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Abstract

This review concerns the origin and the possible e!ects of magnetic "elds in the early Universe. We start by
providing the reader with a short overview of the current state of the art of observations of cosmic magnetic
"elds. We then illustrate the arguments in favor of a primordial origin of magnetic "elds in the galaxies and in
the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible
imprints of magnetic "elds on the temperature and polarization anisotropies of the cosmic microwave
background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant e!ects of
magnetic "elds on the CMBR. A long chapter of this review is dedicated to particle-physics-inspired models
which predict the generation of magnetic "elds during the early Universe evolution. Although it is still
unclear if any of these models can really explain the origin of galactic and intergalactic magnetic "elds, we
show that interesting e!ects may arise anyhow. Among these e!ects, we discuss the consequences of strong
magnetic "elds on the big-bang nucleosynthesis, on the masses and couplings of the matter constituents, on
the electroweak phase transition, and on the baryon and lepton number violating sphaleron processes.
Several intriguing common aspects, and possible interplay, of magnetogenesis and baryogenesis are also
discussed. � 2001 Elsevier Science B.V. All rights reserved.

PACS: 98.80.Cq; 11.27.#d
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0. Introduction

Magnetic "elds are pervading. Planets, stars, galaxies and clusters of galaxies have been observed
that carry "elds that are large and extensive. Though strong homogeneous "elds are ruled out by
the uniformity of the cosmic background radiation, large domains with uniform "elds are possible.

A crucial ingredient for the survival of magnetic "elds on astrophysical scales is for them to live
in a medium with a high electrical conductivity. As we shall see in Section 1, this condition is
comfortably ful"lled for the cosmic medium during most of the evolution of the Universe. As
a consequence, it is possible for magnetic "elds generated during the big-bang or later to have
survived until today as a relic.

To establish the existence and properties of primeval magnetic "elds would be of extreme
importance for cosmology. Magnetic "elds may have a!ected a number of relevant processes which
took place in the early Universe as well as the Universe geometry itself. Because of the Universe's
high conductivity, two important quantities are almost conserved during Universe evolution: the
magnetic #ux and the magnetic helicity (see Section 1.4). As we will see, valuable information about
fundamental physics which took place before the recombination time may be encoded in these
quantities.

In the past years a considerable amount of work has been done about cosmic magnetic "elds
both from the astrophysical and from the particle physics points of view. The main motivations of
such wide interest are the following.

The origin of the magnetic "elds observed in the galaxies and in the clusters of galaxies is
unknown. This is an outstanding problem in modern cosmology and, historically, it was the "rst
motivation to look for a primordial origin of magnetic "elds. Some elaborated magnetohyd-
rodynamical (MHD) mechanisms have been proposed to amplify very weak magnetic "elds into
the �G "elds generally observed in galaxies (see Section 1.1). These mechanisms, known as galactic
dynamo, are based on the conversion of the kinetic energy of the turbulent motion of the conductive
interstellar medium into magnetic energy. Today, the e$ciency of such a kind of MHD engines has
been put in question both by improved theoretical work and new observations of magnetic "elds in
high redshift galaxies (see Section 1.2). As a consequence, the mechanism responsible for the origin
of galactic magnetic "elds has probably to be looked back in the remote past, at least at a time
comparable to that of galaxy formation. Furthermore, even if the galactic dynamo was e!ective, the
origin of the seed "elds which initiated the processes has still to be identi"ed.

Even more mysterious is the origin of magnetic "elds in galaxy clusters. These "elds have been
observed to have strength and coherence size comparable to, and in some cases larger than, galactic
"elds. In the standard cold dark matter (CDM) scenario of structure formation clusters form by
aggregation of galaxies. It is now understood that magnetic "elds in the inter-cluster medium
(ICM) cannot form from ejection of the galactic "elds (see Section 1.2). Therefore, a common
astrophysical origin of both types of "elds seems to be excluded. Although independent astrophysi-
cal mechanisms have been proposed for the generation of magnetic "elds in galaxies and clusters,
a more economical, and conceptually satisfying solution would be to look for a common cos-
mological origin.

Magnetic "elds could have played a signi"cant role in structure formation. It may not
be a coincidence that primordial magnetic "elds as those required to explain galactic "elds,
without having to appeal to a MHD ampli"cation, would also produce pre-recombination density
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perturbations on protogalactic scales. These e!ects go in the right direction to solve one of the
major problems of the CDM scenario of structure formation (see Section 1.3). Furthermore, if
primordial magnetic "elds a!ected structure formation they also probably left detectable imprints
in the temperature and polarization anisotropies, or the thermal spectrum, of the cosmic micro-
wave background radiation (CMBR) (see Section 2).

Field theory provides several clues about the physical mechanisms which may have produced
magnetic "elds in the early Universe. Typically, magnetogenesis requires an out-of-thermal
equilibrium condition and a macroscopic parity violation. These conditions could have been
naturally provided by those phase transitions which presumably took place during the big-bang.
Some well-known examples are the QCD (or quark con"nement) phase transition, the electroweak
(EW) phase transition, the GUT phase transition. During these transitions magnetic "elds can be
either generated by the turbulent motion induced in the ambient plasma by the rapid variation of
some thermodynamic quantities (if the transition is "rst order) or by the dynamics of the Higgs and
gauge "elds. In the latter case the mechanism leading to magnetogenesis shares some interesting
common aspects with the mechanism which has been proposed for the formation of topological
defects. On the other hand, if cosmic strings were produced in the early Universe they could also
generate cosmic magnetic "elds in several ways. In#ation, which provides a consistent solution to
many cosmological puzzles, has also several features which make it interesting in the present
context (see Section 4.5). Although to implement an in#ationary scenario of magnetogenesis
requires some nontrivial extensions of the particle physics standard model, recent independent
developments in "eld theory may provide the required ingredients. Magnetic "elds might also be
produced by a preexisting lepton asymmetry by means of the Abelian anomaly (see Section 4.4).
Since the predictions about the strength and the spatial distribution of the magnetic "elds are
di!erent for di!erent models, the possible detection of primeval magnetic "elds may shed light on
fundamental physical processes which could, otherwise, be inaccessible.

Even if primordial magnetic "elds did not produce any relevant e!ect after recombination, they
may still have played a signi"cant role in several fundamental processes which occurred in the "rst
100,000 years. For example, we shall show that magnetic "elds may have a!ected the big-bang
nucleosynthesis, the dynamics of some phase transitions, and baryogenesis. Since big-bang
nucleosynthesis (BBN) has been often used to derive constraints on cosmological and particle
physics parameters, the reader may not be surprised to learn here that BBN also provides
interesting limits on the strength of primordial magnetic "elds (see Section 3). Even more
interesting is the interplay which may exist between baryogenesis and magnetogenesis. Magnetic
"elds might have in#uenced baryogenesis either by a!ecting the dynamics of the electroweak phase
transition or by changing the rate of baryon number violating sphaleron processes (see Section 5).
Another intriguing possibility is that the hypercharge component of primeval magnetic "elds
possessed a net helicity (Chern}Simon number) which may have been converted into baryons and
leptons by the Abelian anomaly (see Section 4). In other words, primordial magnetic "elds may
provide a novel scenario for the production of the observed matter}antimatter asymmetry of the
Universe.

An interesting aspect of magnetic "elds is their e!ect on the constituents of matter. This in turn is
of importance in many aspects of the processes that took place in the early times. Masses of
hadrons get changed so that protons are heavier than neutrons. The very nature of chirality could
get changed (see Section 5). However, the characteristic "eld for this to happen is H"m�� which is
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about 10��G. These "elds cannot exist at times when hadrons are already existing and therefore
are probably not relevant. Near cosmic superconductive strings the story may be di!erent.

Clearly, this is a quite rich and interdisciplinary subject and we will not be able to cover all
its di!erent aspects with the same accuracy. Our review is mainly focused on the production
mechanism and the e!ects of magnetic "elds before, or during, the photon decoupling from matter.

In Section 1 we shortly review the current status of the observations. In order to establish some
relation between recent time and primeval magnetic "elds we also provide a short description of
some of the mechanisms which are supposed to control the evolution of magnetic "elds in the
galaxies and in the intergalactic medium. We only give a very short and incomplete description of
the e!ect of magnetic "elds on structure formation. Some basic aspects of this subject are, anyhow,
presented in Section 2 where we discuss the e!ect of magnetic "elds on the anisotropies of the
cosmic microwave background radiation. From a phenomenological point of view Section 2 is
certainly the most interesting of our review. The rapid determination of the CMBR acoustic peaks
at the level of a few percent will constrain these "elds signi"cantly. We brie#y touch upon the recent
determination of the second acoustic peak. In Section 3 we describe several e!ects of strong
magnetic "elds on the BBN and present some constraints which can be derived by comparing the
theoretical predictions of the light elements relic abundances with observations. Since it can be of
some relevance for BBN, propagation of neutrinos in magnetized media is also brie#y discussed
at the end of that chapter. In Section 4 we review several models which predict the generation of
magnetic "elds in the early Universe. In the same section some possible mutual e!ects of
magnetogenesis and baryogenesis are also discussed. Some aspects of the e!ects which are
described in Sections 3 and 4, which concern the stability of strong magnetic "elds and the e!ect
that they may produce on matter and gauge "elds, are discussed in more detail in Section 5. At the
end we report our conclusions.

1. The recent history of cosmic magnetic 5elds

1.1. Observations

The main observational tracers of galactic and extra-galactic magnetic "elds are (comprehensive
reviews of the subject can be found in Refs. [1,2]): the Zeeman splitting of spectral lines; the
intensity and the polarization of synchrotron emission from free relativistic electrons; the Faraday
rotation measurements (RMs) of polarized electromagnetic radiation passing through an ionized
medium.

Typically, the Zeeman splitting, though direct, is too small to be useful outside our galaxy.
Unfortunately, although the synchrotron emission and RMs allow to trace magnetic "elds in very
distant objects, both kinds of measurements require an independent determination of the local
electron density n

�
. This is sometimes possible, e.g. by studying the X-ray emission from the

electron gas when this is very hot, typically when this is con"ned in a galaxy cluster. Otherwise
n
�

may not be always easy to determine, especially for very rare"ed media like the intergalactic
medium (IGM). In the case of synchrotron emission, whose intensity is proportional to n

�
B�, an

estimation of B is sometimes derived by assuming equipartition between the magnetic and the
plasma energy densities.
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If the magnetic "eld to be measured is far away one relies on Faraday rotation. The agreement
generally found between the strength of the "eld determined by RMs and that inferred from the
analysis of the synchrotron emission in relatively close objects gives reasonable con"dence on the
reliability of the "rst method also for far away systems. It should be noted, however, that
observations of synchrotron emission and RMs are sensitive to di!erent spatial components of the
magnetic "eld [2]. The RM of the radiation emitted by a source with redshift z

�
is given by

RM(z
�
),

�(�)
�(��)

"8.1�10��
��

�

n
�
B

,
(z)(1#z)��dl(z)

rad
m�

, (1.1)

where B
,

is the "eld strength along the line of sight and

dl(z)"10��H��
�

(1#z)(1#�z)����dz Mpc . (1.2)

H
�

is the Hubble constant. The previous expression holds for a vanishing cosmological constant
and modi"cation for "nite � is straightforward. This method requires knowledge of the electron
column and possibility of "eld reversals. For nearby measurements in our own galaxy pulsar
frequency and their decays can pin down these e!ects. Otherwise, these stars are too far to help. For
this reason to determine the magnetic "eld of the IGM by Faraday RMs is quite hard and only
model-dependent upper limits are available.

We now brie#y summarize the observational situation.
Magnetic xelds in galaxies. The interstellar magnetic "eld in the Milky Way has been determined

using several methods which allowed to obtain valuable information about the amplitude and
spatial structure of the "eld. The average "eld strength is 3}4 �G. Such a strength corresponds to an
approximate energy equipartition between the magnetic "eld, the cosmic rays con"ned in the
Galaxy, and the small-scale turbulent motion [1]

�
�

"

B�
8�

+�
�
+�

	

. (1.3)

Remarkably, the magnetic energy density almost coincides with the energy density of the cosmic
microwave background radiation (CMBR). The "eld keeps its orientation on scales of the order of
a few kiloparsecs (kpc), comparable with the galactic size, and two reversals have been observed
between the galactic arms, suggesting that the Galaxy "eld morphology may be symmetrical.
Magnetic "elds of similar intensity have been observed in a number of other spiral galaxies.
Although equipartition "elds were observed in some galaxies, e.g. M33, in some others, like the
Magellanic Clouds and M82, the "eld seems to be stronger than the equipartition threshold.
Concerning the spatial structure of the galactic "elds, the observational situation is, again, quite
confused with some galaxies presenting an axially symmetrical geometry, some others a symmetri-
cal one, and others with no recognizable "eld structure [2].
Magnetic xelds in galaxy clusters. Observations on a large number of Abel clusters [3], some of

which have a measured X-ray emission, give valuable information on "elds in clusters of galaxies.
The magnetic "eld strength in the inter cluster medium (ICM) is well described by the phenom-
enological equation

B
�	�

&2 �G�
¸

10 kpc�
����

(h
��

)�� , (1.4)
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where ¸ is the reversal "eld length and h
��

is the reduced Hubble constant. Typical values of ¸ are
10}100 kpc which correspond to "eld amplitudes of 1}10 �G. The concrete case of the Coma cluster
[4] can be "tted with a core magnetic "eld B&8.3h���

���
G tangled at scales of about 1 kpc.

A particular example of clusters with a strong "eld is the Hydra A cluster for which the RMs imply
a 6 �G "eld coherent over 100 kpc superimposed with a tangled "eld of strength &30 �G [5].
A rich set of high-resolution images of radio sources embedded in galaxy clusters shows evidence of
strong magnetic "elds in the cluster central regions [6]. The typical central "eld strength
&10}30 �G with peak values as large as &70 �G. It is noticeable that for such large "elds the
magnetic pressure exceeds the gas pressure derived from X-ray data suggesting that magnetic "elds
may play a signi"cant role in the cluster dynamics. It is interesting, as it has been shown by Loeb
and Mao [7], that a discrepancy exists between the estimate of the mass of the Abel cluster 2218
derived from gravitational lensing and that inferred from X-ray observations which can be well
explained by the pressure support produced by a magnetic "eld with strength &50 �G. It is still
not clear if the apparent decrease of the magnetic "eld strength in the external region of clusters is
due to the intrinsic "eld structure or if it is a spurious e!ect due to the decrease of the gas density.
Observations show also evidence for a "lamentary spatial structure of the "eld. According to Eilek
[6] the "laments are presumably structured as a yux rope, that is a twisted "eld structure in which
the "eld lies along the axis in the center of the tube, and becomes helical on going away from
the axis.

It seems quite plausible that all galaxy clusters are magnetized. As we will discuss in the next
section, these observations are a serious challenge to most of the models proposed to explain the
origin of galactic and cluster magnetic "elds.
Magnetic xelds in high redshift objects. High-resolution RMs of very far quasars have allowed to

probe magnetic "elds in the distant past. The most signi"cative measurements are due to Kronberg
and collaborators (see Ref. [1] and refs. therein). RMs of the radio emission of the quasar 3C191, at
z"1.945, presumably due a magnetized shell of gas at the same redshift, are consistent with a "eld
strength in the range 0.4}4 �G. The "eld was found to maintain its prevailing direction over at least
&15 kpc, which is comparable with a typical galaxy size. The magnetic "eld of a relatively young
spiral galaxy at z"0.395 was determined by RMs of the radio emission of the quasar PKS
1229-021 lying behind the galaxy at z"1.038. The magnetic "eld amplitude was "rmly estimated
to be in the range 1}4 �G. Even more interesting was the observation of "eld reversals with distance
roughly equal to the spiral arm separation, in a way quite similar to that observed in the Milky Way.
Intergalactic magnetic xelds. The radio emission of distant quasars is also used to constrain the

intensity of magnetic "elds in the IGM which we may suppose to pervade the entire Universe. As
we discussed, to translate RMs into an estimation of the "eld strength is quite di$cult for rare"ed
media in which ionized gas density and "eld coherence length are poorly known. Nevertheless,
some interesting limits can be derived on the basis of well-known estimates of the Universe's
ionization fraction and adopting some reasonable values of the magnetic coherence length. For
example, assuming a cosmologically aligned magnetic "eld, as well as �"1, �"0, and h"0.75,
the RMs of distant quasar imply B

�
�
�10���G [1]. A "eld which is aligned on cosmological

scales is, however, unlikely. As we have seen in the above, in galaxy clusters the largest reversal
scale is at most 1 Mpc. Adopting this scale as the typical cosmic magnetic "eld coherence length
and applying the RM(z

�
) up to z

�
&2.5, Kronberg found the less stringent limit B

�
�
�10��G for

the magnetic "eld strength at the present time.
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A method to determine the power spectrum of cosmic magnetic "elds from RMs of a large
number of extragalactic sources has been proposed by Kolatt [8]. The result of this kind of analysis
would be of great help to determine the origin and the time evolution of these "elds.

Another interesting idea proposed by Plaga [9] is unfortunately not correct. The idea here is to
look at photons from an instantaneous cosmological source, like a gamma burst or a supernova,
and check for the existence of a delayed component of the signal. This new component would be
due to an original photon creating an electron}positron pair and in turn the charged particle
sending a photon in the original direction by inverse Compton scattering. For sources at cos-
mological distances the delay would be sensitive to a small B "eld, say 10���G that would a!ect
the motion of the charged intermediate particle. Unfortunately, the uncontrollable opening of the
pair will produce a similar delay that cannot be disentangled from the time delay produced by the
magnetic "eld.

1.2. The alternative: dynamo or primordial ?

For a long time the preferred mechanism to explain the aforementioned observations was the
dynamo mechanism [10]. Today, however, new observational and theoretical results seem to point
to a di!erent scenario. Before trying to summarize the present state of the art, a short, though
incomplete, synthesis of what is a dynamo mechanism may be useful to some of our readers. More
complete treatments of this subject can be found e.g. in Refs. [1,11}14].

A dynamo is a mechanism responsible for the conversion of kinetic energy of an electrically
conducting #uid into magnetic energy. It takes place when in the time evolution equation of the
magnetic "eld (see e.g. Ref. [15])

RB
Rt "e�(*�B)#

1
4��

��B , (1.5)

where � is the electric conductivity, the "rst term on the RHS of Eq. (1.5) (frozen-in term) dominates
the second one which accounts for magnetic di!usion. As we will see in Section 1.4 this statement
can be reformulated in terms of the magnetic Reynolds number which has to be much larger than
unity. As it is clear from Eq. (1.5), a nonvanishing seed "eld is needed to initiate the dynamo
process. Three other key ingredients are generally required. They are hydrodynamic turbulence,
di!erential rotation and fast reconnection of magnetic lines. In the frozen-in limit magnetic lines
are distorted and stretched by turbulent motion. It can be shown [13] that in the same limit the
ratio B/� of the magnetic "eld strength with the #uid density behaves like the distance between two
#uid elements. As a consequence, a stretching of the "eld lines results in an increase of B. However,
this e!ect alone would not be su$cient to explain the exponential ampli"cation of the "eld
generally predicted by the dynamo advocates. In fact, turbulence and global rotation of the #uid
(e.g. by Coriolis force) may produce twisting of closed #ux tubes and put both parts of the twisted
loop together, restoring the initial single-loop con"guration but with a double #ux (see Fig. 2 in
Ref. [12]). The process can be iterated leading to a 2�-ampli"cation of the magnetic "eld after the
nth cycle. The merging of magnetic loops, which produce a change in the topology (quanti"ed by
the so-called magnetic helicity, see Section 1.4) of the magnetic "eld lines, requires a "nite, though
small, resistivity of the medium. This process occurs in regions of small extension where the "eld
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�Readers with some experience in "eld theory may recognize that by producing parallel electric and magnetic "elds the
� term is responsible for a sort of macroscopic CP violation.

is more tangled and the di!usion time is smaller (see Section 1.4). As a consequence, the entire
magnetic con"guration evolves from a small-scale tangled structure towards a mean ordered one.

The most common approach to magnetic dynamo is the so-called mean "eld dynamo. It is based
on the assumption that #uctuations in the magnetic and velocity "elds are much smaller than the
mean slowly varying components of the corresponding quantities. Clearly, mean "eld dynamo is
suitable to explore the ampli"cation of large-scale magnetic structures starting from small-scale
seed "elds in the presence of a turbulent #uid. The temporal evolution of the mean component of
the magnetic "eld is obtained by a suitable averaging of Eq. (1.5) (below, mean quantities are
labelled by a 0 and random quantities by a 1)

RB
�
Rt "e�(�B

�
#*

�
�B

�
)!e�[(�#	) e�B

�
] , (1.6)

where

�"!�
�


�
�*
�

) e�*
�
� 	"�

�


�
�*�
�
� , (1.7)

�"1/4�� is the magnetic di!usivity, and 

�

is the correlation time for the ensemble of random
velocities. The coe$cient � is proportional to the helicity h"�*

�
) e�*

�
� of the #ow; h measures

the degree to which streamlines are twisted. A macroscopic parity violation is required to have
�JhO0. One of the possible sources of this violation can be the Coriolis force produced by the
rotation of the galaxy [11]. The term e�(	e�B

�
) describes the additional "eld dissipation due to

turbulent motion. Turbulence plays another crucial role in the generation of a toroidal component
of the large-scale magnetic "elds which is essential for the stability of the entire "eld con"guration
[13]. Indeed the helicity, through the �-term, is responsible for the generation of an electric "eld
parallel to B

�
.� This "eld provides a mode for conversion of toroidal into poloidal magnetic "eld

components. This is the so-called �-e!ect. To complete the `dynamo cyclea B
�

�B
�

, another
mechanism is required to convert the poloidal component into a toroidal one. This mechanism is
provided by the di!erential rotation of the galactic disk which will wrap up the "eld line producing
a toroidal "eld starting from a poloidal component; this is the 
-e!ect. The combination of the
� and 
 e!ects gives rise to the, so-called, �}
 galactic dynamo. As a result of the coexistence of the
poloidal and toroidal magnetic components, one of the main predictions of the of �}
 dynamo is
the generation of an axially symmetric mean "eld.

In the case where the 	 term can be neglected, the solution of the mean "eld dynamo equation
(1.6) can be written in the form [10]

B
�
"($sin kz, cos kz, 0) e�� , (1.8)

where z is the coordinate along the galaxy rotation axis, and �"!�k�$�k, k&1/¸ being the
wavenumber. The "eld grows exponentially with time for non-zero helicity and if the scale ¸ is
su$ciently large. A general prediction of a dynamo mechanism is that ampli"cation ends when
equipartition is reached between the kinetic energy density of the small-scale turbulent #uid
motion and the magnetic energy density. This corresponds to a magnetic "eld strength in the range
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of 2}8 �G. Depending on the details of the model and of the local properties of the medium, the
time required to reach saturation, starting from a seed magnetic "eld with intensity as low as
10���G, may be 10�}10� years. It should be noted that such an estimation holds under the
assumption that the Universe is dominated by CDM with no cosmological constant. If, however, as
recent observations of distant type-IA supernovae [16] and CMB anisotropy measurements [17]
suggest, the Universe possesses a sizeable cosmological constant, the available time for the dynamo
ampli"cation increases and a smaller initial seed "eld may be required. This point has been recently
raised by Davis et al. [18] who showed that the required seed "eld might be as low as 10���G.

In the last decade the e!ectiveness of the mean "eld dynamo has been questioned by several
experts of the "eld (for a recent review see Ref. [14]). One of the main arguments raised by these
authors against this kind of dynamo is that it neglects the strong ampli"cation of small-scale
magnetic "elds which reach equipartition, stopping the process, before a coherent "eld may
develop on galactic scales.

The main, though not the unique, alternative to the galactic dynamo is to assume that the
galactic "eld results directly from a primordial "eld which gets adiabatically compressed when
the protogalactic cloud collapses. Indeed, due to the large conductivity of the intergalactic medium
(see Section 1.4), magnetic #ux is conserved in the intergalactic medium which implies that the
magnetic "eld has to increase like the square of the size of the system l. It follows that

B
��	���

"B

���

�
����	�
�

��
�
���

. (1.9)

Since the present-time ratio between the interstellar medium density in the galaxies and the density
of the IGM is �

�
�
/�


��
K10��, and B


��
&10��G, we see that the required strength of the cosmic

magnetic "eld at the galaxy formation time (z&5), adiabatically rescaled to the present time, is

B
��	���

K10���G . (1.10)

This value is compatible with the observational limit on the "eld in the IGM derived by RMs, with
the big-bang nucleosynthesis constraints (see Section 3), and may produce observable e!ects on the
anisotropies of the cosmic microwave background radiation (see Section 2). Concerning the spatial
structure of the galactic "eld produced by this mechanism, di!erential rotation should wrap the
"eld into a symmetric spiral with "eld reversal along the galactic disk diameter and no reversal
across the galactic plane [2].

To decide between the dynamo and the primordial options astrophysicists have at their disposal
three kinds of information. They are:

� the observations of intensity and spatial distribution of the galactic magnetic "elds;
� the observations of intensity and spatial distribution of the intergalactic magnetic "elds;
� the observations of magnetic "elds in objects at high redshift.

Observations of the magnetic "eld intensity in some galaxies, including the Milky Way, show
evidence of approximate equipartition between turbulent motion and magnetic energies, which is
in agreement with the prediction of linear dynamo. There are, however, some exceptions, like the
M82 galaxy and the Magellanic Clouds, where the "eld strength exceeds the equipartition "eld. An
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important test concerns the parity properties of the "eld with respect to the rotations by � about
the galactic center. As we have discussed above, the primordial theory predicts odd parity and the
presence of reversals with radius (a symmetric spiral "eld), whereas most dynamo models predict
even parity (axially symmetric spiral) with no reversal. Although most galaxies exhibit no recogniz-
able large-scale pattern, reversals are observed between the arms in the Milky Way, M81 and the
high redshift galaxy discussed in the previous section, though not in M31 and IC342. Given the low
statistical signi"cance of the sample any conclusions are, at the moment, quite premature [2].

As we reported in the previous section only upper limits are available for the intensity of
magnetic "elds in the intergalactic medium. Much richer is the information that astrophysicists
collected in the recent years about the magnetic "elds in the inter-cluster medium (ICM). As we
have seen, magnetic "elds of the order of 1}10 �G seem to be a common feature of galaxy clusters.
The strength of these "elds is comparable to that of galactic "elds. This occurs in spite of the lower
matter density of the ICM with respect to the density of interstellar medium in the galaxies. It
seems quite di$cult to explain the origin of the inter-cluster magnetic "elds by simple ejection of
the galactic "elds. Some kind of dynamo process produced by the turbulent wakes behind galaxies
moving in the ICM has been proposed by some authors but criticized by some others (for a review
see Ref. [1]). This problem has become even more critical in the light of recent high-precision
Faraday RMs which showed evidence of magnetic "elds with strength exceeding 10 �G in the
cluster central regions. According to Kronberg [1], the observed independence of the "eld strength
from the local matter density seems to suggest that galactic systems have evolved in a magnetic
environment where B�1 �G. This hypothesis seems to be corroborated by the measurements of
the Faraday rotations produced by high redshift protogalactic clouds. As mentioned in the
previous section, such measurements show evidence for magnetic "elds of the order of 1 �G in
clouds with redshift larger than 1. Since at that time galaxies should have rotated few times, these
observations pose a challenge to the galactic dynamo advocates. We should keep in mind, however,
that galaxy formation in the presence of magnetic "elds with strength �10��G may be problem-
atic due to the magnetic pressure which inhibits the collapse [19].

It is worthwhile to observe that primordial (or pre-galactic) magnetic "elds are not necessarily
produced in the early Universe, i.e. before recombination time. Several alternative astrophysical
mechanisms have been proposed like the generation of the "elds by a Biermann battery e!ect [20]
(see also Ref. [1]). It has been suggested that the Biermann battery may produce seed "elds which
are successively ampli"ed on galactic scale by a dynamo powered by the turbulence in the
protogalactic cloud [14,21]. This mechanism, however, can hardly account for the magnetic "elds
observed in the galaxy clusters. Therefore, such a scenario would lead us to face an unnatural
situation where two di!erent mechanisms are invoked for the generation of magnetic "elds in
galaxies and clusters, which have quite similar characteristics and presumably merge continuously
at the border of the galactic halos.

Another possibility is that magnetic "elds may have been generated by batteries powered by
starbursts or jet-lobe radio sources (AGNs). In a scenario recently proposed by Colgate and Li [22]
strong cluster magnetic "elds are produced by a dynamo operating in the accretion disk of massive
black holes powering AGNs. We note, however, that the dynamics of the process leading to the
formation of massive black holes is still unclear and that preexisting magnetic "elds may be
required to carry away the huge angular moment of the in-falling matter (see e.g. Ref. [19]). For the
same reason, preexisting magnetic "elds may also be required to trigger starbursts (see the end of
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the next section). This suggests that seed "elds produced before recombination time may anyway be
required.

In conclusion, although the data available today do not allow to answer yet the question raised
in this section, it seems that recent observations and improved theoretical work are putting in
question the old wisdom in favor of a dynamo origin of galactic magnetic "elds. Especially, the
recent observations of strong magnetic "elds in galaxy clusters suggest that the origin of these "elds
may indeed be primordial.

Furthermore, magnetic "elds with strength as large as that required for the primordial origin of
the galactic "elds through gravitational compression of the magnetized #uid, should give rise to
interesting, and perhaps necessary, e!ects for structure formation. This will be the subject of the
next section.

1.3. Magnetic xelds and structure formation

The idea that cosmic magnetic "elds may have played some role in the formation of galaxies is
not new. Some early work has been done on this subject, e.g. by Peblees [23], Rees and Rheinhardt
[24] and especially by Wasserman [25]. A considerable number of recent papers testify to the
growing interest around this issue. A detailed review of this particular aspect of cosmology is,
however, beyond the purposes of this report. We only summarize here few main points with the
hope of convincing the reader of the relevance of this subject.

Large-scale magnetic "elds modify standard equations of linear density perturbations in a gas of
charged particles by adding the e!ect of the Lorentz force. In the presence of the "eld the set of
Euler, continuity and Poisson equations become, respectively, [25]
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(t)) . (1.13)

Here a is the scale factor and the other symbols are obvious. This set of equations is completed by
the Faraday equation

R(a�B)
Rt "

e�(*�a�B)
a

(1.14)

and

e ) B"0 . (1.15)

The term due to the Lorentz force is clearly visible on the right-hand side of the Euler equation. It is
clear that, due to this term, an inhomogeneous magnetic "eld becomes itself a source of density,
velocity and gravitational perturbations in the electrically conducting #uid. It has been estimated
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[25] that the magnetic "eld needed to produce a density contrast �&1, as required to induce
structure formation on a scale l, is

B
�

(l )&10���
l

1 Mpc�h�� G . (1.16)

In his recent book, Peebles [26] pointed out a signi"cant coincidence: the primordial magnetic "eld
required to explain galactic "elds without invoking dynamo ampli"cation (see Eq. (1.10)) would
also play a relevant dynamical role in the galaxy formation process.

The reader may wonder if such a dynamical role of magnetic "elds is really required. To assume
that magnetic "elds were the dominant dynamical factor at the time of galaxy formation and that
they were the main source of initial density perturbations is perhaps too extreme and probably
incompatible with recent measurements of the CMBR anisotropies. A more reasonable possibility
is that magnetic "elds are an important missing ingredient in the current theories on large-scale
structure formation (for a recent review on this subject see Ref. [27]). It has been argued by Coles
[28] that an inhomogeneous magnetic "eld could modulate galaxy formation in the cold dark
matter picture (CDM) by giving the baryons a streaming velocity relative to the dark matter. In this
way, in some places the baryons may be prevented from falling into the potential wells and the
formation of luminous galaxies on small scales may be inhibited. Such an e!ect could help to
reconcile the well-known discrepancy of the CDM model with clustering observations without
invoking more exotic scenarios.

Such a scenario received some support from a paper by Kim et al. [29] which extended
Wasserman's [25] pioneering work. Kim et al. determined the power spectrum of density perturba-
tion due to a primordial inhomogeneous magnetic "eld. They showed that a present-time rms
magnetic "eld of 10���G may have produced perturbations on galactic scale which should have
entered the non-linear growth stage at z&6, which is compatible with observations. Although
Kim et al. showed that magnetic "elds alone cannot be responsible for the observed galaxy power
spectrum on large scales, according to the authors it seems quite plausible that in a CDM scenario
magnetic "elds played a not minor role by introducing a bias for the formation of galaxy-sized
objects.

A systematic study of the e!ects of magnetic "elds on structure formation was recently
undertaken by Battaner et al. [30], Florido and Battaner [31], and Battaner et al. [32]. Their
results show that primordial magnetic "elds with strength B

�
�10�� in the pre-recombination era

are able to produce signi"cant anisotropic density inhomogeneities in the baryon}photon plasma
and in the metric. In particular, Battaner et al. showed that magnetic "elds tend to organize
themselves and the ambient plasma into "lamentary structures. This prediction seems to be
con"rmed by recent observations of magnetic "elds in galaxy clusters [6]. Battaner et al. suggest
that such a behavior may be common to the entire Universe and be responsible for the very regular
spider-like structure observed in the local supercluster [33] as for the "laments frequently observed
in the large-scale structure of the Universe [27]. Araujo and Opher [34] have considered the
formation of voids by the magnetic pressure.

An interesting hypothesis has been recently raised by Totani [35]. He suggested that spheroidal
galaxy formation occurs as a consequence of starbursts triggered by strong magnetic "elds.
Totani's argument is based on two main observational facts. The "rst is that magnetic "eld
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strengths observed in spiral galaxies sharply concentrate at few microgauss (see Section 1.1), quite
independent of the galaxy luminosity and morphology. The second point on which Totani based
his argument, is that star formation activity has been observed to be correlated to the strength of
local magnetic "eld [36]. A clear example is given by the spiral galaxy M82, which has an
abnormally large magnetic "eld of &10 �G and is known as an archetypal starburst galaxy. Such
a correlation is theoretically motivated by the so-called magnetic braking [19]: in order for
a protostellar gas cloud to collapse into a star a signi"cant amount of angular moment must be
transported outwards. Magnetic "elds provide a way to ful"ll this requirement by allowing the
presence of AlfveH n waves (see Section 2.2) which carry away the excess of angular moment. Whereas
it is generally agreed that galaxy bulges and elliptical galaxies have formed by intense starburst
activity at high redshift, the trigger mechanism leading to this phenomenon is poorly known.
According to Totani, starbursts, hence massive galaxy formation, take place only where the
magnetic "eld is stronger than a given threshold, which would explain the apparent uniformity in
the magnetic "eld amplitude in most of the observed galaxies. The value of the threshold "eld
depends on the generation mechanism of the galactic magnetic "eld. Totani assumed that a seed
"eld may have been produced by a battery mechanism followed by a dynamo ampli"cation period.
Such an assumption, however, seems unnecessary and a primordial "eld may very well have
produced the same "nal e!ect.

1.4. The evolution of primordial magnetic xelds

A crucial issue for the investigation of a possible primordial origin of present-time galactic and
intergalactic magnetic "elds is that concerning the time evolution of the magnetic "elds in the
cosmic medium. Three conditions are needed for the persistence of large static "elds:

(a) intrinsic stability of the "eld;
(b) the absence of free charges which could screen the "eld;
(c) to have a small di!usion time of the "eld with respect to the age of the Universe.

Condition (a) does not hold for strong electric "elds. It is a "rm prediction of QED that an electric
"eld decays by converting its energy in electron}positron pairs if e�E�5m�

�
[37,38]. This, however,

is a purely electric phenomenon. Although, at the end of the 1960s, there was a claim that strong
magnetic "elds may decay through a similar phenomenon [39] the argument was proved to be
incorrect. Only very strong "elds may produce nontrivial instabilities in the QCD (if B'10��G)
and the electroweak vacuum (if B'10��G) which may give rise to a partial screening of the "eld.
These e!ects (see Section 5) may have some relevance for processes which occurred at very early
times and, perhaps, for the physics of very peculiar collapsed objects like magnetars [40]. They are,
however, irrelevant for the evolution of cosmic magnetic "elds after BBN time. The same
conclusion holds for "nite temperature and densities e!ects which may induce screening of static
magnetic "elds (see e.g. Ref. [41]).

Condition (b) is probably trivially ful"lled for magnetic "elds due to the apparent absence of
magnetic monopoles in nature. It is interesting to observe that even a small abundance of magnetic
monopoles at the present time would have dramatic consequences for the survival of galactic and
intergalactic magnetic "elds which would lose energy by accelerating the monopoles. This argu-
ment was "rst used by Parker [42] to put a severe constraint on the present-time monopole #ux,
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� In the case where the average collision time of the charge carrier is larger than the Universe age 

�

, the latter has to be
used in place of 
 in Eq. (1.19) [45].

which is F
�
�10��� cm�� s�� sr��. It was recently proposed by Kephart and Weiler [43] that

magnetic monopoles accelerated by galactic magnetic "elds could give rise to the highest energy
cosmic rays (E�10�� eV) and explain the violation of the famous Greisen}Zatsepin}Kuzmin
cut-o! [44].

Also, condition (c) does not represent a too serious problem for the survival of primordial
magnetic "elds. The time evolution law of a magnetic "eld in a conducting medium has already
been written in Eq. (1.5).

Neglecting #uid velocity this equation reduces to the di!usion equation which implies that an
initial magnetic con"guration will decay away in a time




	��

(¸)"4��¸� , (1.17)

where ¸ is the characteristic length scale of the spatial variation of B. In a cosmological framework,
this means that a magnetic con"guration with coherence length ¸

�
will survive until the present

time t
�

(t"0 corresponds to the big-bang time) only if 
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corresponds to the present time length scale determined by the Hubble law
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where a(t) is the Universe scale factor and ¸(t
�
) is the length scale at the time at which the magnetic

con"guration was formed. Note that ¸
�

may not coincide with the actual size of the magnetic
con"guration since other e!ects (see below) may come in to change the comoving coherence length.
As we see from Eq. (1.17) the relevant quantity controlling the decay time of a magnetic
con"guration is the electric conductivity of the medium. This quantity changes in time depending
on the varying population of the available charge carriers and on their kinetics energies. However,
since most of the Universe evolution takes place in a matter-dominated regime, during which all
charge carriers are non-relativistic, our estimate of the magnetic di!usion length is simpler. In
general, electric conductivity can be determined by comparing Ohm's law J"�E with the electric
current density de"nition J"ne*, where for simplicity we considered a single charge carrier type
with charge e, number density n and velocity *. The mean drift velocity in the presence of the
electric "eld E is *&eE
/m where m is the charge carrier mass and 
 is the average time between
particle collisions. Therefore the general expression for the electron conductivity is�

�"

ne�

m

. (1.19)

After recombination of electron and ions into stable atoms the Universe conductivity is dominated
by the residual free electrons. Their relative abundance is roughly determined by the value that this
quantity took at the time when the rate of the reaction p#e�H#� became smaller than the
Universe expansion rate. In agreement with the results reported in Ref. [46], we use

n
�
(z)K3�10��� cm�� �

�
h (1#z)� , (1.20)
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� In Section 2.1 we shall discuss under which hypothesis such an assumption is consistent with the presence of a cosmic
magnetic "eld.

where �
�

is the present-time density parameter and h is the Hubble parameter. Electron resistivity
is dominated by Thomson scattering of cosmic background photons. Therefore 
K1/n��� , where
�
�
"e�/6�m�

�
is the Thomson cross section, and n�"4.2�10�(1#z)�. Substituting these expres-

sions in Eq. (1.19) we get

�"

ne�
m

�
n���

K10���
�
h s�� . (1.21)

It is noticeable that after recombination time the Universe conductivity is a constant. Finally, the
cosmic di!usion length, i.e. the minimal size of a magnetic con"guration which can survive
di!usion during the Universe lifetime t

�
, is found by substituting t

�
"2�(�

�
h�)���� s�� into

Eq. (1.17) which, adopting �
�
"1 and h"0.6, gives

¸

	��

K2�10�� cmK1 A.U . (1.22)

It follows from this result that magnetic di!usion is negligible on galactic and cosmological scales.
The high conductivity of the cosmic medium has other relevant consequences for the evolution

of magnetic "elds. Indeed, as we already mentioned in the Introduction, the magnetic #ux through
any loop moving with #uid is a conserved quantity in the limit �PR. More precisely, it follows
from the di!usion equation (1.5) and few vector algebra operations (see Ref. [15]) that

d�
�

(B)
dt

"!

1
4���

�

e�(e�B) ) dS , (1.23)

where S is any surface delimited by the loop. On a scale where di!usion can be neglected the "eld is
said to be frozen-in, in the sense that lines of force move together with the #uid. Assuming that
the Universe expands isotropically,� and no other e!ects come in, magnetic #ux conservation
implies that

B(t)"B(t
�
)�
a(t

�
)

a(t) �
�

. (1.24)

This will be one of the most relevant equations in our review. It should be noted by the reader that
B(t) represents the local strength of the magnetic "eld obtained by disregarding any e!ect that may
be produced by spatial variations in its intensity and direction. Eq. (1.24) is only slightly modi"ed in
the case where the uniform magnetic "eld produces a signi"cative anisotropic component in the
Universe expansion (see Section 2.1).

Another quantity which is almost conserved due to the high conductivity of the cosmic medium
is the, so-called, magnetic helicity, de"ned by

H,�
�

d�xB ) A, (1.25)
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where A is the vector potential. Helicity is closely analogous to vorticity in #uid dynamics. In a "eld
theory language, H can be identi"ed with the Chern}Simon number which is known to be related
to the topological properties of the "eld. Indeed, it is known from Magnetohydrodynamics (MHD)
that H is proportional to the sum of the number of links and twists of the magnetic "eld lines [47].
As it follows from Eq. (1.5), the time evolution of the magnetic helicity is determined by

dH
dt

"!

1
4���

�

d�xB ) (e�B) . (1.26)

As we shall show in Section 4, several models proposed to explain the origin of primordial magnetic
"elds predict these "elds to have some relevant amount of helicity.

In the previous section we have already mentioned the important role played by magnetic
helicity in some MHD dynamo mechanisms driving an instability of small-scale magnetic "elds
into large-scale "elds. A similar e!ect may take place at a cosmological level leading to signi"cative
corrections to the simple scaling laws expressed by Eqs. (1.18), (1.24). Generally, these kinds of
MHD e!ects occur in the presence of some, turbulent motion of the conductive medium (note that
Eqs. (1.18), (1.24) have been derived under the assumption of vanishing velocity of the #uid v"0).
Hydrodynamic turbulence is generally parameterized in terms of the Reynolds number, de"ned by

Re"
v¸
�

, (1.27)

where � is the kinematic viscosity. Fluid motion is said to be turbulent if Re<1. In the presence of
a magnetic "eld another parameter turns out to be quite useful. This is the magnetic Reynolds
number de"ned by

Re
�

"

v¸
�

, (1.28)

where �"1/4��. When Re
�

<1 transport of the magnetic lines with the #uid dominates over
di!usion. In this case hydrodynamic turbulence in a conducting medium gives rise to magnetic
turbulence. It is often assumed in MHD that a fully developed magnetic turbulence gives rise to
equipartition between the kinetic and the magnetic energy of the #uid. Whether the equipartition
hypothesis is valid or not is a controversial issue.

Both the hydrodynamic and magnetic Reynolds numbers can be very large in the early Universe.
This is a consequence of the high electric conductivity and low viscosity of the medium and,
especially, of the large scales which are involved. The electric conductivity of the early Universe
has been computed by several authors. A "rst simple estimation of � in the radiation-
dominated era was performed by Turner and Widrow [45]. In terms of the resistivity � their
result is �&�/¹. A more exact series of calculations can be found in Ref. [48] which include
logarithmic corrections due to Debye and dynamical screening. As a result, a more correct
expression for � is

�&

�
¹

ln(1/�) . (1.29)
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Other detailed computations of the Universe conductivity close to the QCD and the electroweak
phase transitions are available in Refs. [49]. The kinematic viscosity follows the behavior [50]

�&

1
�¹ ln(1/�)

. (1.30)

In the early Universe �<�, i.e. Re
�

<Re. Concerning the absolute value of these parameters,
using the previous expressions it is easy to verify that for a reasonable choice of the velocity "eld
that may be produced by a phase transition, v�10��, both Re and Re

�
are much larger than unity

by several orders of magnitude, even for very small scales (for more details see Section 4). It seems
that the early Universe was a quite `turbulent childa! Turbulence is expected to cease after e�e�
annihilation since this process reduces the plasma electron population and therefore increases the
photon di!usion length hence also the kinematic viscosity. This should happen at a temperature
around 1 MeV.

Turbulence is expected to produce substantial modi"cation in the scaling laws of cosmological
magnetic "elds. This issue has been considered by several authors. Brandenburg et al. [51] "rst
consider MHD in an expanding Universe in the presence of hydro-magnetic turbulence. MHD
equations were written in a covariant form and solved numerically under some simplifying
assumptions. The magnetic "eld was assumed to be distributed randomly either in two or three
spatial dimensions. In the latter case a cascade (shell) model was used to reduce the number of
degrees of freedom. In both cases a transfer of magnetic energy from small to large magnetic
con"gurations was observed in the simulations. In hydrodynamics this phenomenon is known as
an inverse cascade. Cascade processes are known to be related to certain conservation properties
that the basic equations obey [52]. In the two-dimensional inverse cascade, the relevant conserved
quantity is the volume integral of the vector potential squared, �d�xA�, whereas in the three-
dimensional cases it is the magnetic helicity. It was recently shown by Son [50] that no inverse
cascade can develop in 3d if the mean value of H vanishes. If this is the case, i.e. in the presence of
non-helical MHD turbulence, there is still an anomalous growth of the magnetic correlation length
with respect to the scaling given in Eq. (1.18) but this is just an e!ect of a selective decay mechanism:
modes with larger wavenumbers decay faster than those whose wavenumbers are smaller. Assum-
ing that the Universe expansion is negligible with respect to the decay time, which is given by the
eddy turnover time 
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, and the decay of the large wavenumber modes does not a!ect those

with smaller wavenumbers, Son found that the correlation length scales with time as
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is the eddy turnover time at t"0. Assuming equipartition of the kinetic and

magnetic energies, that is v
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Universe expansion becomes not negligible, i.e. when t't
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In the above, the "rst factor comes from the growth of the correlation length in the time interval
0(t(t

�
when eddy decay is faster than the Universe expansion; the second factor comes from the

growth of ¸ in the t't
�

period; the last factor comes from trivial redshift due to the expansion of
the Universe. ¹

��
is the temperature of the Universe when the #uid becomes non-turbulent. As we

discussed, ¹
��

&1 MeV. If, for example, we assume that turbulence was produced at the elec-
troweak phase transition, so that ¹

�
"¹

��
&100 GeV, v

�
&0.1 and ¸

�
&10��r



(¹

��
)&

10�� cm, one "nds ¸
�
&100 AU. This result has to be compared with the scale one would have if

the only mechanism of dissipation of magnetic energy is resistive di!usion which, as we got in
Eq. (1.22) is &1 AU.

A larger coherence length can be obtained by accounting for the magnetic helicity which is
probably produced during a primordial phase transition. The conservation of H has an important
consequence for the evolution of the magnetic "eld. When H is non-vanishing, the short-scale
modes are not simply washed out during the decay: their magnetic helicity must be transferred to
the long-scale ones. Along with the magnetic helicity, some magnetic energy is also saved from
turbulent decay. In other words, an inverse cascade is taking place. Assuming maximal helicity, i.e.
that B ) (e�B)&¸B�, the conservation of this quantity during the decay of turbulence implies the
scaling law

B
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.

This corresponds to `line averaginga, which gives a much larger amplitude of the magnetic "eld
than the usual `volume averaginga. Equipartition between magnetic and kinetic energy implies
that
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This relation together with the expression for the eddy decay time, 
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, leads to the following

scaling law for the correlation length of helical magnetic structures

¸&¸
��

t
t
�
�
���

. (1.33)

Comparing this result with Eq. (1.31), we see that in the helical case the correlation length grows
faster than it does in the turbulent non-helical case. The complete expression for the scaling of ¸ is
"nally obtained by including trivial redshift into Eq. (1.33). Since in the radiation-dominated era
¹��&a&t���, we have [50]
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According to Son [50], helical hydromagnetic turbulence survives longer than non-helical turbu-
lence allowing ¹

��
to be as low as 100 eV. If again we assume that helical magnetic turbulence is

generated at the electroweak phase transition (which will be justi"ed in Section 4) we "nd

¸
�
&¸
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¹
��

¹
��
�
���

�
¹

��
¹
�
�&100 pc , (1.36)

which is much larger than the result obtained in the non-helical case. It is worthwhile to observe
that, as the scale derived in the previous expression is also considerably larger than the cosmologi-
cal magnetic di!usion length scale given in Eq. (1.22), magnetic "eld produced by the EW phase
transition may indeed survive until the present.

2. E4ects on the cosmic microwave background

2.1. The ewect of a homogeneous magnetic xeld

It is well known from general relativity that electromagnetic "elds can a!ect the geometry of the
Universe. The energy momentum tensor

¹��
��

"

1
4��!F��F��#

1
4
g��F��F��� , (2.1)

where F�� is the electromagnetic "eld tensor, acts as a source term in the Einstein equations. In the
case of a homogeneous magnetic "eld directed along the z-axis

¹��"¹��"¹��"!¹��"�
�
"

B�
8�

, ¹��"0 . (2.2)

Clearly, the energy-momentum tensor becomes anisotropic due to the presence of the magnetic
"eld. There is a positive pressure term along the x- and y-axis but a `negative pressurea along the
"eld direction. It is known that an isotropic positive pressure increases the deceleration of the
universe expansion while a negative pressure tends to produce an acceleration. As a consequence,
an anisotropic pressure must give rise to an anisotropy expansion law [53].

Cosmological models with a homogeneous magnetic "eld have been considered by several
authors (see e.g. [54]). To discuss such models it is beyond the purposes of this review. Rather, we
are more interested here in the possible signature that the peculiar properties of the space}time in
the presence of a cosmic magnetic "eld may leave on the cosmic microwave background radiation
(CMBR).

Following Zeldovich and Novikov [53] we shall consider the most general axially symmetric
model with the metric

ds�"dt�!a�(t)(dx�#dy�)!b�(t) dz� . (2.3)

It is convenient to de"ne �"a� /a; 	"bQ /b; and

r,
�
�

�
��


, �,�!	 . (2.4)
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Then, assuming r, �(1, the Einstein equations are well approximated by

d
dt�

�
H�"!�

�
H�

�!2
�t

#

4r
�t

, (2.5)

dr
dt

"!

2r
9�t�4

�
H

#9�!12� , (2.6)

where H"(2�#	) and � are de"ned by the equation of state p"(�!1)�. It is easy to infer from
the "rst of the previous equations that the magnetic "eld acts so as to conserve the anisotropy that
would otherwise decay with time in the case r"0. By substituting the asymptotic value of the
anisotropy, i.e. �P6r, into the evolution equation for r in the RD era one "nds

r(t)"
q

1#4q ln(t/t
�

)
, (2.7)

where q is a constant. Therefore, in the case where the cosmic magnetic "eld is homogeneous, the
ratio of the magnetic and blackbody radiation densities is not a constant, but decreases logarithmi-
cally during the radiation era.

In order to determine the temperature anisotropy of the CMBR we assume that at the
recombination time t

���
the temperature is everywhere ¹

���
. Then, at the present time, t

�
, the

temperature of relic photons coming from the x (or y) and z directions will be, respectively,

¹
��


"¹
���

a
a
�

"¹
���

exp�!�
��

����

� dt�, ¹
�
"¹

���

b
b
�

"¹
���

exp�!�
��

����

	 dt� . (2.8)

Consequently, the expected temperature anisotropy is

�¹

¹

"

¹
�
!¹

�
¹

���

"1!exp� �
��

����

(�!	) dt�
+�

��

����

(	!�) dt"!

1
2�

��

����

� dln t . (2.9)

By using this expression, Zeldovich and Novikov estimated that a cosmological magnetic "eld
having today the strength of 10��}10���Gauss would produce a temperature anisotropy
�¹/¹�10��.

The previous analysis has been recently updated by Barrow et al. [55]. In that work the authors
derived an upper limit on the strength of a homogeneous magnetic "eld at the recombination time
on the basis of the 4-year Cosmic Background Explorer (COBE) microwave background isotropy
measurements [56]. As it is well known, COBE detected quadrupole anisotropies at a level
�¹/¹&10�� at an angular scale of few degrees. By performing a suitable statistical average of the
data and assuming that the "eld remains frozen-in since the recombination till today, Barrow et al.
obtained the limit

B(t
�

)(3.5�10��f ���(�
�
h�
��

)���G . (2.10)

In the above f is an O(1) shape factor accounting for possible non-Gaussian characteristics of the
COBE data set.
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�Similar equations were derived by Wasserman [25] to study the possible e!ect of primordial magnetic "elds on
galaxy formation.

From these results we see that COBE data are not incompatible with a primordial origin of the
galactic magnetic "eld even without invoking a dynamo ampli"cation.

2.2. The ewect on the acoustic peaks

We will now focus our attention on possible e!ects of primordial magnetic "elds on small
angular scales. That is, temperature, as well as polarization, anisotropies of the CMBR. By small
angular scale ((13) we mean angles which correspond to a distance smaller than the Hubble
horizon radius at the last scattering surface. Therefore, what we are concerned about here are
anisotropies that are produced by causal physical mechanisms which are not related to the
large-scale structure of the space}time.

Primordial density #uctuations, which are necessary to explain the observed structures in the
Universe, give rise to acoustic oscillations of the primordial plasma when they enter the horizon
some time before the last scattering. The oscillations distort the primordial spectrum of aniso-
tropies by the following primary e!ects [5]: (a) they produce temperature #uctuations in the
plasma, (b) they induce a velocity Doppler shift of photons, (c) they give rise to a gravitational
Doppler shift of photons when they climb out of or fall into the gravitational potential well
produced by the density #uctuations (Sachs}Wolfe e!ect).

In the linear regime, acoustic plasma oscillations are well described by standard #uid-dynamics
(continuity#Euler equations) and Newtonian gravity (Poisson's equation). In the presence of
a magnetic "eld the nature of plasma oscillations can be radically modi"ed as magneto-hydro-
dynamics (MHD) has to be taken into account.

To be pedagogical, we will "rst consider a single-component plasma and neglect any dissipative
e!ect, due for example to a "nite viscosity and heat conductivity. We will also assume that the
magnetic "eld is homogeneous on scales larger than the plasma oscillations wavelength. This
choice allows us to treat the background magnetic "eld B

�
as a uniform "eld in our equations (in

the following symbols with the 0 subscript stand for background quantities whereas the subscript
1 is used for perturbations). Within these assumptions the linearized equations of MHD in
comoving coordinates are [58]�

�Q #
e ) *

�
a

"0 , (2.11)

where a is the scale factor,
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and

e ) BK
�
"0 , (2.15)

where BK ,Ba� and �"�
�

/�
�

, �
�

and v
�

are small perturbations on the background density,
gravitational potential and velocity, respectively. c

�
is the sound velocity. Neglecting its direct

gravitational in#uence, the magnetic "eld couples to #uid dynamics only through the last two
terms in Eq. (2.12). The "rst of these terms is due to the displacement current contribution to e�B,
whereas the latter accounts for the magnetic force of the current density. The displacement current
term can be neglected provided that

v
�

,

B
�

	4�(�#p)
;c

�
, (2.16)

where v
�

is the so-called AlfveH n velocity.
Let us now discuss the basic properties of the solutions of these equations, ignoring for the

moment the expansion of the Universe. In the absence of the magnetic "eld there are only ordinary
sound waves involving density #uctuations and longitudinal velocity #uctuations (i.e. along the
wave vector). By breaking the rotational invariance, the presence of a magnetic "eld allows new
kinds of solutions that we list below (useful references on this subject are [59,60]).

1. Fast magnetosonic waves. In the limit of small magnetic "elds these waves become the ordinary
sound waves. Their velocity, c

�
, is given by

c�
�

&c�
�
#v�

�
sin� � , (2.17)

where � is the angle between k and B
�

. Fast magnetosonic waves involve #uctuations in the
velocity, density, magnetic "eld and gravitational "eld. The velocity and density #uctuations are
out-of-phase by �/2. Eq. (2.17) is valid for v

�
;c

�
. For such "elds the wave is approximatively

longitudinal.
2. Slow magnetosonic waves. Like the fast waves, the slow waves involve both density and velocity
#uctuations. The velocity is, however, #uctuating both longitudinally and transversely even for
small "elds. The velocity of the slow waves is approximatively

c�
�

&v�
�

cos� � . (2.18)

3. Alfve&n waves. For this kind of waves B
�

and *
�

lie in a plane perpendicular to the plane through
k and B

�
. In contrast to the magnetosonic waves, the AlfveH n waves are purely rotational, thus

they involve no density #uctuations. AlfveH n waves are linearly polarized. Their velocity of
propagation is

c�
�

"v�
�

cos� � . (2.19)

Detailed treatments of the evolution of MHD modes in the matter- and radiation-dominated eras
of the Universe can be found in Refs. [61,62].

The possible e!ects of MHD waves on the temperature anisotropies of the CMBR have been "rst
investigated by Adams et al. [58]. In the simplest case of magnetosonic waves, they found that the
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linearized equations of #uctuations in the Fourier space are

�Q
�
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�
!3�Q "0 , (2.20)
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for the baryon component of the plasma and

�Q �#�
�
<�!4�Q "0 (2.22)
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��!�� )!k��!an

�
�
�
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�
!<�)"0 , (2.23)

for the photon component. In the above <"ik ) *, R"(p
�
#�

�
)/(p�#�� )"3�

�
/4�� and c

�
is the

baryon sound velocity in the absence of interactions with the photon gas. As it is evident from the
previous equations, the coupling between the baryon and the photons #uids is supplied by
Thomson scattering with cross section �

�
.

In the tight-coupling limit (<
�
&<� ) the photons provide the baryon #uid with a pressure

term and a non-zero sound velocity. The magnetic "eld, through the last term in Eq. (2.21), gives
rise to an additional contribution to the e!ective baryon sound velocity. In the case of longitudinal
waves this amounts to the change

c�
�
Pc�

�
#v�

�
sin� � . (2.24)

In other words, the e!ect of the "eld can be somewhat mimicked by a variation of the baryon
density. A complication arises due to the fact that the velocity of the fast waves depends on the
angle between the wave vector and the magnetic "eld. As we mentioned previously, we are
assuming that the magnetic "eld direction changes on scales larger than the scale of the #uctuation.
Di!erent patches of the sky might therefore show di!erent #uctuation spectra depending on this
angle.

The authors of Ref. [58] performed an all-sky average summing also over the angle between the
"eld and the line-of-sight. The e!ect on the CMBR temperature power spectrum was determined
by a straightforward modi"cation of the CMBFAST [63] numerical code. From Fig. 2.1 the reader
can see the e!ect of a "eld B

�
"2�10��G on the "rst acoustic peak. The amplitude of the peak is

reduced with respect to the free "eld case. This is a consequence of the magnetic pressure which
opposes the in-fall of the photon}baryon #uid in the potential well of the #uctuation. Although this
is not clearly visible from the "gure, the variation of the sound velocity, hence of the sound horizon,
should also produce a displacement of the acoustic peaks. The combination of these two e!ects
may help to disentangle the signature of the magnetic "eld from other cosmological e!ects
(for a comprehensive review see [64]) once more precise observations of the CMBR power
spectrum will be available. Adams et al. derived an estimate of the sensitivity to B which MAP
[66] and PLANCK [67] satellites observations should allow to reach by translating the predicted
sensitivity of these observations to �

�
. They found that a magnetic "eld with present strength

B
�
'5�10��G should be detectable.
It is interesting to observe that a magnetic "eld cannot lower the ratio of the "rst to second

acoustic peak as shown by recent observations [65].

D. Grasso, H.R. Rubinstein / Physics Reports 348 (2001) 163}266 187



Fig. 2.1. The e!ect of a cosmic magnetic "eld on the multipole moments. The solid line shows the prediction of
a standard CDM cosmology (�"1, h"0.5, �

�
"0.05) with an n"1 primordial spectrum of adiabatic #uctuations.

The dashed line shows the e!ect of adding a magnetic "eld equivalent to 2�10��G today. From Ref. [58].

Alfve&n waves may also leave a signature on the CMBR anisotropies. There are at least three main
reasons which make this kind of wave considerably interesting. The "rst is that AlfveH n waves
should leave a quite peculiar imprint on the CMBR power spectrum. In fact, as we discussed in the
above, these waves do not involve #uctuations in the density of the photon}baryon #uid. Rather,
they consist only of oscillations of the #uid velocity and of the magnetic "eld. Indeed, by assuming
that the wavelength is smaller than the Hubble radius and that relativistic e!ects are negligible, the
equations describing AlfveH n waves are [58]

�
�
"��"0 , (2.25)
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�"0 . (2.28)

Since the gravitational Doppler shift (Sachs}Wolfe e!ect) is absent in this case, the cancellation
against the velocity Doppler shift which occurs for the acoustic modes [57] does not take place for
the AlfveH n waves. This could provide a more clear signature of the presence of magnetic "elds at the
last scattering surface [58].

The second reason why AlfveH n waves are so interesting in this contest is that they are vector (or
rotational) perturbations. As a consequence, they are well suited to probe peculiar initial condi-
tions such as those that might be generated from primordial phase transitions. It is remarkable that
whereas vector perturbations are suppressed by Universe expansion and cannot arise from small
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�Collisionless matter, like e.g. gravitons after the Planck era, may, however, support nonzero vorticity even with initial
conditions compatible with an isotropic Universe [68].
�Unlike the authors of Ref. [58], Durrer et al. assumed a homogeneous background magnetic "eld. This, however, is

not a necessary condition for the validity of the present considerations.

deviations from the isotropic Friedmann Universe for tP0 [53], this is not true in the presence of
a cosmic magnetic "eld.�

The third reason for our interest in Alfvèn waves is that for this kind of waves the e!ect of
dissipation is less serious than what it is for sound and fast magnetosonic waves. This issue will be
touched upon in the next section.

A detailed study of the possible e!ects of AlfveH n waves on the CMBR anisotropies has been
independently performed by Subramanian and Barrow [69] and Durrer et al. [70], who reached
similar results. We summarize here the main points of the derivation as given in Ref. [70].

In general, vector perturbations of the metric have the form

(h�� )"�
0 B

�
B

�
H

���
#H

���
� , (2.29)

where B and H are divergence-free, 3d vector "elds supposed to vanish at in"nity. Two gauge-
invariant quantities [71] are conveniently introduced by the authors of Ref. [70]:

�"HQ !B and �"*!B , (2.30)

which represent the vector contribution to the perturbation of the extrinsic curvature and the
vorticity. In the absence of the magnetic "eld, and assuming a perfect #uid equation of state, the
vorticity equation of motion is

�Q #(1!3c�
�

)
a�
a
�"0 . (2.31)

In the radiation-dominated era the solution of this equation is �"const. which clearly does not
describe waves and, as we mentioned, is incompatible with an isotropic Universe when tP0. In the
presence of the magnetic "eld, Durrer et al. found that

�$ "
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�

) k)�
4�(�

�
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�
)
� (2.32)

and
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�
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. (2.33)

These equations describe AlfveH n waves propagating at the velocity v
�

(e ) kK ), where v
�

is the
AlfveH n velocity and e is the unit vector in the direction of the magnetic "eld.� In this case some
amount of initial vorticity is allowed which is connected to the amplitude of the magnetic "eld
perturbation B

�

��
�
�"(v

�
/B
�

)�B
�
� . (2.34)
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The general form of the CMBR temperature anisotropy produced by vector perturbations is

�
�¹
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�����
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��

�
��

�� ) n d� , (2.35)

where V"�!� is a gauge-invariant generalization of the velocity "eld. We see from the previous
equation that besides the Doppler e!ect Alfvèn waves give rise to an integrated Sachs}Wolfe term.
However, since the geometric perturbation � is decaying with time, the integrated term is
dominated by its lower boundary and just cancels � in V. Neglecting a possible dipole contribution
from vector perturbations today, Durrer et al. obtained

�¹

¹
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��
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sin(v
�
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��
(e ) kK )) . (2.36)

As predicted in Ref. [58], AlfveH n waves produce Doppler peaks with a periodicity which is
determined by the AlfveH n velocity. Since, for reasonable values of the magnetic "eld strength,
v
�

;1 these peaks will be quite di$cult to detect.
Durrer et al. argued that AlfveH n waves may leave a phenomenologically more interesting

signature on the statistical properties of the CMBR anisotropies. In the absence of the magnetic
"eld all the relevant information is encoded in the Cl 's coe$cients de"ned by
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¹
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1
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(2l#1)ClPl(�) , (2.37)

where �,n ) n�. By introducing the usual spherical harmonics decomposition
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¹
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l��

al�
>l�

(n) , (2.38)

the Cl 's are just

Cl"�al�aHl�
� . (2.39)

Because of its spin-1 nature, the vorticity vector "eld induces transitions lPl$1 and hence
a correlation between the multipole amplitudes al����

and al����
. This new kind of correlation is

encoded in the coe$cients

Dl(m)"�al����aHl����
�"�al����aHl����

� . (2.40)

Durrer et al. [70] determined the form of the Cl and Dl coe$cients for the case of a homogene-
ous background magnetic "eld in the range !7(n(!1, where n determines the vorticity
power spectrum according to
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On the basis of these considerations they found that 4-year COBE data allow to obtain a limit on
the magnetic "eld amplitude in the range !7(n(!3 of the order of (2!7)�10��G.

2.3. Dissipative ewects on the MHD modes

In the previous section we neglected any dissipative e!ect which may possibly a!ect the
evolution of the MHD modes. However, similar to the damping of baryon}photon sound waves by
photon shear viscosity and heat conductivity, damping of MHD perturbations may also occur.
This issue was studied in detail by Jedamzik et al. [72] who "rst determined the damping rates of
fast and slow magnetosonic waves as well as of AlfveH n waves. Furthermore, it has been shown in
Refs. [72,73] that dissipation of MHD modes produces an e!ective damping of inhomogeneous
magnetic "elds. The dissipation process occurs as follows. A spatially tangled magnetic "eld
produces Lorentz forces which accelerate the plasma and set up oscillations. Since the radiation-
baryon pressure is much larger than the magnetic pressure, as long as the photon mean-free
path is smaller than the scale of the magnetic tangle, the motions can be considered as being
largely incompressible. In this situation mainly AlfveH n waves, which do not involve density
#uctuations, are excited. In the absence of dissipation, this process will continue until, for all
scales � with magnetic "eld relaxation time 
&�/v

�
shorter than the Hubble time t

 
, an

approximate equipartition between magnetic and kinetic energies is produced. If the #uid is
non-ideal, however, shear viscosity will induce dissipation of kinetic energy, hence also of magnetic
energy, into heat. In this case dissipation will end only when the magnetic "eld reaches a
force-free state.

In the absence of magnetic "elds it is known that in the di!usive regime (i.e. when the
perturbation wavelength is much larger than the mean-free path of photon or neutrinos) acoustic
density #uctuations are e!ectively damped because of the "nite viscosity and heat conductivity
(Silk damping [74]). At recombination time, dissipation occurs for modes smaller than the
approximate photon di!usion length, d�&(l�t )���, where l� is photon mean-free path. The
dissipation of fast magnetosonic waves proceeds in a quite similar way. Indeed, it is shown in
Ref. [72] that the dissipation length scale of these kinds of waves coincides with the Silk damping
scale. More interesting is the result found in Refs. [72,73] which shows that damping of AlfveH n and
slow magnetosonic waves is signi"cantly di!erent from damping of sound and fast magnetosonic
waves. The reason for such a di!erent behavior is that, for a small background magnetic "eld
v
�

;1 so that the oscillation frequency of an AlfveH n mode (v
�
k/a) is much smaller than the

oscillation frequency of a fast magnetosonic mode with the same wavelength (v
����


k/a). While all
magnetosonic modes of interest satisfy the condition for damping in the oscillatory regime
(v

����

;l�k/a), an AlfveH n mode can become overdamped when the photon (or neutrino) mean-free

path becomes large enough for dissipative e!ects to overcome the oscillations (v
�

cos �Kl� (¹)k/a,
where � is the angle between the background magnetic "eld and the wave vector). Because of the
strong viscosity, that prevents #uid acceleration by the magnetic forces, damping is quite ine$cient
for non-oscillating overdamped AlfveH n modes with

�4�
�


K

2�l� (¹)
v
�

cos �
. (2.43)
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As a result, the damping scale of overdamped AlfveH n modes at the end of the di!usion regime is
smaller than the damping scale of sound and fast magnetosonic modes (Silk damping scale) by
a factor which depends on the strength of the background magnetic "eld and the � angle,
¸
�

&v
�

cos �d� .
From the previous considerations it follows that the results discussed in the previous section

hold only under the assumption that the magnetic "eld coherence length is not much smaller than
the comoving Silk damping scale (¸

�
&10 Mpc), in the case of fast magnetosonic waves, and not

smaller than ¸
�

for AlfveH n waves.
Some other interesting work has been recently done by Jedamzik et al. [75] concerning the

e!ects of dissipation of small-scale magnetic "elds on the CMBR. The main idea developed in the
paper by Jedamzik et al. is that the dissipation of tangled magnetic "elds before the recombination
epoch should give rise to a nonthermal injection of energy into the heat-bath which may distort
the thermal spectrum of CMBR. It was shown by the authors of Ref. [75] that once photon
equilibration has occurred, mainly via photon}electron scattering and double-Compton scattering,
the resultant distribution should be of Bose}Einstein type with a non-vanishing chemical potential.
The evolution of the chemical potential distortions at large frequencies may be well approximated
by [76]
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where, in our case, Q
�
"d�

�
/dt is the dissipation rate of the magnetic "eld and

t
!	

"2.06�10�� s (�
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h�)��z���� is a characteristic time scale for double-Compton scattering.

Jedamzik et al. assumed a statistically isotropic magnetic "eld con"guration with the following
power spectrum:
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and zero otherwise, normalized such that �bI ��"B�
�

. The energy dissipation rate was determined
by substituting this spectrum in the following Fourier integral:
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together with the mode frequencies for AlfveH n and slow magnetosonic waves determined in
Ref. [72]:
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where 3(��#p� )��"�, and � is the shear viscosity. For k
�

<k�
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z���� , where k�
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/2.39�10�� s)���, an analytic solution of Eq. (2.44) was then found to be
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In the above K is a numerical factor of order 1, the precise value depending on the spectral index
n and z� is the characteristic redshift for `freze-outa from double-Compton scattering. This redshift
equals z�"2.5�10� for typical values �

�
h�"0.0125, and>

�
"0.24. The scale k�

�
z���� has a simple

interpretation. It is the scale which at redshift z� is damped by one e-fold. For the above values of
�

�
h� and >

�
the corresponding comoving wavelength is �

�
"(2�)/(k�

�
z���� )"395 pc.

The present upper limit on chemical potential distortion of the CMBR comes from the
COBE/FIRAS data: ���(9�10�� at 95% con"dence level [77]. Comparing this limit with the
prediction of Eq. (2.48) it follows that primordial magnetic "elds of strength �3�10��G, and
comoving coherence length +400 pc are probably excluded. On slightly larger scales, dissipation
of spatially tangled magnetic "elds may give rise to a di!erent kind of CMBR distortion which may
be described by a superposition of blackbodies of di!erent temperatures, i.e. a Compton y distor-
tion [78]. The absence of this kind of distortion in the observed CMBR thermal spectrum disallows
magnetic "elds of �3�10��G on scales &0.6 Mpc.

2.4. Ewects on the CMBR polarization

Thomson scattering is a natural polarizing mechanism for the CMBR. It is enough if the photon
distribution function seen by the electrons has a quadrupole anisotropy to obtain polarization. At
early times, the tight coupling between the photons and the electron}baryon #uid prevents the
development of any photon anisotropy in the baryon's rest frame, hence the polarization vanishes.
As decoupling proceeds, the photons begin to free-stream and temperature quadrupole aniso-
tropies can source a space-dependent polarization. For this reason temperature and polarization
anisotropies are expected to be correlated (for a comprehensive review on the subject see [79]).

The expected polarization anisotropy is not large, perhaps about 10��. Currently, the best
polarization limit comes from the Saskatoon experiment [80], with a 95% con"dence-level upper
limit of 25 �K at angular scales of about a degree, corresponding to 9�10�� of the mean
temperature. Future balloons and satellites observations, like e.g. the PLANCK [67] mission to be
launched in 2007, are expected to have a good chance to measure the CMBR polarization power
spectrum.

Kosowsky and Loeb [81] "rst observed that the possible presence of magnetic "elds at the
decoupling time may induce a sizeable Faraday rotation in the CMBR. Since the rotation angle
depends on the wavelength, it is possible to estimate this e!ect by comparing the polarization
vector in a given direction at two di!erent frequencies. The basic formula is [15]

�"

e�n
�
x
�
B ) q( ��¸

8��m�c�
, (2.49)

where � is the amount by which the plane of polarization of linearly polarized radiation has been
rotated, after traversing a distance ¸ in a homogeneous magnetic "eld B in a direction q( . x

�
is the

ionized fraction of the total electron density n
�

and m is the electron mass. Finally, � is the radiation
wavelength.

Although the magnetic "eld strength is expected to be larger at early times, the induced Faraday
rotation depends also on the free electron density (see Eq. (2.49)) which drops to negligible values as
recombination ends. Therefore, rotation is generated during the brief period of time when the free
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electron density has dropped enough to end the tight coupling but not so much that Faraday
rotation ceases. A detailed computation requires the solution of the radiative transport equations
in comoving coordinates [81]

�Q
�

#ik�(�
�

#�)"!�Q !�� [�
�

!�
�

(0)!�<
�
#�

�
P
�

(�)S
�

] , (2.50)

�Q
�

ik��
�

"!�� [�
�

!�
�

(1!P
�

(�)S
�
#2


�
�
�

] , (2.51)

�Q
�

#ik��
�

"!�� �
�

!2

�
�

�
. (2.52)

In the above �
�

, �
�

and �
�

, respectively, represent the #uctuations of temperature and of the
Stokes parameters Q and ; [15]. The linear polarization is �

�
"	��

�
#��

�
. The numerical

subscripts on the radiation brightnesses �
�

indicate moments de"ned by an expansion of the
directional dependence in Legendre polynomials Pl(�):

�
�l (k),

1
2�

�

��

d�Pl(�)�
�

(k, �) . (2.53)

Therefore, the subscripts 0, 1, 2 label, respectively, monopole, dipole and quadrupole moments.
�� "x

�
n
�
�
�
a� /a is the di!erential optical depth and the quantities <

�
and R have been de"ned in

the previous section. Derivatives are with respect to conformal time. Finally, 

�

is the Faraday
rotation rate



�
"

d�
d


"

e�n
�
x
�
B ) q(

8��m���
a
a
�

. (2.54)

From Eqs. (2.15), (2.52) we see that Faraday rotation mixes Q and ; Stokes parameters. The
polarization brightness �

�
is induced by the function S

�
"!�

�
(2)!�

�
(2)#�

�
(0) and �

�
is

generated as �
�

and �
�

are rotated into each other. In the absence of magnetic "elds, �
�

retains its
tight-coupling value of zero. The set of Eqs. (2.50)}(2.52) is not easily solved. A convenient
approximation is the tight-coupling approximation which is an expansion in powers of k


	
with



	
"�� ��. This parameter measures the average conformal time between collisions. At decoupling,

the photon mean-free path grows rapidly and the approximation breaks down, except for long
wavelength as measured with respect to the thickness of the last scattering surface. For these
frequencies the approximation is still accurate.

Kosowsky and Loeb assumed a uniform magnetic "eld on the scale of the width of the last
scattering surface, a comoving scale of about 5 Mpc. This assumption is natural if the coherent
magnetic "eld observed in galaxies comes from a primordial origin, since galaxies were assembled
from a comoving scale of a few Mpc. The mean result was obtained by averaging over the entire
sky. Therefore the equations still depend only on k and �"cos(kK ) q( ) and not on the line-of-sight
vector q( and the perturbation wave vector k separately. The evolution of the polarization
brightnesses, for given values of k and � is represented in Fig. 2.2 as a function of the redshift.

By following the approach described in the above, Kosowsky and Loeb estimated the polariza-
tion angle produced by a magnetic "eld on CMB photons with frequency �

�
(�

�
to be

���
��

����"1.13�1!

��
�

��
�
��

B
�

10��G��
30 GHz

�
�

�
�

. (2.55)
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Fig. 2.2. The evolution of the polarization brightnesses, for k"0.16 Mpc�� and �"0.5 (in arbitrary units). Also plotted
as a dotted line is the di!erential visibility function 
� e�
 in units of Mpc��. From Ref. [81].

A 10% correction may apply to this expression to account for the e!ects �
�
h� and �

�
h� (in the

range �
�
h�'0.007 and �

�
h�(0.3).

For a primordial "eld of B
�
&10��G which could result in the observed galactic "eld without

dynamo ampli"cation, one can therefore expect a rotation measure of order 1.63 cm��"280 rad m��.
This rotation is considerable by astrophysical standards and could in principle be measured.

We noticed at the beginning of this section that temperature and polarization anisotropies of the
CMBR are generally expected to be correlated. The statistical properties of such a correlation may
be a!ected by the presence of a magnetic "eld at the decoupling time in a peculiar way. In fact, it
was shown by Scannapieco and Ferreira [82] that such a "eld may induce an observable parity odd
cross-correlation between polarization and temperature anisotropies. Any polarization pattern on
the sky can be separated into `electrica (E) and `magnetica (B) components. The nomenclature
re#ects the global parity property. Like multipole radiation, the harmonics of an E-mode have
(!1)l parity on the sphere, whereas those of a B-mode have (!1)l�� parity. Indeed, given
a measurement of the Stokes parameters Q and ;, these data can be decomposed into a sum over
spin $2 spherical harmonics

(Q$i;)(n)"�
l�

a��l� ��
>l�

(n) . (2.56)

Under parity inversion,
�
>l�

P(!1)l
�
>l�

so that
�
>l�

$
��
>l�

are parity eigenstates. It is then
convenient to de"ne the coe$cients

a�l�
,!

1
2

(a�l�
#a��l�

) a�l�
,

i
2

(a�l�
!a��l�

) (2.57)
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so that the E-mode remains unchanged under parity inversion for even l, whereas the B-mode
changes sign.

In an isotropic Universe, cross-correlation between the B and E polarizations is forbidden as this
would imply parity violation. Magnetic "elds, however, are maximally parity violating and
therefore they may reveal their presence by producing such a cross-correlation, Faraday rotation
being the physical process which is responsible for this e!ect. The authors of Ref. [82] determined
the expected cross-correlation between temperature and E and B polarization modes. On the basis
of such a result they concluded that magnetic "eld strengths as low as 10�� (present-time value
obtained by assuming adiabatic scaling) could be detectable by the PLANCK satellite mission. It is
worthwhile to note that Scannapieco and Ferreira only considered homogeneous magnetic "elds.
We note, however, that most of their considerations should apply also to the case of magnetic "elds
with a "nite coherence length. In this case measurements taken in di!erent patches of the sky
should present di!erent temperature-polarization cross correlations depending on the magnetic
"eld and the line-of-sight direction angle.

The consequences of Faraday rotation may go beyond the e!ect they produce on the CMBR
polarization. Indeed, Harari et al. [83] observed that Faraday rotation may also perturb the
temperature power spectrum of CMBR. The e!ect mainly comes as a back-reaction of the
radiation depolarization which induces a larger photon di!usion length reducing the viscous
damping of temperature anisotropies.

In the absence of the magnetic "eld (

�
"0), to the "rst order in the tight-coupling approxima-

tion one "nds

�
�

"0, �
�

"�
�
S
�

sin�(�) (2.58)

and

S
�
"!�

�
�

�
(2)"�

�
ik


	
�

�
(1)"!�

�


	
�Q
�

, (2.59)

�
�
"�

�
(0)#�. Obviously, all multipoles with l'3 vanish to this order. Replacing all quantities

in terms of �
�

one obtains [84]

�$ #�
RQ

1#R
#

16
45

k�

	

1#R��Q �#

k�
3(1#R)

�
�
"

k�
3(1#R)

(�!(1#R)�) (2.60)

that can be interpreted as the equation of a forced oscillator in the presence of damping.
In the presence of the magnetic "eld 


�
O0. The depolarization depends upon two angles: (a) the

angle between the magnetic "eld and wave propagation and (b) the angle of the "eld with the wave
vector k. Since we assume that the vector k is determined by stochastic Gaussian #uctuations, its
spectrum will have no preferred direction. Therefore this dependence will average out when
integrated. It is also assumed that for evolution purposes, the magnetic "eld has no component
perpendicular to k. This imposed axial symmetry is compatible with the derivation of the
above-written Boltzmann equations. Under these assumptions Harari et al. found [83] that

�
�

"!F cos ��
�

, �
�

"

3
4

S
�

sin� �
(1#F� cos� �)

, (2.61)
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where the coe$cient F was de"ned by

F cos �,2

�


	

(2.62)

which gives

F"

e�
4��m��

�

B
��

&0.7�
B

H
10��G��

10 GHz
�
�

�
�

. (2.63)

Physically, F represents the average Faraday rotation between two photon}electron scattering.
Note that assuming perfect conductivity

B(t)"B(t
H

)�
a(t

H
)

a(t) �
�

(2.64)

and therefore F is a time-independent quantity. Faraday rotation between collisions becomes
considerably large at frequencies around and below �

�
. This quantity is implicitly de"ned by

F,�
�
�

�
�
�
�

(2.65)

which gives

�
�
&8.4 GHz 9�

B
H

10��G�
���

&27 GHz�
B

H
10��G�

���
. (2.66)

From Eqs. (2.61) and, the de"nition of S
�

given in the "rst part of this section, one can extract

�
��
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�
d
�

(F)S
�

, �
��

"! �
��
d
�
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, (2.67)
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and, from the equation for �
�

in the tight coupling,

S
�
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4
3(3!2d)
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3(3!2d)



	
�Q
�

. (2.69)

In the above the coe$cients are de"ned so that d
�
+1#O(F�) for small F, i.e. small Faraday

rotation, while d
�
PO(1/F) as FPR (for the exact de"nition see Ref. [83]). Eqs. (2.61), (2.68) and

(2.69) condense the main e!ects of a magnetic "eld upon polarization. When there is no magnetic
"eld (F"0, d"1) �

�
"0 and �

�
"!��

�
�

��
sin� �. A magnetic "eld generates �

�
, through

Faraday rotation, and reduces �
�

. In the limit of very large F (large Faraday rotation between
collisions) the polarization vanishes. The quadrupole anisotropy �

��
is also reduced by the

depolarizing e!ect of the magnetic "eld, by a factor 5/6 in the large F limit, because of the feedback
of �

�
upon the anisotropy or, in other words, because of the polarization dependence of Thomson

scattering. The dipole �
��

and monopole �
��

are a!ected by the magnetic "eld only through its
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incidence upon the damping mechanism due to photon di!usion for small wavelengths. Indeed, the
equation for �

�
"�

��
#�, neglecting O(R�) contributions, now reads

�$
�
#�

RQ
1#R

#

16
90

(5!3d)
(3!2d)

k�

	

(1#R)��Q �#

k�
3(1#R)

�
�

"

k�
3(1#R)

(�!(1#R)�) , (2.70)

which is the equation of a damped harmonic oscillator.
The damping of the temperature anisotropies on small angular scales can be determined by

solving the radiative transfer equation to second order in the tight-coupling approximation. By
assuming solutions of the form

�
�

(
)"�
�

e	�
 (2.71)

for X"¹, Q and;, and similarly for the baryon velocity<
�
, Harari et al. [83] found the following

solution for Eq. (2.70):


"

k

	3(1#R)
#i� , (2.72)

where the photon-di!usion damping length-scale is

�(d),
k�
k�
�

"

k�

	

6(1#R)�
8

15
(5!3d)
(3!2d)

#

R�
1#R� . (2.73)

The damping a!ects the multipole coe$cients of the anisotropy power spectrum which are de"ned
by

C
�
"(4�)��k�dkP(k)��

��
(k, 


�
)�� . (2.74)

The average damping factor due to photon di!usion upon the C
�
's is given by an integral of

e��� times the visibility function across the last scattering surface [84,85]. It depends upon
cosmological parameters, notably R, and upon the recombination history.

In Fig. 2.3 the correction to the temperature power spectrum expected for several values of the
parameter F is represented. We see from that "gure that on small angular scales the e!ect of the
magnetic "eld is to increase the temperature anisotropies. The magnitude of this e!ect was
estimated to be up to 7.5% in a CDM Universe on small angular scales (l+1000) at a level that
should be reachable from future CMBR satellite experiments like MAP [66] and PLANCK [67].
The frequency at which the e!ect should be detectable will, however, depend on the strength and
coherence length of the magnetic "eld at the recombination time. Both experiments should be
sensitive to magnetic "elds around B

������
"0.1 G or, equivalently, B

�
"10��G a level that is

comparable to the BBN limit (see Section 3).
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Fig. 2.3. Numerical integration for the multipoles of the anisotropy correlation function in a standard CDM model
without a primordial magnetic "eld (F"0), and with F"1, 4, 9, which correspond to �

�
"�

�
, �

�
/2, �

�
/3, respectively,

with �
�
+27 GHz (B

H
/0.01 G)���. From Ref. [83].

3. Constraints from the big-bang nucleosynthesis

The study of the in#uence of magnetic "elds on the big-bang nucleosynthesis (BBN) began with
the pioneering works of Matese and O'Connell [86}88] and Greenstein [89]. It is remarkable that
most of the more relevant e!ects were already pointed-out in those early papers.

In their "rst paper on the subject Matese and O'Connell [86] showed that in the presence of very
strong magnetic "elds, B'B

�
,eB/m�

�
"4.4�10��G (above this "eld strength quantized mag-

netic levels, `cyclotron linesa, appear), the 	 decay rate of neutrons is signi"cantly increased. This is
mainly a consequence of the periodicity of the electron wave function in the plane normal to the
"eld which turns into an enlarging of the electron's available phase space. Since the magnetic
"elds required to obtain any sizeable e!ect cannot be reached in the laboratory in the foreseeable
future, Matese and O'Connell addressed their attention to the early Universe. The e!ects of
primordial magnetic "elds on the production of �He during BBN were "rst considered in
Ref. [87]. On the basis of the results obtained in their previous work [86], Matese and O'Connell
argued that strong magnetic "elds should suppress the �He relic abundance with respect to the
standard case. Brie#y, their argument was the following. Since, after the neutron to proton ratio
has been frozen, it takes some time for neutrons to be bounded into composite nuclei, a faster
neutron decay due to the magnetic "eld implies smaller relic abundances of �He and of the heavier
elements.

In Ref. [87] two other possible e!ects of a magnetic "eld on BBN were brie#y considered. The
"rst of these e!ects consists in the variation that a strong magnetic "eld induces on the energy
density of the electron}positron gas. This e!ect is a consequence of the growth of the electron and
positron phase space in the presence of over-critical (B'B

�
) magnetic "elds. Below we shall show

how such an e!ect may have relevant consequences on the BBN through its action on the
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�This issue was previously considered by Thorne [54].

expansion rate of the Universe and the entropy transfer from the e�e� gas to the photons. The
second e!ect touched upon by Matese and O'Connell concerns the in#uence of a uniform magnetic
"eld on the Universe geometry and its consequences on the BBN.� The Matese and O'Connell
analysis of these two e!ects was only qualitative and, as far as we know, no further work was
published by these authors about these issues.

In spite of the large number of e!ects considered in Ref. [87] Matese and O'Connell did not
include in their analysis a simpler and quantitatively more relevant e!ect of magnetic "elds on
the BBN, namely the direct contribution of the magnetic "eld energy density to the expansion
rate of the Universe. The relevance of such an e!ect was realized by Greenstein [89] shortly
after the publication of the Matese and O'Connell paper. Greenstein showed that by increasing
the Universe expansion rate the presence of the magnetic "eld also increases the temperature
at which the neutron}proton equilibrium ratio is frozen. Since this ratio is roughly given
by [46]

(n/p)
��

"�
m

�
m

�
�
���

exp(!Q/¹) , (3.1)

where Q,m
�
!m

�
, a small change in the freezing temperature gives rise to a large variation in the

neutron relative abundance hence in the relic abundance of the light elements. In his paper,
Greenstein also noted that if the magnetic "eld is su$ciently tangled over distances that are
small compared to the events horizon, it will have no e!ect on the Universe geometry.
Explicit calculations of the �He relic abundance as a function of the magnetic "eld strength
were reported in a previous paper by the same author [90]. Greenstein concluded that the e!ect of
the magnetic "eld energy density overcomes that of the magnetic "eld on the neutron decay
discussed by Matese and O'Connell. Furthermore, from the requirement that the relic �He mass
fraction does not exceed 28%, he inferred the upper limit B�10�� Gauss at the time when
¹"5�10�K.

In a subsequent paper by Matese and O'Connell [88], the authors performed a more careful
analysis of the e!ects of a magnetic "eld on the weak reactions which keep neutron and protons
in thermal equilibrium considering, this time, also the direct e!ect of the magnetic "eld
on the Universe expansion rate. Their "nal conclusions were in agreement with Greenstein's
result.

The recent activity about the origin of magnetic "elds during phase transitions in the early
Universe (see Section 4) renewed the interest on the BBN bounds on primordial magnetic "elds and
induced several authors to reconsider the work of Matese and O'Connell and Greenstein. It is
remarkable that after about 20 years and a large number of new astrophysical observations
the Greenstein and the Matese and O'Connell upper limits remain today roughly unchanged.
Moreover, this is the case in spite of important developments of the BBN numerical computations
codes.

We shall now abandon our historical approach to this section and proceed to give a more
detailed description of the subject.
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3.1. The ewect of a magnetic xeld on the neutron}proton conversion rate

The reactions which are responsible for the chemical equilibrium of neutrons and protons in the
early Universe are the weak processes

n#e��p#��
�

, (3.2)

n#�
�
�p#e� , (3.3)

n� p#e�#��
�

. (3.4)

In the absence of the magnetic "eld and in the presence of a heat bath, the rate of each of the
previous processes takes the generic form

�(12P34)"��
�

�d�p
�

(2�)�2E
�
�(2�)�����

�
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���M��f

�
f
�

(1!f
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)(1!f
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) , (3.5)

where p
�

are the four momentums, E
�

is the energy and f
�

is the distribution function of the ith
particle species involved in the equilibrium processes. All processes (3.2)}(3.4) share the same
amplitude M determined by the standard electroweak theory.

The total neutrons to protons conversion rate is

�
���

(B"0)"
1

�

"

�

d�
�	��!1
1#e������

(q#�)�e��� ��� ���

1#e��� ��� ���
#

(�!q)�e��� ��

1#e��� ��� ���� , (3.6)

where q and � are, respectively, the neutron}proton mass di!erence and the electron, or positron,
energy, both expressed in units of the electron mass m

�
. The rate 1/
 is de"ned by

1


,

G�(1#3��)m�
�

2��
, (3.7)

where G is the Fermi constant and �,g
�

/g
#

K!1.262. For ¹P0 the integral in Eq. (3.6)
reduces to

I"�
 

�

d� �(�!q)�	��!1K1.63 (3.8)

and 

�
"
/I is the neutron life-time.

The total rate for the inverse processes (pPn) can be obtained by reversing the sign of q in
Eq. (3.6). It is assumed here that the neutrino chemical potential is vanishing (at the end of
Section 3.4 the case where such an assumption is relaxed will also be discussed). Since, at the
BBN time temperature is much lower than the nucleon masses, neutrons and protons are
assumed to be at rest.

As pointed out by Matese and O'Connell [86,88], the main e!ect of a magnetic "eld stronger
than the critical value B

�
on the weak processes (3.2)}(3.4) comes in through the e!ect of the "eld on

the electron, and positron, wave function which becomes periodic in the plane orthogonal to the
"eld [38]. As a consequence, the components of the electron momentum in that plane are
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discretized and the electron energy takes the form

E
�
(B)"[p�

�
#�e�B(2n#1#s)#m�

�
]��� , (3.9)

where we assumed B to be directed along the z-axis. In the above, n denotes the Landau level, and
s"$1 if, respectively, the electron spin is along or opposed to the "eld direction. Besides the
e!ect on the electron dispersion relation, the discretization of the electron momentum due to the
magnetic "eld has also a crucial e!ect on the phase-space volume occupied by these particles.
Indeed, in the presence of a "eld with strength larger than B

�
the substitution
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�
(B), ¹) , (3.10)

has to be performed [91]. Since we only consider here magnetic "elds which are much weaker than
the proton critical value (eB;m�

�
), we can safely disregard any e!ect related to the periodicity of

the proton wave function.
The squared matrix element for each of the reactions (3.2)}(3.4) is the same when the spin of the

initial nucleon is averaged and the spins of the remaining particles are summed. Neglecting neutron
polarization, which is very small for B(10��G, we have [86]

�
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���1!
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�

E
�
�� . (3.11)

It is interesting to observe the singular behavior when a new Landau level opens up (E
�
"p

�
). Such

an e!ect is smoothed out when temperature is increased [92].
Expressions (3.9) and (3.10) can be used to determine the rate of the processes (3.2)}(3.4) in a heat

bath and in the presence of an over-critical magnetic "eld. We start considering the neutron
	-decay. One "nds that
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where �,B/B
�

and n
���

is the maximum Landau level accessible to the "nal state electron
determined by the requirement p

�
(n)�"q�!m�

�
!2neB'0. It is noticeable that for

�'�
�

(q�!1)�"2.7 only the n"0 term survives in the sum. As a consequence, the 	-decay rate
increases linearly with � above such a value. The computation leading to (3.12) can be readily
generalized to determine the rate of the reactions (3.2) and (3.3) for �O0:
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	���������
d�

�

	��!1!2(n#1)�

�
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1#e�� ���
(q#�)�e�� � ������

1#e�� � ������
, (3.13)
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�For a di!erent approach see Ref. [93].

and
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1#e�����
(�!q)�e�� � �����

1#e�� ��� ����
� .

(3.14)

By using the well-known expression of the Euler}MacLaurin sum (see e.g. Ref. [91]) it is possible to
show that in the limit BP0, Eqs. (3.12)}(3.14) reduce to the standard expressions derived in the
absence of the magnetic "eld.�

The global neutron to proton conversion rate is obtained by summing the last three equations

�
� � �

(�)"
�


"
�
���

(2!�
��

)�
"

	���������
d�

�

	(�!�)�!1!2(n#1)�

�
1

1#e������
(�#q)�e�� ��� ����

1#e�� ��� ����
#

(�!q)�e�� ���
1#e�� ��� ����� . (3.15)

It is noticeable that the contribution of Eq. (3.12) to the total rate (3.15) is cancelled by the second
term of (3.14). As a consequence, it follows that Eq. (3.15) does not depend on n

���
and the nPp

conversion grows linearly with the "eld strength above B
�
. From Fig. 3.1 the reader can observe

that, in the range considered for the "eld strength, the neutron depletion rate drops quickly to the
free-"eld when the temperature grows above few MeV's. Such a behavior is due to the suppression
of the relative population of the lowest Landau level when eB<¹�.

In the absence of other e!ects, the consequence of the ampli"cation of �
���

due to the magnetic
"eld would be to decrease the relic abundance of �He. In fact, a larger �

���
implies a lower value of

the temperature (¹
$

) at which the neutron to proton equilibrium ratio is frozen because of the
expansion of the Universe. It is evident from (3.1) that the "nal value of (n/p) drops exponentially as
¹
$

is increased. Furthermore, once n/p has been frozen, occasional neutron 	-decays can still
reduce the relic neutron abundance [46]. As it follows from Eq. (3.12), the presence of a strong
magnetic "eld accelerates the process which may give rise to a further suppression of the n/p ratio.
In practice, however, neutron decay takes place at a time when the magnetic "eld strength has
already decreased signi"cantly due to the Universe expansion so that the e!ect is negligible.

The result of Matese and O'Connell has been con"rmed by Cheng et al. [93] and by Grasso and
Rubinstein [94]. Among other e!ects, the authors of Ref. [94] considered also QED and QCD
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Fig. 3.1. The neutron-depletion rate �
���

, normalized to the free-"eld rate, is plotted as a function of the temperature for
several values of �. From Ref. [94].

corrections in the presence of strong magnetic "elds. In principle, these corrections may not be
negligible in the presence of over-critical magnetic "elds and their computation requires a proper
treatment. In order to give the reader a feeling of the relevance of this issue, we remind him of the
wrong result which was derived by O'Connell [39] by neglecting QED radiative correction to the
electron Dirac equation in the presence of a strong magnetic "eld. By assuming the electron
anomalous magnetic moment to be independent of the external "eld, O'Connell found that

E
�
"[p�

�
#�e�B(2n#1#s)#m�

�
]���#s

�
2�

m
�
� . (3.16)

For B'(4�/�)B
�

this expression gives rise to negative values of the ground-state energy which,
according to O'Connell, is the manifestation of the instability of the vacuum to spontaneous
production of electron}positron pairs. This conclusion, however, is in contradiction with standard
electrodynamics from which we know that a constant magnetic "eld cannot transfer energy. This
problem was solved by several authors (see e.g. Ref. [37]) by showing that by properly accounting
for QED radiative corrections to the Dirac equation no negative value of the electron energy
appears. The e!ect can be parametrized by a "eld-dependent correction to the electron mass,
m

�
Pm

�
#M, where

M"	
!

�
2�

eB
2m

�
�1!

8
3
eB
m�

�
�log

m�
�

2eB
!

13
24��, B;B

�
,

�
4�

m
��log

2eB
m�

�
�
�

, B<B
�

.

(3.17)

Such a correction was included in Refs. [94,95]. It is interesting to observe that although pair
production cannot occur at the expense of the magnetic "eld, this phenomenon can take place in
a situation of thermodynamic equilibrium where pair production can be viewed as a chemical
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reaction e�#e���, the magnetic "eld playing the role of a catalysts agent [96]. We will return to
this issue in Section 3.3.

Even more interesting are the corrections due to QCD. In fact, Bander and Rubinstein showed
that in the presence of very strong magnetic "elds the neutron}proton e!ective mass di!erence
q becomes [97] (for a more detailed discussion of this issue see Section 5)

Q(B)"0.12�
�
B!m

�
#m

�
#f (B) . (3.18)

The function f (B) gives the rate of mass change due to color forces being a!ected by the "eld. �
�

is
the nucleon magnetic moment. For nucleons the main change is produced by the chiral condensate
growth, which because of the di!erent quark content of protons and neutrons makes the proton
mass to grow faster [97]. Although, as a matter of principle, the correction to Q should be
accounted for in the computation of the rates that we reported above, in practice, however, the
e!ect on the "nal result is always negligible. More subtle is the e!ect of the correction to Q on
the neutron-to-proton equilibrium ratio. In fact, as it is evident from Eq. (3.1), in this case the
correction to Q enters exponentially to determine the "nal neutron-to-proton ratio. However, the
actual computation performed by Grasso and Rubinstein [94] showed that the e!ect on the light
element abundances is sub-dominant whenever the "eld strength is smaller than �10��G.

3.2. The ewects on the expansion and cooling rates of the Universe

In the previous section we discussed how the presence of strong magnetic "elds a!ects the rates
of the weak reactions which are responsible for the chemical equilibrium of neutrons and protons
before BBN. The knowledge of such rates is, however, not su$cient to predict the relic abundances
of the elements synthesized during BBN. In fact, the temperature ¹

$
at which (n/p)

��
is frozen is

determined by the competition of the weak reaction and the Universe expansion according to the
condition [46]

�
���

(¹
!

)"H(¹
!

) . (3.19)

From this expression it is clear that in order to determine ¹
$

the knowledge of the Universe
expansion rate H(¹) is also required.

In the absence of a cosmological term and assuming the e!ect of the magnetic "eld on the
Universe geometry to be negligible, H is determined by

H,

a�
a

"�
8�G�

���
3 �

���
, (3.20)

where, according to the standard notation, a is the scale factor of the Universe, G the Newton
gravitational constant and �(¹) is the energy density of the Universe. In the presence of a magnetic
"eld

�(¹,B)"�
��

(¹,B)#��#�
�

(B) (3.21)

where �
��

(¹,B) is the energy density of the standard electromagnetic component (photons#
electrons and positrons) of the heat bath and �� is the energy density of all neutrino species
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(the reason why �
��

depends on the magnetic "eld strength will be discussed in the next section).
We see that to the standard components of � now the contributions of the magnetic "eld energy
density are added:

�
�

(¹)"
B�(¹)

8�
. (3.22)

It is worthwhile to observe that, concerning its direct contribution to �, the magnetic "eld behaves
like any relativistic component of the heat bath. In fact, by assuming that the "eld is not too tangled
on scales smaller than the magnetic dissipation scale, and that the Universe geometry is not
a!ected by the magnetic "eld (see Section 2.1), the magnetic #ux conservation during the Universe
expansion implies that

BJR��J¹�P�
�

(¹)J¹� , (3.23)

which is the same behavior of the radiation.
In the absence of other e!ects, relation (3.23) would allow to parametrize the e!ect of the

magnetic "eld in terms of a correction to the e!ective number of massless neutrino species �N��
[98]. Indeed, by comparing the contribution of N� light (m�;1 MeV) neutrino species with the
energy density of the Universe, which is

��"
7��
120

N�¹�� , (3.24)

with (3.22) one gets

�N��"
15

7��
b� , (3.25)

where b,B/¹�� .
Before closing this section we have to mention another possible consequence of the faster

Universe expansion induced by the presence of the magnetic "eld. The e!ect is due to shortening of
time between weak reactions freeze-out and breaking of the deuterium bottleneck. It follows that
neutrons have less time to decay before their con"nement into nucleons takes place which
turns into a larger abundance of �He. In Ref. [98] it was shown that such an e!ect is generally
sub-dominant.

3.3. The ewect on the electron thermodynamics

In the above we discussed how the phase space of electrons and positrons is modi"ed by the
presence of strong magnetic "elds and how this e!ect changes the weak processes rates. The
consequences of the variation of the electron phase space, however, go well beyond that e!ect.
Electron and positron thermodynamics functions will also be a!ected. In fact, by applying the
prescription (3.10), we "nd that the number density, the energy density and the pressure of the
electron}positron gas are now given by

n
�
(B)"

eB
(2�)�

"
�
���

(2!�
��

)�
�"

�"

f
$!

(¹) dp
�

(3.26)
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where

f
$!

(¹),
1

1#e��� ��� �
(3.29)

is the Fermi}Dirac distribution function, and E
�
(p

�
) is given by (3.9). As for the case of the weak

processes rates, it is possible to show that Eqs. (3.26)}(3.28) reduce to their well-known standard
form in the limit BP0 (see e.g. Ref. [98]).

Numerical computations [94] show that, for small ¹, �
�

grows roughly linearly with B when
B'B

�
. This e!ect is mainly due to (1) the reduction, for each Landau level, of the area occupied by

the cyclotron motion of the electron in a plane perpendicular to the "eld; and (2) the growth of the
energy gap among the lowest Landau level and the n'0 levels, which produces an overpopulation
of the lowest Landau level. The "rst e!ect is the dominant one. The net number density and the
pressure of the electron}positron gas follow a similar behavior. As we have already noted in
Section 3.1, the energy cost of producing the electron}positron pairs excess cannot be paid by the
magnetic "eld which is supposed to be static. Rather, the `power billa is paid from the heat bath, or
better, from its photon component [96,99]. Especially in the context of BBN, this point is quite
relevant since the energy transfer from the photons to the lowest Landau level of the elec-
tron}positron gas will a!ect the expansion rate of the Universe, its cooling rate and the e!ective
baryon-to-photon ratio � [94,95,98]. We start discussing the "rst two e!ects. We observe that the
growth of the electron and positron energy density, due to the presence of the magnetic "eld, gives
rise to a faster expansion rate of the Universe. This point was "rst qualitatively discussed by Matese
and O'Connell [87] and recently analyzed in more detail by Grasso and Rubinstein [94]. The
time}temperature relation will also be modi"ed. The relevance of the latter e!ect has been "rst
shown by Kernan et al. [98] by solving numerically the relation

d¹

dt
"!3H

�
��

#p
��

d�
��

/d¹

, (3.30)

where �
��

,�
�
#�� and p

��
,p�#p

�
are the energy density and the pressure of the electromag-

netic component of the primordial heat bath. In agreement with our previous considerations,
Eq. (3.30) has been obtained by imposing energy conservation of the electromagnetic component
plasma.

For small values of the ratio eB/¹�, the most relevant e!ect of the magnetic "eld enters in the
derivative d�

��
/d¹� that is smaller than the free "eld value. This e!ect can be interpreted as a delay

in the electron}positron annihilation time induced by the magnetic "eld. This will give rise to
a slower entropy transfer from the electron}positron pairs to the photons, then to a slower
reheating of the heat bath. In fact, due to the enlarged phase space of the lowest Landau level of
electrons and positrons, the equilibrium of the process e�e�� � is shifted towards its left side.
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Fig. 3.2. The �He predicted abundance is represented as a function of the parameter �, considered at ¹"10�K, in three
di!erent cases: only the e!ect of the magnetic "eld energy density is considered (dashed line); only the e!ect of the "eld on
the electron statistics is considered (dotted-dashed line); both e!ects are considered (continuous line). The dotted line
represents the observational upper limit. From Ref. [95].

Below we will discuss as this e!ect has a clear signature on the deuterium and �He predicted
abundances. Another point of interest is that the delay in the e�e� annihilation causes a slight
decrease in the ¹�/¹ ratio with respect to the canonical value, (4/11)��� [98].

The delay in the entropy transfer from the e�e� gas to the heat bath induces also an increment in
the value of baryon-to-photon ratio �. In the absence of other e!ects a larger value of � would
induce smaller relic abundances of deuterium and �He. This e!ect was "rst predicted in
Refs. [94,95]. Furthermore, it is interesting to observe that in the case where the primordial
magnetic "eld is inhomogeneous and it is con"ned in "nite-volume regions where its strength
exceeds the cosmic mean value (e.g. #ux tubes), this e!ect may give rise to spatial variation in the
relic element abundances.

3.4. Derivation of the constraints

In order to account for all the e!ects discussed in the previous sections, the use of a numerical
analysis is required. Usually, this is done by modifying properly the famous BBN numerical code
developed by Wagoner and improved by Kawano [100]. After some discussion about the relative
importance of the di!erent e!ects, the results of di!erent groups have converged to a common
conclusion: the most relevant e!ect of a cosmological magnetic "eld on BBN is that produced by
the energy density of the "eld on the Universe expansion rate. This is in qualitative agreement with
the early result of Greenstein [89]. From a more quantitative point of view, however, the e!ect of
the magnetic "eld on the electron thermodynamics cannot be totally neglected. In fact, it was
shown in [95] that such an e!ect produces sizable changes in the relic abundance of �He, deuterium
and �He (see e.g. Fig. 3.2 for the �He relic abundance prediction). As a consequence, we think that
the e!ect of the magnetic "eld on the BBN cannot be simply parameterized in terms of a contribu-
tion to the e!ective number of neutrino species. Although, in this respect, a di!erent conclusion was
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�BBN in the presence of anisotropic Universe, possibly due to a homogeneous cosmic magnetic "eld, has been
considered by Thorne [54].

reached in [98,101] it should be noted that, di!erently from [95], in those papers only approximate
expressions for the electron thermodynamic quantities in the presence of a strong magnetic "eld
were used. Such an approximation may not be justi"ed when eB�¹�.

According to the standard procedure, the upper limit on the strength of the cosmological
magnetic "eld was obtained in [94,95,102] by comparing the numerically predicted relic abund-
ance of �He with the observational upper limit. In [95], however, the information about deuterium
and �He was also used. In fact, since the e!ective value of � is also a!ected by the magnetic "eld,
� was chosen in the actual numerical simulation so as to saturate the predicted value of D#�He/H
to the observational upper limit. This choice assured the minimal predicted abundance of �He for
each considered value of B.

By "xing N�"3, requiring >
�
(0.245 and D#�He/H(1.04�10�� Grasso and Rubinstein

derived the upper limit

B(¹"10�K)�1�10��G . (3.31)

Similar results have been obtained by the authors of Refs. [101,103].
It is useful to remind the readers under what assumptions the previous limit has been derived.

They are the following.

1. Universe dynamics was assumed to be well described by the Friedman}Robertson}Walker
metric. In other words, we are assuming that the magnetic "eld does not lead to a sizeable
anisotropic component in the Universe expansion.�

2. The e!ective number of neutrino species is three. This means, for example, that if neutrinos are
of Dirac-type their mass and magnetic moment are negligible. This in turn does not populate
right-handed degree of freedom by the magnetic dipole interaction of the neutrinos with the
"eld.

3. The neutrino chemical potential is negligible.
4. Fundamental physical constants are equal to their present-time values (for a discussion on this

issue see Ref. [104]).

Some of these assumptions will be relaxed in the following part of this section.
In order to translate our limit (3.31) into a bound on the magnetic "eld at the time of galaxy

formation some caution is required. If we just assume that the magnetic "eld re-scales adiabatically
with the Universe expansion, according to Eq. (3.23), the BBN limit reads

B
�
�7�10��G . (3.32)

We should keep in mind, however, that in this case we are neglecting any possible nonadiabatic
evolution of the magnetic "eld as that which could be induced by a nontrivial topology of the "eld.
Even assuming an adiabatic evolution, we note that the limit (3.32) cannot be directly interpreted as
a limit on the progenitor of galactic magnetic "elds. The reason for that is that BBN probes
magnetic "elds on scales of the order of the horizon radius at BBN time (the Hubble comoving
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��A detailed discussion about average procedures of tangled magnetic "elds can be found in Ref. [109].

radius at BBN time is &100 pc) which are much smaller than typical protogalaxy sizes
(&1}10 Mpc). Therefore, if cosmic magnetic "elds are tangled on scales smaller than the proto-
galactic size, the progenitor magnetic "eld has to be interpreted as a proper average of smaller #ux
elements. Clearly, the result of such an average will depend on the statistical properties of the
random magnetic "eld. If the "eld vector were to perform a random walk in 3d volume, the scaling
would be B(¸),�B�

����	
&N���� [105], where ¸

�
is the comoving coherence length of the

magnetic "eld and N"¸/¸
�

is the number of steps. An argument based on the statistical
independence of conserved #ux elements gives B(¸)&N�� [106], whereas another argument
based on the statistical independence of the "eld in neighboring cells predicts that B(¸)&N����
[107]. Adopting a phenomenological point of view, one may just write that the rms "eld computed
on the scale ¸ at the time t is [108]

�B(¸, t)�
���

"B
��

a
�

a(t)�
�

�
¸
�

¸ �
�

, (3.33)

where p is an unknown parameter (p"3/2, 1, 1/2, respectively, in the three cases discussed above).
The meaning of B

�
is now understood as B

�
"lim

	�"
B(¸, t

�
).�� If, for example, we adopt the

value p"1 and assume ¸
�
"100 pc, the limit (3.32) implies that

�B(1 Mpc, t
�

)�
���

�10���G . (3.34)

Therefore, although the BBN bound is much more stringent than what is usually claimed in the
literature, it does not exclude a primordial origin of galactic magnetic "elds by the adiabatic
compression of the "eld lines.

For the same reasons which we have explained in the above, BBN limits on primordial magnetic
"elds cannot be directly compared with bounds derived from the analysis of CMBR anisotropies.
In fact, unless the magnetic "eld is uniform throughout the entire Universe, CMBR o!ers a probe
of magnetic "elds only on comoving scales which are much larger than the horizon radius at
BBN time.

We shall now consider how the previous limits change by relaxing one of the assumptions under
which the constraint (3.31) has been derived, namely that related to the neutrino chemical potential.
The e!ects of a possible neutrino-antineutrino asymmetry in this context has been recently
considered by Suh and Mathews [110]. This issue is interesting since several recent leptogenesis
scenarios predict the formation of such asymmetry during the radiation era. It is well known that
even in the absence of a primordial magnetic "eld a nonvanishing neutrino chemical potential can
a!ect the predictions of BBN (see Ref. [111] and references therein). In fact, a degeneracy of the
electron neutrino changes both the weak reaction rates and the neutron-to-proton equilibrium
ratio, whereas a degeneracy in any of the neutrino species modi"es the expansion rate of the
Universe. Clearly, the presence of any of these e!ects would a!ect the BBN limit on the strength of
a primordial magnetic "eld. Suh and Mathews found that if the limit is B

�
45.8�10��G with

�
�
,���

/¹�� "0 (in good agreement with the limit (3.32)), it becomes B
�
42.8�10��G if

�
�
,���

/¹�� "0.15. Therefore, we see that in the presence of phenomenologically acceptable
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values of the neutrino chemical potential the BBN constraint on the magnetic "eld can be
considerably relaxed.

3.5. Neutrino spin oscillations in the presence of a magnetic xeld

It is interesting to consider how the limit obtained in the previous section changes if neutrinos
carry nonstandard properties which may change the e!ective neutrino number during BBN. We
are especially interested here in the possibility that neutrinos carry non-vanishing masses and
magnetic moments. If this is the case, the dipole interaction of the neutrinos with the magnetic "eld
may give rise to spin oscillations of the neutrinos, i.e. periodic conversion of a helicity state into
another. In the case of Dirac neutrinos, this phenomenon may have crucial consequences for BBN.
In fact, spin oscillation can populate the right-handed helicity state of the neutrino which, being
practically sterile (for m�;¹) to weak interactions, would otherwise play no e!ective role. By
adding a new degree of freedom to the thermal bath, such an e!ect may produce dangerous
consequences for the outcome of BBN. This problem was "rst pointed out by Shapiro and
Wasserman [112] and, independently, by Lynn [113] who used the argument to put a constraint
on the product of the magnetic "eld with the neutrino magnetic moment. In both works, however,
the important role played by neutrino refractive properties determined by the neutrino collective
interaction with the heat bath, as well as that played by neutrino scattering with leptons, were
disregarded. A more complete treatment was developed by Fukugita et al. [114]. They showed
that the conditions under which the neutrino wrong-helicity state can be e!ectively populated are
the following:

1. the spin-oscillation frequency �E
��
�

"2��B has to exceed the Universe expansion rate;
2. since neutrino scattering destroys the phase relationship between the left- and right-handed

helicity states, �E
��
�

has to be larger than the scattering rate;
3. since the refractive indices for left- and right-handed states, n

%
and n



, are not equal, oscillations

can occur only if

�E
��
�

��E
����

, (3.35)

where �E
����

,(n
%
!n



)E� .

The BBN is a!ected only if such conditions are simultaneously satis"ed at some temperature
¹

���
in the range ¹


��
�¹

���
�¹

&	!
where ¹


��
+1 MeV is the neutrino decoupling temperature

and ¹
&	!

+200 MeV. Note that in the case where right-handed neutrinos decouple before the
QCD phase transition, the huge amount of entropy which is expected to be released during this
transition would dilute their relative abundance so as to prevent any e!ect on the BBN. From the
previous considerations the authors of Ref. [114] derived the limit

���10����
��

10��G
B
�
� , (3.36)

where �
�

is the Bohr magneton. The work of Fukugita et al. has been reconsidered by several
authors. For example, Enqvist et al. [115] improved the previous analysis by considering the e!ect
of the neutrino refractive properties on the left}right transition probability. Elmfors et al. [116]
accounted for the e!ect of the magnetic "eld on the neutrino refractive properties and used an
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��For a computation of the neutrino refractive properties in a magnetized medium see also Refs. [119,120].

improved treatment of neutrino collisions. First of all, Elmfors et al. noted that by a!ecting the
thermodynamics properties of the electromagnetic component of the heat bath (see Section 3.3)
a strong magnetic "eld changes also the neutrino potentials. This may have relevant consequences
for both neutrino spin oscillations and #avor oscillations in a magnetized medium [117]. The
interplay between spin oscillations and collisions was then accounted for in Ref. [116] by means of
the following evolution equation [118]:

RP
Rt "V�P!DP

�
, (3.37)

where P is the neutrino polarization vector and P
�

is its transverse component with respect to the
neutrino direction of motion. V is a vector of e!ective magnetic interaction energies which can be
decomposed into its transverse and longitudinal components

V
�
"2��B� , (3.38)

�V
%
�"�E

����
, (3.39)

where �� is the neutrino magnetic moment and [116]
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����

(B)"
8	2G
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3
�

l�����
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�	�l (B)
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"

#

�l

m�
#
� (3.40)

is the left}right neutrino energy di!erence in the magnetized medium.�� It is worthwhile to note
that in Eq. (3.40) the expression (3.27) has to be used for �

�
(B). As we wrote above, collisions destroy

the phase coherence between the left- and right-handed components of a neutrino state, which
amounts to a damping of the transverse part P

�
of the polarization vector. The main contribution

to the damping rate D comes from neutrino elastic and inelastic scattering with leptons and equals
half the total collision rate of the left-handed component [121]. In the early Universe at
¹&1 MeV one "nds

�D�"f
!

7�
16

G�
$
¹� , (3.41)

where f
!

is an order-one numerical factor. Inserting the previous expressions in Eq. (3.37) it is easy
to derive the neutrino depolarization rate �


����
. In the small mixing angle limit,

tan 2�"

<
�
<
%

"

2�B
�

�E
����

;1 , (3.42)

one "nds

�

����

+

(2�B
�

)��D�
�<�

%
�

+

f
!
f �
%

400 ��
7�

���B��
G�
$
¹�

, (3.43)

where f
%
"1 for � and 
 neutrinos, while for e neutrinos f

%
+3.6. By requiring this rate to be

smaller than the Universe expansion rate H(¹) in the temperature interval ¹

��

(¹(¹
&	!

,
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��Note that in Ref. [116] B
�

was de"ned as the magnetic "eld at BBN time.

Elmfors et al. [116] found the upper limit��

���7�10����
��

10��G
B
�
� , (3.44)

which is not too di!erent from the limit (3.36) previously found by the authors of Ref. [114]. Limits
on �� were also found by the authors of Refs. [108,122] who considered the case of random
magnetic "elds.

In principle, right-handed neutrinos could also be populated by direct spin-#ip interactions
mediated by virtual photons produced by scattering on charged particles or by annihilation
processes [123], as well as by the interaction with small-scale magnetic "elds produced by thermal
#uctuations [124]. In practice, however, bounds on �� from a possible large-scale magnetic "eld are
found to be more stringent even for very weak magnetic "elds. The most stringent upper limit on
Dirac-type neutrino magnetic moment with mass m�(1 MeV, comes from stellar evolution
considerations. It is ���3�10����

�
[125,126]. It is interesting to observe that if one of the

neutrinos saturates this limit, Eq. (3.44) implies the following quite stringent bound on the
present-time cosmic magnetic "eld, B

�
�10���G.

In the particle physics standard model, neutrinos have no magnetic dipole moment. However, if
the neutrino has a Dirac mass m� , radiative corrections automatically give rise to a "nite dipole
moment [113]

��"3.2�10����
��

m�
1 eV� , (3.45)

even without invoking any further extension of the standard model beside that required to account
for the "nite neutrino mass. On the basis of this consideration, Enqvist et al. [127] derived the
following upper limit for the present-time local magnetic "eld:

B
�
�

2�10��G
�

�
m�� /1 eV

. (3.46)

Clearly, this limit cannot compete with the constraint derived in the previous section.
Spin oscillations in the presence of twisted primordial magnetic "elds (i.e. magnetic "eld with

a nonvanishing helicity, see Section 1.4) have been considered by Athar [128]. Athar showed that in
such a situation the left}right conversion probabilities for neutrino and antineutrinos may be
di!erent. This result may open the interesting possibility that a neutrino}antineutrino asymmetry
may have been generated during the big-bang by a preexisting nontrivial topology of a primeval
magnetic "eld. As we shall see in Section 4.4, the production of a net magnetic helicity of the
Universe is indeed predicted by some models.

It is also interesting to speculate on the e!ects when the number of dimensions changes, and
these are large [129]. In fact, BBN is one of the most serious objections to this idea, together with
the background di!use gamma radiation [130]. Detailed studies of e!ects of magnetic "elds in
these scenarios are not available yet.
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4. Generation of magnetic 5elds

4.1. Magnetic xelds from primordial vorticity

The idea that primordial magnetic "elds can be produced by plasma vortical motion during the
radiation era of the early Universe has been "rst proposed by Harrison [131]. Since this
mechanism has been reviewed in several papers (see e.g. [1,132]) we shall not discuss it in detail
here. Harrison's mechanism is based on the consideration that the electron and ion rotational
velocities should decrease di!erently in the expanding Universe in the pre-recombination era. The
reason is that Thomson scattering is much more e!ective for electrons than for ions.
Therefore electrons remain tightly coupled for a longer time to the radiation and behave like
relativistic matter whereas ions are already nonrelativistic. It follows that during Universe expan-
sion angular velocity decreases like 
Ja�� for electrons and like 
Ja�� for ions, where a is the
Universe scale factor. The di!erence between these two velocities causes an electromotive force,
hence an electric current which generates a magnetic "eld. Harrison [133] showed that if a primor-
dial turbulence was present at the recombination this mechanism may lead to present-time
intergalactic magnetic "elds as large as 10��G on a scale-length of 1 Mpc.

A problem, however, arises with this scenario. In fact, it was noted by Rees [19] that since
rotational, or vector, density perturbations decay with cosmic expansion, in order to produce
sizeable e!ects at recombination time this kind of #uctuations should have been dominant at the
radiation-matter equality time. This seems to be incompatible with the standard scenario for
galaxy formation.

Another related problem is that, in contrast to scalar or tensor perturbations, rotational
perturbations cannot arise from small deviations from the isotropic Friedmann Universe near the
initial singularity. This is a consequence of the Helmholtz}Kelvin circulation theorem which states
that the circulation around a closed curve following the motion of matter is conserved. Such
a problem, however, may be partially circumvented if collisionless matter was present during the
big-bang (e.g. decoupled gravitons after the Planck era). Rebhan [68] showed that in this case
the Helmholtz}Kelvin theorem does not apply and growing modes of vorticity on superhorizon
scale can be obtained. In fact, a nonperfect #uid can support anisotropic pressure which may
generate nonzero vorticity even if it was zero at the singularity. It follows that the only constraint to
the amount of primordial vorticity comes from the requirement that it does not produce too large
anisotropies in the CMBR. Rebhan showed that this requirement implies the following upper limit
to the strength of a present-time intergalactic magnetic "eld, with coherence length ¸, produced by
vortical plasma motion

B
�

(¸)(3�10���h��¸��
���

G . (4.1)

Such a "eld might act as a seed for galactic dynamo.
If primordial vorticity is really not incompatible with standard cosmology, another interesting

possibility to generate primordial magnetic "elds arises. It was noted by Vilenkin [134] that, as
a consequence of parity violation in the Weinberg}Salam model of the electroweak interactions,
macroscopic parity-violating currents may develop in a vortical thermal background. Vilenkin
and Leavy [135] suggested that these currents may e!ectively give rise to strong magnetic "elds.
It was also recently noted by Brizard et al. [136] that in the presence of vorticity and a
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neutrino}antineutrino asymmetry, collective neutrino}plasma interactions may power astrophysi-
cal as well as cosmological magnetic "elds.

Clearly, in order to implement these scenarios, a suitable mechanism to produce the required
amount of primordial vorticity has to be found. Among other exotic possibilities, generation of
vorticity and magnetic "elds by the anisotropic collapse of conventional matter into the potential
well of pre-existing dark matter condensations in a texture-seeded scenario of structure formation
[132], and from rotating primordial black-holes [135] have been considered in the literature.

In our opinion, primordial phase transitions may provide a more realistic source of vorticity.
The generation of primeval magnetic "elds during some of these transitions will be the subject of
the following sections.

Another interesting possibility which is currently under study [214], is that large scale vorticity
and magnetic "elds are generated at neutrino decoupling in the presence of a large neutrino
degeneracy.

4.2. Magnetic xelds from the quark}hadron phase transition

It is a prediction of quantum-chromo-dynamics (QCD) that at some very high temperature and/
or density strongly interacting matter undergoes a decon"nement transition, where quark/gluon
degrees of freedom are `melted-outa from hadrons. In the early Universe, due to the cosmological
expansion, the process proceeds in the opposite direction starting from a `quark}gluon plasmaa
which at some critical temperature ¹

&	!
condenses into colorless hadrons [137]. Lattice computa-

tions suggest that the QCD phase transition (QCDPT) is a "rst-order phase transition taking place
at ¹

&	!
&150 MeV [138]. Typically, a "rst-order phase transition takes place by bubble nuclea-

tion. As the temperature supercools below ¹
&	!

, sub-critical bubbles containing the hadronic
phase grow as burning de#agration fronts releasing heat in the quark}gluon plasma in the form of
supersonic shock fronts. When the shock fronts collide they reheat the plasma up to ¹

&	!
stopping

bubble grow. Clearly, up to this time, the transition is an out-of-equilibrium process. Later on, the
growth of newly nucleated bubbles proceeds in thermal equilibrium giving rise to the, so-called,
coexistence phase. The latent heat released by these bubbles compensates for the cooling due to the
Universe expansion keeping temperature at ¹

&	!
. The transition ends when expansion wins over

and the remaining quark}gluon plasma pockets are hadronized.
The "rst step of the magnetogenesis scenario at the QCDPT proposed by Quashnock et al. [139]

consists in the formation of an electric "eld behind the shock fronts which precede the expanding
bubbles. This is a consequence of the baryon asymmetry, which was presumably already present
and which makes the baryonic components of the primordial plasma positively charged. At the
same time, the leptonic component must be negatively charged to guarantee the Universe charge
neutrality. The other crucial ingredient of the mechanism is the di!erence in the equation of state of
the baryonic and leptonic #uids. As a consequence, the strong pressure gradient produced by the
passage of the shock wave gives rise to a radial electric "eld behind the shock front. Such
a generation mechanism is usually known as a battery. Quashnock et al. gave the following
estimate for the strength of the electric "eld:

eEK15�
�

10%��
�

10%��
k¹

&	!
150 MeV��

100 cm
l �

keV
cm

, (4.2)
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where � represents the ratio of the energy densities of the two #uids, �,(l�p/p) is the pressure
gradient and l is the average distance between nucleation sites.

Small-scale magnetic "elds are generated by the electric currents induced by the electric "elds.
These "elds, however, live on a very small scale (;l ) and presumably they are rapidly dissipated.
Phenomenologically more interesting "elds should be produced when the shock fronts collide
giving rise to turbulence and vorticity on scales of order l. Magnetic "elds are produced on the
same scale by the circulation of electric "elds of magnitude given by Eq. (4.2). Then, using standard
electrodynamics, Quashnock et al. found that the magnetic "eld produced on the scale l&100 cm
has a magnitude

BlKvEK5 G . (4.3)

Following the approach which was "rst developed by Hogan [105], the magnetic "eld on scales
¸<l can be estimated by performing a proper volume average of the "elds produced by a large
number of magnetic dipoles of size l randomly oriented in space. Such an average gives

B
	
"Bl�

l

¸�
���

. (4.4)

After the QCDPT the magnetic "eld evolves according to the frozen-in law (1.24). It is straightfor-
ward to estimate the magnetic "eld strength at the recombination time on a given scale ¸. The
smaller conceivable coherence length is given by the dissipation length at that time which,
following the argument already described in Section 1.4, is found to be ¸


	��
(t
���

)K5�10�� cm,
corresponding to 1 A.U. at the present-time. On this scale the magnetic "eld produced at the
QCDPT is K2�10���G. This small strength is further dramatically suppressed if one considers
scales of the order of the galactic size &10 kpc. Therefore, it looks quite unplausible that the
magnetic "elds generated by this mechanism could have any phenomenological relevance even if
the galactic dynamo was e!ective.

According to a more recent paper by Cheng and Olinto [140] stronger "elds might be produced
during the coexistence phase of the QCDPT. The new point raised by the authors of Ref. [140] is
that even during such an equilibrium phase a baryon excess builds up in front of the bubble wall,
just as a consequence of the di!erence of the baryon masses in the quark and hadron phases.
According to some numerical simulations [141], this e!ect might enhance the baryon density
contrast by few orders of magnitude. Even more relevant is the thickness of the charged baryonic
layer which, being controlled by baryon di!usion, is &10� fm rather than the microphysics QCD
length scale &1 fm. In this scenario magnetic "elds are generated by the peculiar motion of the
electric dipoles which arises from the convective transfer of the latent heat released by the
expanding bubble walls. The "eld strength at the QCDPT time has been estimated by Cheng and
Olinto to be as large as

B
&	!

K10�G (4.5)

on a maximal coherence length l
���

KH��
&	!

. Once again, by assuming frozen-in evolution of the
"eld, one can determine present-time values:

B
�
K10���G, l

�
K1 pc . (4.6)
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��At the time the paper by Baym et al. was written, a "rst-order EWPT was thought to be compatible with the
standard model. Therefore all computations in [146] were done in the framework of that model.
�� It is worthwhile to observe here that thermal #uctuation in a dissipative plasma can actually produce stochastic

magnetic "elds on a scale larger than the thermal wavelength [147,148].

Using Eq. (4.4) Cheng and Olinto found that on the galactic length scale B(kpc)K10���G which
may have same phenomenological relevance if the galactic dynamo is very e!ective.

In a subsequent work, Sigl et al. [142] investigated the possible role that hydrodynamic
instabilities produced by the expanding bubble walls may have in generating strong magnetic
"elds. Although it is not clear whether these instabilities can really develop during the QCDPT,
Sigl et al. claimed that this phenomenon is not implausible for a reasonable choice of the QCDPT
parameters. By taking into account the damping due to the "nite viscosity and heat conductivity of
the plasma, the authors of Ref. [142] showed that the instability may grow nonlinearly producing
turbulence on a scale of the order of the bubble size at the percolation time. As a consequence,
a MHD dynamo may operate to amplify seed magnetic "elds and equipartition of the magnetic
"eld energy with the kinetic energy may be reached. If this is the case, magnetic "elds of the order of
10���G may be obtained at the present time on a very large scale &10 Mpc. Larger "elds may be
obtained by accounting for an inverse cascade (see Section 1.4). In the most optimistic situation in
which the magnetic "eld was produced having maximal helicity at the QCDPT and equipartion
between magnetic and thermal energy was realized at that time, Eqs. (1.34), (1.35) for the time
evolution of the rms "eld strength and coherence length apply. By substituting in such equations
the initial scale l(¹

�
)&r

 
(¹

&	!
)&30 km, and B

�����
(¹

�
)&10��G, one "nds the present-time

values

B
���

(¹
�

)&10��G, ¸
���

&100 kpc . (4.7)

Remarkably, we see that in this optimistic case no dynamo ampli"cation is required to explain
galactic, and probably also cluster, magnetic "elds.

4.3. Magnetic xelds from the electroweak phase transition

4.3.1. Magnetic xelds from a turbulent charge yow
Some of the ingredients which may give rise to magnetogenesis at the QCDPT may also be

found at the electroweak phase transition (EWPT). As for the case of the QCDPT, magnetogenesis
at the weak scale seems to require a "rst-order transition. Although recent lattice computations
performed in the framework of the standard electroweak theory [143] give a strong evidence
against a "rst-order transition, this remains a viable possibility if supersymmetric extension of the
standard model is considered [144]. It is noticeable that a "rst-order EWPT is also required for
the successful realization of the electroweak baryogenesis scenario [145]. Indeed, as we shall see in
the rest of this review, this is only one among several common aspects of baryogenesis and
magnetogenesis.

According to Baym et al. [146] strong magnetic "elds can be generated by a "rst-order EWPT��
via a dynamo mechanism. In this scenario seed "elds are provided by random magnetic "eld
#uctuations which are always present on a scale of the order of a thermal wavelength.�� The
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ampli"cation of such seed "elds proceeds as follows. When the Universe supercooled below the
critical temperature (¹

�
&100 GeV) the Higgs "eld locally tunneled from the unbroken

SU(2)�U(1)
$

phase to the broken ;(1)
��

phase. The tunneling gave rise to the formation of
broken phase bubbles which then expanded by converting the false vacuum energy into kinetic
energy. Although the bubble wall velocity is model dependent, one can "nd that for a wide range of
the standard model parameters the expansion is subsonic (de#agration) which gives rise to
a supersonic shock wave ahead of the burning front. As the shock fronts collided turbulence should
have formed in the cone associated with the bubble intersection. The Reynolds number for the
collision of two bubbles is

Re&
v
���	


R
������

�
, (4.8)

where v
���	


&v
����

&10�� is the typical #uid velocity, R
������

is the size of a bubble at the collision
time and � is the scattering length of excitations in the electroweak plasma. The typical size of
a bubble after the phase transition is completed is in the range

R
������

&f
�
H��

��
, (4.9)

where

H��
��

&

m
��

g���
H

¹�
�

&10 cm (4.10)

is the size of the event horizon at the electroweak scale, m
��

is the Planck mass, g
H

&10� is the
number of massless degrees of freedom in the matter, and the fractional size f

�
is &10��}10��.

The typical scattering length � of excitations in the plasma is of order

�&

1
¹g

��
��
�
�ln �

�
�

, (4.11)

where �
�

is the "ne structure constant at the electroweak scale, and g
��

&g
H

is the number
of degrees of freedom that scatter by electroweak processes. By substituting these expressions,
Baym et al. found that

Re&10��
m
��

¹
�

��
�
�ln �

�
�&10�� . (4.12)

Such a huge Reynolds number means that turbulence fully develops at all scales smaller than
R

������
. Since conductivity is expected to be quite large at that time [49], magnetic "elds followed

the #uid motion so that a strong magnetic turbulence should also have been produced. In such
a situation it is known that the kinetic energy of the turbulent #ow is equipartitioned with the
magnetic "eld energy. Therefore

B�(R
������

)&�(¹
�
)v�

���	

, (4.13)

where �(¹
�
)&g

H
¹�

�
is the energy density of the electroweak plasma.
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In order to estimate the magnetic "eld strength on a scale larger than R
������

, Baym et al. treated
the large-scale "eld as a superposition of the "eld of dipoles with size R

������
. This is similar to what

was done by other authors [105,140] (see what we wrote above for the QCDPT) but for the fact
that Baym et al. used a continuum approximation for the distribution of dipoles rather than to
assume a random walk of the "eld lines. The density ��(r) of dipoles pointing in the ith direction was
assumed to be Gaussianly distributed. This implies the following correlation functions for the
density of dipoles:

���(r)��(0)�"��������(r) (4.14)

and for the magnetic "eld

�B(r) ) B(0)�&e���d�r



1
�r!r



��

1
�r


��

. (4.15)

The logarithmic divergence of the integral in these regions is cut o! by the size of the typical dipole,
f
�
H��

��
, so that for r<f

�
H��

��
,

�B(r) ) B(0)�&

e��
r�

ln�
H

��
r

f
�
� . (4.16)

By using this expression and the equipartition relation (4.13) one "nds that the strength of
B� measured by averaging on a size scale R is

�B��


&v�

���	

g
H

¹�
��

f
�

H
��
R�

�
ln��

H
��
R

f
�
� . (4.17)

This result can be better expressed in terms of the ratio r of �B�� to the energy �� in photons which
is a constant during Universe expansion in the absence of #ux di!usion. From Eq. (4.17) one gets

r
%

&v�
���	


f �
� �

�
��
R �

�
ln��

R
f
�
�
��
� , (4.18)

where �
��

is the Hubble radius at the electroweak phase transition (&1 cm) times the scale factor,
¹

�
/¹� , where ¹� is the photon temperature.
From the previous results the authors of Ref. [146] estimated the average magnetic "eld strength

at the present time. This is

B(l

	��

)&10��}10��G , (4.19)

where l

	��

&10 A.U. is the present-time di!usion length, and

B(l

��

)&10���}10���G , (4.20)

on the galactic scale l

��

&10� A.U.

4.3.2. Magnetic xelds from Higgs xeld equilibration
In the previous section we have seen that, concerning the generation of magnetic "elds, the

QCDPT and the EWPT share several common aspects. However, there is one important aspect
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which makes the EWPT much more interesting than the QCDPT. In fact, at the electroweak scale
the electromagnetic "eld is directly in#uenced by the dynamics of the Higgs "eld which drives
the EWPT.

To start with we recall that, as a consequence of the Weinberg}Salam theory, initially the EWPT
was not even able to de"ne the electromagnetic "eld, and that this operation remains highly
nontrivial until the transition is completed. In a sense, we can say that the electromagnetic "eld was
`borna during the EWPT. The main problem in the de"nition of the electromagnetic "eld at the
weak scale is the breaking of the translational invariance: the Higgs "eld module and its S;(2) and
;

$
(1) phases take di!erent values in di!erent positions. This is either a consequence of the presence

of thermal #uctuations, which close to ¹
�

are locally able to break/restore the S;(2)�;
$

(1)
symmetry or of the presence of large stable domains, or bubbles, where the broken symmetry has
settled.

The "rst generalized de"nition of the electromagnetic "eld in the presence of a nontrivial Higgs
background was given by t'Hooft [149] in the seminal paper where he introduced magnetic
monopoles in a SO(3) Georgi}Glashow model. t'Hooft's de"nition is the following:

F����,�K &G&��#g���&�'�K &(D��K )�(D��K )' . (4.21)

In the above G&��,R=&�!R=&� , where

�K &,
��
&�
���

(4.22)

(
& are the Pauli matrices) is a unit isovector which de"nes the `directiona of the Higgs "eld in the
SO(3) isospace (which coincides with S;(2)) and (D��K )&"R��K &#g�&�'=���K ', where =�� are the
gauge "elds components in the adjoint representation. The nice features of the de"nition (4.21) are
that it is gauge-invariant and it reduces to the standard de"nition of the electromagnetic "eld
tensor if a gauge rotation can be performed so as to have �K &"!�&� (unitary gauge). In some
models, like that considered by 't Hooft, a topological obstruction may not allow this operation to
be possible everywhere. In this case singular points (monopoles) or lines (strings) where �&"0
appear which become the source of magnetic "elds. 't Hooft's result provides an existence proof of
magnetic "elds produced by nontrivial vacuum con"gurations.

The Weinberg}Salam theory, which is based on the S;(2)�;
$

(1) group representation, does
not predict topologically stable "eld con"gurations. We will see, however, that vacuum non-
topological con"gurations possibly produced during the EWPT can still be the source of magnetic
"elds.

A possible generalization of the de"nition (4.21) for the Weinberg}Salam model was given by
Vachaspati [106]. It is

F���� ,!sin �
#

�K &F&��#cos �
#
F$��!i

sin �
#

g
2

���
[(D��)�D��!(D��)�D��] , (4.23)

where D�"R�!i
g
2

&=&�!i

g�
2
>� .

This expression was used by Vachaspati to argue that magnetic "elds should have been
produced during the EWPT. Synthetically, Vachaspati's argument is the following. It is known that
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��Vachaspati [106] did also consider Higgs "eld gradients produced by the presence of the cosmological horizon.
However, since the Hubble radius at the EWPT is of the order of 1 cm whereas �&(e¹

�
)��&10��� cm, it is easy to

realize that magnetic "elds possibly produced by the presence of the cosmological horizon are phenomenologically
irrelevant.

well below the EWPT critical temperature ¹
�

the minimum energy state of the Universe cor-
responds to a spatially homogeneous vacuum in which � is covariantly constant, i.e.
D��"D��K &"0. However, during the EWPT, and immediately after it, thermal #uctuations give
rise to a "nite correlation length �&(e¹

�
)��. Therefore, there are spatial variations both in the

Higgs "eld module ��� and in its S;(2) and;(1)
$

phases which take random values in uncorrelated
regions.�� It was noted by Davidson [150] that gradients in the radial part of the Higgs "eld cannot
contribute to the production of magnetic "elds as this component is electrically neutral. While this
consideration is certainly correct, it does not imply the failure of Vachaspati's argument. In fact, the
role played by the spatial variations of the S;(2) and ;(1)

$
`phasesa of the Higgs "eld cannot be

disregarded. It is worthwhile to observe that gradients of these phases are not a mere gauge artifact
as they correspond to a nonvanishing kinetic term in the Lagrangian. Of course, one can always
rotate Higgs "elds phases into gauge boson degrees of freedom (see below) but this operation does
not change F���� which is a gauge-invariant quantity. The contribution to the electromagnetic "eld
produced by gradients of �K & can be readily determined by writing the Maxwell equations in the
presence of an inhomogeneous Higgs background [151]

R�F���� "!sin �
#	D��K &F&��#

i
g
R��

4
���

((D��)�D��!D��(D��)�)�
 . (4.24)

Even neglecting the second term on the right-hand side of Eq. (4.24), which depends on the
de"nition of F���� in a Higgs inhomogeneous background (see below), it is evident that a nonvanish-
ing contribution to the electric 4-current arises from the covariant derivative of �K &. The physical
meaning of this contribution may look more clear to the reader if we write Eq. (4.24) in the unitary
gauge

R�F���� "#ie[=��(D�=� )!=�(D�=� )�]!ie[=��(D�=�)!=�(D�=� )�]

!ieR�(=��=�!=�=��) . (4.25)

Not surprisingly, we see that the electric currents produced by the Higgs "eld equilibration after the
EWPT are nothing but = boson currents.

Since, on dimensional grounds, D��&v/� where v is the Higgs "eld vacuum expectation value,
Vachaspati concluded that magnetic "elds (electric "elds were supposed to be screened by the
plasma) should have been produced at the EWPT with strength

B&sin �
#
g¹�

�
+10��G . (4.26)

Of course, these "elds live on a very small scale of the order of � and in order to determine "elds on
a larger scale Vachaspati claimed that a suitable average has to be performed (we shall return to
this issue below in this section).

Before discussing averages, however, let us try to understand better the nature of the magnetic
"elds which may have been produced by the Vachaspati mechanism. We notice that Vachaspati's
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derivation does not seem to invoke any out-of-equilibrium process and indeed the reader may
wonder what is the role played by the phase transition in the magnetogenesis. Moreover, magnetic
"elds are produced anyway on a scale (e¹)�� by thermal #uctuations of the gauge "elds so that it is
unclear what is the di!erence between magnetic "elds produced by the Higgs "elds equilibration
and these more conventional "elds. In our opinion, although Vachaspati's argument is basically
correct its formulation was probably oversimpli"ed. Indeed, several works showed that in order to
reach a complete understanding of this physical e!ect a more careful study of the dynamics of the
phase transition is called for. We shall now review these works starting from the case of a "rst-order
phase transition.
The case of a xrst-order EWPT. Before discussing the S;(2)�;(1) case we cannot overlook some

important work which was previously done about phase equilibration during bubble collision in
the framework of more simple models. In the context of a;(1) Abelian gaugesymmetry, Kibble and
Vilenkin [152] showed that the process of phase equilibration during bubble collisions gives rise to
relevant physical e!ects. The main tool developed by Kibble and Vilenkin to investigate this kind
of processes is the, so-called, gauge-invariant phase diwerence de"ned by

��"�
�

(

dx�D
�
� , (4.27)

where � is the;(1) Higgs "eld phase and D��,R��#eA� is the phase covariant derivative. A and
B are points taken in the bubble interiors and k"1, 2, 3. �� obeys the Klein}Gordon equation

(R�#m�)��"0 , (4.28)

where m"ev is the gauge boson mass. Kibble and Vilenkin assumed that during the collision the
radial mode of the Higgs "eld is strongly damped so that it rapidly settles to its expectation value
v everywhere. One can choose a frame of reference in which the bubbles are nucleated simulta-
neously with centers at (t, x, y, z)"(0, 0, 0,$R

�
). In this frame, the bubbles have equal initial radius

R
	
"R

�
. Their "rst collision occurs at (t

�
, 0, 0, 0) when their radii are R

�
and t

�
"	R�

�
!R�

�
.

Given the symmetry of the problem about the axis joining the nucleation centers (z-axis), the most
natural gauge is the axial gauge. In this gauge

�(x)"�(
, z), A�(x)"x�a(
, z) , (4.29)

where �"0, 1, 2 and 
�"t�!x�!y�. The condition �
&
(
, 0)"0 "xes the gauge completely. At

the point of "rst contact z"0, 
"t
�

the Higgs "eld phase was assumed to change from �
�

to
!�

�
going from one bubble into the other. This constitutes the initial condition of the problem.

The following evolution of � is determined by the Maxwell equation:

R�F��"j�"!ev�D�� (4.30)

and by the Klein}Gordon equation which splits into

R�
 �&#
2


R
�!R�

�
�#m��"0 , (4.31)

R�
 a#

4


R
a!R�

�
a#m�a"0 . (4.32)
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�� It is understood that since the toy model considered by Kibble and Vilenkin is not S;(2)�;(1)
$

, F�� is not the
physical electromagnetic "eld strength.

The solution of the linearized equations (4.31) and (4.32) for 
't
�

then becomes

�
&
(
, z)"

�
�
t
�

�
 �
"

�"

dk
k

sin kz�cos 
(
!t
�
)#

1

t

�

sin 
(
!t
�
)� , (4.33)
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#

1

�t

�
�sin 
(
!t

�
)� , (4.34)

where 
�"k�#m�. The gauge-invariant phase di!erence is deduced by the asymptotic behavior
at zP$R

��"�
&
(t, 0, 0,#R)!�

&
(t, 0, 0,!R)

"

2�
�
t
�

t �cosm(t!t
�
)#

1
mt

�

sinm(t!t
�
)� . (4.35)

Thus, phase equilibration occurs with a time scale t
�

determined by the bubble size, with
superimposed oscillations with frequency given by the gauge-"eld mass. As we see from Eq. (4.34)
phase oscillations come together with oscillations of the gauge "eld. It follows from Eq. (4.30) that
these oscillations give rise to an `electrica current. This current will source an `electromagnetica
"eld strength F�� .�� Because of the symmetry of the problem the only nonvanishing component of
F�� is

F��"x�R
�
a(
, z) . (4.36)

Therefore, we have an azimuthal magnetic "eld B
"F��"�R
�
a and a longitudinal electric "eld

E�"F��"!tR
�
a"!(t/�)B
(
, z), where we have used cylindrical coordinates (�, �). We see

that phase equilibration during bubble collision indeed produces some real physical e!ects.
Kibble and Vilenkin did also consider the role of electric dissipation. They showed that a "nite

value of the electric conductivity � gives rise to a damping in the `electrica current which turns into
a damping for the phase equilibration. They found that

��(t)"2�
�

e������cosmt#
�

2m
sinmt� (4.37)

for small values of �, and

��(t)"2�
�

exp(!m�t/�) (4.38)

in the opposite case. The dissipation time scale is typically much smaller than the time which is
required for two colliding bubbles to merge completely. Therefore the gauge-invariant phase
di!erence settles rapidly to zero in the overlapping region of the two bubbles and in its neighbor-
hood. It is interesting to compute the line integral of D

�
� over the path ABCD represented

in Fig. 4.1. From the previous considerations it follows that ��
(�

"0, ��
(�

"��
�)

"0 and
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Fig. 4.1. Two colliding bubbles are depicted. The gauge invariant phase di!erence is computed along the path ABCD
(from Ref. [152]).

��
�)

"2�
�

. It is understood that in order for the integral to be meaningful, the vacuum
expectation value of the Higgs "eld has to remain nonzero in the collision region and around it, so
that the phase � remains well de"ned and interpolates smoothly between its values inside the
bubbles. Under these hypothesis we have

�
(�)�

D
�
� dx�"2�

�
. (4.39)

The physical meaning of this quantity is recognizable at a glance in the unitary gauge, in which
each �� is given by a line integral of the vector potential A. We see that the gauge-invariant phase
di!erence computed along the loop is nothing but the magnetic #ux through the loop itself

�(B)"�
(�)�

A
�
� dx�"

1
e�

(�)�

D
�
� dx�"

2�
�
e

. (4.40)

In other words, phase equilibration gives rise to a ring of magnetic #ux near the circle on which
bubble walls intersect. If the initial phase di!erence between the two bubbles is 2�, the total #ux
trapped in the ring is exactly one #ux quantum, 2�/e.

Kibble and Vilenkin did also consider the case in which three bubbles collide. They argued that
in this case the formation of a string, in which interior symmetry is restored, is possible. Whether or
not this happens is determined by the net phase variation along a closed path going through the
three bubbles. The string forms if this quantity is larger than 2�. According to Kibble and Vilenkin
strings cannot be produced by two bubble collisions because, for energetic reasons, the system will
tend to choose the shorter of the two paths between the bubble phases so that a phase displacement
52� can never be obtained. This argument, which was "rst used by Kibble [153] for the study of
defect formation, is often called the `geodesic rulea.

The work of Kibble and Vilenkin was reconsidered by Copeland and Sa$n [154] and more
recently by Copeland et al. [155], who showed that during bubble collision the dynamics of the
radial mode of the Higgs "eld cannot really be disregarded. In fact, violent #uctuations in
the modulus of the Higgs "eld take place and cause symmetries to be restored locally, allowing the
phase to `slipa by an integer multiple of 2� violating the geodesic rule. Therefore strings, which
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carry a magnetic #ux, can be produced also by the collision of only two bubbles. Sa$n and
Copeland [156] went a step further by considering phase equilibration in the S;(2)�;(1) case,
namely the electroweak case. They showed that for some particular initial conditions the
S;(2)�;(1) Lagrangian is equivalent to a;(1) Lagrangian so that part of the Kibble and Vilenkin
[152] considerations can be applied. The violation of the geodesic rule allows the formation of
vortex con"gurations of the gauge "elds. Sa$n and Copeland argued that these con"gurations are
related to the Nielsen}Olesen vortices [157]. Indeed, it is known that such kinds of nonpertur-
bative solutions are allowed by the Weinberg}Salam model [158] (for a comprehensive review on
electroweak strings see Ref. [159]). Although electroweak strings are not topologically stable,
numerical simulations performed in Ref. [156] show that in the presence of small perturbations the
vortices survive on times comparable to the time required for bubbles to merge completely.

The generation of magnetic "elds in the S;(2)�;(1)
$

case was not considered in the work by
Sa$n and Copeland. This issue was the subject of a subsequent paper by Grasso and Riotto [151].
The authors of Ref. [151] studied the dynamics of the gauge "elds starting from the following initial
Higgs "eld con"guration:

�
	�

(x)"
1

	2�
0

�(x)�#
1

	2
exp�!i

�
�

2
n&
&��

0

�(x!b)e	
�� (4.41)

which represents the superposition of the Higgs "elds of two bubbles which are separated by
a distance b. In the above n& is a unit vector in the S;(2) isospace and 
& are the Pauli matrices. The
phases and the orientation of the Higgs "eld were chosen to be uniform across any single bubble. It
was assumed that Eq. (4.41) holds until the two bubbles collide (t"0). Since n&
& is the only
Lie-algebra direction which is involved before the collision, one can write the initial Higgs "eld
con"guration in the form [156]

�
	�

(x)"
1

	2
exp�!i

�(x)
2

n&
&��
0

�(x)e	
�x�� . (4.42)

In order to disentangle the peculiar role played by the Higgs "eld phases, the initial gauge "elds
=&� and their derivatives were assumed to be zero at t"0. This condition is of course gauge
dependent and should be interpreted as a gauge choice. It is convenient to write the equation of
motion for the gauge "elds in the adjoint representation. For the S;(2) gauge "elds we have

D�F&��"g�����&�'D��K ��K ' , (4.43)

where the isovector �K & has been de"ned in Eq. (4.22). Under the assumptions mentioned above, at
t"0, this equation reads

R�F&��"!g����R��(x)(n&!n'�K &�K ') . (4.44)

In general, the unit isovector �K & can be decomposed into

�K "cos ��K
�
#sin �n(��K

�
#2 sin�

�
2

(n( ) �K
�

)n( , (4.45)
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where �K �
�
,!(0, 0, 1). It is straightforward to verify that in the unitary gauge, �K reduces to �K

�
. The

relevant point in Eq. (4.42) is that the versor n( , about which the S;(2) gauge rotation is performed,
does not depend on the space coordinates. Therefore, without loss of generality, we have the
freedom to choose n( to be everywhere perpendicular to �K

�
. In other words, �K can be everywhere

obtained by rotating �K
�

by an angle � in the plane identi"ed by n( and �K
�

. Formally,
�K "cos ��K

�
#sin �n(��K

�
, which clearly describes a simple ;(1) transformation. In fact, since it is

evident that the condition n( ��K
�

also implies n( ��K , the equation of motion (4.44) becomes

R�F&��"!g����R��(x)n& . (4.46)

As expected, we see that only the gauge "eld component along the direction n( , namely A�"n&=&� ,
has some initial dynamics which is created by a nonvanishing gradient of the phase between the
two domains. When we generalize this result to the full S;(2)�;(1)

$
gauge structure, an extra

generator, namely the hypercharge, comes in. Therefore in this case it is no longer possible to
choose an arbitrary direction for the unit vector n( since di!erent orientations of the unit vector
n( with respect to �K

�
correspond to di!erent physical situations. We can still consider the case in

which n( is parallel to �K
�

but we should bear in mind that this is not the only possibility. In this case
we have

R�F���"
g
2
��(x)(R��#R��) , (4.47)

R�F$��"!

g�
2

��(x)(R��#R��) , (4.48)

where g and g� are, respectively, the S;(2) and;(1)
$

gauge coupling constants. It is noticeable that
in this case the charged gauge "elds are not excited by the phase gradients at the time when bubbles
"rst collide. We can combine Eqs. (4.47) and (4.48) to obtain the equation of motion for the
Z-boson "eld

R�F"��"
	g�#g��

2
��(x)(R��#R��) . (4.49)

This equation tells us that a gradient in the phases of the Higgs "eld gives rise to a nontrivial
dynamics of the Z-"eld with an e!ective gauge coupling constant 	g�#g��. We see that the
equilibration of the phase (�#�) can be now treated in analogy with the;(1) toy model studied by
Kibble and Vilenkin [152], the role of the ;(1) `electromagnetica "eld being now played by the
Z-"eld. However, di!erently from Ref. [152], the authors of Ref. [151] left the Higgs "eld modulus
free to change in space. Therefore, the equation of motion of �(x) has to be added to (4.49).
Assuming that the charged gauge "eld does not evolve signi"cantly, the complete set of equations
of motion that we can write at "nite, though small, time after the bubbles "rst contact, is

R�F"��"
g

2 cos �
#

��(x)�R��#

g
2 cos �

#

Z�� ,

d�d� (�(x)e	
��)#2����(x)!
1
2
����(x)e	
��"0 , (4.50)
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where d�"R�#ig/2 cos �
#
Z� , � is the vacuum expectation value of � and � is the quartic

coupling. Note that, in analogy with [152], a gauge-invariant phase di!erence can be introduced by
making use of the covariant derivative d� . Eqs. (4.50) are the Nielsen}Olesen equations of motion
[157]. Their solution describes a Z-vortex where �"0 at its core [160]. The geometry of the
problem implies that the vortex is closed, forming a ring whose axis coincides with the conjunction
of bubble centers. This result provides further support to the possibility that electroweak strings are
produced during the EWPT.

In principle, in order to determine the magnetic "eld produced during the process that we
illustrated in the above, we need a gauge-invariant de"nition of the electromagnetic "eld strength
in the presence of the nontrivial Higgs background. We know, however, that such a de"nition is not
unique [161]. For example, the authors of Ref. [151] used the de"nition given in Eq. (4.23) to "nd
that the electric current is

R�F���� "2 tan �
#
R�(Z�R� ln �(x)!Z�R� ln �(x)) (4.51)

whereas other authors [162], using the de"nition

F����,!sin �
#

�K &F&��#cos �
#
F$��#

sin �
#

g
�&�'�K &(D��K )�(D��K )' , (4.52)

found no electric current, hence no magnetic "eld, at all. We have to observe, however, that the
choice between these, as other, gauge-invariant de"nitions is more a matter of taste than physics.
Di!erent de"nitions just give the same name to di!erent combinations of the gauge "elds. The
important requirement which acceptable de"nitions of the electromagnetic "eld have to ful"ll is
that they have to reproduce the standard de"nition in the broken phase with a uniform Higgs
background. This requirement is ful"lled by both the de"nitions used in Refs. [151,162]. In our
opinion, it is not really meaningful to ask what is the electromagnetic "eld inside, or very close to,
the electroweak strings. The physically relevant question is what are the electromagnetic relics of
the electroweak strings once the EWPT is concluded.

One important point to keep in mind is that electroweak strings are not topologically stable (see
[159] and references therein) and that, for the physical value of the Weinberg angle, they rapidly
decay after their formation. Depending on the nature of the decay process two scenarios are
possible. According to Vachaspati [163] long strings should decay in short segments of length
&m��

#
. Since the Z-string carries a #ux of Z-magnetic #ux in its interior

�
"
"

4�
�

"

4�
e

sin �
#

cos �
#

. (4.53)

and the Z gauge "eld is a linear superposition of the =� and > "elds then, when the
string terminates, the > #ux cannot terminate because it is a ;(1) gauge "eld and the > magnetic
"eld is divergenceless. Therefore some "eld must continue even beyond the end of the string. This
has to be the massless "eld of the theory, that is, the electromagnetic "eld. In some sense, a "nite
segment of Z-string terminates on magnetic monopoles [158]. The magnetic #ux emanating from
a monopole is

�
�
"

4�
�

tan �
#

"

4�
e

sin��
#

. (4.54)
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This #ux may remain frozen in the surrounding plasma and become a seed for cosmological
magnetic "elds.

Another possibility is that Z-strings decay by the formation of a =-condensate in their cores.
In fact, it was shown by Perkins [164] that while electroweak symmetry restoration in the core of
the string reduces m

#
, the magnetic "eld via its coupling to the anomalous magnetic moment of the

=-"eld, causes, for eB'm�
#

, the formation of a condensate of the=-"elds. Such a process is based
on the Ambjorn}Olesen instability which will be discussed in some detail in Section 5 of this review.
As noted in [151], the presence of an inhomogeneous =-condensate produced by string decay
gives rise to electric currents which may sustain magnetic "elds even after the Z string has
disappeared. The formation of a=-condensate by strong magnetic "elds at the EWPT time, was
also considered by Olesen [165].

We can now wonder what is the predicted strength of the magnetic "elds at the end of the
EWPT. An attempt to answer this question has been made by Ahonen and Enqvist [166] (see also
Ref. [167]) where the formation of ring-like magnetic "elds in collisions of bubbles of broken phase
in an Abelian Higgs model was inspected. Under the assumption that magnetic "elds are generated
by a process that resembles the Kibble and Vilenkin [152] mechanism, it was concluded that
a magnetic "eld of the order of BK2�10��G with a coherence length of about 10�GeV�� may be
originated. Assuming turbulent enhancement the authors of Ref. [166] of the "eld by inverse
cascade [51], a root-mean-square value of the magnetic "eld B

���
K10���G on a comoving scale

of 10 Mpc might be present today. Although our previous considerations give some partial support
to the scenario advocated in [166] we have to stress, however, that only in some restricted cases it is
possible to reduce the dynamics of the system to the dynamics of a simple ;(1) Abelian group.
Furthermore, once Z-vortices are formed the non-Abelian nature of the electroweak theory is
apparent due to the back-reaction of the magnetic "eld on the charged gauge bosons and it is not
evident that the same numerical values obtained in [166] will be obtained in the case of the EWPT.

However, the most serious problem with the kind of scenario discussed in this section comes
from the fact that, within the framework of the standard model, a "rst-order EWPT seems to be
incompatible with the Higgs mass experimental lower limit [143]. Although some parameter
choice of the minimal supersymmetric standard model (MSSM) may still allow a "rst-order
transition [144], which may give rise to magnetic "elds in a way similar to that discussed in the
above, we think it is worthwhile to keep an open mind and consider what may happen in the case of
a second-order transition or even in the case of a crossover.

The case of a second-order EWPT. As we discussed in the "rst part of this section, magnetic "elds
generation by Higgs "eld equilibration share several common aspects with the formation of
topological defects in the early Universe. This analogy holds, and it is even more evident, in the case
of a second-order transition. The theory of defect formation during a second-order phase transition
was developed in a seminal paper by Kibble [153]. We brie#y review some relevant aspects of the
Kibble mechanism. We start from the Universe being in the unbroken phase of a given symmetry
group G. As the Universe cools and approaches the critical temperature ¹

�
protodomains are

formed by thermal #uctuations where the vacuum is in one of the degenerate, classically equivalent,
broken symmetry vacuum states. Let M be the manifold of the broken symmetry degenerate vacua.
The protodomains size is determined by the Higgs "eld correlation function. Protodomains
become stable to thermal #uctuations when their free energy becomes larger than the temperature.
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The temperature at which this happens is usually named Ginsburg temperature ¹



. Below
¹



stable domains are formed which, in the case of a topologically nontrivial manifold M, give rise
to defect production. Rather, if M is topologically trivial, phase equilibration will continue until the
Higgs "eld is uniform everywhere. This is the case of the Weinberg}Salam model, as well as of its
minimal supersymmetrical extension.

Higgs phase equilibration, which occurs when stable domains merge, gives rise to magnetic "elds
in a way similar to that described by Vachaspati [101] (see the beginning of this section). One
should keep in mind, however, that as a matter of principle, the domain size, which determines the
Higgs "eld gradient, is di!erent from the correlation length at the critical temperature [151]. At the
time when stable domains form, their size is given by the correlation length in the broken phase
at the Ginsburg temperature. This temperature was computed, in the case of the EWPT, by the
authors of Ref. [151] by comparing the expansion rate of the Universe with the nucleation rate per
unit volume of sub-critical bubbles of symmetric phase (with size equal to the correlation length in
the broken phase) given by

�
��

"

1
l�
�

e��
��
� �� , (4.55)

where l
�

is the correlation length in the broken phase. S��
�

is the high-temperature limit of the
Euclidean action (see e.g. Ref. [168]). It was shown that for the EWPT the Ginsburg temperature is
very close to the critical temperature, ¹



"¹

�
within a few percent. The corresponding size of

a broken phase domain is determined by the correlation length in the broken phase at ¹"¹
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) , (4.56)

where<(�, ¹) is the e!ective Higgs potential. l(¹



)�
�

is weakly dependent on M
 

, l
�
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)K11/¹



for M
 

"100 GeV and l
�

(¹



)K10/¹



for M
 

"200 GeV. Using this result and Eq. (4.23) the
authors of Ref. [151] estimated the magnetic "eld strength at the end of the EWPT to be of the
order of

Bl&4e�� sin� �
#
l�
�

(¹



)&10��G , (4.57)

on a length scale l
�

(¹



).
Although it was shown by Martin and Davis [169] that magnetic "elds produced on such a scale

may be stable against thermal #uctuations, it is clear that magnetic "elds of phenomenological
interest live on scales much larger than l

�
(¹



). Therefore, some kind of average is required. We are

ready to return to the discussion of the Vachaspati mechanism for magnetic "eld generation [106].
Let us suppose that we are interested in the magnetic "eld on a scale ¸"Nl. Vachaspati argued
that, since the Higgs "eld is uncorrelated on scales larger than l, its gradient executes a random
walk as we move along a line crossing N domains. Therefore, the average of the gradient D�� over
this path should scale as 	N. Since the magnetic "eld is proportional to the product of two
covariant derivatives, see Eq. (4.23), Vachaspati concluded that it scales as 1/N. This conclusion,
however, overlooks the di!erence between �D�����D��� and �D���D���. This point was
noticed by Enqvist and Olesen [107] (see also Ref. [109]) who produced a di!erent estimate for the
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average magnetic "eld, �B�
����	

,B(¸)&Bl/	N. Neglecting the possible role of the magnetic
helicity (see the next section) and of possible related e!ects, e.g. inverse cascade, and using
Eq. (4.57), the line-averaged "eld today on a scale ¸&1 Mpc (N&10��) is found to be of the order
B
�

(1 Mpc)&10���G.
Another important aspect of this kind of scenario (for the reasons which will become clear in the

next section) is that it naturally gives rise to a nonvanishing vorticity. This point can be understood
by the analogy with the process which leads to the formation of super#uid circulation in
a Bose}Einstein #uid which is rapidly taken below the critical point by a pressure quench [170].
Consider a circular closed path through the super#uid of length C"2�R. This path will cross
NKC/l domains, where l is the characteristic size of a single domain. Assuming that the phase
� of the condensate wave function is uncorrelated in each of the N domains (random-walk
hypothesis) the typical mismatch of � is given by

��"�
)

�� ) ds&	N , (4.58)

where �� is the phase gradient across two adjacent domains and ds is the line element along the
circumference. It is well known (see e.g. [171]) that from the SchroK dinger equation it follows that
the velocity of a super#uid is given by the gradient of the phase through the relation *

�
"(�/m)��,

therefore (4.58) implies that

*
�
"(�/m)

1
d

1

	N
. (4.59)

It was argued by Zurek [170] that this phenomenon can e!ectively simulate the formation of
defects in the early Universe. As we discussed in the previous section, although the standard model
does not allow topological defects, embedded defects, namely electroweak strings, may be produc-
ed through a similar mechanism. Indeed a close analogy was shown to exist [172] between the
EWPT and the �He super#uid transition where formation of vortices is experimentally observed.
This hypothesis received further support from some recent lattice simulations which showed
evidence for the formation of a cluster of Z-strings just above the cross-over temperature [173] in
the case of a 3D S;(2) Higgs model. Electroweak strings should lead to the generation of magnetic
"elds in the same way we discussed in the case of a "rst-order EWPT. Unfortunately, to estimate
the strength of the magnetic "eld produced by this mechanism requires the knowledge of the string
density and net helicity which, so far, are rather unknown quantities.

4.4. Magnetic helicity and electroweak baryogenesis

As we discussed in the introduction of our report, the cosmological magnetic #ux is a nearly
conserved quantity due to the high conductivity of the Universe. In this section we will focus on
another quantity which, for the same reason, is approximately conserved during most of the
Universe evolution. This is the so-called magnetic helicity de"ned by

H,�d�xA ) B , (4.60)
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where A is the electromagnetic vector potential and B is the magnetic "eld. In the presence of
a small value of the electric conductivity � the time evolution of H is given by

dH
dt

"!

1
��d�x B ) ��B . (4.61)

Besides the fact that it is a nearly conserved quantity, the magnetic helicity is a very interesting
quantity for a number of di!erent reasons. The main among these reasons are:

� In a "eld theory language H coincides with the Chern}Simon number which is known to be
related to the topological properties of the gauge "elds.

� Since H is a P (parity) and CP-odd function, the observation of a nonvanishing net value of this
quantity would be a manifestation of a macroscopic violation of both these symmetries.

� It is known from magneto-hydro-dynamics that the presence of magnetic helicity can lead to
the ampli"cation of magnetic "elds and contribute to their self-organization into a large-
scale ordered con"guration (see Section 1.4). The same phenomenon could take place at a
cosmological level.

In the last few years, several authors proposed mechanisms for the production of magnetic
helicity in the early Universe starting from particle physics processes. Cornwall [174] suggested
that magnetic helicity was initially stored in the Universe under the form of baryons (B) and leptons
(L) numbers possibly generated by some GUT scale baryogenesis mechanism. He assumed that an
order-one fraction of the total classically conserved B#¸ charge was dissipated by anomalous
processes at the EW scale and showed that a small fraction of this dissipated charge, of the order of
n
��	

¹��, may have been converted into a magnetic helicity of the order of

H&���(N
�
#N

	
)K10�� erg cm . (4.62)

Another possibility is that before symmetry breaking of a non-Abelian gauge symmetry vacuum
con"gurations existed which carried nonvanishing winding number. It was shown by Jackiw and
Pi [175] that after symmetry breaking, one direction in isospin space is identi"ed with electromag-
netism, and the projection of the vacuum con"guration becomes a magnetic "eld with non
vanishing helicity.

A di!erent mechanism was proposed by Joyce and Shaposhnikov [176]. In this case it was
assumed that some excess of right-handed electrons over left-handed positrons was produced by
some means (e.g. from some GUT scale leptogenesis) above a temperature ¹



. At temperatures

higher than ¹



perturbative processes which change electron chirality are out of thermal equilib-
rium (¹



&3 TeV in the SM [177]). Therefore, a chemical potential for right electrons �



can be

introduced above ¹



. On the other hand, the corresponding charge is not conserved because of the
Abelian anomaly, which gives

R� j�
"!

g��y�



64��
f�� fI �� . (4.63)

In the above, f�� and fI �� are, respectively, the;(1)
$

hypercharge "eld strength and its dual, g� is the
associated gauge coupling constant, and y



"!2 is the hypercharge of the right electron. As it is
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well known, Eq. (4.63) relates the variation in the number of the right-handed electrons N



to
the variation of the topological properties (Chern}Simon number) of the hypercharge "eld
con"guration. By rewriting this expression in terms of the hypermagnetic B

$
and the hyperelectric

E
$
"elds,

R� j�
"!

g��
4��

B
$

) E
$

, (4.64)

the relation of j�



with the hypermagnetic helicity is evident. It is worthwhile to observe that only
the hypermagnetic helicity is coupled to the fermion number by the chiral anomaly whereas such
a coupling is absent for the Maxwell magnetic helicity because of the vector-like coupling of the
electromagnetic "eld to fermions. From Eq. (4.63) it follows that the variation in N



, is related to

the variation in the Chern}Simon number,

N
	�

"!

g��
32��� d�x �

���
f
��
b
�

, (4.65)

by �N


"�

�
y�


�N

	�
. In the above b

�
represents the hypercharge "eld potential. The energy density

sitting in right electrons is of order ��


¹� and their number density of order �



¹�. Such fermionic

number can be reprocessed into hypermagnetic helicity of order g��kb�, with energy of order k�b�,
where k is the momentum of the classical hypercharge "eld and b is its amplitude. Therefore, at
b'¹/g�� it is energetically convenient for the system to produce hypermagnetic helicity by
`eating-upa fermions. It was shown by Joyce and Shaposhnikov [176], and in more detail by
Giovannini and Shaposhnikov [178], that such a phenomenon corresponds to a magnetic dynamo
instability. In fact, by adding the anomaly term to the Maxwell-like equations for the hyperelectric
and hypermagnetic "elds these authors were able to write the anomalous magneto-hydrodynami-
cal (AMHD) equations for the electroweak plasma in the expanding Universe, including the
following generalized hypermagnetic di!usivity equation:

RB
$
R
 "!

4a��
��

��(�


B
$

)#��(*�B
$

)#
1
�
��B

$
. (4.66)

In the above a is the Universe scale factor, ��,g��/4�, 
"�a��(t) dt is the conformal time, and
� the electric conductivity of the electroweak plasma [49]. By comparing Eq. (4.66) with the usual
magnetic di!usivity equation (see e.g. Ref. [15]) one sees that the "rst term on the r.h.s. of Eq. (4.66)
corresponds to the so-called dynamo term which is known to be related to the vorticity in the
plasma #ux [11]. We see that the fermion asymmetry, by providing a macroscopic parity violation,
plays a similar role to that played by the #uid vorticity in the dynamo ampli"cation of magnetic
"elds. In the scenario advocated in Refs. [176,178], however, it is not clear what are the seed "elds
from which the dynamo ampli"cation starts. Clearly, no ampli"cation takes place if the initial
value of the hypermagnetic "eld vanishes. Perhaps, seeds "eld may have been provided by thermal
#uctuations or from a previous phase transition although this is a matter of speculation. According
to Joyce and Shaposhnikov [176], assuming that a large right electron asymmetry �



/¹&10��

was present when ¹"¹



, magnetic "eld of strength B&10��G may have survived until the
EWPT time with typical inhomogeneity scales &10�/¹.
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Another interesting point raised by Giovannini and Shaposhnikov [178] is that the Abelian
anomaly may also process a preexisting hypermagnetic helicity into fermions. In this sense the
presence of tangled magnetic "elds in the early Universe may provide a new leptogenesis scenario.

Indeed, assuming that a primordial hypermagnetic "eld B
$

was present before the EWPT with
some nontrivial topology (i.e. �B

$
) ��B

$
�O0) the kinetic equation of right electrons for

¹'¹
�

is

R
Rt�

�



¹ �"!

g��
4���a¹�

783
88

B
$

) ��B
$
!(�#�

��
)
�



¹

, (4.67)

where

�
��

"

783
22

���
�a��

�B
$
��

¹�
(4.68)

is the rate of the N



nonconserving anomalous processes whereas � is the rate of the perturbative
ones. In the case �

��
'�, as a consequence of Eq. (4.67), one "nds that

n
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�� �#O�

�
�
��
� . (4.69)

Below the critical temperature the hypermagnetic "elds are converted into ordinary Maxwell
magnetic "elds. Similar to the usual EW baryogenesis scenario, the fermion number asymmetry
produced by the Abelian anomaly may survive the sphaleron wash-out only if the EWPT is
strongly "rst-order, which we know to be incompatible with the standard model in the absence of
primordial magnetic "elds. However, Giovannini and Shaposhinikov argued that this argument
might not apply in the presence of strong magnetic "elds (we shall discuss this issue in Section 5). If
this is the case a baryon asymmetry compatible with the observations might have been generated at
the EW scale. Another prediction of this scenario is the production of strong density #uctuations at
the BBN time which may a!ect the primordial synthesis of light elements [179].

Primordial magnetic "elds and the primordial magnetic helicity may also have been produced by
the interaction of the hypercharge component of the electromagnetic "eld with a cosmic pseudos-
calar "eld condensate which provides the required macroscopic parity violation. This idea was "rst
sketched by Turner and Widrow [45] in the framework of an in#ationary model of the Universe
which we shall discuss in more details in the next section. Turner and Widrow assumed the
pseudoscalar "eld to be the axion, a particle whose existence is invoked for the solution of the
strong CP problem (for a review see Ref. [180]). Although the axion is supposed to be electrically
neutral it couples to electromagnetic "eld by means of the anomaly. Indeed, the e!ective Lagran-
gian for axion electrodynamics is

L"!�
�
R��R��!�

�
F��F��#g

�
�F��FI �� , (4.70)

where g
�

is a coupling constant of order �, the vacuum angle �"�
�
/f
�
, �

�
is the axion "eld, f

�
is the

Peccei}Quinn symmetry-breaking scale (see Ref. [180]), F�� is the electromagnetic "eld strength
and FI �� is its dual. Since the axion "eld, like any other scalar "eld, is not conformally invariant (see
the next section), it will be ampli"ed during the in#ationary expansion of the Universe starting from
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��The careful reader may wonder what is the fate of axions in the presence of cosmic magnetic "elds. Interestingly, it
was shown by Ahonen et al. [181] that although oscillating cosmic axions drive an oscillating electric "eld, the ensuing
dissipation of axions is found to be inversely proportional to the plasma conductivity and is, therefore, negligible.

quantum #uctuations, giving rise to ����&(H
�

/f
�
)�, which can act as a source term for the

electromagnetic "eld.��
Carroll and Field [182] reconsidered in more detail the idea of Turner and Widrow and found

that the evolution of a Fourier mode of the magnetic "eld with wave number k is governed by the
equation

d�F
�

d
�
#�k�$g

�
k

d�
�

d
 �F�
"0 , (4.71)

where F
�

"a�(B
�
$iB



) are the Fourier modes corresponding to di!erent circular polarizations,

and 
 is the conformal time. One or both polarization modes will be unstable for k(g
�
� d�

�
/d
�,

whereas both polarization modes can become unstable to exponential growth if � is oscillating. In
this case it seems as if a quite strong magnetic "eld could be produced during in#ation. However,
such a conclusion was recently criticized by Giovannini [183] who noted that above the EWPT
temperature QCD sphalerons [184] are in thermal equilibrium which can e!ectively damp axion
oscillations. In fact, because of the presence of QCD sphaleron the axion equation of motion
becomes

�$
�
#(3H#�)�Q

�
"0 (4.72)

where [184]

�"

�
�����
f �
�

¹

K

��
�
¹�

f �
�

(4.73)

(where �
�
"g�

�
/4�). Giovannini found that sphaleron-induced damping dominates over damping

produced by the expansion of the Universe if f
�
'10�GeV. Since astrophysical and cosmological

bounds [125] leave open a window 10��GeV(f
�
(10��GeV, it follows that no magnetic "elds

ampli"cation was possible until QCD sphaleron went out of thermal equilibrium. A very tiny
magnetic helicity production from axion oscillations may occur at lower temperatures. In fact,
Giovannini [183] estimated that in the temperature range 1 GeV'¹'10 MeV a magnetic
helicity of the order of

�B ) ��B�
��

�

&10��� (4.74)

may be generated, which is probably too small to have any phenomenological relevance.
Generation of magnetic "elds from coherent oscillations or roll-down of pseudoscalar "elds

di!erent from the axion has been also considered in the literature. It is interesting that pseudoscalar
"elds with an axion-like anomalous coupling to the electromagnetic "eld appear in several possible
extensions of the SM. Typically, these "elds have only perturbative derivative interactions and
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therefore vanishing potential at high temperatures, and acquire a potential at lower temperatures
through nonperturbative interactions. The generic form of this potential is<(�)"<�

�
A(�/f ), where

A is a bounded function of the `Peccei-Quinna scale f which in this case can be as large as the
Planck scale. The pseudoscalar mass m&<�

�
/f may range from a few eV to 10��GeV. The

ampli"cation of magnetic "elds proceeds in a way quite similar to that discussed for axions. The
evolution equation of the electromagnetic Fourier modes was derived by Brustein and Oaknin
[185] who added to Eq. (4.71) the e!ect of a "nite electric conductivity, "nding

d�F
�

d
�
#�

dF
�

d

#�k�$gk

d�
d
 �F�

"0 . (4.75)

If the pseudoscalar "eld is oscillating, the "eld velocity d�/d
 changes sign periodically and both
polarization modes are ampli"ed, each during a di!erent semi-cycle. Each mode is ampli"ed during
one part of the cycle and damped during the other part of the cycle. Net ampli"cation results when
gkd�/d
'�� and the total ampli"cation is exponential in the number of cycles. Taking into
account that �&10 T before the EWPT [49], Brustein and Oaknin found that a huge ampli"ca-
tion can be obtained from pseudoscalar "eld oscillations at ¹&1 TeV, for a scalar mass m of few
TeV and gf&10. This is a particularly interesting range of parameters as in this case the
pseudoscalar "eld dynamics could be associated with breaking of supersymmetry at the TeV scale.
Since only a limited range of Fourier modes are ampli"ed, with k not too di!erent from ¹, and
modes with k/¹(


��
�;1 are rapidly dissipated, ampli"ed "elds may survive until the EWPT

only if ampli"cation occurred just before the transition. If this is a natural assumption it may be
a matter of discussion. However, it was pointed out by Brustein and Oaknin [185] that if,
depending on the form of the pseudoscalar "eld potential, this "eld rolls instead of oscillating, then
the hypermagnetic "elds would survive until EWPT even if the ampli"cation takes place at higher
temperatures before the transition. In this case there could be interesting consequences for the EW
baryogenesis. This is so because the pseudoscalar "eld may carry a considerable amount of helicity.
According to what was discussed in the above, this number will be released in the form of fermions
and baryons if the EWPT is strongly "rst-order. Brustein and Oaknin argued that this mechanism
could naturally generate the observed BAU.

Clearly, a more serious problem of this mechanism is the same as other EW baryogenesis
scenarios, namely to have a strongly "rst-order EWPT. An interesting possibility which was
proposed by two di!erent groups [178,186] is that strong magnetic "elds may enhance the strength
of the EWPT (see Section 5). Unfortunately, detailed lattice computations [187] showed that this is
not the case. Furthermore, in a recent work by Comelli et al. [188] it was shown that strong
magnetic "elds also increase the rate of EW sphalerons so that the preservation of the baryon
asymmetry calls for a much stronger phase transition than required in the absence of a magnetic
"eld. The authors of Ref. [188] showed that this e!ect overwhelms the gain in the phase transition
strength (see Section 5.3.2). Therefore, the only way for the kind of EW baryogenesis mechanism
discussed in the above to work is to invoke extensions of the standard model which allow for
a strong "rst-order EWPT [144].
Electroweak strings, which we introduced in the previous section, may also carry a net hypermag-

netic helicity and act as a source of the observed BAU. One of the interesting features of these
objects is that they should have been formed during the EWPT even if this transition is second
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order or just a crossover [173]. It is known that electroweak strings can carry magnetic helicity,
hence a baryon number, which is related to the twisting and linking of the string gauge "elds
[159,189]. Several authors (see e.g. Ref. [190]) tried to construct a viable EW baryogenesis scenario
based on these embedded defects. Many of these models, however, run into the same problems of
more conventional EW baryogenesis scenarios. An interesting attempt was made by Barriola [191]
who invoked the presence of a primordial magnetic "eld at the EWPT time. Barriola observed that
the production and the subsequent decay of electroweak strings give rise, in the presence of an
external magnetic "eld, to a variation in the baryon number �B in the time interval dt, given by

�B"

N
*

32���dt�d�x �� cos 2�
#

E
"

) B
"
#

��
2

sin��
#

(E ) B
"
#E

"
) B) , (4.76)

where E
"

and B
"

are the Z-electric and Z-magnetic "elds of the strings whereas E and B are the
corresponding standard Maxwell "elds. The "rst term in the r.h.s. of (4.76) represents the change in
the helicity of the string network, and the second and third terms come from the coupling of the
string "elds with the external Maxwell "elds. Whereas the "rst term averages to zero over a large
number of strings, the other terms may not. Clearly, some bias is required to select a direction in the
baryon number violation. In the speci"c model considered by Barriola this is obtained by a CP
violation coming from the extension of the Higgs sector of the SM, and from the dynamics of
strings which are supposed to collapse along their axis. It was concluded by Barriola that such
a mechanism could account for the BAU. Unfortunately, it is quite unclear if the invoked
out-of-equilibrium mechanism based on the string collapse could indeed be e!ective enough to
avoid the sphaleron wash-out. We think, however, that this possibility deserves further study.

4.5. Magnetic xelds from inyation

As noted by Turner and Widrow [45] in#ation (for a comprehensive introduction to in#ation see
Ref. [46]) provides four important ingredients for the production of primeval magnetic "elds.

� In#ation naturally produces e!ects on very large scales, larger than the Hubble horizon, starting
from microphysical processes operating on a causally connected volume. If electromagnetic
quantum #uctuations are ampli"ed during in#ation they could appear today as large-scale static
magnetic "elds (electric "eld should be screened by the high-conductivity plasma).

� In#ation also provides the dynamical means to amplify these long-wavelength waves. If the
conformal invariance of the electromagnetic "eld is broken in some way (see below) magnetic
"elds could be excited during the de Sitter Universe expansion. This phenomenon is analogous
to particle production occurring in a rapidly changing space}time metric.

� During in#ation (and perhaps during most of reheating) the Universe is not a good conductor so
that magnetic #ux is not conserved and the ratio r of the magnetic "eld with the radiation energy
densities can increase.

� Classical #uctuations with wavelength ��H�� of massless, minimally coupled "elds can grow
super-adiabatically, i.e. their energy density decreases only as &a�� rather than a��.

The main obstacle on the way of this nice scenario is given by the fact that in a conformally #at
metric, like the Robertson}Walker one usually considered, the background gravitational "eld does
not produce particles if the underlying theory is conformally invariant [192]. This is the case for
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photons since the classical electrodynamics is conformally invariant in the limit of vanishing
fermion masses. Several ways to overcome this obstacle have been proposed. Turner and Widrow
[45] considered three possibilities. The "rst is to break explicitly conformal invariance by introduc-
ing a gravitational coupling, like RA�A� or R��A�A�, where R is the curvature scalar, R�� is the
Ricci tensor, and A� is the electromagnetic "eld. These terms break gauge invariance and give the
photons an e!ective, time-dependent mass. In fact, one of the most severe constraints to this
scenario comes from the experimental upper limit to the photon mass, which today is
m�(2�10��� eV [193]. Turner and Widrow showed that for some suitable (though theoretically
unmotivated) choice of the parameters, such a mechanism may give rise to galactic magnetic "elds
even without invoking the galactic dynamo. We leave it to the reader to judge if such a booty
deserves the abandonment of the theoretical prejudice in favor of gauge invariance. A di!erent
model invoking a spontaneous breaking of gauge symmetry of electromagnetism, implying non-
conservation of the electric charge, in the early stage of the evolution of the Universe has been
proposed by Dolgov and Silk [194].

The breaking of the conformal invariance may also be produced by terms of the form
R����F��F��/m� or RF��F�� , where m is some mass scale required by dimensional considerations.
Such terms arise due to one-loop vacuum polarization e!ects in curved space}time, and they have
the virtue of being gauge invariant. Unfortunately, Turner and Widrow showed that they may
account only for a far too small contribution to primordial magnetic "elds. The third way to break
conformal invariance discussed by Turner and Widrow invokes a coupling of the photon to
a charged "eld which is not conformally coupled or the anomalous coupling to a pseudoscalar.
This mechanism was already illustrated in the previous section.

The anomaly can give rise to breaking of the conformal invariance also in a di!erent way. The
kind of anomaly we are now discussing about is the conformal anomaly, which is related to the
triangle diagram connecting two photons to a graviton. It is known (for a review see Ref. [195])
that this kind of diagram breaks conformal invariance by producing a nonvanishing trace of the
energy-momentum tensor

¹��"

�	
8�

F&��F&�� , (4.77)

where � is the "ne-structure constant of the theory based on the S;(N) gauge-symmetry with
N

*
fermion families, and

	"��
�
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�
N
*

. (4.78)

Dolgov [196] pointed out that such an e!ect may lead to strong electromagnetic "elds ampli"ca-
tion during in#ation. In fact, Maxwell equations are modi"ed by the anomaly in the following way:

R�F��#	
R�
a
F��"0 (4.79)

which, in the Fourier space, gives rise to the equation

A�#	
a�
a
A�#k�A"0 , (4.80)
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where A is the amplitude of the vector potential, and a prime stands for a derivation with respect to
the conformal time 
. At the in#ationary stage, when a�/a"!1/
 Dolgov found a solution of
(4.80) growing like (H/k)���. Since k�� grows well above the Hubble radius during the de Sitter
phase, a huge ampli"cation can be obtained if 	'0. Dolgov showed that for 	&1 the magnetic
"eld generated during the in#ationary stage can be large enough to give rise to the observed "elds
in galaxies even without a dynamo ampli"cation. Unfortunately, such a large value of 	 seems to be
unrealistic (	+0.06 for SU(5) with three charged fermions). The conclusion is that galactic
magnetic "elds might be produced by this mechanism only invoking a group larger than S;(5) with
a large number of fermion families, and certainly without the help of dynamo ampli"cation.

As we discussed in the above, conformal invariance of the electromagnetic "eld is generally
spoiled whenever the electromagnetic "eld is coupled to a scalar "eld. Ratra [197] suggested that
a coupling of the form e�(F��F�� , where � is an arbitrary parameter, may lead to a huge
ampli"cation of electromagnetic quantum #uctuations into large-scale magnetic "elds during
in#ation. Such a coupling is produced in some peculiar models of in#ation with an exponential
in#ation potential [198]. It should be noted by the reader that the scalar "eld � coincides here with
the in#ation "eld. According to Ratra, present-time intergalactic magnetic "elds as large as 10��G
may be produced by this mechanism which would not require any dynamo ampli"cation to
account for the observed galactic "elds. Unfortunately, depending on the parameter of the
underlying model, the predicted "eld could also be as low as 10���G!

A slightly more predictive, and perhaps theoretically better motivated, model has been proposed
independently by Lemoine and Lemoine [199], and Gasperini et al. [200], which is based on
superstring cosmology [201,202]. This model is based on the consideration that in string theory the
electromagnetic "eld is coupled not only to the metric (g�� ), but also to the dilaton "eld �. In the
low-energy limit of the theory, and after dimensional reduction from 10 to 4 space}time dimen-
sions, such a coupling takes the form

	!ge�(F��F�� (4.81)

which breaks conformal invariance of the electromagnetic "eld and coincides with the coupling
considered by Ratra [197] if �"!1. Ratra, however, assumed in#ation to be driven by the scalar
"eld potential, which is not the case in string cosmology. In fact, typical dilaton potentials are much
too steep to produce the required slow-roll of the in#ation ("dilaton) "eld. According to string
cosmologists, this problem can be solved by assuming in#ation to be driven by the kinetic part of
the dilaton "eld, i.e. from �� [201]. In such a scenario the Universe evolves from a #at, cold, and
weakly coupled (�"!R) initial unstable vacuum state toward a curved, dilaton-driven, strong
coupling regime. During this period, called pre-big-bang phase, the scale factor and the dilaton
evolve as

a(
)&(!
)�, �(
)&� ln a, 
(!

�

, (4.82)

with 	'1 and �(0. At 
'!

�

the standard FRW phase with a radiation-dominated Universe
begins. In the presence of the nontrivial dilaton background the modi"ed Maxwell equation takes
the form [199]

��F��!���F��"0 . (4.83)
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Electromagnetic "eld ampli"cation from quantum #uctuations takes place during the pre-big-bang
phase when ��"�/
, where �"	�. By following the evolution of the electromagnetic "eld modes
from t"!R to now, Lemoine and Lemoine estimated that, in the most simple model of
dilaton-driven in#ation (with <(�)"�"p"0) a very tiny magnetic "eld is predicted today

�B�����&10����
¸

1 Mpc�
��'�

�
H
�

M
��
�
�'��

G , (4.84)

where H
�
"1/


�
, which is far too small to account for galactic "elds.

Gasperini et al. [200] reached a di!erent conclusion, claiming that magnetic "elds as large as
those required to explain galactic "elds without dynamo ampli"cation may be produced on the
protogalactic scale. The reason for such a di!erent result is that they assumed a new phase to exist
between the dilaton-dominated phase and the FRW phase during which dilaton potential is
nonvanishing. The new phase, called the string phase, should start when the string length scale
�
�

becomes comparable to the horizon size at the conformal time 

�

[203]. Unfortunately, the
duration of such a phase is quite unknown, which makes the model not very predictive.

Recently, several papers have been published (see e.g. Refs. [204}206]) which proposed the
generation of magnetic "elds by #uctuations of scalar (or pseudo-scalar) "elds which were
ampli"ed during, or at the end, of in#ation. In some of those papers [204,206] the authors claim
that magnetic "elds as strong as those required to initiate a successful galactic dynamo may be
produced. This conclusion, however, is based on incorrect assumptions. According to Giovannini
and Shaposhnikov [205,215], the main problem resides in the approximate treatment of dissipative
e!ects adopted in Refs. [204,206]. Whereas in Ref. [206] dissipation of electric "elds was totally
neglected, in Ref. [204] an incorrect dependence of the electric conductivity on the temperature
was used. Adopting the correct expression for the conductivity (see e.g. Refs. [49]) the authors of
Ref. [205] found that in#ation produces "elds which are too small to seed galactic dynamo.

4.6. Magnetic xelds from cosmic strings

At the beginning of this section we brie#y discussed the Harrison}Rees mechanism for vortical
production of magnetic "elds in the primordial plasma. In this section we will brie#y review as
a cosmic string may implement this mechanism by providing a vorticity source on scales compara-
ble to galactic sizes. Cosmic strings are one-dimensional topological defects which are supposed to
have been formed during some primordial phase transition through the Kibble mechanism [153],
which we already discussed in Section 4.3 (for a review on cosmic strings see Ref. [207]). The idea
that a cosmic string may produce plasma vorticity and magnetic "elds was "rst proposed by
Vachaspati and Vilenkin [208]. In this scenario vorticity is generated in the wakes of fast-moving
cosmic strings after structure formation begins. Di!erently from Harrison's [131] scenario (see
Section 4.1), in this case vorticity does not decay with Universe expansion since the vortical eddies
are gravitationally bounded to the string. Even if the mechanism we are considering is supposed to
take place after recombination, a su$cient amount of ionization should be produced by the violent
turbulent motion so that the Harrison}Rees [19] mechanism can still operate. The scale of
coherence of the generated magnetic "elds is set by the scale of wiggles of the string and, for wakes
created at recombination time it can be up to 100 kpc. The predicted "eld strength is of the order of

D. Grasso, H.R. Rubinstein / Physics Reports 348 (2001) 163}266 239



&10���G, that could be enough to seed the galactic dynamo. The main problem with this
scenario is that it is not clear whether stable vortical motion can be really generated by the chaotic
motion of the string wiggles.

An alternative mechanism has been proposed by Avelino and Shellard [209]. In their model,
vorticity is generated not by the wiggles but by the strings themselves which, because of the "nite
dynamical friction, drag matter behind them inducing circular motions over inter-string scales.
Unfortunately, the magnetic "eld strength predicted by this model at the present time is very weak
&10���G, which can only marginally seed the galactic dynamo.

Larger "elds may be produced if cosmic strings are superconducting. String superconductivity
was "rst conceived by Witten [210]. The charge carriers on these strings can be either fermions or
bosons, and the critical currents can be as large as 10��A. If primordial magnetic "elds pre-existed,
or formed together with, cosmic strings they may play a role in charging up superconducting
strings loops and delaying their collapse [211]. Otherwise, superconducting cosmic strings can
themselves give rise to magnetic "elds in a way similar to that proposed by Avelino and Shellard.
An important di!erence, however, arises with respect to the nonsuperconducting case discussed in
Ref. [209]. As shown by Dimopoulos and Davis [212], superconducting strings networks may be
more tangled and slower than conventional cosmic strings because of the strong current which
increases dynamical friction. It was shown by Dimopoulos [213] that if the string velocity is small
enough the gravitational in#uence of the string on the surrounding plasma becomes a relevant
e!ect. As a consequence, plasma is dragged by the string acquiring substantial momentum. Such
a momentum may induce turbulence which could generate magnetic "elds on scales of the order of
the inter-string distance. Such a distance is smaller than the conventional cosmic string distance.
Quite strong magnetic "elds may be produced by this mechanism. The only known constraint
comes from the requirement that the string network does not produce too large temperature
anisotropies in the CMBR. By imposing this constraint, Dimopoulos estimated that present-time
magnetic "elds as large as 10���G with a coherence scale of &1 Mpc may be produced.

Contrary to previous claims, in a very recent paper by Voloshin it was shown that the generation
of large-scale magnetic "elds by domain walls is not possible [216].

5. Particles and their couplings in the presence of strong magnetic 5elds

In the previous section we have seen that very strong magnetic "elds could have been produced
in the early Universe. Here we investigate the e!ects of such strong "elds on bound states of quarks
and on condensates created by spontaneous symmetry breaking. For example, we have already
seen in Section 3 that strong magnetic "elds can a!ect masses and decay rates of charged particles
and modify the rate of weak processes. As we have already discussed in Section 1.4 another crucial
issue concerns the stability of strong magnetic "elds. QED allows the existence of arbitrary large
magnetic "elds provided matter constituents have spin less than �

�
[38].

This is so because the Lorentz force cannot perform any work on charged particles so that real
particle}antiparticle free pairs cannot be produced. In Section 3.1 we have already seen that
quantum corrections do not spoil this classical argument. We have also seen that although pair
production can be catalyzed by strong magnetic "elds at "nite temperature and density, in this case
it is the heat bath that pays for the energy cost of the e!ect. This situation changes when, in the
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presence of very strong "elds, QCD and electroweak corrections cannot be disregarded. We shall
see that the QCD and electroweak "eld allow for the formation of condensates of charged particles
with no energy cost. This may lead to screening of magnetic, or hypermagnetic, "elds resembling
the Meissner e!ect in superconductors.

5.1. Low-lying states for particles in uniform magnetic xelds

Following Refs. [217,218] in this section we will consider questions related to the mass shifts and
decay of bound states of quarks. Mass shifts occur both due to the e!ect that magnetic "elds have
on the strong binding forces, and due to the direct interactions of charged spinning particles with
external "elds. The modi"cations of the strong forces are such as to close the gap between the
proton and neutron masses and ultimately make the proton heavier. A delicate interplay between
the anomalous magnetic moments of the proton and neutron drives the mass shifts due to the
direct interactions in the same direction. For B'1.5�10��G the neutron becomes stable and as
the "eld is increased past 2.7�10��G the proton becomes unstable to decay into a neutron,
positron and neutrino.

The quantum mechanics of a Dirac particle with no anomalous magnetic moment in a uniform
external magnetic "eld is straightforward. We shall present the results for the case where particles
do have such anomalous moments. In reality, in "elds so strong that the mass shifts induced by
such "elds are of the order of the mass itself one cannot de"ne a magnetic moment as the energies
are no longer linear in the external "eld. Schwinger [37] calculated the self-energy of an electron in
an external "eld and we shall use here his results. We cannot follow this procedure for the proton or
neutron as we do not have a good "eld theory calculation of the magnetic moments of these
particles, even for small magnetic "elds; all we have at hand is a phenomenological anomalous
magnetic moment. However, for "elds that change the energies of these particles by only
a few percent, we will consider these as point particles with the given anomalous moments. In
Section 5.1.7 we will discuss possible limitations of this approach.

5.1.1. Protons in an external xeld
The Dirac Hamiltonian for a proton with a uniform external magnetic "eld B is

H"� ) (p!eA(r))#	M
�
!

e
2M

�
�
g
�

2
!1�	� ) B . (5.1)

The vector potential A(r) is related to the magnetic "eld by A(r)"�
�
r�B and g

�
"5.58 is the

proton's LandeH g factor. We "rst solve this equation for the case where the momentum along the
magnetic "eld direction is zero and then boost along that direction till we obtain the desired
momentum. For B along the z direction and p

�
"0 the energy levels are [38]

E
�����

"�2eB�n#

1
2�!eBs#M�

��
���

!

e
2M

�
�
g
�

2
!1�Bs . (5.2)

In the above, n denotes the Landau level, m the orbital angular momentum about the magnetic "eld
direction and s"$1 indicates whether the spin is along or opposed to that direction; the levels
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are degenerate in m. n"0 and s"#1 yield the lowest energy

E"MI
�
"M

�
!

e
2M

�
�
g
�

2
!1�B . (5.3)

As we shall be interested in these states only we will drop the n and s quantum numbers. The Dirac
wave function for this state is

�
������

(r)"�
1

0

0

0���
(x, y) , (5.4)

�
�
's are the standard wave functions of the lowest Landau level;

�
�

(x, y)"
[�
�
�eB�]�������

	�m!
[x#iy]�exp�!

1
4
�eB�(x�#y�)� . (5.5)

Boosting to a "nite value of p
�

is straightforward; we obtain

E
�

(p
�
)"	p�

�
#MI � , (5.6)

with a wave function

�
����

(r)"�
cosh �

0

sinh �

0 � e	���

	2�
�

�
(x, y) , (5.7)

where 2�, the rapidity, is obtained from tanh 2�"p
�
/E

�
(p

�
).

In the nonrelativistic limit the energy becomes

E
�

(p
�
)"MI #

p�
�

2MI
(5.8)

and the wave function reduces to

�
����

(r)"�
1

0

0

0� e	���

	2�
�
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(x, y) . (5.9)

5.1.2. Neutrons in an external xeld
For a neutron the Dirac Hamiltonian is somewhat simpler

H"� ) p#	M
�
!

e
2M

�
�
g
�

2 �	� ) B . (5.10)
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with g
�
"!3.82. Again for p

�
"0 the states of lowest energy, the ones we shall be interested in,

have energies

E(p
�

, p
�
"0)"

e
2M

�
�
g
�

2 �B#	p�
�

#M�
�

. (5.11)

Boosting to a "nite p
�

we obtain

E(p)"	E(p
�

, p
�
"0)�#p�

�
. (5.12)

The wave functions corresponding to this energy are

�p (r)"
e	p � r

(2�)���
u(p, s"!1) , (5.13)

where u(p, s"!1) is the standard spinor for a particle with momentum p, energy 	p�#M�
�

(not
the energy of Eq. (5.12)) and spin down.

In the nonrelativistic limit

E(p)"M
�
#

e
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�
�
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�

2 �B#

p�
2M
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(5.14)

and the wave functions are

�p (r)"�
0

1

0

0� e	p � r

(2�)���
. (5.15)

5.1.3. Electrons in an external xeld
We might be tempted to use, for the electron, the formalism used for the proton with the LandeH

factor replaced by g
�
"2#�/�. However, as we shall see for magnetic "elds su$ciently strong as

to make the proton heavier than the neutron, the change in energy of the electron would appear to
be larger than the mass of the electron itself. The point particle formalism breaks down and we have
to solve QED, to one loop, in a strong magnetic "eld; fortunately, this problem was treated by
Schwinger [37]. The energy of an electron with p

�
"0, spin up and in the lowest Landau level is

E
������

"M
��1#

�
2�

ln�
2eB
M�

�
�� . (5.16)

For "eld strengths of subsequent interest this correction is negligible; the energy of an electron in
the lowest Landau level, with spin down and a momentum of p

�
is

E
����

"	p�
�
#M�

�
(5.17)
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and with wave function similar to those of the proton

�
����

(r)"�
0

cosh �
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sinh �� e	���

	2�
�H

�
(x, y) , (5.18)

where the boost rapidity, 2�, is de"ned below Eq. (5.7) while the Landau level wave function is
de"ned in Eq. (5.5). The reason the complex conjugate wave function appears is that the electron
charge is opposite to that of the proton.

5.1.4. Ewects of magnetic xelds on strong forces
We must be sure that shifts due to changes of color strong forces will not shift states in the

opposite direction. The best method to study masses of QCD bound states is the use of sum rules
[219]. This method uses the SVZ [220] generalized short distance expansion that includes not only
perturbative pieces, but also higher-dimensional operators like the chiral and gluon condensates
re#ecting the non-Abelian nature of the vacuum. Fortunately, the proton has a simple structure
[219] which re#ects the fact that if chiral symmetry is restored the proton and neutron masses
vanish

M
���

"3a�qq� ����#small corrections (5.19)

where a is a constant. Meson mass terms are more involved; for example the � mass is

M�"b(perturbative terms)#c�G��G���#d�qq� � . (5.20)

b, c and d are constants of comparable magnitude [219]. As we shall show it is only the change of
�qq� � due to external magnetic "elds that may be obtained in a reliable manner.

In the presence of external "elds we expect the chiral condensates for quarks of di!erent charges
to vary and Eq. (5.19) becomes

M�
�
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M�
�
"a(2�ddM �#�uu� �) . (5.21)

To "rst-order in condensate changes we "nd that
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Combining the above, we have
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A simple method for studying the behavior of the chiral condensates in the presence of external
constant "elds is through the use of the Nambu}Jona}Lasinio model [221]. This has been done by
Klevansky and Lemmer [222] and a "t to their results is

�qq� �(B)"�qq� �(0)�1#�
e
 
B

�� �
�

�
���

, (5.24)

with �"270 MeV and e
 

the charge on the quark. To lowest order we "nd
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and
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M
54�

eB
���

�
. (5.26)

As in the previous section, these corrections are such as to drive the proton energy up faster than
that of the neutron. One can understand the sign of this e!ect; the radius of a quark}antiquark pair
will decrease with increasing magnetic "eld thus making the condensate larger. As the u quark has
twice the charge of the d quark, its condensate will grow faster and as there are more u quarks in the
proton than in the neutron its mass will increase faster.

The fact that our estimate of the sign of the neutron}proton mass di!erence is the same as that
due to electromagnetic e!ects is crucial. QCD sum rules and our method of evaluating the chiral
condensates are both crude and the magnitude of the mass di!erence is uncertain. Had the sign of
the hadronic correction been opposite, cancellations could have occurred and the argument for
a narrowing of the mass di!erence and ultimate reversal could not have been made. We are quite
sure of the sign of the chiral change. The magnetic "eld acts in a naive way in the spin of the scalar
bound state in the condensate so it is sure that is as calculated [223].

5.1.5. Proton lifetime
First we study the decay kinematics.
Combining Eqs. (5.3), (5.14) and (5.26) we "nd the proton}neutron energy di!erence as a function

of the applied magnetic "eld,

�(B)"(!1.3#0.38B
��

#0.11B�
��

) MeV . (5.27)

B
��

is the strength of the magnetic "eld in units of 10��T (1 T"10�G). The neutron becomes
stable for B'1.5�10��T and the proton becomes unstable to 	 decay for B'2.7�10��T.
We shall now turn to a calculation of the lifetime of the proton for "elds satisfying the last
inequality.

With the wave functions of the various particles in the magnetic "elds we may de"ne "eld
operators for these particles. For the proton and electron we shall restrict the summation over
states to the lowest Landau levels with spin up and down, respectively; for magnetic "elds of
interest the other states will not contribute to the calculation of decay properties. For the same
reason, the neutron "eld will be restricted to spin down only. The proton and neutron kinematics
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will be taken as nonrelativistic:

�
�

(r)"�
�
�dp

��a�(p
�
)�

1

0

0

0� e	���

	2�
�
�

(x, y)#b�
�

(p
�
)�

0

0

1

0� e�	���

	2�
�

�
(x, y)� , (5.28)

with �
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(x, y) de"ned in Eq. (5.5) and the energy, E
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) in Eq. (5.8). a

�
(p

�
) is the annihilation

operator for a proton with momentum p
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z and angular momentum m; b
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negative energy states. For the neutron the "eld is

�
�
(r)"�d�p �a(p)�

0

1

0

0� e	p � r

(2�)���
#b�(p)�

0

0

0

1� e�	p � r

(2�)���� , (5.29)

with an obvious de"nition of the annihilation operators. For the electron we use fully relativistic
kinematics and the "eld is
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5.1.6. Decay rates and spectrum
The part of the weak Hamiltonian responsible for the decay pPn#e�#�

�
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For nonrelativistic heavy particles the matrix element of this Hamiltonian between a proton with
quantum numbers p

�
"0, m"m

�
, a neutron with momentum p

�
, a neutrino with momentum

p� and an electron in state m"m
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�� is the azimuthal angle of the neutrino. The integral in the above expression can be evaluated in
a multipole expansion. Note that the natural extent of the integral in the transverse direction is
1/	eB whereas the neutron momenta are, from Eq. (5.27), of the order of 	eB(0.12#0.04B

��
);

thus setting the exponential term in this integral equal to one will yield a good estimate for the rate
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and spectrum of this decay. The positron spectrum is given by
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where � is de"ned in Eq. (5.27). For �<M
�

the total rate is easily obtained
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For B"5�10��T, the lifetime is 
"6 s.

5.1.7. Caveats and limitations
For general magnetic "elds we expect the masses of particles to be nonlinear functions of these
"elds. Such an expression has been obtained, to order �, for the electron [37]. For small "elds this
reduces to a power series, up to logarithmic terms, in B/B

�
, where B

�
is some scale. For the electron

B
�
"m�

�
/e. For the hadronic case the value of B

�
is uncertain. B

�
"M�

�
/e"1.7�10��T is

probably too large and M
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should be replaced by a quark constituent mass and e be e
 
; in that case

B
�
"(2!4)�10��T, depending on the quark type. This is also the range of values of ��/e

 
in

Eq. (5.24). The e!ects we have studied need "elds around a few �10��T or an order of magnitude
smaller than the lowest candidate for B

�
. Eq. (5.27) may be viewed as a power series expansion up

to terms of order (B/B
�
)�; as the coe$cient of the quadratic term was obtained from a "t to

a numerical solution, logarithms of B/B
�

may be hidden in the coe$cient. As in Ref. [37], even
powers will be spin independent and the odd ones will be linear in the spin direction and may be
viewed as "eld-dependent corrections to the magnetic moment. We cannot prove, but only hope,
that the coe$cient of the (B/B

�
)� term, the "rst correction to the magnetic moment is not unusually

large; should it turn out to be big and of opposite sign to the linear and quadratic terms, the
conclusions of this analysis would be invalidated. These arguments, probably, apply best to
the "eld dependence of the magnetic moments of the quarks rather than the total moment of the
baryons. We may ask what is the e!ect on these magnetic moments due to changes in the `orbitala
part of the quark wave functions. To "rst-order we expect no e!ect as all the quarks are in S states
and there is no orbital contribution to the total moment. The next order perturbation correction
will be down by (r

�
/r

'
)� compared to the leading e!ect; r

�
is a hadronic radius and r

'
is the quarks

cyclotron radius. This again contributes to the (B/B
�
)� term in the expansion for the energy of

a baryon.
Another limitation is due to the results of Ref. [218] where it is shown that "elds of the order of

a few �10��T are screened by changes in chiral condensates. In fact, as the chiral condensate will,
in large "elds, point in the charged � direction, the baryonic states will not have a de"nite charge.
Whether the proton}neutron reversal takes place for "elds below those that are screened by chiral
condensates or vice versa is a subtle question; the approximations used in this paper and in
Ref. [218] are not reliable to give an unambiguous answer. The treatment of the e!ects of magnetic
"elds on the strong force contributions to the baryon masses relies on the Nambu}Jona}Lasinio
model and in Ref. [218] the variation of f

�
with magnetic "eld was not taken into account. It is clear

from this discussion and the one from the previous paragraph that we cannot push the results of
this calculation past few �10��T.
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Experimental consequences. The mass evolution of protons, neutrons and electrons in magnetic
"elds and due to electromagnetism alone, will force a proton to decay in a very intense
"eld. Including the e!ects of chiral condensates diminishes the "eld even further. Qualitatively,
it is clear that the e!ect enhances the electromagnetic contribution but its exact value depends
on the model. This points to a novel astrophysical mechanism for creation of extra galactic
positrons.

5.1.8. Proton neutron mass diwerence by a lattice calculation
One can take another approach, in principle exact, to calculate the mass di!erence using lattice

gauge theory. We introduce the magnetic "eld in the lattice by multiplying a link ;�(x) with
a phase ;��(x). Fixing the "eld, for convenience, in the direction z we then set

;�
�

(x)"exp(!ieBa�y¸
�

) for x"¸
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where x
�

is an o!set for the magnetic "eld.
Consequently, the plaquette in the x}y plane is
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!1 , (5.37)

P�(x)"exp(ieBa�) otherwise . (5.38)

The magnetic "eld is homogeneous only if B is quantized as a�eB"2�n(¸
�
¸



)��. This is

a troublesome condition since the "eld is very large for a reasonable lattice size. In the simulations
we ignored this condition inducing some inhomogeneity. The results are very preliminary: at this
stage it is di$cult to "nd these e!ects with the present lattice technology, but in principle it is
possible. For details of the calculations see [225]. This method is still not e$cient given the present
state of the art in simulations.

5.2. Screening of very intense magnetic xelds by chiral symmetry breaking

Now we discuss another interesting phenomenon if very strong "elds could be created.
In very intense magnetic "elds, B'1.5�10��G, the breaking of the strong interaction

S;(2)�S;(2) symmetry arranges itself so that instead of the neutral � "eld acquiring a vacuum
expectation value it is the charged � "eld that does and the magnetic "eld is screened.

In the previous section we discussed that "elds with complicated interactions of non-electromag-
netic origin can induce various instabilities in the presence of very intense magnetic "elds. By very
intense we mean 10��}10��G. Fields with anomalous magnetic moments [224] or "elds coupled by
transition moments [217] may induce vacuum instabilities. The usual breaking of the strong
interactions, chiral symmetry (�SM), is incompatible with very intense magnetic "elds. Using the
standard S;(2)�S;(2) chiral � model we show that magnetic "elds B5B

�
with B

�
"	2m

�
f
�

are
screened; f

�
"132 MeV is the pion decay constant and m

�
is the mass of the charged pions. This

result is opposite to what occurs in a superconductor; in that case it is weak "elds that are screened
and large ones penetrate and destroy the superconducting state.

As the magnetic "elds are going to be screened we must be very careful in how we specify an
external "eld. One way would be to give f

�
a spatial dependence and take it to vanish outside some
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large region of space. In the region that f
�

vanishes we could specify the external "eld and see how it
behaves in that part of space where chiral symmetry is broken. This is the procedure used in
studying the behavior of "elds inside superconductors. In the present situation we "nd this division
arti"cial and, instead of specifying the magnetic "elds, we shall specify the external currents.
Speci"cally, we will look, at "rst, at the electromagnetic "eld coupled to the charged part of the
� model and to the current I in a long straight wire. From this result it will be easy to deduce the
behavior in other current con"gurations. We will discuss a solenoidal current con"guration
towards the end of this work.

The Hamiltonian density for this problem is

H"�
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(��A)�!j ) A , (5.39)

j is the external current. We have used cylindrical coordinates with � the two-dimensional vector
normal to the z direction. We will study this problem in the limit of very large g, where the radial
degree of freedom of the chiral "eld is frozen out and we may write

�"f
�

cos � ,

�
�
"f

�
sin � cos � ,

�
�
"f

�
sin � sin � cos � ,

�


"f

�
sin � sin � sin � . (5.40)

In terms of these variables the Hamiltonian density becomes

H"

f �
�

2
(e�)�#

f �
�

2
sin� �(e�)�#

f �
�

2
sin� � sin� �(e�!eA)�

#m�
�
f �
�
(1!cos �)#

1
2

(e�A)�!j ) A . (5.41)

The angular "eld � can be eliminated by a gauge transformation. For a current along a long wire
we have

j"I�(�)z , (5.42)

The vector potential will point along the z direction, A"Az and the "elds will depend on the radial
coordinate only. The equations of motion become

!e��# sin � cos �(e�)�#e� sin � cos � sin� �A�#m�
�

sin �"0 ,

e(sin��e�)#e� sin� � sin � cos �A�"0 ,

!e�A#e�f �
�

sin�� sin� �A!I�(�)"0 . (5.43)

In the absence of the chiral "eld the last of Eqs. (5.43) gives the classical vector potential due to
a long wire

A"

I
2�

ln
�
a

, (5.44)
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with a being an ultraviolet cuto!. The energy per unit length in the z direction associated with this
con"guration is

E"

I�
4�

ln
R
a

, (5.45)

where R is the transverse extent of space (an infrared cuto!).
Before discussing the solutions of (5.43) it is instructive to look at the case where there is no

explicit chiral symmetry breaking, m
�
"0. The solution that eliminates the infrared divergence in

Eq. (5.45) is �"�"�/2 and A satisfying

!e�A#e�f �
�
A!I�(�)"0 . (5.46)

For any current the "eld A is damped for distances �'1/ef
�

and there is no infrared divergence in
the energy. (Aside from the fact that chiral symmetry is broken explicitly, the reason the above
discussion is only of pedagogical value is that the coupling of the pions to the quantized
electromagnetic "eld does break the S;(2)�S;(2) symmetry into S;(2)�;(1) and the charged
pions get a light mass, m

�
&35 MeV [193], even in the otherwise chiral symmetry limit.)

The term in Eq. (5.41) responsible for the pion mass prevents us from setting �"�/2 every-
where; the energy density would behave as �f �

�
m�

�
R�, an infrared divergence worse than that

due to the wire with no chiral "eld present. We expect that � will vary from �/2 to 0 as �
increases and that asymptotically we will recover classical electrodynamics. Although we
cannot obtain a closed solution to Eqs. (5.43), if the transition between �"�/2 and �"0 occurs at
large �, we can "nd an approximate solution. The approximation consists in neglecting the (e�)�
term in Eq. (5.41); we shall return to this shortly. The solution of these approximate equations of
motion is

�"	
�
2

for �(�
�

,

0 for �'�
�

,

�"

�
2

,

A"	
!

I
2�

[K
�

(ef
�
�)!I

�
(ef

�
�)K

�
(ef

�
�
�

)/I
�

(ef
�
�
�

)] for �(�
�

,

I
2�

ln
�
�
�

for �'�
�

,
(5.47)

�
�

is a parameter to be determined by minimizing the energy density of Eq. (5.41). Note that for
�'�

�
the vector potential as well as the "eld return to values these would have in the absence of

any chiral "elds and that for �(�
�

the magnetic "eld decreases exponentially as B&exp(!ef
�
�).

The physical picture is that, as in a superconductor, near �"0 a cylindrical current sheet is set
up that opposes the current in the wire and there is a return current near �"�

�
; Ampère's law

insures that the "eld at large distances is as discussed above. The energy density for the above
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con"guration, neglecting the spatial variation of �, is

H"!

I�
4��

K
�

(ef
�
�
�

)
I
�

(ef
�
�
�

)
#ln(ef

�
�
�

)�#�m�
�
f �
�
��#2 , (5.48)

where the dots represent infrared and ultraviolet regulated terms which are, however, independent
of �

�
. For �

�
'1/ef

�
the term involving the Bessel functions may be neglected and minimizing the

rest with respect to �
�

yields

�
�
"

I

2	2�m
�
f
�

. (5.49)

This is the main result of this work.
We still have to discuss the validity of the two approximations we have made. The neglect of the

Bessel functions in Eq. (5.48) is valid for ef
�
�
�
'1 which in turn provides a condition on the current

I, eI/m
�
'2	2� or more generally

I/m
�
<1 . (5.50)

The same condition permits us to neglect the spatial variation of � around �"�
�

. Let � vary from
�/2 to 0 in the region �!d/2 to �#d/2, with 1/d of the order of f

�
or m

�
. The contribution of the

variation of � to the energy density is �H"��f �
�
�
�
d. Eq. (5.50) insures that �H is smaller than the

other terms in Eq. (5.48).
Eq. (5.49) has a very straightforward explanation. It results from a competition of the magnetic

energy density �
�
B� and the energy density of the pion mass term m�

�
f �
�
(1!cos �). The magnetic

"eld due to the current I is B"I/2�� and the transition occurs at B"B
�
, with B

�
"	2m

�
f
�
. The

reader may worry that the magnetic "elds very close to such thin wires are so large as to invalidate
completely the use of the chiral model as a low-energy e!ective QCD theory. In order to avoid this
problem we may consider the "eld due to a solenoid of radius R. The "eld is zero outside the
solenoid, B"B(�)z inside with B(R)"B

�
. At no point does the "eld become unboundedly large.

Using the same approximations as previously we obtain the following solutions of the equations of
motion (for B

�
5B

�
):

�"	
0 for �'R ,

�
2

for R'�'�
�

,

0 for �(�
�

,

�"

�
2

,

B"	
0 for �'R ,

a
�
K
�

(ef
�
�)#a

�
I
�

(ef
�
�) for R'�'�

�
,

B
�

for �(�
�

.

(5.51)
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Continuity of the vector potential determines the coe$cients a
�

and a
�

,

a
�
"[B

�
I
�

(ef
�
�
�

)!B
�
I
�

(ef
�
R)]/D(R, �

�
) ,

a
�
"[B

�
K
�

(ef
�
R)!B

�
K
�

(ef
�
�
�

)]/D(R, �
�

) , (5.52)

D(R, �
�

)"K
�

(ef
�
R)I

�
(ef

�
�
�

)!K
�

(ef
�
�
�

)I
�

(ef
�
R) and �

�
is determined, once more, by minimizing

the energy. For (R, �
�

)'1/ef
�

�
�
"R!

1
ef

�

ln(B
�

/B
�
) . (5.53)

For B
�
4B

�
, �"0 everywhere and B(�)"B

�
in the interior of the solenoid. Thus, for any current

con"guration, the chiral "elds will adjust themselves to screen out "elds larger than B
�
. Topologi-

cal excitations may occur in the form of magnetic vortices; the angular "eld � of Eq. (5.40) will wind
around a quantized #ux tube of radius 1/ef

�
[171].

5.3. The ewect of strong magnetic xelds on the electroweak vacuum

It was pointed out by Ambjorn and Olesen [224] (see also Ref. [226]) that the Weinberg}Salam
model of electroweak interactions shows an instability at BK10��G. The nature of such instability
can be understood by looking at the expression of the energy of a particle with electric charge e, and
spin s, moving in homogeneous magnetic "eld B directed along the z-axis. As already discussed in
Section 3.1, above a critical "eld B

�
"m�/e particle energy is discretized into Landau levels

E�
�
"k�

�
#(2n#1)e�B�!2eB ) s#m�. (5.54)

We observe that energy of scalar (s"0) and spinor (s
�
"$1/2) is always positive, and indeed no

instability arises in QED (it is possible to verify that quantum one-loop corrections do not spoil
this conclusion). In the case of vector particles (s

�
"0,$1), however, the lowest energy level

(n"0, k
�
"0, s

�
"#1) becomes imaginary for B'B

�
, which could be the signal of vacuum

instability. The persistence of imaginary values of the one-loop-corrected lowest level energy [224]
seems to con"rm the physical reality of the instability.

As it is well known, the Weinberg}Salam model contains some charged vector "elds, namely the
=� gauge bosons. The coupling of the=� "eld to an external electromagnetic "eld A���� is given by

L
	��

"!

1
4

�F����� ��!
1
2

�D�=�!D�=� ��!m�
#
=��=�!ieF�����=�=� (5.55)

with

D�"R�!ieA���� . (5.56)

The important term in the previous expression is the `anomalousa magnetic moment term
ieF�����=�=�, which arises because of the non-Abelian nature of the S;(2) component of the
Weinberg}Salam model gauge group structure. Due to this term the mass eigenvalues of the
= Lagrangian becomes

m�"m�
#

$eB . (5.57)
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As expected from the above considerations, a tachyonic mode appears for B'B
�
. The correspond-

ing eigenvector for zero kinetic energy is determined by solving the equation of motions

D
�
=

�
!D

�
=

�
"0 i, j"x, y , (5.58)

where=
���

"=
�
$i=



. Ambjorn and Olesen argued that a suitable solution of this equation is

�=(x,y)�"e�������# ����

�� , (5.59)

corresponding to a vortex con"guration where=-"elds wind around the z-axis. This con"guration
corresponds to the Nielsen}Olesen vortex solution [157]. A similar phenomenon should also take
place for Z bosons. Given the linearity of the equations of motion it is natural to assume that
a superposition of vortices is formed above the critical "eld. This e!ect resembles the behavior of
a type-II superconductor in the presence of a critical "eld magnetic "eld. In that case ;(1)
symmetry is locally broken by the formation of a lattice of Abrikosov vortices in the Cooper-pairs
condensate through which the magnetic "eld can #ow. In the electroweak case this situation is
reversed, with the formation of a= condensate along the vortices. Concerning the back-reaction of
the= condensate on the magnetic "eld, an interesting e!ect arises. By writing the electric current
induced by the = "elds

j� (=)"2ie(=�D�=!=D�=�) , (5.60)

Ambjorn and Olesen noticed that its sign is opposite to the current induced by the Cooper pairs
in a type-II superconductor, which is responsible for the Meissner magnetic "eld screening
e!ect. Therefore, they concluded that the =-condensate induces anti-screening of the external
magnetic "eld.

Although the Higgs "eld � does not couple directly to the electromagnetic "eld (this is di!erent
from the case of a superconductor where the Cooper-pairs condensate couples directly to A���� ), it
does through the action of the = condensate. This can be seen by considering the Higgs,
= potential in the presence of the magnetic "elds:

<(�,=)"2(eB!m�
#

)�=��#g����=��!2���
�
��#2g��=��#�(��

�
��
�

) . (5.61)

In the above �
�

and �
�

are, respectively, the Higgs "eld VEV and charged component, g is the
SU(2) coupling constant, and � is the Higgs self-interaction coupling constant. We see that the
=-condensate in#uences the Higgs "eld at classical level due to the ���=�� term. It is straight-
forward to verify that if eB(m�

#
"�

�
g���

�
the minimum of <(�,=) sits in the standard "eld

value �"�
�

with no= condensate. Otherwise, a= condensate is energetically favored with the
minimum of the potential sitting in

��
���

"��
�

m�



!eB
m�



!m�

#

, (5.62)

where

m�



,4���
�

, m�
#

,�
�
g���

�
. (5.63)

We see that the Higgs expectation value will vanish as the average magnetic "eld strength
approaches zero, provided the Higgs mass is larger than the = mass. This seems to suggest that
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a =-condensate should exist for

m�
#

(eB(m�



, (5.64)

and that the S;(2)�;
$

(1) symmetry is restored above H���
�

,m�



/e. Thus, anti-screening should
produce restoration of the electroweak symmetry in the core of = vortices. If m



(m

#
the

electroweak vacuum is expected to behave like a type-I superconductor with the formation of
homogeneous=-condensate above the critical magnetic "eld. The previous qualitative conclusion
have been con"rmed by analytical and numerical computations performed for m



"m

#
in

Ref. [224], and for arbitrary Higgs mass in Refs. [227,228].
A di!erent scenario seems, however, to arise if thermal corrections are taken into account.

Indeed, recent "nite temperature lattice computations [187] showed no evidence of the Ambjorn
and Olesen phase. According to Skalozub and Demchik [229], such a behavior may be explained
by properly accounting for the contribution of Higgs and gauge bosons daisy diagrams to the
e!ective "nite temperature potential.

In conclusion, it is quite uncertain if the Ambjorn and Olesen phenomenon was really possible in
the early Universe.

5.3.1. The electroweak phase transition in a magnetic xeld
We shall now consider the possible e!ects of strong magnetic "elds on the electroweak phase

transition (EWPT). As it is well known, the properties of the EWPT are determined by the Higgs
"eld e!ective potential. In the framework of the minimal standard model (MSM), taking into
account radiative corrections from all the known particles and for "nite temperature e!ects, one
obtains that

<
���

(�, ¹)K!�
�
(��!�¹�)��!¹���#�

�
(�!��

�
)�� , (5.65)

where � is the radial component of the Higgs "eld and ¹ is the temperature (for the de"nitions of
the coe$cients see e.g. Ref. [186]).

A strong hypermagnetic "eld can produce corrections to the e!ective potential as it a!ects the
charge particles propagators (see below). There is, however, a more direct and simpler e!ect of
magnetic and hypermagnetic "elds on the EWPT which was recently pointed out by Giovannini
and Shaposhnikov [178] and by Elmfors et al. [186]. The authors of Refs. [178,186] noticed that
hypermagnetic "elds a!ect the Gibbs free energy (in practice the pressure) di!erence between the
broken and the unbroken phases, hence the strength of the transition. The e!ect can be understood
by the analogy with the Meissner e!ect, i.e. the expulsion of the magnetic "eld from superconduc-
tors as a consequence of photon getting an e!ective mass inside the specimen. In our case, it is the
Z-component of the hypercharge ;(1)

$
magnetic "eld which is expelled from the broken phase.

This is just because Z-bosons are massive in that phase. Such a process has a cost in terms of free
energy. Since in the broken phase the hypercharge "eld decomposes into

A$�"cos �
+
A�!sin �

+
Z� , (5.66)

we see that the Gibbs free energies in the broken and unbroken phases are

G
�
"<(�)!�

�
cos� �

+
(B���

$
)� , (5.67)

G
,
"<(0)!�

�
(B���

$
)� . (5.68)
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where B���
$

is the external hypermagnetic "eld. In other words, compared to the case in which no
magnetic "eld is present, the energy barrier between unbroken and broken phases, hence the
strength of the transition, is enhanced by the quantity �

�
sin� �

+
(B���

$
)�. According to the authors of

Refs. [178,186], this e!ect can have important consequences for baryogenesis.
In any scenario of baryogenesis it is crucial to know the epoch at which sphaleronic transitions,

which violate the sum (B#¸) of the baryon and lepton numbers, fall out of thermal equilibrium.
Generally, this happens at temperatures below ¹M such that [230]

E(¹M )
¹M

5A , (5.69)

where E(¹) is the sphaleron energy at the temperature ¹ and AK35}45, depending on the poorly
known prefactor of the sphaleron rate. In the case of baryogenesis at the electroweak scale one
requires the sphalerons to drop out of thermal equilibrium soon after the electroweak phase
transition. It follows that the requirement ¹M "¹

�
, where ¹

�
is the critical temperature, turns

Eq. (5.69) into a lower bound on the Higgs vacuum expectation value (VEV),

v(¹
�
)

¹
�

51 . (5.70)

As we already discussed, it is by now agreed [143] that the standard model (SM) does not have
a phase transition strong enough to ful"ll Eq. (5.70), whereas there is still some room left in the
parameter space of the minimal supersymmetric standard model (MSSM) [144].

The interesting observation made in Refs. [178,186] is that a magnetic "eld for the hypercharge
;(1)

$
present for ¹'¹

�
may help to ful"ll Eq. (5.70). In fact, it follows from Eqs. (5.67) that in the

presence of the magnetic "eld the critical temperature is de"ned by the expression

<(0, ¹
�
)!<(�, ¹

�
)"�

�
sin��

+
(B���

$
(¹

�
))� . (5.71)

This expression implies a smaller value of ¹
�

than that it would take in the absence of the magnetic
"eld, hence a larger value of the ratio (5.70).

Two major problems, however, bar the way of this intriguing scenario. The "rst problem is that
by a!ecting fermion, Higgs and gauge "eld propagators, the hypermagnetic "eld changes the
electroweak e!ective potential in a nontrivial way. Two di!erent approaches have been used to
estimate the relevance of this kind of e!ects based either on lattice simulations [143] or analytical
computations [229]. Both approaches agreed in the conclusion that for a Higgs "eld mass
compatible with the experimental constraints (m



'75 GeV), and for "eld strengths

B,B
$
�10��G, the standard model EWPT is second order or a crossover. Although this negative

result could, perhaps, be overcome by adopting a supersymmetrical extension of the standard
model (see e.g. Ref. [144]), a second, and more serious problem arises by considering the e!ect of
the magnetic "eld on the anomalous processes (sphalerons) which are responsible for lepton and
baryon violation at the weak scale. This e!ect will be the subject of the next section.

5.3.2. Sphalerons in strong magnetic xelds
The sphaleron, is a static and unstable solution of the "eld equations of the electroweak model,

corresponding to the top of the energy barrier between two topologically distinct vacua [231].
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In the limit of vanishing Weinberg angle, �
+

P0, the sphaleron is a spherically symmetric,
hedgehog-like con"guration of S;(2) gauge and Higgs "elds. No direct coupling of the sphaleron
to a magnetic "eld is present in this case. As �

+
is turned on, the ;

$
(1) "eld is excited and the

spherical symmetry is reduced to an axial symmetry. A very good approximation to the exact
solution is obtained using the ansatz by Klinkhamer and Laterveer [232], which requires four
scalar functions of r only,

g�a
�

dx�"(1!f
�

(�))F
�

,

g=&
�
�& dx�"(1!f (�))(F

�
��#F

�
��)#(1!f

�
(�))F

�
�� ,

�"

v

	2�
0

h(�)� , (5.72)

where g and g� are the S;(2)
	

and;(1)
$

gauge couplings, v is the Higgs VEV such that M
#

"gv/2,
M

-
"	2�v, �"gvr, �& (a"1, 2, 3) are the Pauli matrices, and the F

&
's are 1-forms de"ned in

Ref. [231]. The boundary conditions for the four scalar functions are

f (�), f
�

(�), h(�)P0 f
�

(�)P1 for �P0 ,

f (�), f
�

(�), h(�), f
�

(�)P1 for �PR . (5.73)

It is known [231,232] that for �
+

O0 the sphaleron has some interesting electromagnetic
properties. In fact, di!erently from the pure S;(2) case, in the physical case a nonvanishing
hypercharge current J

�
comes in. At the "rst order in �

+
, J

�
takes the form

J���
�

"!

1
2
g�v�

h�(�[1!f (�)]
r�

�
���

x
�

, (5.74)

where h and f are the solutions in the �
+

P0 limit, giving for the dipole moment

����"
2�
3

g�
g�v�

"

�

d� ��h�(�)[1!f (�)] . (5.75)

The reader should note that the dipole moment is a true electromagnetic one because in the broken
phase only the electromagnetic component of the hypercharge "eld survives at long distances.

Comelli et al. [188] considered what happens to the sphaleron when an external hypercharge
magnetic "eld, B���

$
, is turned on. They found that the energy functional is modi"ed as

E"E
�
!E


	�
, (5.76)

with

E
�
"�d�x�

1
4
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��
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��

#

1
4
f
��
f
��

#(D
�
�)�(D

�
�)#<(�)� (5.77)

and

E

	�

"�d�xJ
�
A$

�
"

1
2�d�x f

��
f '
��

(5.78)
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Fig. 5.1. The VEV at the critical temperature, v(¹
�
), and the sphaleron energy vs. the external magnetic "eld for

M
-
"M

#
. We see that even if v(¹

�
)/¹

�
�1 the washout condition E/¹

�
�35 is far from being ful"lled. From Ref. [188].

with f
��

,R
�
A$

�
!R

�
A$

�
. A constant external hypermagnetic "eld B���

$
directed along the x

�
-axis was

assumed. In the �
+

P0 limit the sphaleron has no hypercharge contribution and then E���

	�

"0. At
O(�

+
), using (5.74) and (5.75) the authors of Ref. [188] obtained a simple magnetic dipole

interaction energy

E���

	�

"����B���
$

. (5.79)

In order to assess the range of validity of the approximation (5.79) one needs to go beyond the
leading order in �

+
and look for a nonlinear B���

$
-dependence of E. This requires to solve the

full set of equations of motion for the gauge "elds and the Higgs in the presence of the external
magnetic "eld. Fortunately, a uniform B���

$
does not spoil the axial symmetry of the problem.

Furthermore, the equations of motion are left unchanged (R
�
f ���
��

"0) with respect to the free "eld
case. The only modi"cation induced by B���

$
resides in the boundary conditions since } as �PR

} we now have

f (�), h(�)P1, f
�

(�) , f
�

(�)P1!B���
$

sin 2�
+

��
8gv�

, (5.80)

whereas the boundary conditions for �P0 are left unchanged.
The solution of the sphaleron equation of motions with the boundary conditions in the above

was determined numerically by the authors of Ref. [188]. They showed that in the considered
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B���
$

-range the corrections to the linear approximation

�EK���� cos �
+
B���
$

are less than 5%. For larger values of B���
$

nonlinear e!ects increase sharply. However, as discussed
in the previous sections, for such large magnetic "elds the broken phase of the SM is believed to
become unstable to the formation either of =-condensates [224] or of a mixed phase [187]. In
such situations the sphaleron solution does not exist any more. Therefore, it is safe to limit the
previous analysis to values B���

$
40.4¹�.

The reduction of sphaleron energy due to the interaction with the "eld B�
$

has relevant
consequences on the sphaleronic transition rate which is increased with respect to the free "eld
case. As a consequence, in an external magnetic "eld the relation between the Higgs VEV and the
sphaleron energy is altered and Eq. (5.70) does not imply (5.69) any more. We can understand it by
considering the linear approximation to E,

EKE(B�
$
"0)!����B���

$
cos �

+
,

4�v
g ���!

sin 2�
+

g
B���
$
v�

m���� , (5.81)

where m��� is the O(�
#

) dipole moment expressed in units of e/�
#
M

#
(¹). From Fig. 5.1 we see that

even if v(¹
�
)/¹

�
51 the washout condition E/¹

�
535 is far from being ful"lled.

It follows from the previous considerations that even if strong magnetic "elds might increase the
strength of the EWPT, such an e!ect would not help baryogenesis.

6. Conclusions

In this review we have analyzed a large variety of aspects of magnetic "elds in the early Universe.
Our exposition followed an inverse-chronological order. In the "rst part of Section 1 we discussed
what observations tell us about recent time "elds and their evolution in galaxies and clusters of
galaxies. As we have seen, a "nal answer about the origin of these "elds is not yet available. Several
arguments, however, suggest that galactic and cluster "elds were preexisting, or at least contempor-
ary to, their hosts. The main reasons in favor of this thesis are: the ubiquity of the "elds and the
uniformity of their strength; the theoretical problems with the MHD ampli"cation mechanisms,
especially to explain the origin of cluster "elds; the observation of �G magnetic "elds in high-
redshift galaxies. It is reassuring that new ideas continuously appear to determine these "elds at all
times. For example, a very recent one by Loeb and Waxman proposes to look for #uctuations in
the radio background from intergalactic synchrotron emission of relativistic electrons interacting
with CMBR [233].

A consistent and economical mechanism which may naturally explain the early origin of both
galactic and cluster magnetic "elds, is the adiabatic compression of a primeval "eld with strength in
the range B

�
&10��}10���Gauss (B

�
is the intensity that the primordial "eld would have today

under the assumption of adiabatic decay of the "eld due to the Hubble expansion). If this was the
case, two other interesting e!ects may arise: (a) magnetic "elds may have a!ected structure
formation perhaps helping to solve some of the problems of the CDM scenario; (b) magnetic "elds
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could have produced observable imprints in the CMBR. Given the current theoretical uncertainties
about the MHD of galaxies and clusters, and the preliminary status of N-body simulations in
the presence of magnetic "elds, the most promising possibility to test the primordial origin
hypothesis of cosmic magnetic "elds comes from the forthcoming observations of the CMBR
anisotropies.

In Section 2 we reviewed several possible e!ects of magnetic "elds on the CMBR. In the "rst
place, we showed that magnetic "elds may a!ect the isotropy of the CMBR. A magnetic "eld which
is homogeneous through the entire Hubble volume, would spoil Universe isotropy giving rise to
a dipole anisotropy in the CMBR. On the basis of this argument it was shown that COBE
measurements provide an upper limit on the present-time equivalent strength of a homogeneous
cosmic magnetic "eld which is roughly 3�10��G. More plausibly, magnetic "elds are tangled on
scales much smaller than the Hubble radius. In this case the e!ect on the Universe geometry is
negligible and much more interesting e!ects may be produced on small angular scales. Some of
these e!ects arise as a consequence of MHD modes appearing in the magnetized photon}baryon
plasma in place of the usual acoustic modes. The amplitude and velocity of the MHD modes
depend on the magnetic "eld intensity and spatial direction. Some of these modes are quite di!erent
from standard scalar and tensor modes which are usually considered in the theoretical analysis of
the CMBR distortions. For example, AlfveH n waves have the peculiar property of not being depleted
by the Universe expansion in spite of their vectorial nature. These modes are well suited to probe
perturbations such as those generated by cosmic defects and primordial phase transitions. Tangled
magnetic "elds, whose production is predicted by several models and, which are observed in the
intercluster medium, are also expected to produce AlfveH n waves. Another interesting aspect of this
kind of isocurvature perturbations, is that they are not a!ected by Silk damping. The polarization
power spectrum of CMBR can also be a!ected by primordial magnetic "elds. This a consequence
of the Faraday rotation produced by the "eld on the CMB photons on their way through the last
scattering surface. Magnetic "elds with strength B

�
�10��G may have produced a detectable level

of depolarization. Furthermore, it was shown that because of the polarization dependence of the
Compton scattering, the depolarization can feed back into a temperature anisotropy. It was
concluded that the best strategy to identify the imprint of primordial magnetic "elds on the CMBR
is probably to look for their signature in the temperature and polarization anisotropies cross-
correlation. This method may probably reach a sensitivity of &10���G for the present-time
equivalent magnetic "eld strength when the forthcoming balloon and satellite missions data are
analyzed. Some results from the Boomerang and Maxima experiments [17] are already out with
surprising results. It is too early to decide the reasons why, if experimentally con"rmed, the second
peak is low. We have veri"ed, together with EdsjoK [65], that magnetic "elds can only decrease the
ratio of amplitude of the second peak with respect to the "rst. Therefore, the e!ect cannot be
explained in terms of primordial magnetic "elds. Interesting constraints on the strength of these
"elds will be available only when the amplitude of several peaks and the polarization of CMBR will
be measured.

Another period of the Universe history when primordial magnetic "eld may have produced
observable consequences is the big-bang nucleosynthesis. This subject was treated in Section 3.
Three main e!ects have been discussed: the e!ect of the magnetic "eld energy density on the
Universe expansion; the modi"cation produced by a strong magnetic "eld of the electron}positron
gas thermodynamics; the modi"cation of the weak processes keeping neutrons and protons in
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chemical equilibrium. All these e!ects produce a variation in the "nal neutron-to-proton ratio,
hence in the relative abundances of light relic elements. The e!ect of the "eld on the Universe
expansion rate was shown to be globally dominant, though the others cannot be neglected.
Furthermore, the non-gravitational e!ects of the magnetic "eld can exceed that on the expansion
rate in delimited regions where the magnetic "eld intensity may be larger than the Universe mean
value. In this case these e!ects could have produced #uctuations in baryon to photon ratio and in
the relic neutrino temperature. Apparently, the BBN upper bound on primordial magnetic
"elds, which is B

�
�7�10��G, looks less stringent than other limits which come from the

Faraday rotation measurements (RMs) of distant quasars, or from the global isotropy of the
CMBR. However, we have shown in Section 3.4 that this conclusion is not correct if magnetic "elds
are tangled. The reason is that BBN probes length scales which are of the order of the Hubble
horizon size at BBN time (which today corresponds approximately to 100 pc) whereas CMBR and
the RMs probe much larger scales. Furthermore, constraints derived from the analysis of e!ects
taking place at di!erent times may not be directly comparable if the magnetic "eld evolution is not
adiabatic.

In Section 4 we reviewed some of the models which predict the generation of magnetic "elds in
the early Universe. We "rst discussed those models which invoke a "rst-order phase transition.
This kind of transitions naturally provides some conditions, as charge separation, out-of-equilib-
rium condition, and high level of turbulence, which are known to be important ingredients of
magnetogenesis. We discussed the cases of the QCD and the electroweak phase transitions
(EWPT). In the case of the EWPT some extension of the particles physics standard model has to be
invoked for the transition to be "rst order. Magnetic "elds may be generated during the EWPT
from the nontrivial dynamics of the gauge "elds produced by the equilibration of the electrically
charged components of the Higgs "eld. This e!ect resembles the Kibble mechanism for the
formation of topological defects. It is interesting that such a mechanism gives rise to magnetic
"elds, though only on very small scales, even if the phase transition is of second order. In general,
since the production of magnetic "elds during a phase transition is a causal phenomenon, the
coherence length scale of these "elds at the generation time cannot exceed the horizon radius at
that time. Typically, once this length is adiabatically re-scaled to the present time, one gets
coherence cell sizes which are much smaller than those observed today in galaxies and the
inter-cluster medium. This problem may be eased by the e!ect of the magnetic helicity which is
expected to be produced during primordial phase transitions. Helicity may help the formation of
large magnetic structures starting from small ones (inverse cascade). Indeed, this is a quite common
phenomenon in MHD. Some estimates of the quantitative relevance of this e!ect have been given,
for example, in Section 1.4. We have seen that the QCD phase transition might indeed give rise to
phenomenological interesting values of the present-time magnetic "eld strength and coherence size
but only on assuming quite optimistic conditions. Magnetic "elds produced at the EWPT might
have played a role in the generation of galactic magnetic "elds only if they were ampli"ed by
a galactic dynamo. The problem with the small coherence scale of magnetic "elds produced in the
early Universe may be circumvented if the production mechanism was not causal. This may be
possible if magnetic "elds were produced during in#ation by the superadiabatic ampli"cation of
preexisting quantum #uctuations of the gauge "elds. This phenomenon, however, can take place
only if the conformal invariance of the electromagnetic "eld is broken. In Section 4.5 we have
discussed several interesting mechanisms which have been proposed in the literature to avoid this
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obstacle. Unfortunately, although some results are encouraging, at the present states of the art,
none of these models seems to o!er any "rm prediction. Further work on the subject is, therefore,
necessary.

Even if magnetic "elds, produced during the electroweak phase transitions or before, are not the
progenitor of galactic magnetic "elds, they may still have had other interesting cosmological
consequences. Perhaps the most intriguing possibility is that magnetic "elds played a role in the
generation of the baryon asymmetry of the Universe (BAU). The magnetic "elds may in#uence
electroweak baryogenesis at two levels. At a "rst level, magnetic "elds can play an indirect
role in electroweak baryogenesis by modifying the free energy di!erence between the symmetric
and broken phases, the Higgs e!ective potential, and the rate of sphaleron, baryon number
violating, transitions. In Section 5 we have shown, however, that at this level, no signi"cative
modi"cations arise with respect to the standard scenario. Magnetic "elds, or better their hyper-
magnetic progenitors, may have played a much more direct role in the generation of the
BAU if they possessed a net helicity. Indeed, it is well known from "eld theory that the hypermag-
netic helicity coincides with the Chern}Simon number which can be converted into baryons and
leptons numbers by the Abelian anomaly. The origin of the primordial magnetic helicity is still
a matter of speculation. Among other possibilities which we have reviewed in Section 4, one of the
most discussed in the literature is that a net hypermagnetic helicity of the Universe arises by an
anomalous coupling of the gauge "elds to an oscillating pseudoscalar "eld. The existence of
pseudoscalar "elds of this kind is required by several extensions of the particle physics standard
model. However, it must be admitted that the mechanisms for generation of "elds that are large and
extended at the same time are far from being fully understood.

Large magnetic "elds would also have a profound e!ect on chirality but it is also quite far from
observability. As a rule of the thumb, particle physics e!ects will appear at the earliest at B"m�� ,
the � being the lightest hadron. This makes these e!ects di$cult to test. Large "elds are required.
The only hope is the existence of superconductive strings.

Are the observed "elds, so widespread, of early origin or were some seeds "elds rapidly enhanced
by a dynamo mechanism? This question remains unanswered but high-precision CMBR acoustic
peak measurements may very well provide a breakthrough.
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