombine;these numbers to deternaine an averall bus mod-
ule vuinerability. [The overallisurvivability against the rmetecroid and orbital debris
environment was calculated to be ‘only 50% over the fiveyear functional lifetime,
To complement the computational analyses, some spacecran components were
subjected toimpacts atithe NASA's Hypervelocity, Impact Researchilaboratory.
The'tests were used to verify the assumptionsimade inithe analyses and to deter-
mine the effectiveness of various shielding technigues;: The test articles included
different’ corfiguratioris of Honeycomb shear, pariels,j various thicknesses of elec.
oric component sealls. hydrazine lines, synthetic aperture radar Wwaveguides,
and wire bundies! WLl Dlankers were also tested with and without reinioree.
ment o vedfy their shielding effectiveness. The imipagt angies were varied 1o
SITIUIEtE IMpAacts on componenits on Doth the front and the sides of the space.
craft. Some results from the tests follow:
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2 Ap ML blanker 6305 mm from @ plate proviced sigifican: shielding against
small projectiies. Adding Nextel or auminum mesh 1o the Blancet improved the
shielding even fumher

n 2he Byoervelacity impact of a Lrers alumindm orolectiie consideranly dam.
aged unorotected 24 gauge wire bundles, but negiigibly damaged those crotect.
od By an ML and Nexte! shield,

¥ Dn 3 rass bagie Newrel and aluminam mesh derformad similany Howey.
21, Decause of the difficulry of adding three avers of aluminum mesh to the ther
mal blanker ane layer of Newred Was chosen as the haseling reinforcement,

= A Oldemen allminum orojectile impacting at 8 kmys could perforate ydra.
Zine lines with skainless Steed walls 0 51 mm thick

A nimber of design changes increated the spacedraf's chances of sinival in
the predicted debrs environment, Thece inciuded adding a laver of Nextel to the
ML plankets of the Bis modide, thereoy increasing the protection of the electron.
iz boxes and the wiring harmesses mounted on e outside of the bus shear
Denals, BUs moglle combonants that wiere contigered more wiineratie had teir
Wl thickened | A gap berween the Dus module and the oavioad module was
closed 1o protect & number of hydrazing fnes. Shislds ywere alsa added o Some
hydrazipe tnes to decrease the orobability of direct it Einaliy, e forward
Comespost radiators of the bus were thickened and wigened to shield some elec.
wronic compenents. Total spacecraft mass increased 17 Lo frars all of the shieidh
ing design imorovements, These moaifications aians with orher changes from
he m&aiuﬁm of the design increased the oredicted sunavabiliity of te spacecraf
Against micrometecroids and orbital Gebris from 50 t0 87 percent for its fvenear
mission.

are now available to spacecraft designers. Tools are becoming available
to make these tasks easier, but it is important that spacecraft designers
understand the assumptions that have been incorporated into them.

Finding 2: A spacecraft’s basic structure should be the first line of de-
fense against the debris hazard. If the spacecraft’s structure does not
provide sufficient protection, it may be necessary either to add additional
shielding or to employ an active or operational protection scheme.
Shielding can involve augmenting existing components or adding new
shields. Selective local shielding of critical components can be a cost-
effective means to reduce spacecraft vulnerability to debris or microme-
teoroid impacts.

Finding 3: Active protection measures, such as movable shields and shut-
ters, avoidance maneuvering, and direct attacks on incoming impactors,
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are costly and often technically challenging. They require advance detec-
tion and warning, which in turn may require improved sensor capabili-
ties. Development of a collision warning system capable of protecting
spacecraft effectively against all hazardous orbital debris would be ex-
pensive and challenging.
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Techniques to Reduce the
Future Debris Hazard

There are many possible means of reducing the debris
hazard to future space operations. These include actions taken as a space-
craft enters orbit (e.g., tethering rather than jettisoning lens caps and de-
spin devices), during operations (e.g., reducing the amount of refuse
ejected from crewed missions), and after its functional lifetime (e.g., de-
pleting energy sources or moving the spacecraft into a disposal orbit).
Some methods would cost very little, whereas others might be economi-
cally prohibitive for some missions. Their effectiveness also will vary,
not only from method to method but also in how well a particular method
will work in different orbital regions and with different space systems.

Methods to reduce the future growth in the debris population can be
divided into two major categories: those that reduce only the short-term
hazard and those that are also capable of reducing the long-term hazard.
Measures that reduce the number of objects in orbit without reducing the
total mass are effective only in diminishing the short-term hazard, be-
cause such measures do not reduce the total kinetic energy in orbit. It is
this kinetic energy that constitutes the long-term collision hazard (Kessler
and Loftus, 1994), so reductions in the long-term collision hazard require
reducing the amount of mass in orbit. (This topic is discussed in greater
detail in Chapter 8.)

There are two fundamental factors to consider when assessing meth-
ods to minimize the creation of new debris. The first is how much the
method will actually reduce the debris hazard to space operations. The number
of objects a particular method will prevent from being generated, the
mass of those objects, and the threat those objects will pose to valuable
orbital regions must all be considered. The second factor is the difficulty

135
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and cost of implementing the debris reduction method. This includes not only
the development cost of any new hardware, but also the “opportunity
cost” of any revenue lost or performance sacrificed in implementing the
method. The choice of which methods to implement, when to implement
them, and in what orbital regions they should be implemented typically
involves a trade-off between these two factors.

MINIMIZING THE RELEASE OF MISSION-
RELATED OBJECTS

As described in Chapter 1, there are three main types of mission-
related debris: (1) objects released in spacecraft deployment and opera-
tions, (2) refuse from crewed missions, and (3) rocket exhaust products.
Each of these debris types has very different orbital characteristics and
size distributions. Together, they make up 13% of the total cataloged
space object population; most of these objects are (as shown in Figures 3-
4 and 3-5) located in orbital regions used by spacecraft. In addition, as
discussed in Chapter 3, a large population of uncataloged mission-re-
lated debris also exists. Although ending the release of mission-related
debris will obviously prevent the hazard from these objects from grow-
ing and further endangering future space operations, the balance between
the costs and benefits of reduction actions varies greatly for the different
types of mission-related debris.

Reducing the amount of mission-related debris released in spacecraft de-
ployment and operations (e.g., clamps, covers for lenses or sensors, de-spin
devices, pyrotechnic release hardware, wraparound cables) may be one
of the easier ways of decreasing the future debris hazard to space opera-
tions. These objects make up the great majority of the cataloged mission-
related debris population and typically have the longest orbital lifetimes
of any mission-related debris. In the past, the practice has often been to
simply jettison such items at separation from the launch vehicle or dur-
ing appendage deployment. By using tethers or other simple devices,
however, the release of most of these items can be avoided. Similarly,
explosive bolts, which are commonly used to separate rocket upper
stages, can be designed to not release large amounts of debris when acti-
vated. Because the parent spacecraft or rocket body would retain most
objects, however, implementing such measures would not reduce the to-
tal mass of debris in orbit. (Chapter 8 discusses the significance of reduc-
ing mass in orbit.)

Measures to retain debris created during spacecraft deployment and
operations are typically fairly easy to implement without affecting space-
craft operations. (Since the early 1980s, many such methods have been
used on U.S. and other spacecraft.) The release of some types of mission-
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related debris during spacecraft deployment, however, may be more dif-
ficult to avoid. One example is dispensers for multiple spacecraft (e.g.,
the forward payload adapter on the Titan III and the SPELDA device
used with the Ariane launch vehicle). Methods for retaining or deorbiting
such items have not yet been developed, but development of such meth-
ods does not seem to be an inherently intractable problem.

Reducing the amount of mission-related debris created during the course
of crewed space activities will have little effect on the overall debris hazard
to space operations. Since human activities in space currently take place
at low altitudes, the debris they release (mostly from intentional refuse
dumping and extravehicular activities) experiences rapid orbital decay
and does not contribute to the long-term debris population. Although
there are a number of possible methods to further reduce the hazard to
space operations from such debris (e.g., bringing the refuse back to Earth
during scheduled crew rotations or attaching a drag augmentation de-
vice to speed its orbital decay), implementing such methods will not
reduce the overall long-term debris hazard. However, since this debris
contributes to the short-term hazard in an area containing valuable space-
craft, the use of low-cost methods of debris reduction (if such methods
are available) appears to be worthwhile.

Curtailing the release of exhaust products of solid rocket motors will also
do little to reduce the debris hazard to space operations. As discussed in
Chapter 3, solid rocket firings produce a vast number of very small (<10-
micron) debris, but their orbital lifetimes are fairly short due to the strong
effect of perturbing forces such as solar radiation pressure; less than 5%
will remain in orbit after a year. In addition (as described in Chapter 4),
the surface degradation these particles can cause is not a major hazard to
tunctional spacecraft.

The only methods of meaningfully reducing this population would
be either to restrict solid rocket motor firings in orbit or to alter the com-
position of solid rocket motor fuel. Because either action would impose
cost increases or performance reductions on many space activities, and
the lifetime of these exhaust particles and the potential damage that they
can cause to functional spacecraft are so small, it seems clear that neither
step is yet warranted at present. It is not yet clear, though, whether
anything should be done to limit the population of 1-cm and larger pieces
of slag (discussed in Chapter 1) that are also believed to be ejected during
solid rocket burns. Whereas the larger size and longer orbital lifetimes of
these particles may make them a greater hazard to spacecraft than the
small aluminum oxide particles, too little is currently known about them
(in particular, how many are typically produced in a solid rocket motor
firing) to determine if there is any need to search for ways to prevent
their creation.
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SAFEGUARDING THE PHYSICAL INTEGRITY OF
ROCKET BODIES AND SPACECRAFT

Reducing the Creation of Debris
from Explosions

Fragmentation debris makes up 42% of the cataloged space object
population and probably a much larger fraction of the uncataloged popu-
lation. Since there have been only two confirmed space object breakups
to date due to collisions (both intentional military tests), the vast majority
of this debris is believed to have been created in explosive breakups of
spacecraft and rocket bodies. This population of debris spans all size
ranges and is distributed widely, although concentrated near the orbits
in which it was created. Figure 7-1 projects how a typical explosion in
LEO (producing 300 cataloged objects) could moderately increase the spa-
tial density of cataloged objects in orbits hundreds of kilometers above
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FIGURE 7-1 Predicted effect of satellite breakup at 1000 km. Top curve is initial
spatial density distribution with altitude. Time interval between lower curves is
400 years. SOURCE: Kessler, 1991.
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and below the breakup altitude. This increase in spatial density can per-
sist for long periods of time; the higher the altitude, the longer will the
spatial density remain elevated. Since explosions can produce a consid-
erable amount of large and medium-sized debris with potentially long
orbital lifetimes, reducing the creation of debris from explosions will
clearly have a major effect in containing future growth in the debris haz-
ard. A reduction in the frequency of explosions can be achieved by passi-
vating spacecraft and rocket bodies.

Passivation of Spacecraft

Debris from spacecraft explosions makes up about 12.5 percent of the
cataloged space object population. Spacecraft can explode both during
and after their functional lifetime for a wide variety of reasons, including
propellant tank explosions, thruster malfunctions, tank failures due to
the impact of small debris, battery ruptures, accidentally induced high
rotation rates, other degradations of the structure, or deliberate explo-
sions. There are correspondingly many possible measures to prevent
spacecraft breakups. There is no one single remedy, and there is prob-
ably no possible way to avoid all future spacecraft breakups: despite safe-
guards, a residual number of spacecraft breakups will continue to gener-
ate debris, if at a reduced level.

However, spacecraft designers can take a general system-level ap-
proach to prevent accidental spacecraft breakups. The approach is (1) to
determine all potential sources of stored energy remaining on a space-
craft late in its active life; (2) for each source, to provide a method of
dissipating the stored energy in a benign manner; and (3) to activate
these means at the end of the spacecraft’s functional lifetime (i.e., “passi-
vate” the spacecraft). Protecting the spacecraft from debris impact dam-
age, as well as other methods to increase spacecraft survivability, can
help ensure that the spacecraft is capable of carrying out passivation mea-
sures at its EOL.

The “passivation” approach described above can be applied to nu-
merous spacecraft subsystems. For example, spacecraft batteries are
sources of stored energy believed responsible for a few breakups. To
prevent such breakups, designers can implement a battery management
system that ensures that the batteries will be left in a completely dis-
charged state at the end of the spacecraft’s functional lifetime and will be
short-circuited to prevent recharging. Implementation of this system
would prevent inadvertent overcharging, which can lead to battery rup-
ture and potentially break up spacecraft. Another example of this ap-
proach would be to ensure that all residual propellants and stored pres-
surized gas in the spacecraft are vented at the end of the spacecraft’s
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functional lifetime—if possible, in a manner that moves the spacecraft
into an orbit that reduces its long-term contribution to the debris hazard.

Ending or reducing deliberate spacecraft breakups would also, of
course, reduce the spacecraft fragment population. Historically, space-
craft have been broken up deliberately for structural testing, to destroy
sensitive equipment so that it would not be recovered by hostile forces,
and in antisatellite weapons tests (Johnson and McKnight, 1991). Delib-
erate breakups are believed to account for slightly more than one-third of
all spacecraft breakups. Another 20 percent of all spacecraft breakups
may be due to the unintentional detonation of on-board self-destruction
systems. Combined, these types of breakups are the source of approxi-
mately 6 percent of the current cataloged space object population. Delib-
erate breakups of spacecraft about to reenter the atmosphere do not con-
tribute greatly to the debris hazard; the debris created in such events is
typically ejected into orbits that decay rapidly. Fragments from inten-
tional breakups at high altitudes (>600 km) can, however, remain in orbit
for thousands of years or more. Ensuring that any future deliberate
spacecraft breakups are not carried out in high orbits would help contain
the future debris hazard.

Passivation of Rocket Bodies

Debris generated through the explosive breakup of liquid-fueled
rocket bodies after they have completed their missions makes up 25 per-
cent of the cataloged space object population, and probably a large frac-
tion of the uncataloged large and medium-sized debris population.
Rocket body breakups are believed to be caused most often by the re-
sidual propellant (as much as several hundred liters) that may remain in
the rocket body’s fuel and oxidizer tanks at the end of a mission. Explo-
sions that break up rocket bodies are caused most often by accidental
mixing of the components of this residual propellant or by physical fac-
tors such as overpressure.

Accidental mixing occurs most commonly in rocket bodies that store
fuel and oxidizer in thin tanks with a common bulkhead. During ground
handling and launch, a positive pressure difference exists between the
oxidizer tank and the fuel tank, but after spacecraft separation, this pres-
sure difference can vanish due to leaks in pipes and valves, resulting in
damage to the bulkhead. Fuel and oxidizer are then able to mix through
the damaged bulkhead, leading to an explosion. The bulkhead also can
rupture from corrosion or thermal stress; thermal stressing of a fuel tank
bulkhead may have led to the breakup of seven Delta rocket bodies. Frag-
mentations caused by accidental fuel mixing can be extremely energetic,
because of the large amount of fuel that may be involved.
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Rocket body explosions also can be generated by nonchemical means,
such as overpressure leading to propellant tank rupture. Overpressure
may occur for a number of reasons, including propellant heating and
failure of pressure relief valves. Explosions caused by nonchemical
means are often less energetic than those caused by propellant mixing.
Since explosions caused by overpressure cause no transient stresses, theo-
retically the propellant tank will tear along lines of weakness, generating
few, if any, fragments, and the additional velocity imparted to any frag-
ments should also be low (Fucke, 1993). However, the 1986 explosion of
an Ariane third stage, which is believed to have been caused by over-
pressurization, produced a record number of cataloged fragments, and
explosions generated by nonchemical means probably caused seven of
the ten largest fragmentation events recorded (all with more than 225
cataloged fragments).

Launch vehicle builders have developed a number of methods to
reduce a rocket body’s potential for explosion. In general, the methods
involve either (1) depletion burns after the rocket body separates from
the spacecraft or (2) venting of residual propellant. Although these pas-
sivation measures will not eliminate propulsion-related breakup events
(i.e., breakups that occur during rocket ignition and propulsion), such
events are rare for orbital rocket bodies.

In depletion burns, the engine is reignited after completion of the stag-
ing process and operated under normal conditions until its propellant is
depleted. In principle, depletion burns can shorten the rocket body’s
orbital lifetime, although past burns of some rocket bodies have increased
orbital lifetime. (See the discussion of orbital lifetime reduction later in
this chapter.) Such a maneuver typically requires using the rocket body’s
battery for power and its auxiliary thrusters for attitude control. To gain
the maximum lifetime reduction from such a maneuver, the depletion
burn should be carried out near the orbit’s apogee; to prevent the con-
tamination of nearby spacecraft, some rocket bodies may have to retain
the capability to make such burns for several hours after staging. Cur-
rently, some rocket bodies are capable of performing depletion burns for
a short time after spacecraft delivery, and most other rocket bodies would
require only minor modifications to be able to perform depletion burns.

Venting of residual propellant can be achieved either by blowing the
propellant out through valves or by evaporating and venting it. To vent
residual propellant, a rocket body generally requires pressure relief
valves (usually activated by firing pyrotechnic devices) and venting
pipes. The advantage of venting is that it does not require reignition or
auxiliary thrusters. The Ariane rocket bodies (see Box 7-1) now vent
their residual propellant.

Residual propellant from the main rocket engines is not the only
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BOX 7-1. Ariane Passivation

The Apane | through Anane ¢ are threesstage launch venicies with cryogenic
third stages. The third-stage iguid-oxygen and liquid-Rydrogen tanks Lice a com,
mon bulkhead, On average, 120 kg of liquid hydrogen ana 160 kg of liguid

oxygen, remain after thirdsstage engine cLtoff,

Passivation measures for the third stage enstre full aepletion of the resiaual
propeliant Venting of the tariks Degins when pyrolechnic devices fire 1o activate
the pressuirerelief valves and venting pipes that were installed for this procedure)
Depletion is timed so that the pressure difference between the twoitanks meets
the bulkhead design requirement throughout the procedure,

cause of rocket body breakup. In several cases, debris has been gener-
ated by the explosion of residual propellant for the auxiliary engines
used to maintain three-axis control during transfer orbit segments and to
provide axial acceleration prior to rocket body reignition. Propellant
venting and depletion burns also can be used to avert such explosions.
Finally, batteries and other pressurants on rocket bodies are sources of
energy that can lead to breakups. These can be passivated in the same
manner as they would be on spacecraft.

Reducing the Creation of Debris
from Degradation

The products of spacecraft surface deterioration include paint flecks
and other surface materials that come loose from a space object under the
influence of the space environment. Very few of these items are large
enough to be cataloged; the vast majority are small. The few cataloged
objects believed to be released due to surface degradation have had high
ratios of cross-sectional area to mass and have experienced relatively
rapid orbital decay. The vast numbers of small particles released due to
surface degradation are also suspected to have high ratios of cross-sec-
tional area to mass and thus fairly short orbital lifetimes (as discussed in
Chapter 3). However, since a typical paint fleck may have a mass of only
10¢ gram, the deterioration of even minor amounts of surface material
can rapidly replenish the orbiting population. As discussed in Chapter 4,
these particles can cause surface degradation and can also potentially
damage unprotected spacecraft components such as optics, windows, and
tethers.

Much has been learned from LDEF and other experiments about the
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effect of the space environment on various substances; thermal coatings
and treatments that reduce surface charge buildup and have other long-
life properties are now generally available. Although spacecraft design-
ers commonly avoid using paint or other surface materials that signifi-
cantly deteriorate during the spacecraft’s functional lifetime, they
generally do not require that the surface coatings survive intact Jong after
the spacecraft’s functional lifetime. The situation is similar for rocket
bodies, although in this case the surface materials may be required to
remain intact in space only for a few hours or days (although they must
survive in the often harsh environment of the launch pad for long peri-
ods of time). Education of spacecraft and rocket body designers about
the hazards caused by surface degradation and the preventive measures
available may be an inexpensive means of reducing the creation of this
type of debris.

REDUCING THE CREATION OF DEBRIS
FROM COLLISIONS

Two main approaches could theoretically be employed to reduce the
long-term creation of debris from collisions. These are (1) to decrease the
number of collisions by employing collision avoidance techniques or (2)
to remove objects capable of causing collisions away from crowded or-
bital regions. (Limiting the number of objects in orbit without reducing
mass is not sufficient to reduce the long-term potential for collisions,
because such reductions do not affect the total kinetic energy in orbit
available to cause collisions.) The problem with the first approach is
that, as discussed in Chapter 6, current collision warning systems are
ineffective, and the development of effective systems would be both tech-
nically challenging and costly. Even if an effective collision warning
system were implemented, it would probably not be of use in preventing
breakups of either nonfunctional spacecraft or other debris (because such
objects are incapable of maneuvering to avoid a collision). Consequently,
removing debris from crowded orbits may be the only practical alterna-
tive.

There are four techniques that can move debris from heavily traf-
ficked orbits: (1) deorbiting (the deliberate, forced reentry of a space ob-
ject into the Earth’s atmosphere by application of a retarding force, usu-
ally via a propulsion system) at EOL; (2) orbital lifetime reduction
(accelerating the natural decay of spacecraft and other space objects to
reduce the time that they remain in orbit) at EOL; (3) moving objects into
less populated “disposal” orbits at the end of their functional lifetime;
and (4) active removal of debris from orbit.
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Deorbiting/Lifetime Reduction

Although breakup fragments outnumber all other types of orbital
debris, rocket bodies and (to a lesser degree) spacecraft have by far the
largest fraction of mass and cross-sectional area in orbit. Most collisions,
therefore, will involve these objects. The abandonment of rocket bodies
and spacecraft in Earth orbits—especially in long-lifetime orbits such as
GEQ, circular orbits higher than 800 km, some GTOs, and some Molniya-
type orbits—greatly increases the long-term potential for future collision.
Possible techniques for deorbiting or accelerating the decay of these ob-
jects include the use of retrograde propulsion, natural perturbing forces,
and drag augmentation devices.

Retrograde propulsion burns can be performed with dedicated small
rocket thrusters or, as previously discussed, through a depletion burn of
excess on-board fuel with existing rockets. A retrograde burn can be
used either (1) to achieve a controlled deorbit, in which the rocket body
or spacecraft is directed to impact (or burn up during reentry) at a prede-
termined location over an ocean or another uninhabited area, or (2) to
maneuver the rocket body or spacecraft to an orbit with a lower perigee,
which will lead to a shorter orbital lifetime followed by uncontrolled
atmospheric reentry and burnup.

Both spacecraft and rocket bodies may require some modifications to
carry out deorbiting or lifetime reduction maneuvers. Some spacecraft
may not have attitude or orbit control systems capable of performing
EOL burns; such systems are necessary to execute reorbiting or lifetime
reduction maneuvers. Rocket bodies may need enhanced batteries, atti-
tude control, and command systems in order to remain functional long
enough to perform the retarding thrust maneuver. (This is particularly
important for rocket bodies in orbits near the spacecraft they have just
released into orbit; such rockets must often perform the retarding thrust

BOX 7-2 Examples of Lifetime Reduction Maneuvers

Althotigh the Sovier Union deorbited mdny OF 118 space stations and other
large spacecraft, these maneuvers were rot performed o reduce the hazard to
other spacecrall but rather to avoid creating a hazare 1o peoplesarid property on
the groundi Spacecraftin planped LEQ consteliations, such as those Being devel:

| oped by the Friditm and Teledesic organizations, may become the fisstispacecraft
10 carry out fifetime reducion marieuvers specifically to recduce the debris hazard,
Clrrent driditem olans are 1o use retrograde propulsion bUrms 1o dccelerate the
orbital tecay of the spacecraft from their inftial 780-km orbits,
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maneuver several hours after separation from the spacecraft.) Both rocket
bodies and spacecraft would require sufficient fuel to perform these ma-
neuvers.

Figure 7-2 shows the change in velocity (AV) and propellant mass
fraction required to perform a deorbiting or lifetime reduction maneuver
from various circular low Earth orbits. (The propellant mass fraction is
the mass of the propellant divided by the total mass of the space vehicle,
including propellant.) As can be seen, the mass of fuel required to deorbit
a spacecraft or rocket body is greater than the amount needed to reduce
its orbital lifetime. A rocket body with a ratio of cross-sectional area to
mass of 0.01 m?/kg in an 800-km circular orbit, for example, would re-
quire about half the amount of propellant to reduce its orbital lifetime to
10 years than it would require to deorbit. Performing either maneuver
would remove a large, long-lived (up to hundreds of years) hazard from
LEQ, but the extra fuel required for either maneuver would directly re-
duce the launch vehicle’s or spacecraft’s payload capacity, making it less
capable and putting it at a disadvantage with competitors that are not
carrying out such maneuvers.

Natural perturbing forces can sometimes be used to reduce rocket body
orbital lifetimes. Atmospheric drag is obviously a perturbing force with
a major effect on the orbital lifetimes of objects that pass through low-
altitude regions. Figure 1-6 illustrates how initial altitude can affect the
orbital lifetime of various space objects in circular orbits. Figure 7-3 illus-
trates how orbital lifetimes for objects in elliptical orbits can vary even
more sharply, depending on their initial perigee altitude. Clearly, rocket
bodies launched into transfer orbits with low perigees experience much
more rapid orbital decay than those launched into orbits with higher
perigees; when possible, this can be a very effective means of limiting the
orbital lifetimes of rocket bodies in highly elliptical orbits.

More subtle gravitational perturbations can also affect the orbital life-
time of objects in geostationary transfer orbits with perigees below about
300 km. Careful selection of the orbit’s orientation with respect to the
Sun and Moon (by launching at a particular time of day) can cause lunar-
solar perturbations to lower the orbit’s perigee. Figure 7-4 shows how
the orbital lifetime of a rocket body varies depending on the initial sun
angle. This technique could be a low-cost option to accelerate orbital
decay from certain missions, but it can require major design changes for
other missions; a comprehensive analysis is needed for each particular
mission to examine possible conflicts with other requirements.

Finally, drag augmentation devices can be used to accelerate the orbital
decay of rocket bodies or spacecraft. Drag augmentation, which would
be effective only in low-altitude orbits, would involve deploying a device
to increase the surface area, and thus the drag, of a space object. Figures
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FIGURE 7-3 Average orbital lifetime for GTO, inclination = 27.5 degrees. Ran-
dom choice for initial argument of perigee and right ascension of ascending node
of orbit plane. SOURCE: National Aeronautics and Space Administration.

1-6 and 7-3 showed how increasing an object’s ratio of cross-sectional
area to mass can greatly reduce its orbital lifetime. Most drag augmenta-
tion concepts involve inflatable balloons, which are fairly simple to de-
ploy and can produce a large surface area without a great mass penalty.
One problem with balloon devices is that they will rapidly be punctured
by small debris; this problem might be solved, however, if a proposed
method involving post inflation solidification could be implemented.
Alternatively, a non-balloon drag augmentation device, which might be
more complex to deploy, could be used. Perhaps a greater problem with
these methods is that while they reduce an object’s orbital lifetime, they
also increase the object’s cross-sectional area; the effect may be that the
total exposure to collisions is not significantly reduced.

Disposal Orbits

Deorbiting or meaningfully accelerating the orbital decay of space-
craft or rocket bodies from most widely used high-altitude orbital re-
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FIGURE 7-4 Shuttle-launched LEO to GEQ transfer stage life-
times. Initial sun angle is the angle between the transfer stage’s
original orbit and the sun. SOURCE: Loftus et al., 1992.

gions would be prohibitively costly. One means of removing objects
from these regions is to reorbit them into “disposal orbits” at the end of
their functional lifetime. This leaves the objects in Earth orbit but re-
moves them from regions where they would pose a direct collision haz-
ard to functional spacecraft. Disposal orbits must typically be far enough
from the initial orbit that orbital perturbations do not take the reorbited
objects back through their initial orbit, although stable disposal orbits
within widely used orbital regions have also been proposed. Reorbiting
into a disposal orbit typically requires two propulsive burns at the end
of a spacecraft’s or rocket body’s functional lifetime.

Disposal orbits have been proposed for GEO and other orbital re-
gions, including higher LEO orbits and semisynchronous orbits. A con-
siderable number of GEO spacecraft and some spacecraft in semi-
synchronous orbits have already performed reorbiting maneuvers to
reduce the future debris hazard in those orbits. Spacecraft in the semi-
synchronous Global Positioning System constellation have performed
end-of-life reorbiting maneuvers to disposal orbits from approximately
220 to 810 km above or 95 to 250 km below their initial orbits. In GEO,
spacecraft owned by many nations and organizations have carried out
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reorbiting maneuvers; Figure 7-5 shows the approximate number of GEQ
reorbiting maneuvers compared to the number of spacecraft launched to
GEO by year. These reorbiting maneuvers have typically placed space-
craft in orbits from 50 to 1,000 km above GEQ, though a few spacecraft
have been reorbited to orbits below GEO.

Moving a space object into a disposal orbit reduces the collision haz-
ard in the object’s initial orbital region, but increases the collision hazard
in its new orbital region. Objects moved to disposal orbits can still con-
tribute to the debris hazard in their original orbit, however, since debris
generated through collisions or explosions that take place in disposal
orbits may intersect the original orbit. (Increased implementation of pas-
sivation measures should, however, result in fewer explosions in future
disposal orbits.) This is particularly important in high-altitude regions,
where an explosion or collision can send a large number of fragments far
above and below their initial orbital altitude. Figure 7-6 shows a predic-
tion of the effect of a spacecraft breakup in GEO on the large object flux
in nearby altitudes. (This figure should not be compared with the GEQ
flux depicted in Figure 4-5 because that figure depicts only the flux due
to cataloged [typically larger than 1 m in diameter] objects.) Clearly, the
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FIGURE 7-5 GEO spacecraft reorbiting maneuvers. SOURCE: Kaman Sciences
Corporation.
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FIGURE 7-6 Calculated flux of 500 debris fragments >10 ¢cm from a
satellite breakup near GEO altitude. SOURCE: Friesen et al., 1992,

farther the disposal orbit is from the original orbit, the smaller will be the
amount of debris generated in the disposal orbit that intersects the origi-
nal orbit.

The “cost” of reorbiting to a disposal orbit is usually measured by the
amount of fuel required to perform the maneuver. For rocket bodies, this
fuel translates into reduced payload capacity; for spacecraft, it means
that less mass is available for either payload or (more typically) for sta-
tion-keeping fuel. The fuel required to move to a disposal orbit a certain
distance above the initial orbit decreases with increasing initial orbital
altitude. Figure 7-7 shows the change in velocity required to reach dis-
posal orbits from three orbital regions. (This figure also explains why
fragments from explosions at high altitudes become more widely distrib-
uted than fragments from explosions at low altitudes: given the same
ejection velocity, the fragments at high altitudes will travel farther.) Of
course, in addition to fuel, the spacecraft or rocket body must have the
necessary propulsion and attitude-control capabilities to perform this
maneuver.

For each disposal orbit, the reduction of the debris hazard to func-
tional spacecraft should be balanced against the cost of moving objects to
the disposal orbit at the end of their functional lifetimes. In addition, use
of a disposal orbit should also be weighed against other possible debris
reduction methods that may remove the object entirely from orbit. Within
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LEO, where it is often feasible to deorbit or accelerate the orbital decay of
spacecraft or rocket bodies at EOL and where there is a lack of suffi-
ciently unpopulated regions, disposal orbits do not seem to be a viable
option. In GEO, however, where deorbiting and orbital lifetime reduc-
tion are infeasible, disposal orbits may be a viable option.

A number of potential GEO disposal orbits that would not require
significant EOL maneuvering have been proposed. One concept is to
group non-functional spacecraft at the “stable points” of the geostation-
ary ring (above 75°E and 105°W longitude). Theoretically, objects at these
locations will not drift along the geostationary ring and thus will not
endanger spacecraft elsewhere in GEQ. This disposal scheme, however,
renders the stable points unusable for functional spacecraft and may not
effectively reduce the overall debris hazard in GEO. In addition, the
stable points are only mildly stable; a velocity change of only about 1.5
m/s is enough to send objects at the stable points moving along the geo-
stationary arc. In addition, spacecraft at the stable points still experience
the 15-degree GEQ inclination variation cycle (as described in Chapter 3),
and may develop high velocities relative to other spacecraft at the stable
points.

Another idea has been to launch spacecraft to the 7.3-degree-inclina-
tion GEO “stable plane.” The major perturbing forces on spacecraft in
this orbit cancel each other, so spacecraft orbiting in the stable plane tend
to remain in that plane (Friesen et al., 1993) and collision velocities be-
tween uncontrolled spacecraft in the plane would be only a few meters
per second. In addition, spacecraft in the stable plane would not require
station-keeping propellant to prevent north-south oscillations (which nor-
mally account for 95% of a geostationary spacecraft’s propellant expendi-
ture). However, objects in the stable plane move at velocities of close to
400 m/s relative to objects in geostationary orbit, Use of the stable plane
would thus significantly reduce the debris hazard only if most GEO ob-
jects were in the stable plane. However, since spacecraft in the stable
plane would not be geostationary and thus would not have the advan-
tages of remaining above a particular point on the Earth, it seems un-
likely that the majority of spacecraft operators would move their space-
craft to the stable plane. Even if all new GEQ spacecraft were Jaunched
to the stable plane, they would still face a collision hazard from the ob-
jects that currently exist at other inclinations at the GEO altitude, although
the overall collision hazard would be lower than if current practices were
continued.

Since major problems exist in schemes to reorbit within the GEO
altitude, the reorbiting of GEO spacecraft into disposal orbits with alti-
tudes above or below GEQ is the only practical method of removing
mass from GEQ. Although orbits above GEO may eventually decay into
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GEO, the time frame for such a decay is believed to typically be on the
order of tens of thousands of years or more. Objects reorbited below
GEO, however, would pose an immediate (if low-level) hazard to objects
in transfer orbits to GEO. Analysis of the long-term stability of orbits
beyond GEQ is still under way, but preliminary analysis shows that the
use of orbits 300 km above GEO appears to be a minimum for effectively
reducing the debris hazard (Chobotov, 1990; Yoshikawa, 1992). The 300-
km figure is a minimum to ensure that (1) uncontrolled spacecraft do not
physically interfere with controlled spacecraft in GEO and (2) functional
spacecraft can change their operational longitude without interference.
The use of disposal orbits a minimum of 300 km above GEO was recently
recommended by the Ad Hoc Expert Group of the International Acad-
emy of Astronautics (International Academy of Astronautics, 1992).

There are disagreements even among experts about the value of us-
ing GEO disposal orbits. It is clear that (1) use of a disposal orbit will
reduce the amount of mass in GEO and will thus reduce the GEO colli-
sion probability; (2) the hazard from objects that are not removed from
GEO will persist for millennia; and (3) transfer to a disposal orbit above
GEO is a simple maneuver requiring only as much propellant as is typi-
cally required by spacecraft for three months’ station keeping. However,
it is also true that (1) removing objects a few hundred kilometers above
GEO only moves the hazard to a slightly wider band; it does not com-
pletely and permanently eliminate the hazard the object poses to space-
craft in the geostationary band; and (2) the hazard from simply leaving a
spacecraft or rocket body in the geostationary orbit appears to be ex-
tremely low at the present time.

Active In-Orbit Debris Removal

The active removal of large debris (such as nonfunctional spacecraft
and rocket bodies) from orbit has often been proposed as a means of
reducing the debris hazard. The removal of large objects would require
some kind of space vehicle dedicated to this purpose; all indications are
that the cost of such a vehicle would be prohibitive, especially when the
small reduction in the debris hazard that it could achieve is considered.
(One study predicted a best-case cost of more than $15 million for each
piece of debris in LEO removed, not counting the cost of developing an
orbital maneuvering vehicle [Petro and Ashley, 1989].) Even ingenious
schemes involving the use of tethers to deorbit large objects would likely
be very costly.

A number of on-orbit active removal schemes for small debris also
have been proposed, including the removal of small debris with “debris
sweepers” (large foam balls or braking foils that impact with smaller
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debris) and the ground- or space-based laser evaporation of debris sur-
face material to deorbit small debris. The sweeper scheme seems techni-
cally difficult, demonstrably inefficient, hazardous to functional space-
craft, and risks producing more small objects than it eliminates. The laser
concept, although interesting, requires costly new technology, and its
feasibility has not yet been proven. In general, there is currently no tech-
nology able to remove small debris efficiently, and any foreseeable
schemes look very costly.

FINDINGS

Finding 1: The future debris hazard can be significantly ameliorated with-
out exorbitant costs by ending or sharply reducing the number of break-
ups of spacecraft and rocket bodies and, to a lesser extent, by reducing
the amount of mission-related debris released in spacecraft deployment
and operations. Methods to achieve both these goals exist, are relatively
inexpensive, and have been proven in orbit. While implementing these
methods will reduce the total number of objects in orbit, it will not, how-
ever, significantly reduce the total mass of objects in orbit.

Finding 2: Deorbiting or accelerating the orbital decay of spacecraft and
rocket bodies at the end of their functional lifetimes can reduce the total
amount of mass and cross-sectional area in orbit. The difficulty and cost
of such maneuvers vary depending on the initial orbit, the capabilities of
the space vehicle involved, and the desired reduction in orbital lifetime.
In general, significant reductions in orbital lifetime can be achieved with
much less fuel than deorbiting would require.

Finding 3: Reorbiting spacecraft and rocket bodies into disposal orbits
can reduce the debris hazard in their original orbit, but it is not a perma-
nent solution since the debris remains in Earth orbit. Decisions to use a
disposal orbit must balance the reduction in the long-term hazard to func-
tional spacecraft against the cost of the maneuver, including the cost of
carrying the required fuel and/or the need for premature shutdown. Dis-
posal orbits are not a useful alternative within LEQ; opinion within both
the committee and the space debris community is divided as to'whether
they should be used by all spacecraft and rocket bodies in GEO.

Finding 4: The active removal of debris will not be an economical means
of reducing the debris hazard in the foreseeable future. Design of future
spacecraft and launch vehicles for autonomous deorbiting, lifetime re-
duction, or reorbiting is a far more economical means of reducing the
collision hazard.
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The Future Orbital Population
and the Effectiveness Of
Debris Reduction Measures

THE FUTURE ORBITAL POPULATION

As described in Chapter 1, the number of cataloged space
objects has increased nearly linearly since 1960, at an average rate of
about 220 objects per year. New spacecraft, the mission-related debris
and rocket bodies associated with those spacecraft, and the fragments
caused by the breakup of objects in space have contributed to this growth.
Without the effect of orbital decay caused by atmospheric drag, the in-
crease in the space object population would have been much larger. To
date, more than 15,000 cataloged objects (about twice the current cata-
loged population in orbit) have decayed into the atmosphere and, at the
peaks of the 11-year solar activity cycle, the overall losses of cataloged
space objects have occasionally outnumbered the increases, resulting in
an overall decline in the cataloged population.

It is this balance between the creation of new debris and the orbital
decay of existing debris that will determine the magnitude and distribu-
tion of the future debris population. For each altitude region, this bal-
ance will determine if the debris population will rise or fall and the rate
at which this change will occur. The balance obviously will vary greatly
at different altitudes; in circular orbits below about 500 ki, where orbital
decay is fairly rapid, major long-term increases in the debris population
are unlikely, while at higher altitudes and in some high-eccentricity or-
bits, medium and large debris added to the population may remain for
tens, thousands, or even millions of years.

As described in Chapter 2, models have been developed to predict

157
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the future debris population. Many of these models are loosely based on
population “birth and death” models, which assign the debris popula-
tion to a number of “bins,” each characterizing the number of particles of
a given mass range within a given altitude range. The simplest models
(e.g., Talent, 1992) use one bin for all masses and altitudes to represent
the entire LEQ population, but more complex models have used more
mass and altitude ranges (Rossi et al., 1993). NASA’s EVOLVE model
(Reynolds, 1990) can use a variable number of bins, but typically uses 15
mass and 36 altitude ranges. Although these models incorporate a vari-
ety of different assumptions, they generally carry out similar procedures
to predict the future debris population.

First, the initial debris population (to a certain limiting size or mass)
is calculated for each altitude bin, based on measurements or models of
the current debris population. Then the orbits of this initial population
are propagated into the future (by using either deterministic or statistical
methods), in the course of which some objects are removed from or added
to the altitude bin as a result of perturbing forces such as atmospheric
drag. Predictions of the amount and distribution of new objects launched
into orbit, as well as of the results of possible explosions in orbit, are used
to add new space objects to the population. When it is determined that a
collision will occur, another model is used to determine the effects of the
collision, including the creation of new debris. The entire process is then
repeated, with the output of the first iteration used as the initial popula-
tion for the next.

These models are generally useful only in predicting the magnitude
and characteristics of the populations of medium-sized and large debuis.
As discussed in Chapter 3, knowledge of small debris is so limited that it
is extremely difficult to estimate the current population, much less project
future trends. About the only predictions that can be made about the
future small debris population are that

e the amount of small debris produced in breakups is likely to in-
crease if the number of collisions grows, because collisions are predicted
to produce very large numbers of small debris particles; and

e the amount of very small debris (such as the particles expelled by
solid rocket motors and the smallest products of breakups and degrada-
tion) in orbit may change markedly from year to year, due to the strong
effect of perturbing forces on the orbits of these particles. Thus, regard-
less of the historical total amount of very small debris released into the
environment, the population of these particles at any given time in the
future will be strongly dependent on the amount produced during the
preceding one or two years.
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Uncertainties in the Models

As described in Chapter 2, models that predict the future debris
population contain numerous uncertainties. These include uncertainties
about

* the number, characteristics, and distribution of the objects that are
currently in orbit;

¢ the number, characteristics, and initial distribution of objects that
will be launched into orbit in the future;

* the future level of solar activity and its effect on atiospheric drag;
and

* the characteristics of the fragments created in space object explo-
sions and collisions.

These uncertainties have varying effects on the accuracy of models that
predict the future space object population.

As discussed in Chapter 3, our knowledge of the current population
of objects in orbit is very limited; the locations of only the largest are
known. If a model of the future debris environment is going to include
uncataloged objects in its initial population, it must extrapolate the num-
ber and distribution of the uncataloged population by using existing
tracking and sampling data as well as estimates of the number and char-
acteristics of debris created during known breakups. (Estimations of the
amount of mission-related debris that has been released during space-
craft deployment and operations can also be employed to aid in this pro-
cess, but they are currently not widely used.) This uncertainty about the
uncataloged population, however, has only a limited effect on predic-
tions of the future environment because (as is discussed later) it is the
largest objects—most of which are cataloged—that drive the growth in
the future population. Some studies show that the untrackable popula-
tion has no detectable effect on the evolution of the future LEQ debris
population (Eichler, 1993; Kessler and Loftus, in press). Other models
take advantage of this phenomenon and use only cataloged objects for
their initial population (Kessler, 1991).

Predictions of the number and characteristics of space objects that
will be added to various orbital regions as a result of future launches are
also uncertain. The future launch rate, the size ranges of future space-
craft, and the distribution of orbits into which these spacecraft will be
launched cannot be predicted in detail because they depend on such un-
predictable factors as future mission requirements, technologies, econom-
ics, and global politics. Because of the limited predictability of future
solar activity (and thus of atmospheric drag in LEO), it is also difficult to
estimate the number of objects that will be removed by natural forces.
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Finally, breakup models are a major source of uncertainty in any
predictive model of the future debris environment. As discussed in Chap-
ter 2, breakup models are based on a very limited set of data, and models
of both explosions and collisions contain large uncertainties. Models of
collisions, in particular, are supported by data from only two in-space
collisions and a few ground tests conducted at velocities lower than typi-
cal LEO collision velocities. It is not at all certain how well current colli-
sion models

* incorporate the effects of different space object configurations, dif-
ferent spacecraft materials, and different impact geometries on the re-
sults of a collision;

e approximate the threshold size (in terms of mass and/or energy)
of debris that can cause space objects of a given size to break up; or

o estimate the distribution of the size and mass of particles produced
in collisions (although the limited ground and space tests that have been
conducted indicate that current models are fairly accurate at predicting
the amount of large debris produced in a collision).

Models of the future debris population often deal with these uncer-
tainties by treating them as variables. For example, a model of the future
population can be run with the rate at which rocket bodies explode in the
future set equal to current levels, and then run again with the rate set to
zero, to predict the effects of implementing rocket body passivation mea-
sures on the future growth of the space object population. Treating these
uncertainties as variables does not reduce the overall uncertainty in the
model, of course, but it does serve to clarify the dependence of the
model’s results on each variable.

Predictions of the Future Orbital Environment

If the only additions to the future debris population were rocket bod-
jes, nonfunctional spacecraft, mission-related debris, and the products of
explosions and surface deterioration, the space object population would
likely continue its roughly linear growth. Implementation of measures to
reduce the number of explosions of spacecraft and rocket bodies, and to
limit the amount of mission-related debris released as a result of space-
craft deployment and operations, might result in a slower rate of growth,
just as changes in future launch patterns could result in a faster rate of
growth. Collisions between space objects, however, threaten to add a
potentially large and exponentially growing number of new objects to
this population.

The probability that a collision will occur in any particular orbital
region increases with roughly the square of the number of objects in that
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region. Each orbital region has a “critical density,” at which point it
contains enough objects with sufficient mass that the rate of fragment
production from collisions is greater than the rate at which objects are
removed due to such forces as atmospheric drag. Once this critical den-
sity is reached, fragments from collisions will cause an ever-increasing
number of new collisions. This is sometimes referred to as a “cascading
effect” or a “chain reaction,” although the time frame involved is typi-
cally on the order of decades or centuries—not the nearly instantaneous
reaction that the latter term often implies. Once collisional cascading has
begun, it cannot be stopped by a reduction in launch rate because it is
self-sustaining. If no new mass is added to the region, the number of
collisions will eventually drop (perhaps over hundreds or thousands of
years) as the large objects are broken into smaller pieces, but by that time,
the collision hazard in the orbital region may be too high for most space
operations.

Several independent models of the future debris population suggest
that collisional cascading is likely to occur in Earth orbit (see Kessler and
Cour-Palais, 1978; Kessler, 1991; Talent, 1992; Kessler et al., 1993; Rex and
Eichler, 1993; Rossi et al., 1993; Su, 1993). Although these simulations use
different methodologies and incorporate a number of different values for
such parameters as the initial population and the amount of debris pro-
duced in collisions, their results are uniform in predicting a more-than-
linear increase in the number of future space objects in LEO over the next
century unless measures are taken to reduce the addition of new debris
to the environment. Figures 8-1 and 8-2 show the results of two of these
simulations.

These figures show predictions of the future growth in the popula-
tion of objects larger than 1 ¢cm, because this population is more relevant
to the hazard to spacecraft than the population of large objects. How-
ever, it must be remembered that the collisional population growth is
driven almost entirely by the population of large debris. The exponential
growth visible in predictions of the 1-¢m debris population is only a
symptom, not the cause, of collisional population growth.

Though these models all show that an exponential rise in the orbital
debris population will occur unless preventive measures are taken, the
time frame over which this rise will occur cannot be determined pre-
cisely. The error bounds of the time frame for collisional growth are a
result of all of the uncertainties (discussed earlier) that are incorporated
into models of the future population growth. Figures 8-4 and 8-5 show
how variations in the assumptions made in a model can affect that
model’s predictions of the rate at which the future space object popula-
tion will rise. In Figure 8-4, different assumptions about the basic popu-
lation growth rate (i.e., the growth rate not counting objects produced in
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FIGURE 8-1 Model simulation of the contribution of collision fragments to the
future LEO space object population. SOURCE: Rex and Eichler, 1993.
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FIGURE 8-2 Different model simulation of the future LEO space object popula-
tion (constant launch rate and explosion rate at current level, no mitigation mea-
sures). SOURCE: National Aeronautics and Space Administration.
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FIGURE 8-2 Effect of basic population growth rate on predicted future popula-
tion of LEO objects larger than 1 cm. Initial basic population (launched objects
plus collision fragments): about 60,000 >1 cm. Lines are the result of Monte Carlo
simulations run with the same stochastic numbers but with different basic popu-
lation growth rates. SOURCE: Eichler et al., 1992.

collisions) change the predicted time it takes for the debris population to
double from about 15 to 60 years. Figure 8-5 shows the effect of varying
the mass distribution of collision fragments in a different simulation of
the future environment; it is clear from the figure that this factor also
introduces a large uncertainty into the predicted growth rate of the fu-
ture debris population. Since models of the future debris population
must incorporate both these uncertainties, as well as others, it is prema-
ture to suggest exactly when collisional growth will begin to occur; it
may already be under way, or it may not begin for several decades.
Collisional growth will not, however, take place over the entire near-
Earth orbital area. It is most likely to occur in regions that (1) have a high
debris flux, (2) do not experience a high level of atmospheric drag, and
(3) have high typical collision velocities. (These characteristics lead to a
large number of energetic collisions that produce long-lasting fragments.)
Figure 8-6 shows one assessment of how the critical density varies with
altitude in LEO due to such factors as atmospheric drag and the size and
inclination distribution of the current populations (Kessler, 1991). The
shaded area shows the two LEO regions, at 900 to 1,000-km and around
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1,500-km altitude, in which the cataloged population has already ex-
ceeded the calculated critical density.

In regions where the spatial density has already exceeded the critical
density, the number of collision fragments produced will eventually rise
exponentially. The launches of new spacecraft (and their accompanying
rocket bodies and mission-related debris), as well as the explosion-in-
duced breakup of orbiting rocket bodies and spacecraft, are also likely to
contribute to the debris population in these regions. Launches to these
regions will probably continue for some time because orbits within these
regions have characteristics that make them valuable to spacecraft opera-
tors; this is, after all, the reason they became crowded. As discussed in
Chapter 7, some level of residual explosions is also likely to continue,
regardless of the passivation measures adopted. The addition of new
objects to already crowded orbital regions will likely increase the colli-
sion probability for functional spacecraft in these regions, as well as the
rate and magnitude of their future collisional population growth.

LEQ regions that have not reached a critical density may still be af-
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FIGURE 8-5 Effect of assumed mass distribution of collision fragments (B) on
prediction of future population of objects larger than 1 cm. The three scenarios
are the result of Monte Carlo simulations run with the same stochastic numbers
but with different assumed mass distributions of collision fragments. In all sce-
narios, the basic population (launched objects plus collision fragments) increases
by 3,000 objects >1 cm per year. SOURCE: Eichler, 1993.
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fected by collisions in those regions that have surpassed their critical
density. For example, as can be seen from Figure 8-6, the debris popula-
tion at altitudes below about 700 km is not likely to exceed the critical
density; at these altitudes, atmospheric drag typically will remove colli-
sion fragments before they collide with another object. Collision frag-
ments produced in other orbital regions, however, could increase the
debris hazard in these low-altitude orbits. Although most of the larger
debris generated in collisions in higher orbits will tend to stay relatively
close to their initial orbit, some smaller fragments will typically be ejected
at greater velocities (as discussed in Chapter 4) and thus will be distrib-
uted widely, increasing collision probabilities over the entire LEO region.
In addition, fragments from collisions at higher altitudes will eventually
experience orbital decay, causing them to pass through lower orbital re-
gions. Finally, fragments produced in collisions between objects in highly
elliptical orbits and objects in LEO regions with high spatial densities
may pass through other LEQ regions at high velocities.

Even though atmospheric drag is only a minor factor in removing
debris from orbits above LEO, the chance of collisional cascading does
not necessarily increase with altitude as might be expected. There are a
number of reasons for this. First, as shown in Figure 3-2, higher orbits
typically have a much lower object flux than LEO. Second, the volume of
a given altitude region increases with altitude so, even if additional ob-
jects are added, the spatial density will rise only slowly. Third, collision
velocities in high-altitude orbits are generally slower than in LEOQ; this
typically leads to the creation of fewer fragments in a collision. Finally
(as discussed in Chapter 7), the debris created in collisions at high alti-
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tudes is dispersed over a much wider area than debris from collisions in
LEO, which reduces its chance of striking other objects in the initial or-
bital region.

In GEO, where collision velocities are lower than in LEO and debris
produced in collisions will be spread over a wide volume of space, colli-
sional cascading may not occur and, if it does, may not be noticeable for
thousands to tens of thousands of years (Kessler, 1993). It thus seems
probable that unlike the situation in LEO, the future debris population in
GEO could be driven more by explosions and continued launch traffic
than by collisions. Because of this dependence on inherently unpredict-
able factors, it is difficult to make accurate predictions of the future GEO
population.

EFFECTIVENESS OF DEBRIS
REDUCTION MEASURES

There are two major types of methods to reduce the debris hazard in
Earth orbit. One set of methods aims at limiting the number of potentially
harmful objects in orbit, primarily by reducing the release of mission-
related debris and by preventing further explosions of spacecraft and
rocket bodies. The other methods seek to limit the total mass and cross-
sectional area of objects in orbit by deorbiting or reorbiting spacecraft and
rocket bodies. These two approaches to debris reduction have very dif-
ferent effects on the short- and long-term orbital debris hazard.

Limiting the number of potentially harmful objects in orbit can
sharply reduce growth in the short-term debris hazard and can restrict
growth in the long-term hazard to some regions, but it will have little
effect on slowing or preventing collisional cascading. Limiting the total
mass and cross-sectional area added to orbit, on the other hand, can
prevent or slow the onset and growth of collisional cascading and can
also ameliorate the short-term collision hazard. Limiting cross-sectional
area plays an important role in reducing the long-term potential for col-
lisional cascading because the total cross-sectional area in orbit repre-
sents the total “target area” for collisions. Limiting the amount of mass
is important because, in the long-term, the mass in orbit determines the
maximum number of collision fragments capable of causing further
breakups.

The same models used to predict the future evolution of the debris
population can also be used to predict the effectiveness of various mea-
sures in limiting the growth in that population. Although all of the un-
certainties in these models (discussed earlier in this chapter) also apply to
such predictions, that does not prevent a rough assessment of the effec-
tiveness of various debris reduction methods from being made. These
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SOURCE: Rex and Eichler, 1993.

models simulate only the LEO environment, however; similar models
with the capability to predict the effectiveness of debris reduction mea-
sures on the semisynchronous or GEO environment have not yet been
developed.

Figures 8-7 and 8-8 show the result of one of these model simulations
(Rex and Eichler, 1993). Figure 8-7 shows the predicted effect of various
debris reduction methods on the LEO population of collision fragments
and other types of debris in 2042, and Figure 8-8 shows how these mea-
sures are predicted to affect the total LEO debris population over time.
In Figure 8-7, the first bar shows the estimated population of LEO objects
larger than 1 cm in 1992, and the other bars show the predicted 2042
population of debris if various reduction methods are implemented. Sce-
nario 1 shows the predicted 2042 LEO population resulting from an im-
mediate and complete cessation of all space launches. The model sug-
gests that in this case, although the population of launched objects and
explosion debris would decrease as a result of orbital decay, some colli-
sion debris and some debris from explosions of objects already in orbit
would be generated, keeping the total population nearly constant over
the 50 years of the simulation. Scenario 2 represents the other extreme, in
which the linear growth of space activity drives the population of objects
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FIGURE 8-8 Predicted effect of debris reduction measures over fifty years on
space object population. SOURCE: Rex and Eichler, 1993.

larger than 1 cm in LEQO from about 100,000 to close to 500,000 over the 50
years of the simulation.

Scenarios 3, 4, and 5 explore the effects of various debris reduction
measures on the future LEO population. Scenario 3 shows the effect of
cutting the explosion rate and the release of mission-related debris in
half, and scenario 4 shows the effect of completely ending all explosions
in orbit (starting in 1998). These measures are shown to significantly cut
the predicted number of objects added to orbit, but since they do nothing
to reduce the total mass or cross-sectional area added to orbit, it is not
surprising that the model predicts that they will not greatly reduce the
number of additional collision fragments. Figure 8-8 shows that neither
scenario 3 nor scenario 4 prevents the eventual exponential growth of the
debris population.

Scenario 5 shows the combined effect of preventing explosions, re-
ducing the release of mission-related debris, and performing EOL de-
orbiting of rocket bodies (after 2003) and spacecraft (after 2010). Even in
this scenario, the total debris population still doubles in 50 years. In this
case, however, unlike the previous cases, the population does not in-
crease rapidly near the end of the simulation, which suggests that expo-
nential growth has at least been delayed. Finally, the bottom curve in
Figure 8-8 shows how (for this model) it would take the active removal of
3,000 old payloads and rocket bodies to actually prevent the population
from growing.
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FIGURE 8-9 Predicted effect of debris mitigation measures on the debris envi-
ronment. SOURCE: Loftus, 1993.

Figures 8-9 and 8-10 show the results of a different model’s predic-
tions of the effect of debris reduction measures (Loftus, 1993). This model
incorporates different initial assumptions than the previous model and
examines the effect of a different set of potential debris reduction meth-
ods. The figures focus on the object flux in the 900-km-altitude regime,
which (as discussed earlier) is believed to already have a spatial density
that exceeds the region’s critical density. Like the previous model, this
model predicts that the debris population will rise much more rapidly if
the number of explosions is not reduced and that the debris population
will rise exponentially unless some types of reorbiting maneuvers are
performed. (Figure 8-9 also shows the strong influence of the assump-
tions about the future launch rate on the future hazard; scenario 4, which
assumes that the number of launches increases from the present level at a
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rate of five additional launches each year, predicts double the flux in
2070 than does scenario 2, which is identical except that it assumes a
constant launch rate at current levels.) Figure 8-10 further explores the
effect on the debris flux of reducing the orbital lifetime of spacecraft and
rocket bodies. It is clear from this figure that orbital lifetime reduction
measures can slow the rate at which the debris population increases and
that the greater the reduction in orbital lifetime, the less will the debris
environment grow. However, given all the uncertainties involved, the
model does not suggest that any one particular chosen target lifetime is
more cost-effective than another.

It must be remembered that all of these models incorporate high lev-
els of uncertainty. This can be seen just by comparing Figure 8-8 and
Figure 8-9. In Figure 8-9, the debris hazard for a “no-explosion” scenario
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FIGURE 8-10 Predicted effect of disposal orbit lifetime on the debris environ-
ment. SOURCE: Loftus, 1993.
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with a linear traffic growth actually declines until about 2020. In the
equivalent scenario (4) in Figure 8-8, the population almost doubles over
the same time frame. Detailed comparisons of the two models (Reynolds
and Eichler, in press) indicate that the differences are mostly due to dif-
ferent assumed initial conditions for the amount of mass in orbit and, to a
lesser extent, the number of bins used. Nevertheless, both models pre-
dict that (1) reducing the number of explosions in orbit will help contain
the growth in the debris hazard, and (2) deorbiting or lifetime reduction
maneuvers (in addition to reducing the number of explosions) may be
required to prevent an eventual exponential rise in the debris population.

FINDINGS

Finding 1: If the only additions to the future debris population were
rocket bodies, nonfunctional spacecraft, mission-related debris, and the
products of explosions and surface deterioration, the space object popu-
lation would probably continue its roughly linear growth. Several mod-
els using different methodologies and different assumptions, however,
predict that collisions between space objects will add a potentially large
and exponentially growing number of new objects to this population.
Because of the numerous uncertainties involved in models of the debris
environment, it is premature to suggest exactly when collisional growth
will begin to occur; it may already be under way, or it may not begin for
several decades.

Finding 2: Collisional growth is most likely to occur in regions that (1)
have a high debris flux, (2) do not experience a high level of atmospheric
drag, and (3) have high typical collision velocities. Two LEO regions that
meet these criteria, at around 900- to 1,000-km and around 1,500-km alti-
tude, are believed to already have exceeded their critical density, the
point at which they will continue to experience population growth due to
collisions even if no further objects are added. Fragments from collisions
in regions experiencing collisional growth may be widely distributed,
increasing the collision probability even in regions that are not threat-
ened by collisional growth.

Finding 3: Although debris fragments represent the greatest short-term
debris hazard to current spacecraft, it is the large objects in orbit (gener-
ally spacecraft and rocket bodies) that drive the potential for collisional
cascading. Thus, although eliminating the explosion of objects in orbit
can reduce the short-term growth in the debris population, it is necessary
to take measures to remove spacecraft and rocket bodies from crowded
orbital regions at the end of their functional lifetimes in order to reduce
the potential for collisional growth.
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Recommendations

IMPROVING KNOWLEDGE OF THE
DEBRIS ENVIRONMENT

Understanding the orbital debris environment (includ-
ing debris size ranges, compositions, and distribution by orbital altitude,
eccentricity, and inclination) is necessary to assess the debris hazard to
spacecraft in various orbits, to understand the future evolution of the
debris population, and to enable wise decisions to be made on methods
to reduce the future hazard. However, data are lacking on many debris
sources, size ranges, and orbital regions; current understanding of the
debris environment is based on incomplete measurements and models
that are not yet mature.

Increasing our knowledge of the orbital debris environment and ap-
plying that knowledge to debris mitigation practices may be the most
cost-effective means of reducing the future impact of the debrxis hazard.
First, better understanding of the environment would help spacecraft de-
signers to protect spacecraft more effectively against debris. Although
some meaningful measurements have been made at lower altitudes, cur-
rent understanding of the debris environment is not sufficient for most
spacecraft designers to predict accurately the level of debris protection
that spacecraft may require; this may result in costly over- or under-
protection. Second, a better understanding of the environment could be
applied to determine which debris prevention measures will most effec-
tively reduce the future hazard. Currently, there is much uncertainty
about the cost-effectiveness of some methods of reducing the future de-
bris hazard; models of the future debris population incorporating new

175



Orbital Debris: A Technical Assessment (1995)
http://www.nap.edu/openbook/0309051258/html/176.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

176 ORBITAL DEBRIS

data (e.g., data on previously uncataloged large debris) could help to
identify the best methods with which to deal with the problem and the
orbital regions at which these methods should be targeted.

This is not to suggest an effort to characterize all debris in all orbits;
rather, characterization efforts should focus on gathering the information
needed to fill critical data gaps. Previously, most measurements of the
debris environment were made when opportunities arose. Although
these measurements added greatly to our knowledge of the debris envi-
ronment, and further ad hoc measurements will doubtless continue to
add to our knowledge, future debris characterization efforts should focus
on either (1) providing information that will be directly useful to space-
craft designers and operators, or (2) answering questions about the de-
bris environment that will increase understanding of the population’s
long-term evolution.

Currently, the only national or international guidance on either the
most important areas in the debris field to be investigated or potential
methods to investigate these areas comes from the Inter-Agency Space
Debris Coordination Committee (IADC), which is made up of represen-
tatives from ESA, the Russian Space Agency, space agencies from Japan,
and NASA. To provide future guidance for debris research, the commit-
tee recommends the following:

Recommendation 1: An expanded international group should be formed to
advise the space community about areas in the orbital debris field needing fur-
ther investigation and to suggest potential investigation methods. This group,
which could include representatives from industry and academia, as well
as from governments, could build on the work of the IADC. The group
could identify the highest-priority areas of interest to orbital debris re-
searchers and spacecraft operators, the data required to understand each
area, and potential methods to acquire the data.

The committee recommends the following as an interim set of debris
characterization reseaxch priorities:

Recommendation 2a: Models of the future debris environment should be fur-
ther improved by refining theoretical models, acquiring and incorporating new
data to lessen uncertainties, and testing the models against new data. Ensuring
that these models incorporate all major sources of debris and increasing the
accuracy of breakup models (for both collisions and explosions) should be major
components of this effort. Improving these models is crucial because poten-
tially very expensive decisions on the adoption of debris mitigation mea-
sures depend on their conclusions. These decisions must be based on the
best information possible.
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Recommendation 2b: Uncataloged medium-sized and large debris in LEO
should be carefully studied. This should include a long-term measurement cam-
paign to understand more fully the fluctuations in the uncataloged population
due to perturbation forces and various generation mechanisms, thorough pro-
cessing of the data, etc. Although the composition and dynamics of cata-
loged debris have been studied fairly well, knowledge of uncataloged
large and medium-sized debris is limited. Although uncataloged large
and medium-sized debris will not contribute significantly to collisional
population growth, this population of debris is more likely to cause sig-
nificant damage to typical spacecraft than the populations of either cata-
loged debris or small debris.

Recommendation 2c: Further studies (including both measurements and mod-
eling) should be conducted to better understand the GEO debris environment.
These should include efforts to determine the current debris population in GEO
as well as to model its future evolution. Data on the debris environment in
GEO are extremely sparse. Although the chance of a damaging impact in
GEO is likely to be much lower than the chance in LEQO, it is important to
better understand the GEO debris environment because (1) the geosta-
tionary orbit is a limited and valuable resource that should be preserved
for the future, (2) the orbital lifetime of space objects in GEO is extremely
long (on the order of tens of thousands to millions of years), and (3) there
are currently many highly valuable spacecraft in GEO.

Recommendation 2d: A strategy should be developed to gain a better under-
standing of the sources and evolution of the small debris population. Because
the population of small debris is so time dependent, this strategy should
focus on answering questions about the long-term nature of this popula-
tion. The orbital debris community (including experts in modeling, detec-
tion and tracking, impact damage, and damage mitigation) should develop
a strategy of observing requirements to effectively provide information
about the sources and evolution of the small debris population.

Recommendation 2e: The data acquired from continuing studies of the debris
environment should be compiled into a standard population characterization
reference model. Methods should be adopted to validate or indicate the
state of validation of this model. Such a model would aid experimenters
in properly interpreting their data and spacecraft designers in properly
assessing the hazard to their spacecraft.

In addition, the committee recommends two measures to improve
the efficiency and accuracy of research on orbital debris:

Recommendation 3: The creation of an international system for collecting,
storing, and distributing data on orbital debris should be explored. This would
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include the creation of a unified database and catalog of debris that would recetve
measurements from all sensors gathering data on debris (including those in the
555 and the SSN). The information from this database would be accessible to
interested parties under certain conditions. Currently, there is no formal
mechanism allowing the nations of the world that engage in space moni-
toring to share data. Sharing of data from the 5SS and the SSN could
increase confidence in the catalogs of large debris and would also be
useful in determining the desirability of future collaborative space debris
monitoring efforts. The distribution of data from other sensors would
enable an expanded group of researchers worldwide to analyze orbital
debris data.

Recommendation 4: The orbital debris community should exercise more peer
review over its research. Orbital debris is sometimes studied with an eclec-
tic and often not fully developed set of observational, experimental, and
modeled data and methods. The field needs a more rigorous scientific
structure to give it a better theoretical underpinning and to logically link
its elements. The practices of using external technical peer review pan-
els, publishing in peer-reviewed journals, and establishing a close work-
ing relationship with related scientific fields should be expanded to pro-
vide some of this rigor.

IMPROVING SPACECRAFT PROTECTION
AGAINST DEBRIS

Even if fairly drastic steps are taken to reduce the generation of new
debris, a hazard will likely continue to exist, and probably grow, in some
important orbital regions for a great many years. Without remedial steps,
the debris hazard will grow more rapidly. In either case, orbital debris is
now a part of the space environment and should be considered during
the design of spacecraft and the plarming of space operations. As de-
scribed in Chapter 6, the growing availability of (1) analytic and experi-
mental tools to quantify the debris threat to spacecraft and (2) techniques
to protect against debris impacts make it feasible for designers to assess
the debris hazard and protect spacecraft appropriately. However, not all
spacecraft designers have knowledge of these tools and techniques. For
this reason, the committee recommends the following:

Recommendation 5: A guide to aid spacecraft designers in dealing with the
debris environment should be developed and distributed widely. This design
quide should include information on environmental prediction, damage assess-
ment, and passive and operational protection techniques. Such a guide would
enable spacecraft designers (1) to assess the need to incorporate protec-
tive measures in spacecraft design or operations and (2) to choose and
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implement appropriate measures of protection, if necessary. It could also
serve as a useful reference text for advanced students in space engineer-
ing. Chapter 6 provides a top-level description of the processes and meth-
ods that should be discussed in this guide.

Considerable effort has already been invested in studying the effects
of debris impact on spacecraft and the ability of shielding to reduce im-
pact damage. However, as discussed in Chapter 5, knowledge gaps re-
main in (1) the effects of impact by the variety of debris shapes and
compositions likely to exist in orbit, (2) the vulnerability of different
spacecraft components to debris impact, and (3) the effects of impact at
typical LEO collision velocities. To better predict impact damage and
design debris shields, the committee recommends the following:

Recommendation 6: Research should be continued to characterize the effects of
hypervelocity impacts on spacecraft systems in the following areas:

* further development of techniques to launch projectiles to the velocities
typical of collisions in LEQ;

* improved models of the properties of newer spacecraft materials.

* studies of damage effects on critical components;

* development of analytical tools consistent over a range of debris impact
velocities, shapes, and compositions; and

* improved models of catastrophic spacecraft breakup from debris impact.

The first four of these research areas aim at improving spacecraft and
shield design; the final research area aims at improving models of the
future debris population.

These research goals could be achieved more easily if data from
hypervelocity facilities worldwide were made more readily available.
Unfortunately, as discussed in Chapter 5, the capabilities of many hyper-
velocity facilities are not well known, and the impact data generated at
these facilities are often inaccessible. This has resulted in duplication of
effort both within and between nations, slowing the development of good
models of debris impact damage. Thus, the committee recommends the
following:

Recommendation 7: A handbook describing the capabilities of the interna-
tional hypervelocity impact facilities generally available for debris research should
be developed. Such a handbook would facilitate the sharing of impact
results generated at different facilities, perhaps leading to the establish-
ment of a debris-related database of impact results accessible via the
Internet.
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REDUCING THE FUTURE DEBRIS HAZARD

Unless the production of new debris is reduced, it will become neces-
sary for increasing numbers of spacecraft to adopt measures to avoid
debris impact damage, and the chance of losing functional spacecraft to
debris will increase. As discussed in Chapter 7, cleaning up debris via
active removal will be uneconomical for the foreseeable future, so efforts
must focus on reducing the creation of new debris. There are many
possible means of accomplishing this goal, but the decision on which
should be implemented cannot be made solely on technical grounds. As
with other environmental issues, decisions on the adoption of debris
reduction methods, and on the means to implement these methods, must
balance political and economic as well as technical factors and thus must
be made in forums that are capable of balancing all of these factors.

Current international law does not specifically address the orbital
debris issue, so there is a fairly clean slate upon which to draft future
regulations to reduce the generation of new debris. (Existing interna-
tional agreements pertaining to orbital debris, as well as some of the
efforts under way that may affect future rule making on orbital debris-
related issues, are discussed briefly in Appendix A.) Possible future regu-
latory schemes may be voluntary or mandatory; they may provide incen-
tives to spacecraft operators who reduce debris creation, or they may
specify particular debris-mitigating measures all manufacturers must in-
corporate. It is clear, however, that debris reduction measures enacted
by any single nation will not be sufficient to prevent a growing future
hazard. For this reason, and because unilaterally adopted debris reduc-
tion measures may reduce economic competitiveness, the comimittee rec-
ommends the following:

Recommendation 8: The spacefaring nations should develop and implement
debris reduction methods on a multilateral basis. Given the long develop-
ment cycle for new space vehicles with debris-minimizing features, the
technical development, cost-benefit assessments, and international dis-
cussion required to implement countermeasures should start as soon as
possible.

Although these multilateral discussions cannot be conducted on a
purely technical basis, it is crucial that they be based on sound technical
advice. The committee’s consensus technical assessment of the actions
that should be implemented to reduce future growth in the debris haz-
ard, based on its current understanding of the debris environment and of
the costs and benefits of various mitigation measures, is represented in
the following recommendations (Chapters 7 and 8 discuss each of these
actions in greater detail):
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Recommendation 9: Space system developers should adopt design require-
ments ensuring that spacecraft or rocket bodies do not explode after their func-
tional lifetimes. Ensuring that all potential sources of stored energy on a
spacecraft or rocket body are depleted at the end of their functional life-
time is the primary means of accomplishing this goal. Explosions of
spacecraft and rocket bodies have been major contributors to the debris
hazard, so preventing such explosions will significantly reduce the
growth in the short-term debris hazard. Implementing design features to
passivate spacecraft and rocket bodies after their functional lifetimes will
generally not be very costly.

Recommendation 10: The release of mission-related objects during spacecraft
deployment and operations should be avoided whenever possible. Release of
mission-related objects in long-lifetime orbits should be particularly avoided.
Mission-related debris is a significant fraction of the population of large
debris in orbit. Reducing the release of mission-related debris during
spacecraft deployment and operations can typically be accomplished
without significant expenditure and, in general, without new technology,
although some hardware development may be required.

Recommendation 11: Developers should incorporate requirements that space-
craft and rocket bodies be designed to minimize the unintentional release of
surface materials, including paint and other thermal control materials, both dur-
ing and after their functional lifetimes. To aid in meeting these requirements,
surface materials that minimize the release of small particles should be developed
and used. The deterioration of spacecraft surfaces (paint, etc.) is believed
to be a major contributor to the population of small debris, so ending its
release would prove beneficial to the space environument.

Recommendation 12: Intentional breakups in orbit (especially those expected
to produce a large amount of debris) should be avoided if at all possible. No
intentional breakups expected to produce numerous debris with orbital lifetimes
longer than a few years should be conducted in Earth orbit. Qccasionally, an
organization may want to explode a space object in orbit for defense,
scientific, or calibration purposes. If it is absolutely necessary that the
breakup take place in Earth orbit, it should be at a low altitude to limit
the maximum orbital lifetime of fragments.

All of these actions will help to reduce the short-term debris hazard,
but (as described in Chapter 8), models of the future debris population
show that EOL reorbiting of large objects (generally rocket bodies and
spacecraft) in LEO or in orbits that pass through LEO may be necessary
to reduce collisional growth in the LEO debris population. However,
removing these objects from orbit (particularly from the higher orbits)
can be costly. Ensuring that spacecraft and rocket bodies passing
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through LEO are (after their functional lifetime) placed into orbits that
will decay in a reasonable amount of time appears to be the most cost-
effective reorbiting measure. Determining exactly how long this time
should be will be as much a political and economic decision as a techni-
cal one, due to the relatively large costs that such a maneuver may im-
pose on some missions. Because of the long lead time required to de-
velop and qualify new space hardware, however, it is necessary to begin
setting standards now. For this reason, the committee recommends the
following:

Recommendation 13: Spacecraft and rocket bodies in LEQ and in highly ellip-
tical orbits passing through LEO should be reorbited after their functional life-
time. This reorbiting maneuver should either remove them from LEQ or reduce
their orbital lifetime. Effort should be made to achieve an international consen-
sus on the magnitude of such reorbiting maneuvers. A draft NASA guideline
suggested that spacecraft in orbits that pass through LEO should be lim-
ited to orbital lifetimes in LEO of no longer than 25 years after mission
completion; this standard does not seem unreasonable. However, any
orbital lifetime limitation guideline that is adopted should be based on
thorough scientific analysis.

Although the geosynchronous region may not be subject to ¢collisional
cascading and current GEQO hazard levels from orbital debris appear to
be very low, the hazard from debris left in GEO can persist for millennia.
Currently, the long-term evolution of the debris environment is not well
enough understood to determine the best long-term strategy for manag-
ing the debris hazard in GEO. Experts have not yet reached a consensus
on the best locations for disposal orbits, or even on whether the use of
disposal orbits is the optimal strategy for containing the GEO debris haz-
ard. However, it may not be wise to let the GEO debris population grow
until a permanent solution is divined. For these reasons, the commuittee
recommends the following;:

Recommendation 14: The use of GEO disposal orbits should be further stud-
ied. Until such studies produce a verifiably superior long-term strategy for
dealing with the GEQ hazard, operators of GEQ spacecraft and rocket bodies
should be encouraged to reorbit their spacecraft at EOL if they are capable of
safely performing a reorbiting maneuver to a disposal orbit at least 300 km from
GEOQ. Studies on the use of GEO disposal orbits should be focused on the
development of a long-term strategy for maintaining a low debris hazard
in GEO. Such studies should include the development of accurate mod-
els capable of predicting the effects of various debris reduction measures
on the future hazard in GEO.
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Space Law and Orbital Debris

As mentioned in Chapter 9, orbital debris is not ad-
dressed explicitly in current international law. International agreements
that directly address orbital debris, however, may eventually be needed
to deal with a number of debris-related issues. This appendix briefly
summarizes some of the existing space law potentially applicable to the
debris issue and discusses some of the activities currently under way that
may affect future international rule making on orbital debris-related is-
sues. More detailed discussions of the legal regime and its application to
the debris issue are contained in the references listed at the end of this
appendix.

United Nations (UN) Treaties

In the past, international space laws have been created under the
auspices of the UN Committee on the Peacefulr Uses of Quter Space
(COPUOQS). To date, three treaties with potential relevance to orbital
debris issues have entered into force:

¢ the Treaty on Principles Governing the Activities of States in the
Exploration and Use of Outer Space, Including the Moon and Other Ce-
lestial Bodies, October 10, 1967 (the Outer Space Treaty);

¢ the Convention on International Liability for Damage Caused by
Space Objects, September 1, 1972 (the Liability Convention); and

¢ the Convention on Registration of Objects Launched into Outer
Space, September 15, 1976 (the Registration Convention).
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Three articles in the Quter Space Treaty contain language pertinent
to orbital debris issues. Article VI declares, “States party to this treaty
shall bear international responsibility for national activities in outer
space.” Article VII makes states party to the treaty internationally liable
for damage caused by objects (and the component parts of those objects)
that they launch or have launched into space. Finally, Article IX allows
states that have reason to believe that a planned activity or experiment
would cause potentially harmful interference with other space activities
to “request consultation” concerning the activity or experiment.

The Liability and Registration Conventions further explore the liabil-
ity of states for damage caused by their space objects. The Liability Con-
vention makes states liable for damage “caused elsewhere than on the
surface of the Earth to a space object of one launching state or to persons
or property on board such a space object of another launching state . . .
only if the damage is due to its fault or the fault of persons for whom it is
responsible.” The Registration Convention seeks to provide information
for use in determining liability by mandating that all launching states
notify the UN of any objects they launch and provide the UN with the
objects” orbital parameters. Article VI of the Registration Convention
directs nations with monitoring or tracking facilities to aid in the identifi-
cation of space objects that caused damage.

Although these three UN treaties deal with some of the issues raised
by the presence of orbital debris, many other debris-related issues are not
addressed. For example, the treaties do not address the potential need
for measures to reduce the creation of new debris. (The only reference
that may be applicable is Article IX of the Quter Space Treaty, which calls
for “consultations” if member states believe activities or experiments
would cause potentially harmful interference with other space activities.)
In addition, some of the issues that are raised in the treaties are difficult
to apply to debris. For example, the liability convention assigns liability
based on ownership of the objects involved, but the origin of the vast
majority of debris objects that are not cataloged cannot be determined.
Even where the treaties may be applicable to debris issues, interpretation
is often difficult because the legal definitions of “space debris” and “space
objects” are not entirely clear.

Expectations still exist that the UN may eventually create formal rules
regarding the creation of orbital debris. The issue of orbital debris has
not yet been treated in the COPUQS Legal Subcommittee, but in Febru-
ary 1994, the UN General Assembly made orbital debris a formal agenda
item for the COPUQS Scientific and Technical Subcommittee. During
that session, the subject of orbital debris was addressed by many national
delegations and a number of technical papers were presented. At the
session, some delegations advocated that space debris should also be
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treated in the Legal Subcommittee, but other delegations considered such
an action to be premature.

Activities That May Influence Future Orbital
Debris Regulations

A number of activities outside the UN may affect future laws and
policies on orbital debris issues. These include efforts by such organiza-
tions as the International Telecommunication Union, the IAA, the Inter-
national Law Association, the IADC, and others. Three of these efforts
are further detailed below:

International Law Association (ILA)

The Space Law Committee of the ILA has studied legal aspects of
orbital debris since 1986. In August 1994, the ILA adopted (in a resolu-
tion) a draft “International Instrument on the Protection of the Environ-
ment from Damage Caused by Space Debris.” This instrument, struc-
tured in 16 articles, is the first legal text on space debris agreed to by an
international body. It contains a.definition of space debris, describes the
general obligation of states and international organizations to cooperate
(inform, consult, and negotiate in good faith) in the prevention of dam-
age to the space environment. Although this instrument does not consti-
tute law or policy and does not address the technical means to reduce the
creation of orbital debris, it could potentially serve as a first step in mov-
ing the debris issue into the legal regime.

Inter-Agency Space Debris Coordination Committee
(IADC)

Interagency orbital debris coordination meetings involving the ESA,
the Russian Space Agency, NASA, and the space agencies of Japan are
held biannually. Though these meetings do not deal with the legal as-
pects of the orbital debris issue, the technical issues of space debris mea-
suring, modeling, and reduction techniques are discussed in detail. Since
the four attending space agencies are involved in the majority of all space
activities, these meetings represent the biggest forum of practical exper-
tise in the field, and may help to provide the sound technical background
needed for the development of any new legal rules on debris.

International Astronautical Academy (IAA)

The IAA issued a “Position Paper on Orbital Debris” in October of
1993. This paper was written by an Ad hoc Expert Group of the TAA’s
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Committee on Safety, Rescue, and Quality, and was reviewed by that
committee and by members of other IAA committees and of the Interna-
tional Institute of Space Law before being approved by the IAA board of
trustees and published in Acta Astronautica. The position paper contains
a brief technical discussion of the present and future debris situation and
suggests a number of debris control measures ranked by priority. As the
output of an international body of debris experts, this paper may influ-
ence future regulations on orbital debris.

National and Regional Policies on
Orbital Debris

National laws or policies on orbital debris may potentially affect not
only domestic space activities but also any international rule making on
the debris issue:

« In the United States, current policy (issued in 1988 by President
Reagan) states that “all space sectors will seek to minimize the creation of
space debris . . . consistent with mission requirements and cost effective-
ness.” Another U.S. initiative is NASA’s “Space Debris Handbook,”
which may become an important technical reference for space debris re-
duction measures.

» The Russian Federation also has a policy on debris, alluded to in
Section I, Article 4, Paragraph 2 of its Law on Space: “For the purpose of
ensuring strategic and ecological safety in the Russian Federation, the
following are forbidden: . . . harmful pollution of space, leading to unfa-
vorable environmental changes, including intentional destruction of
space objects in space.”

¢ ESA has had specific requirements to prevent the creation of new
debris since 1988. In 1989 ESA’s Council passed a resolution defining the
agency’s objectives in the field of space debris. ESA’s policy is “. . . to
reduce to the maximum possible extent the production of space debris
and to promote exchange of information and cooperation with other
space operators . . .”
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Workshop on Space Debris

The Committee on Space Debris held a workshop at the Beckman
Center of the National Academies of Sciences and Engineering in Irvine,
California, on November 18-20, 1993. The following participants attended
and provided a great deal of input to the committee on a wide range of
debris-related topics.

Invited Participants

Mr. Howard Baker, Department of Justice, Canada

Dr. Viadimir Chobotov, The Aerospace Corporation, California,
United States

Mr. Eric Christiansen, NASA Johnson Space Center, Texas,
United States

Dr. Albrecht de Jonge, SRON, The Netherlands

Dipl.-Ing. Peter Eichler, Technical University of Braunschweig,
Germany

Dr. David Finkleman, United States Air Force Space Command,
Colorado, United States

Dr. Vladimir Fortov, Research Center IVTAN, Russia

Dr. Edna Jenkins, United States Naval Space Command, Virginia,
United States

Dr. Gennady Kuzin, NPO Energia, Russia

Mr. Joseph Loftus, Jr.,, NASA Johnson Space Center, Texas,
United States
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Ms. Lee Ann Hongping Lu, China Academy of Launch Vehicle
Technology, People’s Republic of China

Dr. Carl Maag, T&M Engineering, California, United States

Dr. Jean-Claude Mandeville, CERT-ONERA /DERTS, France

Dr. Darren McKnight, Kaman Sciences Corporation, Virginia,
United States

Dr. Walter Naumann, ESA Headquarters, France

Mr. Robert Penny, Jr., Motorola, Arizona, United States

Lt Col John Rabins, Air Force Space Command, Colorado,
United States

Dr. Robert Reynolds, Lockheed Engineering Services Center, Texas,
United States

Mr. Lakkavalli Satyamurthy, Embassy of India, Washington, D.C.,
United States

Mr. Eugene Stansbery, NASA Johnson Space Center, Texas,
United States

Mr. Hitoshi Takatsuka, National Space Development Agency, Japan

Mr. Jose Verissimo, Hughes Space and Communications Company,
California, United States

Dr. R. Viswanathan, Hughes Space and Communications Company,
California, United States

Prof. Menglun Yu, China Academy of Launch Vehicle Technology,
People’s Republic of China

Observers and Liaisons

Col Bill Gardner, Air Force Headquarters, United States

Mr. Russell Graves, Boeing, Texas, United States

Mr. George Levin, NASA Headquarters, Washington, D.C.,
United States

Mr. Duane McRuer, ASEB Chairman, California, United States

Dr. Walter Sarjeant, ASEB Committee on Space Station, New York,
United States
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List of Acronyms

American Institute of Aeronautics and Astronautics
charge-coupled device

Commonwealth of Independent States

Cosmic Background Explorer

Committee on the Peaceful Uses of Outer Space
end of life

European Space Agency

European Retrievable Carrier

geosynchronous Earth orbit

Geostationary Operational Environmental Satellite
geostationary transfer orbit

Haystack auxiliary radar

high Earth orbit

International Academy of Astronautics
Inter-Agency Space Debris Coordination Committee
International Law Association

Long Duration Exposure Facility

low Earth orbit

light detection and ranging

multilayer insulation

Midcourse Space Experiment

National Aeronautics and Space Administration
National Research Council

Orbital Debris Radar Calibration Spheres

radar cross section
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RORSAT
SSC

SSN

$88

UHF

UN

VHF

Radar Ocean Reconnaissance Satellite
Space Surveillance Center
Space Surveillance Network (USA)
Space Surveillance System (Russia)
ultrahigh frequency
United Nations
very high frequency
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Unit Conversions

Length

1 km (kilometer)

1 m (meter)

1 ¢m (centimeter)

1 mm (millimeter)

1 um (micron)
Mass

1 kg (kilogram)

1 g (gram)
Energy

17] (joule)

1 MJ (megajoule)
Velocity

1 km/second
1 m/second

Force
1 N (newton)

Pressure
1 kbar

195

il

0.621 mile
3.28 feet

0.394 inch
0.0394 inch
0.0000394 inch

2.20 pounds
0.0353 ounce

0.239 calories
239,000 calories

2,240 miles/h
2.24 miles/h

0.225 pound (force)

14,500 pounds/square inch
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APOGEE — point in an orbit that is furthest from the Earth.

BALLISTIC LIMIT — minimum thickness of a target (such as a debris
shield) necessary to prevent an impacting particle from perforating it.

BREAKUP — destructive fragmentation of a space object. Breakups may
be either accidental or intentional. Since the early 1960s, debris created
by in-orbit breakups has represented the largest single constituent of the
total space object population.

CATALOGING — process of detecting, identifying, and determining
the discrete orbit of a space object. In cataloging, data from sensor net-
works are used to create a set of orbital elements that describe an object’s
discrete orbit. These orbital elements can be used to predict an object’s
future position, but must be updated periodically to account for orbital
perturbations. Space object catalogs have been compiled and are main-
tained by different national governments and agencies.

DEBRIS — see “Orbital Debris.”
DEBRIS FLUX — amount of debris passing through a given area in a
given time. Area, as well as flux, can be defined in terms of either surface

area or cross-sectional area. The debris flux experienced by a spacecraft
is directly proportional to the probability of impact.
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DECAY — natural loss of altitude of a space object culminating in reen-
try into the Earth’s atmosphere. At low altitudes the rate of decay is
determined largely by atmospheric density and the object’s area-to-mass
ratio, but for space objects in highly elliptical orbits, solar-lunar gravita-
tional forces usually drive the rate of decay. Decay may be accelerated
by lowering the perigee of an object’s orbit.

DEORBIT — deliberate, forced reentry of a space object into the Earth’s
atmosphere by applying a retarding force, usually via a propulsion
system.

FRAGMENTATION — process by which an orbiting space object disas-
sociates and produces debris. Fragmentation includes such processes as
breakup and physical deterioration due to exposure and aging. The
planned, controlled, and intentional release of objects (see “Mission-
related Object”) is not considered fragmentation.

GEOSYNCHRONOUS EARTH ORBIT (GEO) — see entry under
“Orbital Regions.”

HYDROCODE — numerical computer capability to simulate hyper-
velocity impacts and the structural deformation, changes of state, frag-
mentation, etc., that result from such impacts.

HYPERVELOCITY — relative velocity of two objects that, in general,
exceeds the speed of sound in solid materials (about 5 km/s) and results
in an impact response that is not dominated by material strength effects.

INCLINATION — angle between the orbital plane of a space object and
the plane of the Earth’s equator.

LIGHT GAS GUN — two-stage gun device that uses a highly com-
pressed light gas (such as hydrogen) to accelerate projectiles to typical
speeds of 5-10 km/s under well-controlled conditions.

LOW EARTH ORBIT (LEQ) — see entry under “Orbital Regions.”

MISSION-RELATED OBJECT — object intentionally released from a
spacecraft or rocket body during the course of a mission. These objects
normally perform no useful service after release and are sometimes re-
ferred to as “operational debris.” Examples of mission-related debris
include spacecraft-launch vehicle separation and stabilization devices,
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sensor covers, and temporary protective shields. Debris from intentional
breakups are not considered mission-related objects.

ORBITAL DEBRIS — space objects in Earth orbit that are not functional
spacecraft. Spent rocket bodies, mission-related objects, fragments from
breakups and deterioration, nonfunctional spacecraft, and aluminum par-
ticles from solid rocket exhaust are all considered debris.

ORBITAL LIFETIME REDUCTION — accelerating the natural decay of
spacecraft and other space objects to reduce the time that they remain in
orbit. Orbital lifetime reduction can be achieved through propulsive ma-
neuvers, deployment of balloons or other drag-enhancing devices, and
other methods.

ORBITAL REGIONS — Space objects travel in a wide variety of orbits
at various altitudes. The following are some of the more frequently used
orbits:

Low Earth Orbit (LEO) — orbit with a mean altitude of less than
2000 km.

Sun-Synchronous Orbit — retrograde LEO orbit in which the orbit
plane precesses at the same rate the Earth revolves around the Sun. A
spacecraft in S50 experiences the same ground lighting conditions each
day; this can be useful for Earth observation missions.

High Earth Orbit (HEO) — any Earth orbit with a mean altitude
greater than 2000 km.

Circular Semisynchronous Orbit — circular orbit (such as that used
by the Global Positioning System) with a period of about 12 hours. The
mean altitude of such an orbit is approximately 20,200 km.

Highly Elliptical Orbit — orbit with an eccentricity of greater than
0.5, including GTO and the Molniya orbits.

Geostationary Transfer Orbit (GTO) — elliptical orbit with an apo-
gee around GEO and a perigee in LEO. This orbit is used to transfer
spacecraft from LEQ to GEO. The rocket bodies used to accomplish this
transfer often remain in this orbit after the spacecraft separates and circu-
larizes its orbit using an apogee kick motor.

Molniya Orbit — highly elliptical orbit with an inclination of 63-65
degrees, a period of about 12 hours, and an apogee above the Northern
Hemisphere. Molniya orbits have historically been used to provide com-
munications and early-warning services; they are suited to this task be-
cause spacecraft in Molniya orbits spend most of their time above the
middle latitudes of the Northern Hemisphere.

Geostationary Earth Orbit — nearly circular orbit with a period of
approximately 1,436 minutes and an inclination close to zero degrees. In
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such an orbit, the satellite maintains a relatively stable position directly
above the equator, at a mean altitude of approximately 35,785 km. In
practice, “geostationary” satellites exhibit small orbital eccentricities and
slight inclinations, resulting in an apparent wobble about a fixed location.

Geosynchronous Earth Orbit (GEO) — roughly circular orbit with
any inclination and a period of approximately 1,436 minutes. The ground
tracks of inclined geosynchronous satellites follow a figure eight-shaped
pattern, completing a full circuit once a day, with the center of the figure
eight fixed directly above the equator at an altitude of 35,785 km.

PASSIVATION — discharging all stored energy sources on a space ob-
ject in order to reduce the chance of breakup. Typical passivation mea-
sures include venting excess propellant and discharging batteries.

PERIGEE — point in an orbit that is closest to the Earth.

REORBIT — intentional changing of a space object’s orbit at the end of
its operational life. Typically, this involves putting the space object in an
orbit where it is expected to be less of a hazard (including both collision
and reentry hazards).

ROCKET BODY ~- any stage of a launch vehicle (including apogee kick
motors) left in Earth orbit at the end of a spacecraft delivery sequence.
Typical space missions leave only one rocket body in Earth orbit, but
some launches leave as many as three separate rocket bodies in different
orbits. Some rocket bodies may carry special devices for experimental
purposes and be given names associated with the experiment. Rocket
bodies are normally as large or larger than the spacecraft they carry and
often retain residual propellants that may later be a source of energy for
breakup.

SOLAR CYCLE ACTIVITY — periodic fluctuations in the energy output
of the Sun. In general, these fluctuations exhibit an approximately sinu-
soidal variation with a period of 11 years. During periods of high solar
activity, the Earth’s atmosphere is heated, causing it to expand. This
expansion increases the atmospheric density encountered by space ob-
jects, particularly those in orbits lower than 1,000 km, causing them to
decay more rapidly. This may lead to a decrease in the overall popula-
tion of objects in Earth orbit during solar maximum periods.

SPACECRAFT — orbiting object designed to perform a specific function
or mission, (e.g., communications, navigation, or weather forecasting). A
spacecraft that can no longer fulfill its intended mission is considered
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nonfunctional. (Spacecraft in reserve or standby modes awaiting pos-
sible reactivation are considered functional.)

SPACE OBJECT — any object in space. The term space object includes
the natural meteoroid environment, as well as orbiting objects such as
individual spacecraft, rocket bodies, fragmentation debris, and mission-
related objects. It should be noted that the space law community has yet
to come to consensus on the classification of debris as space objects.

SPACE SURVEILLANCE NETWORK (SSN) — collection of ground-
based radar and electro-optical sensors used by the U.S. Space Command
to track and correlate man-made space objects.

SPACE SURVEILLANCE SYSTEM (8SS) — Russian counterpart of the
U.S. 8SN. The 5SS is located throughout the former Soviet Union and is
comprised principally of radar, optical, and electro-optical sensors.

SPALLATION — phenomenon that occurs when a high-velocity impact
causes a stress wave to interact with the free back surface of a thick tar-
get. If the resulting tensile stress caused by this interaction exceeds the
tensile yield stress of the material, a thin sheet of material can separate
from the target (or “spall”) and be propelled from the surface at a veloc-
ity nearly equal to the original impact velocity of the particle producing
the stress wave.
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Cassini spacecraft, 47

Cataloging. Se¢ Tracking and cataloging
CHAIN modeling program, 53, 163
Charge-coupled devices, 2, 37
Clementine 1 interstage adaptor, 48
Clouds of debris, 25, 55, 75-76

COBE. See Cosmic Background Explorer
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Collision avoidance/warning systems, 6,

36, 43

applications to date, 125, 127

development prospects, 127-128, 131-
132, 143

ground-based sensors for, 126-127

shoot-back schemes, 128

in Space Shuttle operations, 127

spacecraft-based sensors for, 125-126

spacecraft maneuverability for, 126

Collision effects

accuracy of models, 160

analytical/numerical modeling, 5, 102,
109-110, 114-115

angle of impact and, 88, 90-91

breakups as, 4, 12, 91-92, 98, 138

collisional growth of debris population,
6-7,102, 143, 158, 160-167, 172

damage scaling laws, 46

experiences to date, 12, 13

hazards to crewed missions, 95

impact conditions in determination of, 4,

88-91

impact damage scaling laws, 46

limitations in damage assessment
capabilities, 46, 79, 111-114

performance deterioriation models, 97,
109

range of, 4-5, 11-12

recommendations for research, 5-6, 179

research strategies, 5, 101

structural and component damage, 4-5,
93-95, 97, 98-99, 121-122

tether damage, 97, 99

velocity and, 4, 67

vulnerability of spacecraft surface, 95-98,

99
Coolant leakage, 74, 95
Cosmic Background Explorer (COBE), 25
Crewed missions
impact hazards to, 95
release of mission-related debris, 136,
137

Debris flux, definition of, 197
Debris swarms, 46, 47, 75-76
Delta rocket bodies, 140
Depletion burns, 141
Deterioration products, 25-27
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Disposal orbits, 22
concems about, 8, 152-153
location of, 148-149, 152, 153
recommendations, 9, 181-182
to reduce debris hazards, 8, 147-148, 152-
153, 154
reorbiting costs, 150
Drag augmentation, 145-147
Duration of otbit. See Orbital decay

Electromagnetic rail gun, 104, 106

European Retrievable Carrier, 13, 45, 46, 74

European Space Agency, 13, 52, 121, 176,
188

EVOLVE, 53, 81-82, 158

Explorer spacecraft, 47

Explosive bolts, 24, 136

F

Fragmentation debris, 198
in breakup modeling, 92, 98
current population estimates, 25
degradation products, 25-27, 75
distribution, 25, 64, 138
hypervelocity tests, 102-103
medium-sized, 70
small-sized, 75
sources of, 25
strategies for reducing, 138-142

G

GEQ. See Geosynchronous Earth orbit
Geostationary Earth orbit, 18, 199-200
Geostationary Operational Environmental
Satellite, 23
Geostationary transfer orbits
definition, 199
ground-based optical sampling of, 39
risk of debris collision in, 87
solar-lunar perturbational forces in, 28
Geosynchronous Earth orbit (GEO), 1
collision effects in, 93
collision velocities in, 90
collisional growth of debris population
in, 167
definition, 18, 200
disposal orbits for, 8, 9, 148-149, 152, 154,
182
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distribution of debris in, 2, 69, 84-87
ground-based optical sampling of, 39
large debris object distribution in, 63-64,
67-69
likelihood of collision with debris in, 4,
85-87, 98
modeling of breakup debris in, 149
orbital inclination of debris in, 68-69, 86
recommendations for characterization
studies, 177
space-based sampling in, 44
spacecraft design for, 23, 24, 121
spacecraft distribution in, 19
stable plane, 152
stable points, 152
uses of, 18
Global Positioning System, 19, 148
Goldstone Deepspace Communications
Complex, 40, 41
Gravitational forces, 27, 28, 69, 145

H

Haystack radar, 13, 40-41, 70-74, 81
Auxiliary Radar, 41-42
High Earth orbits, 18-19
definition, 199
density of debris in, 84-85
likelihood of collision with debris in, 84-
87,98
Hiten spacecraft, 47, 75
Hubble telescope, 42, 45
Hydrocode, 110, 198
Hypervelocity launcher, 104-106
Hypervelocity testing
access to test data and testing facilities,
5, 6,108, 114, 179
with analytical/numerical modeling, 5,
102, 109-110, 114-115
capabilities and techniques, 5, 103-107
design of, 102-104
dissimilar materials testing, 106-107
of fragmentation effects in breakup, 102,
112-114
hypervelocity defined, 198
limitations, 111, 114
purpose, 101-102, 114, 121
recommendations, 5-6, 179
simulated impacts, 107
spacecraft component testing, 102, 130-
131
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velocity capabilities, 103, 104-105, 106
velocity requirements, 103

In situ debris sampling, 2
active measurements, 46-48
advantages, 45
basis of, 45
limitations, 45-46, 48, 57-58
opportunities for improvement, 48-49
passive measurements, 45-46
Inclination
angle of impact related to, 91
collision velocities and, 88-90
definition, 198
distribution of large debris objects, 67-69
GEO stable plane, 152
likelihood of collision with debris and, 4,
82-84, 86, 98
limits of radar detection, 40
of medium-sized orbital debris, 71-74
tracking and, 35
Infrared Astronomical Satellite, 42
Infrared debris detection systems, 43
Inter-Agency Space Debris Coordination
Committee, 176, 187
International Astronautical Academy, 187-
188
International efforts
debris reduction strategies, 8, 180
national policies and, 188
for orbital debris research, 3
for orbital debris tracking and
cataloging, 3, 35, 177-178
recommendations, 3, 176, 177-178, 180
space laws, 180, 185-188
International Law Association, 187
International Space Station, 121, 125, 127

K

Kosmos spacecraft, 25

L

Launch vehicles, 17
Law, international, 180, 185-188
LEO. See Low Earth orbit
Light gas guns, 104, 105, 107, 198
Long Duration Exposure Facility, 12, 14, 45,
46,74, 142-143
debris impact prediction, 0-91
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debris swarms, detection by, 75-76

Interplanetary Dust Experiment, 47, 75

surface damage from debris impacts, 95,
97-98

surface degradation, 27

Low Earth orbit (LEO), 1

assessment of debris reduction proposals
for, 168-169

characterizations of debris population in,
3, 34, 49-50, 57, 63, 80-81

collision effects in, 93

collision velocities in, 88-90

collisional growth of debris population
in, 7, 164-167

definition, 199

determinants of orbital lifetime in, 28

disposal orbits in, 8, 181-182

ground-based optical sampling, 38-39

ground-based radar sampling, 39-41, 42

large debris object distribution in, 63-64,
67

likelihood of collision with debris in, 4,
81-84, 98

predictions for growth of debris in, 7,
172

propagation models, 56-57

rocket body debris in, 23

space-based sampling in, 44

spacecraft design for, 23

spacecraft distribution in, 18, 19

spread of fragmentation debris in, 138-
139

tracking and cataloging of orbital debris
in, 2-3, 36, 57, 177

uncataloged debris in, 81

Lunar effects on orbital lifetimes, 28, 56,

145

M
Materials models, 5, 110, 111, 179

Measurement of debris environment

completeness of current data set, 2, 49-
50, 63

estimating atmospheric drag effects, 27-
28, 36, 56

estimating methodologies, 31

modeling techniques for, 51-57

opportunities for improvement, 50-51,
177

See also Sampling; Tracking and
cataloging of orbital debris

Meteoroids, 1
collision risk in GEQ relative to debris,
86
hazards to space operations from, 3, 11,
76, 84
Mideourse Space Experiment, 43
Mir space station, 12, 13, 24, 45, 74
Mission-related debris
definition, 198-199
distribution, 64-65, 136
intentional dumping of, 24
medium-sized, 70
recommendations, 8, 181
rocket exhaust as, 24-25, 75, 136, 137
small-sized, 74-75
sources of, 24
strategies for reducing release of, 136~
137
Modeling, 3
analytical/numerical impact, 5, 102, 109-
110, 114-115
breakup modeling, 54-55, 70, 160
collisional cascading, 161-167
debris cloud, 55
debris impact risk, 120-122
debris reduction strategies, 167-172
debris shapes, 111, 114
ESA Reference Model for Space Debris
and Meteoroids, 121
future debris population, 52-53, 58, 157-
167
materials research for impact, 5, 110, 111,
179
opportunities for improvement, 58
performance deterioration, 97, 109
population characterization, 51-52, 58
propagation models, 55-57
purpose, 51
recommendations for research, 5-6, 176,
177
standard population characterization
reference model, 3, 52, 177
traffic modeling, 53-54
Molniya orbits, 28, 64, 67-68, 86
definition, 199
spacecraft distribution in, 19

N

NEXTEL shield, 125
Nonfunctional spacecraft, 21-22, 68
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Orbital Debris Radar Calibration Spheres,
41
Orbital decay

altitude and, 1, 28, 30
determinants of, 1, 27-28, 30
orbital lifetime reduction strategies, 144-
147,154, 199
projections of, 28
propagation models, 55-57
Orbital Meteoroid and Debris Counter, 48
Orbital regions, 1, 199-200
collision velocities, 88-90
distribution of spacecraft in, 18-20
hazard from debris and, 79, 80
location of disposal orbits, 8, 148-149,
152, 153
perturbation forces in, 27
probability of collision with debris in, 4
See also Altitude; specific orbit

P

Paint chips, 11, 26-27, 75, 97-98, 142, 181
Palapa spacecraft, 45
Peer review, 3, 178
Pegasus spacecraft, 47
Perturbation forces, 27-30
effects on small debris, 75, 158
in GEQ stable plane, 152
modeling of, 55-56, 159
size of debris objects and effects of, 70
use of, for lifetime reduction maneuvers,
145
Plasma drag launchers, 106
Political and economic contexts, 8, 180
Population characterization models, 51-52,
58
Progress M cargo spacecraft
Propagation models, 55-57
Protection against debris hazards
active systems, 122, 125-128, 131-132
benefit-cost analysis in spacecraft
design, 119-120
experimental testing of systems for, 101
mission design for, 128-129
operational protection, 122, 128-129
passive strategies, 122-125
risk assessment for spacecraft design,
120-122
spacecraft design for, 6, 178-179
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See also Collision warning /avoidance;
Shielding
Proton launch vehicle, 23

Q

Quantity of debris, 3, 11

current catalog, 20, 21, 25

current estimate, 63

debris collisions as source of growth in,
6-7,102, 143, 158, 160-167, 172

fragmentation sources, 25, 138, 140

growth trends, 157, 158, 172

from intentional spacecraft breakups,
140

large debris population, 63-67

medium-sized debris population, 3, 70-
74,76

mission-related sources, 136

models for estimating, 157-167

number vs. mass, 143, 154, 167

predictions for growth in, 6-7, 52-53, 119

rocket body fragments, 140

small-sized debris population, 74, 158,
177

spacecraft explosion as a source, 139

strategies for reducing growth in, 7-8,
135-136

variation by orbital region, 84-85

Radar cross section, 34
Radar Ocean Reconnaissance satellites, 74
Radar observation, 3, 36
calibration techniques, 41
current activities, 36, 39-41
limits of, 34, 36
opportunities for improvement, 41-42, 57
RADARSAT spacecraft, 121, 130-131
Radioactive materials, 22, 91
Reducing debris hazards
by active in-orbit removal, 7, 143, 153-
154, 180
assessment of strategies for, 135-136,
167-172
cost considerations, 136
data needs for, 175
deorbiting/lifetime reduction strategies
for, 7-8, 143, 144-147, 154, 169, 171, 172
international efforts, 180
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long-term strategies, 135
mass vs. number of objects as goal of,
167
from mission-related debris, 136-137, 154
recommendations for, 8-9, 180-182
by reducing creation of debris from
collisions, 143, 172
reorbiting to disposal orbits for, 147-153,
154, 181-182
from spacecraft degradation, 142-143,
181
spacecraft design strategies for, 7, 8, 129-
132
from spacecraft explosions, 138-142, 154
spacecraft operations for, 7-8, 128-129,
135
See also Protection from debris hazards
Redundant design, 6, 128
Removal of debris, 7, 143, 153-154, 180
Research
analytical/numerical impact modeling,
5,102, 109-110
damage assessment and prediction,
limitations of, 111-114
data sources, 13-14
on effects of debris impacts,
opportunities for, 101
measurement of debris environment,
current status of, 49-51
peer review, 3, 178
recommendations for, 3, 5-6, 176-178
shielding, 125
See also Hypervelocity testing; Modeling
Risk of collision
benefit-cost analysis of spacecraft
design, 119-120
current estimates, 2, 9
determinants of, 79, 80, 98, 120
growth in, 11, 12-13, 119,172
in HEO, 4, 84-87, 98
in LEQ, 4, 80-84, 98
with meteoroids, 3, 11, 76, 84, 86
modeling, 120-122
with objects surviving reentry, 1, 13
orbital altitude and, 4, 81-82, 85-86, 98
orbital inclination and, 4, 82-84, 86, 98
predictions for LDEF, 90-91
radioactive materials and, 91
research needs, 2-3, 175-176
size of objects and, 3-4
spacecraft design considerations, 120-122
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See also Reducing debris hazards
Rocket bodies, 200
contribution to debris population, 11, 23-
24,140
debris distribution, 65
passivation of, to reduce debris growth,
140-142, 181
Rocket exhaust, 11, 24-25, 75, 136, 137
Russian Space Agency, 176
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Salyut space stations, 12, 45, 46-47, 74
Sampling
completeness of current data set, 49-50
with ground-based optical sensors, 38-39
with ground-based radar, 39-42, 70-71
opportunities for improvement, 58
from orbit, 42-44
purpose of, 2, 38
in situ, 2, 45-49
strategies for, 2, 38
Semisynchronous orbit, 1, 199
collision risk in, 98
debris distribution, 84
orbital velocity, 90
spacecraft distribution in, 19
Shape of debris, 111, 114
Shielding, 5, 11, 179
analytical/numerical modeling of, 109
current research efforts, 125
current technology, 6, 103
design considerations, 102, 123, 131
hypervelocity testing of, 102
obstacles to development, 111
size of debris objects and, 122
types of, 123
Whipple type, 123-125
Size of debris objects
breakup fragments, 54-55, 70, 75, 92
debris flux and, 80
distribution estimates, 63
effect of impact and, 12, 88, 93-95
large, 3, 4, 63-70
limits of ground-based optical sampling,
2,38-39
limits of in situ sampling, 49
limits of radar detection, 35-36
limits of space-based remote sensing, 44
limits of space-based sampling, 42, 44
measurement conventions, 21
medium-sized, 3, 4, 48-49, 57-58, 70-74, 76
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surface materials, 181

understanding of debris environment
for, 175-176

vulnerability of components to debris
impacts, 93-95, 99, 121-122

Spacecraft operations
breakup modeling, 54-55
collision avoidance systems, 125, 126

perturbation forces and, 70, 71, 75
population growth trends, 161
probability of collision in LEO, 4
radar cross section, 34

rocket exhaust particles, 24
shielding considerations, 122
small, 4, 74-76, 158, 177

tracking ability, 2-3, 34, 35-36, 57

Skylab, 42, 45 definition of functional spacecraft, 20-21
Solar effects on orbital lifetimnes, 27-28, 56, deorbiting/lifetime reduction
145, 200 maneuvers, 7-8, 143, 144-147

Solar Maximum Mission, 12, 45, 74
Space Shuttle, 12, 45, 74, 82
collision avoidance procedure, 127 historical development, 11, 17, 20
mission design to reduce impact risk, impact risk reduction, mission design in,
129 128-129
Space Station Freedom, 13, 121 intentional breakups, 8, 25, 140, 181
Space suits, 95 orbital distribution, 18-20
Space Surveillance Network, 20, 32, 34, 35, orbital placement, 17-18
201 in reducing debris hazard, 7-8, 9
Space Surveillance System, 32, 34, 35, 36, reducing release of mission-related
201 debris in, 136-137, 154
Spacecraft design, 5 sources of debris from, 21-27

experimental simulation of debris
impact effects, 101

analytical/numerical modeling in, 109

benefit-cost analysis, 119-120

debris removal vehicles/devices, 153-
154

for deorbiting/lifetime reduction

surface damage from debris impacts
and, 97-98

traffic modeling, 53-54

venting of residual propellant, 139-140,
141-142

maneuvers, 144-145
drag augmentation devices, 145-147
early process, 120, 131

Spallation, 93, 201
SPELDA device, 137
Sun-synchronous orbit, 18, 199

fuel demands for reorbiting to disposal
orbit, 150

historical concerns with debris impacts,
119

hypervelocity testing, 101-103, 121-122

impact risk assessment, 120-122

oversizing, 128

passivation strategies to reduce debris
population growth, 139-140, 181, 200

protection from debris impacts in, 7, 88,
90-91, 128, 130-131

recommendations, 6, 8, 178-179, 181

for reducing degradation debris, 142-

T

Telescopic observation, 2-3, 35

charge-coupled devices in, 2, 37

limitations of, 38

liguid-mirror, 39

with modeling techniques, 52

opportunities for improvement, 39

for sampling, 38-39

space-based, 42-43, 97

vulnerability of space-based optics to
debris impacts, 97

143, 181 Tethers, 97, 99
redundant components, 6, 128 Titan rockets, 137
rocket bodies, 23 Toroidal cloud. See Clouds of debris

shielding, 102, 122-125, 131

solar power systems, 98

strategies for reducing breakup debris,
138-142, 181

Tracking and cataloging of debris objects
for collision warning/avoidance
systems, 125, 126-127
current capabilities, 2, 14, 31-36, 57
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current catalog, 20, 21, 57, 63, 67,'70, 84- Use of space, 1, 17

85 growth of debris population, 2
definition, 197 international law and treaties, 180, 185-
medium-sized debris population, 70-74 188
need for, 175-176 predictive modeling, 53-54
opportunities for improvement, 2-3, 35- trends, 18-19

37,57 See also Spacecraft operations
predictive ability, 36, 55, 57
recommendations for, 3, 177-178
uncataloged debris in LEO, 81 v
uncataloged large debris, 69-70 Velocity, 67

Traffic mode}ing, 53-54 altitude variation and, 93
Types of orbital debris, 1, 11, 20-27 of breakup debris, 70, 92
coolant leakage, 74 collision, 11-12, 88-90

debris swarms, 75-76
degradation products, 25-27
intentionally dumped, 24
oldest spacecraft debris, 22
radioactive, 91

See also specific types

energy of high velocity objects, 93

in GEO stable plane, 152

in geostationary transfer orbits, 87
shield design considerations, 123-124
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