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‘. . . Light is a confused aggregate of Rays indued with all
sorts of Colours, as they are promiscuously darted
from the various parts of luminous bodies. A natu-
ralist would scarce expect to see ye science of those
colours become mathematicall, and yet I dare affirm
that there is as much certainty in it as in any other
part of Opticks.’

Sir Isaac Newton, in a letter to the Royal Society, 1672
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1. What is Diffuse Matter?

“Now entertain conjecture of a time
When creeping murmur and the pouring dark
Fills the wide vessel of the Universe”
— Shakespeare (Henry IV, Act4)

Nowhere in the universe can we find a perfect vacuum. Around ordinary
stars, a hot magnetized plasma seethes and bubbles outward in a thermally-
powered wind. Within the disks of spiral galaxies, dusty clouds of molecular
gas continually coalesce and collapse under their self gravity to form new
stars. The light from these new-born stars heats and ionizes their placental
cloud before finally dispersing it back into the galactic disk, ready to repeat
the cycle. Wherever there are stars, some reach the end of their lives and
explode as supernovae, hurling out the gas that transformed in their ther-
monuclear furnaces to heavy elements such as iron. The shocks they produce
rumble their way through space, heating the interstellar gas anew. Some is
thrown up and far away from the galactic plane, while other parts are crushed
into dense sheets and filaments which shine briefly as their shock energy is
radiated away. In clusters of galaxies, the gaseous shells ejected by old stars
collide one with another, heating the gas so that it glows softly in X–rays,
cooling over billions of years before finally falling back into the bright galaxy
cores to feed the massive monster black holes that lurk at their centres. In
intergalactic space jets of relativistic plasma shot from the cores of active
galaxies emit radio waves as charged particles circle and shed their energy in
the magnetic fields. Even in the vast reaches of space between the clusters of
galaxies, hot plasma can still be found, even though it is so tenuous that it
can never cool again, and a hydrogen nucleus could travel a distance equal
to the width of our galaxy before encountering another of its kind.

This then is the broad canvas of diffuse matter in the universe, displaying
a rich range of thermal plasma phenomena and covering a remarkable variety
of conditions and chemical compositions. We work to understand the physics
of such plasmas because, by gaining insight into their physics, we can hope
to understand and interpret the observed phenomena, measure their physical
parameters and determine their chemical composition. Since all the stars in
all the galaxies have been ultimately formed from this gas, our study provides
insight into the structure and evolution of the universe we live in.
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Fig. 1.1. Turbulent ionised plasmas filling a nearby region of space around the
active star-forming region of the Orion Nebula.
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What sets the physics of cosmic gas clouds apart from the molecular gas
found in the atmosphere of our planet, or the hot ionized plasmas found in
the interiors of stars? The key to this question lies in the densities that char-
acterize the interstellar and intergalactic plasmas. We generally refer to the
density of the gas in units of atoms per cubic centimeter. The mean density
of the gas in the plane of our galaxy at the solar radius is about 0.3 cm−3. In-
side a molecular cloud the density is much higher, say, 106 cm−3. Nonetheless,
this is completely negligible compared with the density encountered in the
earth’s atmosphere ( ∼ 2 × 1018 cm−3). In our atmosphere, an atom collides
with another in a time–scale of a few nanoseconds. In our molecular cloud
the collision time–scale is extended to several days. However, internal atomic
or molecular time–scales range from around a nanosecond to several millions
of years for the neutral hydrogen 21 cm emission line. Thus each atom that
suffers a collision in the earth’s atmosphere will suffer another encounter be-
fore it has a chance to adjust internally, through atomic processes, from the
previous collision. For most processes, the atom in our molecular cloud is
free to radiate any excess internal energy it has picked up as a result of the
collision, and return to its ground state.

As a result, the atoms of our diffuse astrophysical plasmas are usually
sitting in their ground state, while the atoms in the earth’s atmosphere are
in a dynamical balance with collisional processes, every possible atomic state
being fed by collisions as fast as it is being depleted by other collisions. This
condition is known as Local Thermodynamic Equilibrium (LTE). In this case,
at a temperature T , the number density of atoms or molecules in any excited
state, j, compared with the number in the ground state (j = 1), is given by
the Boltzmann equilibrium:

Nj

N1
=
gj
g1

exp[
−∆Em
kT

] (1.1)

here, k is the Boltzmann Constant (k = 1.380622 × 10−16 erg K−1), ∆Em
is the energy difference between the ground and the excited state; and gj
is the statistical weight of the excited state (if the excited level has a total
angular momentum quantum number J , then gj = 2J + 1). In addition, the
electrons, and each species of atom or molecule in the gas will have their
energy distributed according to the Maxwell Distribution:

n(E) =
2N

π1/2(kT )3/2
E1/2 exp[

−E
kT

]dE (1.2)

The low densities in the diffuse plasmas ensure that Boltzmann equilib-
rium is rarely, if ever, achieved, although in most cases, collisions between like
species are sufficiently frequent to set up the Maxwell distribution. However,
we will encounter a few examples of gas which has passed recently through
a shock so that its ions have not had time to achieve the Maxwell distribu-
tion, and in some cases it is even difficult to define the energy distribution
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of the electrons. A plasma in which the Boltzmann equilibrium is not a good
approximation is said to be in a non–LTE (or NLTE) condition. The study
of the physics of the interstellar medium is therefore, in large part, the study
of highly NLTE plasmas.

Historically, diffuse astrophysical plasmas have been divided into broad
environmental divisions or domains, of which the most familiar and the best
studied is the medium between the stars in our galaxy. This medium, and the
gas in between stars in other galaxies is generally referred to as the interstellar
medium (ISM). It provides in its dense molecular phase the cradle and the
birthplace of stars. In turn, it derives its complex phase structure and energy
balance from the input of energy derived from nuclear burning occurring
within these stars in the form of photons, stellar winds and outflows or stellar
explosions.

Within the ISM itself, the details of these interactions has provided a po-
tent testing ground for theory, and has provided a good deal of insight into
the evolution of stars, and the chemical and structural evolution of galax-
ies. The dense molecular clouds have given us an understanding of molecular
chemistry, interstellar dust physics, the diffusion of magnetic fields, and a
detailed insight into the gravitational instabilities which lead to the forma-
tion of stars. Star formation regions embedded within them have led to an
understanding of how newly forming stars shed the angular momentum of
their parent cloud through the formation of collimated outflows and jets, and
the interaction of these jets with the clouds has enabled us to understand
shock physics and chemistry. Radio observations of molecular lines enable us
to study physical conditions in star–forming regions, and tell us about the
isotope ratios of various elements, which are key data in understanding the
sites of production of the heavier elements.

The photoionized regions around massive young stars provide a means
of probing the chemical composition of the atomic gas both in our Galaxy,
and in distant galaxies. In particular, they provide us with estimates of the
primordial helium abundance – a key parameter in cosmological models. We
can also study the bubbles formed by the powerful radiation-pressure driven
winds of their central stars.

The so–called planetary nebula shells which have been ejected and pho-
toionized by dying solar–like stars provide insight into the chemical processing
and dredge–up which has occurred in their atmospheres, and give us an ob-
servational test of stellar evolution in low mass stars, while the nova shells
ejected from the surfaces of White Dwarf stars enable us to study explosive
nuclear processing under electron–degenerate conditions.

Finally, the material ejected in supernova explosions gives us a sample of
the end–products of nucleosynthesis in stars, and the properties of the shock
waves driven into the surrounding medium measures the kinetic energy input
into the ISM by these explosions, while the properties of the radio synchrotron
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spectrum generated in the shell provides insight into particle acceleration
mechanisms and the origin of cosmic rays.

With each generation of stars, some of the ISM is lost forever in the dying
embers of stars – the White Dwarfs, in neutron stars formed during supernova
explosions, or in Black holes formed in the collapse of the cores of massive
stars. In addition, some matter is effectively lost in low–mass stars which
frugally burn their nuclear fuel over time–scales much longer than the age of
the universe, while yet another part is stored for long periods within normal
stars like our own sun. In the solar neighborhood, the ISM now accounts for
only about 15% of the total baryonic mass, and this figure is typical of spiral
galaxies.

However important the gas and dust in galaxies may be, we must not for-
get other parts of the cosmos where we find components that are not moulded
and controlled by stars alone, and indeed may not even located between stars
as the word interstellar implies. In the cores of many galaxies lurk massive
black holes which when fed by matter subject their environs to extremes of
ionization or temperature. Here we find rings of gas which are irradiated by
X–rays, massive outflows of material, or highly relativistic jets of gas shot
out into intergalactic space. These plasmas could collectively be regarded as
the Active Galactic Medium (AGM). Developing an understanding of the
properties of the AGM is a cornerstone of research in active galaxies.

Finally, on the largest of scales we have the intergalactic medium (IGM) or
the hot gas found within whole clusters of galaxies, the intra-cluster medium
(ICM). This material is detected by means of the X-rays it produces, by the
effect it has upon the propagation of relativistic jets, by faraday rotation and
depolarization of distant radio sources, by evidence of ram-pressure stripping
of matter in galaxies, or through the absorption it can produce in the light
of distant galaxies. Since the IGM is the most difficult to observe, it is also
the least well studied of the diffuse astrophysical plasmas.

1.1 Phases

Diffuse matter in the universe is found over an extraordinary range of scales;
from structures smaller than the size of the solar system (∼ 1015 cm), up to
regions encompassing whole clusters of galaxies (∼ 1024 cm). Fortunately, the
characteristic densities decrease as the scale size increases (otherwise the mass
of the diffuse medium would be infinite!). A consequence of this enormous
dynamic range in parameter space is that the range of possible phenomena is
very rich. However, provided that characteristic time–scales remain apprecia-
bly shorter than the characteristic time–scale for the evolution of the universe
(∼ 1010 yr), it is remarkable how often phenomena occurring on small scales
find physical analogues on much larger scales. As an example, we might cite
the bipolar outflows from very young stars which have characteristic scales
105 yr and 1017 cm, but which have very similar physics to the bipolar jets
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in active galactic nuclei (AGN), with characteristic scales of order 108 yr and
1022 cm.

The diffuse medium has always represented an important component of
the baryonic mass in the universe. Shortly after the recombination epoch
in the early expansion of the universe, diffuse matter reigned supreme, ac-
counting for all the baryonic mass, with the exception of a few primordial
Black Holes. However, gravity soon took over, and the gas clouds started co-
agulating and collapsing. It should always be remembered that gas is sticky
stuff. When two gas clouds collide, their energy of motion is turned into
heat through shocks, which is then radiated away into space. Thus cloud–
cloud collisions can be considered as almost completely inelastic, conserving
momentum, but losing all their kinetic energy. Shocks are also highly com-
pressive, and aid the development of a cold dense phase in the ISM which
in turn favors star formation when the densities become high enough. Early
on in the universe, these processes led to the formation and the evolution of
galaxies, and today the ISM in galaxies is kept in a dynamic, self-regulating
equilibrium determined by the rate of star formation, balanced against the
energy input these stars put back into the interstellar medium. In galaxies,
the ISM forms a multi–phase structure in response to this feedback, and
develops a heirachical fractal spatial structure.

The multi–phase structure, discussed in detail in Chapter (14), develops
as a consequence of the fact that a stable balance of heating and cooling
at a given pressure can often be achieved at more than one temperature.
Various names have been given to the most common phases of the ISM in
galaxies. The molecular medium (MM), the cold neutral medium (CNM)
and the warm neutral medium (WNM) are three such phases of the atomic
gas in the ISM. In similar fashion, we may also find components due to a
warm ionized medium (WIM) and a hot ionized medium (HIM). None of
these components should regarded a static in time or space, and matter is
constantly in flux between them.

Dying stars constantly feed matter back into the ISM, which has been
transformed into heavier elements of one kind or another (often labelled, in
cavalier fashion, “metals” by astronomers). These processes of chemical evolu-
tion are very clearly described by Pagel (1997). Much of the non-volatile frac-
tion of heavy elements finds its way eventually into interstellar dust grains,
which are important constituents of the ISM, absorbing and polarizing the
light from distant stars, coupling gas and magnetic fields through photoelec-
tric or collisional charging, playing an important role in the total energy bal-
ance of the ISM, and providing on their surfaces sites for chemical reactions
which allow complex molecules to form.

If the plasma is hot, its lifetime in the hot phase depends on its heat
content or internal energy, and how fast it can radiate this heat away. The rate
of radiation is a complex function of temperature and of density. Thus, we can
arrange the plasmas we meet in the ISM according to their characteristic scale
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size, density and temperature. This has been done in Figure (1.2). The realm
of the molecular clouds and the H i regions is the realm of astrochemistry,
while all the other classes of object are predominantly regions of ionized
plasmas of one kind or another. Although an approximate division between
LTE and NLTE plasmas is indicated, this transition is rather fuzzy, and
depends on the particular ion or atom considered. Although, as we will see,
fully NLTE plasmas are reasonably straightforward to understand, and so
are fully LTE plasmas, the region close to the transition zone between the
two cases is computationally awful, since all levels of all atoms have to be
considered together along with their associated radiative transfer problems.
This is certainly not a physical regime that can be left to the student, but
requires the full capability of modern supercomputers and unlimited atomic
data. In this book, we will consider only thermal processes in low-density
plasmas, leaving these transitional plasmas, relativistic plasmas and their
emission processes to other texts.

1.2 Observability

It might seem rather trivial to remark that, in order for a given phase of
the ISM to be detectable in its own emission lines or continuum, it must
emit enough photons in any wavelength band to which our earth-bound or
space-borne telescopes are sensitive. In practice, as we will see below, these
emission processes are mainly governed by binary collisions between elec-
trons and the ion responsible for the line of continuum emission, or by colli-
sions between electrons. As a consequence, the local emissivity (measured in
ergs cm−2s−1sr−1) varies as the square of the local density. On the other hand,
the surface brightness of an object is governed by whether this local emis-
sivity, integrated along the line of sight, is sufficient to be detectable against
the background (zodiacal emission, airglow, telescope emissivity, instrumen-
tal noise, or whatever). Therefore, a very useful parameter characterizing ISM
sources is the so-called Emission Measure defined as:

EM =
∫
n2
edl (1.3)

In many cases, since we do not really know the run of density along the line
of sight, this integral is approximated by the mean density and pathlength
through the region of interest, EM = 〈ne〉2 l. Since astronomers like to define
their densities in units of number densities ( cm−3)), but their distances in
units of parsecs ( 1 pc = 3.0856× 1018 cm = 3.2615 light years), the emission
measure is generally given in the somewhat ridiculous units of pc cm−6.

As illustrative examples, consider these cases of ionized hydrogen plasmas.
First, the case of a Nova shell which has been ejected from the surface of a
White Dwarf at a typical velocity of 1000 km s−1. After typically 100 days,
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Fig. 1.2. Densities and characteristic sizes of diffuse astrophysical plasmas in the
universe. For each class of objects, the characteristic size in log(cm) is given. The
approximate boundary between plasmas in LTE and non-LTE plasmas is marked as
a dash-dot line. Current nebular modelling is valid within the approximate bound-
aries of the box-shaped region. The thin solid curve connects the dominant phases
of galactic and intergalactic diffuse media.

the shell has reached the nebular phase, that is to say it has become optically
thin to the passage of radiation, and at that time it has a typical density
of 107 cm−3. In this case the EM ∼109 pc cm−6. As a second example, take
a typical Planetary Nebula. This is the ionized envelope of a dying star as
it transits from a red giant to a white dwarf star. Typically, the envelope
will have been expanding at 10–30 km s−1 for a few thousand years, so that
it is about 0.1 pc across. At this time it has a density of 104 cm−3, and the
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EM ∼107 pc cm−6. Still fainter are H ii regions, which are typically 10–100
pc across and are ionized by the UV light of massive, hot, and young stars
a few million years old. In this case the density is as low as 10 cm−3, and
so the EM is only 103−4 pc cm−6. Such nebulae are still easy to detect with
modern telescopes, although some faint lines which are important to establish
the density, temperature or abundances may be difficult to observe. Finally,
consider the case of the diffuse galactic ISM which pervades the disks of
spiral galaxies. Here the densities are as low as 0.1 cm−3, while the medium
is limited by the scale height of the gas in the galactic plane, typically 150
pc. In this case the EM is only ∼ 1 pc cm−6, and specialist instruments are
needed simply to detect it, let alone measure it accurately enough for analysis.

Even when the plasma is too faint to be seen by its own emission, it
may still be detected by the absorption it produces in a background source of
continuum emission. This is because resonance transitions to higher states are
excited by the continuum light in the beam, but the atom re-radiates this light
in all directions when it returns to the ground state. Thus effectively the light
has been scattered out of the line of sight. The absorptions are proportional
to the column density

∫
nedl, and the cross–sections for absorption are large,

comparable with the Bohr radius. Thus, species which have column densities
as low as 1012−13 cm−2 along the line of sight may be detected with high
dispersion spectrographs on large telescopes. Such absorption techniques are
the only means whereby the hot, highly ionized, and very tenuous gas in our
Galactic halo can be detected. This gas has typical densities of 0.001 cm−3,
and columns of ∼ 3 kpc (1022 cm), so its emission measure would only be of
order 10−2 pc cm−6, and therefore totally undetectable in its own emission.





     

2. Line Emission Processes

“All Science is either physics or stamp collecting”
— Ernest Rutherford

In this chapter we will review the sometimes arcane, frequently confus-
ing, notations that are used to classify atomic and molecular transitions and
spectra. A basic understanding of these is essential, since it is through the
atomic and molecular lines that we ultimately derive our understanding about
the physical conditions in, and chemical abundances of, diffuse astrophysical
plasmas. In what follows, we will assume that the reader is familiar with the
basic concepts of quantum mechanics, usually developed during the second
year of a physics major. If not, the reader is referred to the highly readable
account of this and other topics in modern physics which is to be found in the
book by Rohlf ( 1994), and a lucid introduction to molecular spectroscopy is
to be found in Atkins (1983); see notes on this chapter.

2.1 Atomic Spectra

2.1.1 Resonance Lines

Let us first consider a simple two–level atom, as in Figure (2.1).
If the transition shown is a resonance line, it arises from a normal elec-

tronic dipole radiative transitions. Such a line is called a permitted line. This
means that the transitions follow the standard selection rules of quantum
mechanics which require that:

• Only one electron is involved in the transition.
• The initial and final states have different parities.

In addition, selection rules are imposed by the requirement of conservation
of angular momentum:

• The change in the magnetic quantum number has to be ∆ml = 0,±1.
• The intrinsic angular momentum quantum number of the electron, ms,

does not change; ∆ms = 0.
• Since the photon carries one unit of angular momentum, the electron or-

bital angular momentum must change by one unit, ∆l = ±1.
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E12

hν = E12

N2

N1

g2 = 2J2 + 1

g1 = 2J1 + 1

Fig. 2.1. An idealised two–level atom.

These imply that

• The change in the electron total angular momentum quantum number must
be ∆j = 0,±1, with the restriction that the transition j = 0 → j = 0 is
forbidden (see Section 2.1.4).

Consider two states of an atom with total angular momentum quantum
numbers J2 and J1. Since the total angular momentum includes the half–
integral electron spin, the possible values of J are 0, 1/2, 1, 3/2, 2 etc. The
statistical weight of any energy level, m, is given by gm = (2Jm + 1). The
strength of a transition is measured by the probability that an excited atom
will emit a photon in unit time. Thus, if there are N(0) atoms in their excited
state at time t = 0, and the transition probability is A ( s−1), then N(t) =
N(0) exp [−At]. The transition probability for line emission between these
two states is proportional to ν3 and is given by the Einstein relation:

A21 =
(

64π4

3hc3

)
g−1
2 ν3

12S21 s−1, (2.1)

where S21 is the Line Strength, given in terms of the electric dipole matrix
element by:

µ2
21 = S21g

−1
2 = e2 |〈Ψ1 |r|Ψ2〉|

2 ∼ e2n4a2
0/Z

2. (2.2)

Here n2a0/Z is the radius of the electron orbit in terms of the Bohr radius.
Note that the electric dipole matrix element is symmetric between the states
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involved (µ21 = µ12), and may be interpreted physically as the strength of the
electric dipole in the system during the transition. Note also that equation
(2.1) implies a very strong dependence of the transition probability upon the
frequency. Thus, if there are two paths for radiative decay, the branching
ratio will always strongly favour the shorter wavelength transition. Resonant
transitions are characterised by large transition probabilities; typically of
order ∼ 108−9 s−1.

When an atom in its ground state is placed in an electromagnetic field with
energy density1 U (ν12) (energy per unit volume; erg cm−3) at the frequency
of the transition, the probability per atom that it will absorb one of these
photons, and thus be excited into the upper level is B12U (ν12) where B12

is the Einstein coefficient for absorption, given in terms of the transition
probability:

A12 =
(

8πh
c3

)
ν3
12B12 s−1, (2.3)

It follows from symmetry that,

g1B12 = g2B21 (2.4)

where for an atom in its excited state, the probablility per atom that it will
absorb one of these photons, and thus be de–excited into the lower level is
B21U (ν12) and B21 is called the Einstein coefficient for stimulated emission.
Thus the relative importance of absorption to stimulated emission simply de-
pends on the ratio of atoms in the ground state compared with atoms in the
excited state. This ratio is closer to unity for transitions in the IR than for
optically–emitting transitions. Thus the relative importance of stimulated
emission is more important for IR transitions. In some circumstances, colli-
sional pumping or radiative pumping may cause the upper level can become
overpopulated, producing a population inversion. This allows the possibility
of astrophysical masering, which will be discussed below.

Frequently we use the concept of Absorption Oscillator Strength, f12. This
treats the transition as if it were a bound harmonic oscillator, and asks how
effective is the transition (in terms of equivalent numbers of classical electrons
of cross–section, πr20 ; where r0 is the classical radius of the electron, e2/mec

2)
in absorbing radiation from the radiation field at frequency ν12). It is related
to the transition probablity by:

A12 =
(

8π2e2

mec3

)
ν2
12f12 (2.5)

This is not symmetric between the initial and final states, but the gf value
of the transition is:
1 The energy density U(ν) should be distinguished from the brightness, or specific

intensity, B(ν), which is the energy per unit area per unit solid angle and per
unit time; B = cU/4π
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gf = g1f12 = g2f21 (2.6)

here, f21 is called the Emission oscillator strength. The oscillator strengths for
all transitions in the atom obey the Reiche–Thomas–Kuhn sum rule, namely,
for an atom with Z optically–active electrons:

∞∑
n=1

fmn = Z (2.7)

This follows from the definition of oscillator strength in terms of the equiva-
lent numbers of classical electrons; clearly the total cannot exceed the number
of electrons that are available to absorb.

In nebulae generally, thanks to the NLTE conditions which prevail, most
atoms are sitting in their ground state, and the excited states have only
a very low population. Therefore, transitions between excited states appear
strong only as a result of recombination and cascade down towards the ground
level. Such recombination lines which are commonly observed are the Balmer
Series, Hα, Hβ etc. or recombination lines of He i and He ii. These are seen in
preference to the recombination lines of heavier elements thanks to the very
large relative abundances of hydrogen and helium in the ISM.

2.1.2 Pure Recombination Lines

Hydrogenic ions are ions with a single electron bound to a nucleus of charge
Z. This simple atomic system is one of the best studied and understood of all
atomic systems. Because it consists, in the case of hydrogen itself, of just two
distinguishable particles, the quantum mechanical wavefunction description
is quite soluble. Even though strictly speaking heavier hydrogenic ions, such
as Cvi, have many particles because of complex nuclei, on the atomic scale
the nucleus can be considers as a single particle to a good approximation. His-
toricly, observations of the hydrogen spectrum in astrophysical plasmas have
provided stringent tests of the quantum mechanical model, and predictions
of high precision have been verified.

In the limit of low density, the hydrogen spectrum is dominated by a pro-
cess called recombination cascades. Electrons from the surrounding plasma
have combined with a bare hydrogen nucleus to from a hydrogen atom in an
excited state. The details of this recombination process are deferred until
chapter 6, here we will concentrate on the processes of line emission after
recombination as the recombined electron cascades down through the many
possible hydrogen energy levels to the ground state through resonance lines.
The principle difference between this emission line process and the two level
resonance line model shown earlier is the nearly infinite number of levels in-
volved and the fact that electrons are appearing from ‘above’. If we just con-
sider the energy levels and their probability wavefunctions, we can calculate
the essential parameters of the cascade process, the transition probabilities,
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to great precision. Precision is necessary because the final spectrum depends
on many probabilities all multiplied together and errors could accumulate
unless they are very small to begin with.

It has been known for a long time that the hydrogen system with two
particles orbiting each other with masses mp for the proton and me can be
treated equivalently as a reduced mass system. We have an atom with two
particles of mass m1 and m2 separated by a distance r spinning about the
center of mass located at distance r1 and r2 from each atom, respectively.
The moment of inertia of the atom is given by:

I = m1r
2
1 +m2r

2
2, (2.8)

which can be expressed in terms of the reduced mass of the system as

I =
m1m2

m1 +m2
r2 = µr2 (2.9)

where µ is the reduced mass at the radius r from the centre of rotation
The reduced mass hydrogen atom system can be described in terms of

spherical wavefunctions Ψ that satisfy the of the time–independent Schrödinger
equation:

HΨ = EΨ, (2.10)

where H is the Hamiltonian operator and E is the energy.
Wavefunctions that satisfy the Schrödinger equation for this system, using

spherical coordinates can be separated into angular and radial functions.

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) . (2.11)

The functions Θ(θ) and Φ(φ) are shown in figure ?? in the next section.
The eigenvalues or energy levels associated with each of the solution wave-

functions are quantised in three variables; n, l, m and result in a series of
discrete, degenerate, energy levels determined by n alone of

E = −mee4Z2

2h̄2n2
. (2.12)

These energy levels are typically illustrated as shown in figure 2.2. Verti-
cally we have energy with levels determined by the principle quantum number
n, and horizontally the levels are spread out according to the angular momen-
tum number l with no vertical displacement. In more complex atoms with
many electrons, the repulsion between electrons results in vertical differences
in the l levels. Here there is no repulsion and all the l levels are degenerate.
The m levels are also degenerate because under spherical symmetry there is
no prefered direction to put the axis around which m operates. The levels
due to m are not shown, apart from needing a 3D figure the m levels are not
distinguishable unless a strong external magnetic field is applied to the atom.
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This can occur in extreme conditions such as compact star atmosphere, but
it does not occur to any extent in diffuse plasmas.

The wavefunctions associated with each energy level have analytical
forms. The angular parts Θ(θ)Φ(φ) from the spherical harmonics, analagous
to a vibrating string, but on the surface of a sphere. These functions are
smooth and wrap around the sphere exactly as you might expect. They are
described by a polynomial series in θ and φ known as the Legendre Polyno-
mials. The radial functions also have analytical form

As with the resonance, intercombination and forbidden transitions al-
ready covered, the transitions between all these levels obey selection rules.
The dominant one is the usual rule that the unit angular momentum of the
emitted photon requires that a corresponding unit change of angular mo-
mentum of ∆l = ±1 must take place. This rule is particularly strict in the
hydrogen case and except for one special case, only resonant, permitted tran-
sition are observed. In the figure the allowed transitions are shown and form
a characteristic zig–zag pattern.

An atom in a given level can usually go one of two ways, and the pro-
portion of times is goes one way or the other depends on the transition
probabilities between the levels considered. I most complex atoms where the
calculation of transition probabilities can be very difficult and we often have
to resort to hard won experimental data which unfortunately often cannot
cover all possible transitions. In the hydrogenic case the transition probabil-
ities can be computed very precisely as follows:
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The transition probability between two levels or states is understood in
the wave function model as the extent of overlap of the probability wave-
functions for the two states. If two wavefunctions Ψ and Ψ ′ overlap, then the
overlap integral or, matrix element, is

I =
∫
ΨrΨ ′dr, (2.13)

where r represents a spatial coordinate. This integral can be computed using a
general purpose mathematical function called a hypergeometric function. The
hypergeometric functions represent an infinite number of possible series, and
change their behaviour dramaticly depending on what terms are used. In the
case of the hydrogenic wavefunctions, the overlap integrals are particularly
easy to handle using hypergeometric functions and infact turn out to reduce
to ratios of simple polynomials. In a transition from an upper level n, l to a
lower level n′, l′, where l′ = l ± 1, the overlap integral is given by,

I(n, l, n′, l′) = [c(n, n′, l)F (n, n′, l)]2 if l′ = l − 1, or (2.14)
I(n, l, n′, l′) = [c(n′, n, l′)F (n′, n, l′)]2 if l′ = l + 1. (2.15)

Here

c(n, n′, l) =
(−1)(n

′−l)

4(2l − 1)!
× ((l + n′ − 1)!(l + n)!)1/2

((n′ − l)!(n− l − 1)!)1/2

× (4nn′)(1+l)

(n′ + n)(n′+n)
× (n− n′)(n+n′−2l−2) , (2.16)

and

F (n, n′, l) = H[l − n+ 1, l − n′, 2l, (−4nn′)/(n− n′)2]

− (n− n′)2
(n+ n′)2

H[l − n− 1, l − n′, 2l, (−4nn′)/(n− n′)2] (2.17)

where H is the hypergeometric function 2F1(a, b, c, z). All this constitutes
simple if messy algebra and H can be easily evaluated exactly using modern
symbolic packages. Table 2.1.2 shows the overlap integrals for the transitions
between the first 5 n levels of hydrogen. The integrals turn out to be exact
rational numbers, and are given as the ratio of two, sometimes large, integers.
To get an actual transition probability from the integrals the scalings that
convert to physical units are required.

A(n, l, n′, l′, Z) = f [n, n′, Z]3g[l, Z]I(n, l, n′, l′) (2.18)

where Z is the atomic number and f and g are given by

f [n, n′, Z] = cZ2RH(1/n′2 − 1/n2) (2.19)

g[l, Z] =
4l

3(2l + 1)

[
h3

Z2c3m2
ee2

]
, (2.20)
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where c is the speed of light, RH is the hydrogen Rydberg unit of energy, in
modern units RH = 13.59844 eV or 109678.774 cm−1, h is Plank’s constant,
me is the electron mass and e is the electron charge in electrostatic units..

Table 2.1.2 also shows the evaluated transition probabilities for the low
lying transition of hydrogen (Z = 1). While all these transitions are permitted
or resonance lines, the transition probabilities do cover a wide range of values
from ’typical’ resonance values of 108 − 109 s−1 down to values more typical
of intercombination lines of only a few per second.

In order to compute the spectrum of hydrogen we need not only the
transition probabilities, which serve to depopulate upper level and feed elec-
trons down to lower levels, but we also need to have the recombination rates
that feed electrons into this cascade of dropping electrons from outside the
atoms. In addition the low density limit is sometimes does not apply and
collisions between electrons and hydrogen atoms can move electrons back up
the cascade and between l levels. Finally, when the radiation surrounding
the hydrogen atom becomes strong enough at the right energies the photons
can be absorbed and electrons can be again moved back up the cascade. It is
the combination of collisions, recombination, absorption and transitions that
makes the complete calculation of the hydrogen spectrum a challenge. We
will look at these effects in subsequent chapters and build towards the means
of computing the hydrogen spectrum and the emission from other species in
diffuse plasmas. and transitions

2.1.3 The Spectroscopic Notation

The spectroscopic notation labels various transitions according to the state
of the inner shell electrons, the electronic state of the outer optically–active
electrons, and the quantum numbers of the resulting atomic state. However,
students can find this initially very confusing. This is because the notation
grew up, like many things in physics and astronomy initially as a set of obser-
vational phenomena, and only later was put on a sure theoretical basis. For
example, in the nineteenth century, the observational effort was to discover
regular series of lines which helped classify the plethora and confusion of
emission lines seen through optical spectroscopes when individual elements
were heated in flames or ionized in electrical discharges at low pressures. The
brightest series were inevitably given the name “principal” (P), while the ap-
pearance of other sets of lines as seen through the spectroscopes was subtly
different, and were accordingly given the names “sharp”(S), “diffuse”(D) or
“fundamental”(F, on account of the hydrogen–like values of the series). It
was only later realised that this classification had been according to the or-
bital angular momentum of the atomic configuration L; in order of increasing
angular momentum from L = 0 these are: S, P, D, F. After that, imagination
failed for the naming convention, and so the sequence continues: G, H, I....

As far as the wavefunctions of electrons are concerned, Schrödinger
showed that, in the Coulomb potential, or indeed in other spherically symmet-
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Table 2.1. Hydrogen transition probabilities between the first 5 levels.

Upper Lower Radial Integral Probability Observed
n l n′ l′ I(n, l, n′, l′) A(n, l, n′, l′)s−1 Line λ(Å)

2 1 1 0
(

32768
19683

)
6.258085E+08 Lyα 1215.67

3 1 1 0
(

2187
8192

)
1.670707E+08 Lyβ 1025.72

4 1 1 0
(

113246208
1220703125

)
6.811244E+07 Lyγ 972.54

5 1 1 0
(

625000
14348907

)
3.433791E+07 Lyδ 949.74

3 0 2 1
(

214990848
244140625

)
6.306708E+06 Hα 6562.80

3 1 2 0
(

2293235712
244140625

)
2.242385E+07 Hα 6562.80

3 2 2 1
(

27518828544
1220703125

)
6.458069E+07 Hα 6562.80

4 0 2 1
(

2097152
14348907

)
2.575344E+06 Hβ 4861.32

4 1 2 0
(

2621440
1594323

)
9.657538E+06 Hβ 4861.32

4 2 2 1
(

41943040
14348907

)
2.060275E+07 Hβ 4861.32

5 0 2 1
(

1728000000000
33232930569601

)
1.287221E+06 Hγ 4340.46

5 1 2 0
(

19906560000000
33232930569601

)
4.942930E+06 Hγ 4340.46

5 2 2 1
(

221184000000000
232630513987207

)
9.415105E+06 Hγ 4340.46

4 0 3 1
(

198429099687936
33232930569601

)
1.833427E+06 Paα 18751.0

4 1 3 0
(

994117681152000
33232930569601

)
3.061786E+06 Paα 18751.0

4 1 3 2
(

56358560858112
33232930569601

)
3.471578E+05 Paα 18751.0

4 2 3 1
(

1902101428961280
33232930569601

)
7.029945E+06 Paα 18751.0

4 3 3 2
(

24346898290704384
232630513987207

)
1.377295E+07 Paα 18751.0

5 0 3 1
(

516849609375
549755813888

)
9.037057E+05 Paβ 12818.1

5 1 3 0
(

701719453125
137438953472

)
1.635931E+06 Paβ 12818.1

5 1 3 2
(

64072265625
274877906944

)
1.493728E+05 Paβ 12818.1

5 2 3 1
(

2421931640625
274877906944

)
3.387776E+06 Paβ 12818.1

5 3 3 2
(

12109658203125
1099511627776

)
4.537200E+06 Paβ 12818.1

5 0 4 1
(

85762416640000000000
4052555153018976267

)
6.443709E+05 Brα 40512.0

5 1 4 0
(

2646238780456960000000
36472996377170786403

)
7.363837E+05 Brα 40512.0

5 1 4 2
(

338249646080000000000
36472996377170786403

)
1.882532E+05 Brα 40512.0

5 2 4 1
(

493837352960000000000
4052555153018976267

)
1.484167E+06 Brα 40512.0

5 2 4 3
(

33554432000000000000
12157665459056928801

)
5.042185E+04 Brα 40512.0

5 3 4 2
(

2405181685760000000000
12157665459056928801

)
2.581599E+06 Brα 40512.0

5 4 4 3
(

34359738368000000000000
109418989131512359209

)
4.249545E+06 Brα 40512.0
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nsi npj ndk… 

2S+1

LJ

(o)

Electronic Configuration: 
the electrons and their orbitals 
(i.e. 1s2 2s2 3p1)

Total Term Spin Multiplicity:
S is vector sum of electron spins (±1/2 each)
Inner full shells sum to 0

Term Parity:
o for odd, nothing for even

The Number of levels in 
a term is the smaller of 
(2S+1) or (2L+1)

Total Term Orbital Angular 
Momentum:
Vector sum of contributing 
electron orbitals.
Inner full shells sum to 0.

Total Level Angular Momentum:
Vector sum of L and S of a particular 
level in a term.

Fig. 2.3. Spectral notation for an atomic term, comprised of 1 or more levels.

ric potentials, it is possible to separate the eigenfunctions into their spatial
parts. Thus in terms of the quantum numbers, the principal quantum num-
ber n, the angular momentum quantum number l, and the magnetic quantum
number m, the wavefunction can be written in terms of the polar coordinates
as:

Ψnlm(r, θ, φ) = Rnl(r)Θlm(θ)Φm(φ) (2.21)

where the quantum numbers satisfy:

n = 1, 2, 3, ...,
l = 0, 1, 2, ..., (n− 1) and
m = −1,−(l − 1)..., 0, ...(l − 1), l. (2.22)

The fact that the each electron has a spin angular momentum s = 1/2 ensures
that the electron has a magnetic moment (equal to one Bohr magneton,
eh/4πmec) which will interact with the magnetic field due to orbital motion,
producing a total angular momentum j = |l ± 1/2|.

Thus, for an orbital angular momentum l = 0, the only possible levels
associated with the binding of a single electron have j = 1/2;n = 1, 2, 3 . . ..
In spectroscopic notation, these will be referred to as n 2S1/2 levels, meaning
that they have principal quantum number n, the term is a doublet (although
in this particular case the lower value of j would be negative, so one of the
levels of the doublet cannot exist), the orbital angular momentum is zero
(S state) and the total angular momentum is 1/2. Now consider the orbital
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angular momentum l = 1. Now the possible levels have j = 1/2, 3/2 and
n = 1, 2, 3 . . .. In spectroscopic notation, these will be n 2P1/2 or n 2P3/2

levels. Continuing to higher orbital angular momentum, l = 2, j = 3/2, 5/2
and n = 1, 2, 3 . . .. so these are n 2D3/2 or n 2D5/2 levels, and so on to higher
l states.

Now, since the Pauli exclusion principle states that no two electrons can
have identical quantum numbers, then the n = 1 state can be occupied by
only two electrons (l = 0, s = ±1/2). This forms a closed shell of configu-
ration 1s2. Here, the leading number is the shell number, (here the first), s
refers to the angular momentum state of the electrons occupying this shell,
and the superscript 2 refers to the number of electrons present. Thus the
electron configuration of the normal state of magnesium (Z = 12) would
be: 1s22s22p63s2. Ionised magnesium, (Mg+ or Mg ii), which is isoelectronic
with sodium and has one optically active electron in its outer shell will have
the ground state, defined by the electron configuration and the ground term;
1s22s22p63s 2S1/2.

While one optically active electron only allows us one way of forming
the total angular momentum by combining the spin and the orbital angu-
lar momentum, with two or more electrons life gets much more complicated.
Consider the case of two electrons. For light atoms, as first shown by Russell
& Saunders, the angular momentum vectors are coupled by electrostatic in-
teraction to form the total orbital angular momentum, and the spins are also
coupled by electrostatic interaction to give the total spin:

L = l1 + l2 = (l1 + l2), (l1 + l2 − 1), ... |l1 − l2|
S = s1 + s2 = 1/2 ± 1/2 = 0, 1 (2.23)

and the resultant L and S combine by magnetic interaction to give the total
angular momentum:

J = L + S = (L+ S), (L+ S − 1), ... |L− S| (2.24)

This situation is known as (Russell–Saunders) LS coupling.
In the case of LS coupling for our atom with two optically active electrons,

the possible states are n 1S0, n 1P1 and n 3P0,1,2 . These are called the ground
terms. In the case of neutral magnesium, Mg i, the ground state would be
1s22s22p63s2 1S0, and the two excited states of the ground term are therefore
1s22s22p63s2 1P1 and 1s22s22p63s3p 1P0,1,2. Clearly this is a rather clumsy
notation, so usually the configuration of the closed shells is omitted, viz. 3s2
1S0, 3s2 1P1, and 3s3p 1P0,1,2, respectively.

Other kinds of coupling are possible. For example, in heavier ions, the
spin and orbit of individual electrons can be coupled, with the resulting total
angular momenta of each electron being coupled together. This is called JJ
coupling. This is merely indicative of the complexity that can be obtained
with multi–electron atoms.
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Table 2.2. C iii Ion Transitions

Resonance Line: C iii: A( 2s 2p 1P1 - 2s2 1S0 ) = 1.7 × 109 s−1

Intercombination Line: C iii]: A( 2s 2p 3P1 - 2s2 1S0 ) = 97 s−1

Forbidden Line [C iii]: A( 2s 2p 3P2 - 2s2 1S0 ) = 5.2 × 10−3 s−1

2.1.4 Intercombination and Forbidden Lines

In pure LS coupling, the wavefunctions for the two states which obey the se-
lection rules given in section (2.1.1) are strictly orthogonal, so that the overlap
integral, the line transition probability and the gf value are all strictly zero.
However, in real ions of intermediate atomic mass, the coupling is not pure
LS, but is usually inermediate between LS and JJ. For heavy atoms, other
coupling schemes may be a closer approximation to reality. The departure
from pure LS coupling means that electric quadrupole transitions between
states of different multiplicity can occur, albeit with low transition probabil-
ity. These are the so–called intercombination, inter–system or semi–forbidden
lines. To distinguish these transitions from normal resonance transitions, we
usually place a square bracket to the right of the ion identification, i.e. C iii].
Typically, the transition probabilities are a factor of order α2 =

(
e2/hc

)2
lower than a resonance line of the same frequency. Since resonance lines have
radiative transition probabilities of order 108 – 109 s−1, then intercombina-
tion lines have A ∼ 103 s−1. For the typical densities and temperatures found
in the interstellar medium, the intercombination line transition probability is
still comfortably larger than the mean atom–atom collisional rate.

In nebulae at low enough densities or temperatures, we can even see mag-
netic quadrupole transitions. These are even more highly improbable, with
transition probabilities of order α4 = (e2/hc)4 lower than a resonance line at
the same frequency. These are called forbidden lines. Examples of all these
transitions are to be found in the C iii ion in table 2.1.4:

Another example is illustrated by the partial Grotian (level) diagram
for the O iii ion shown in Figure (2.4), where the wavelengths are given in
angströms, (Å). Although electrons involved in forbidden transitions can rest
in their excited states for several minutes or more, the very low densities
of diffuse astrophysical plasmas ensure that even over such long periods of
time, a collision between the ion and an electron may be quite unlikely, so
that the atom is left to radiate the forbidden line. The photon produced has a
negligible probability of being re–absorbed by another ion thanks to the low
transition probability (c.f. equation (??) ), so it is free to escape the region
where it is being excited. In this way, despite their improbability, forbidden
lines are very important in setting the energy balance of diffuse astrophysical
plasmas.



       

2.2 Molecular Spectra 23

1s2 2s 2p3 3D3,2,1

833-835

1s2 2s 2p3 5S2

1s2 2s 2p2 3P0,1,2

1s2 2s 2p2 1D2

1s2 2s 2p2 1S0

1661,1666]
[4363]

[4959,5007][2315,21,31]

3P0 - 3P1  [88.16µm]
3P0 - 3P2  [32.59µm]
3P1 - 3P2  [51.69µm]

OIII

Fig. 2.4. A partial Grotian (energy level) diagram for the lower states of the O iii
ion, illustrating several classes of transition which are observed in diffuse astrophys-
ical plasmas.

2.2 Molecular Spectra

In the last twenty years there has a been a remarkable development in the
field of interstellar chemistry. This has come about as the result of detailed
laboratory measurements of the rotation–vibration emission spectra of candi-
date molecules in the microwave region of the spectrum, and the astronomical
study of microwave lines from dense and warm clouds of molecular gas. The
famous source in the Galactic Centre, Sgr B2 has been a favourite hunting
ground for new molecules, but many molecular species have been detected
in other regions around newly–formed hot stars, such as the Orion Neb-
ula Kleinemann–Low region, and the compact H ii regions W51 and DR21.
Molecules as complex as carbon chains with 13 atoms have been detected,
and the number of species detected is increasing weekly. A list of species that
have been detected by mid-1998 is given in Table 2.2:

The observational material is now sufficient that many of the details of the
astrochemical evolution of the interstellar medium are now being elucidated.
For those that want to know more the monograph by Emma Bakes (1997)
gives an excellent introduction to the field.

The field of molecular spectroscopy is very complex, and we cannot hope
to do justice to it here, but we hope simply to summarise some of the nomen-
clature that is used so that the field can be more easily approached.
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Table 2.3. Molcular Species Detected in the ISM (after Snyder(1997) and
Bakes(1997))

Atoms Species

2
H2 HD C2 N2 OH CH CN CO CP CS NH NO NS SO PN AlF AlCl
HCl KCl NaCl SiC SiN SiO SiS CH+ CO+ CN+ NO+ MgH+ SO+ CS+

3
C3 C2H CH2 C2O C2S CO2 HCN HCO NH2 N2O H2O H2S HNC HNO
MgCN MgNC NaCN OCS SO2 c-SiC2 HCO+ HCS+ H+

3 HOC+ N2H
+

4
c-C3H i-C3H C3N C3O C3S C2H2 HCCN HNCO HNCS H2CO
H2CN CH2N H2CS NH3 CH2D

+ HCNH+ HOCO+ H3O
+

5
C5 C4H C4D l-C3H2 c-C3H2 CH2CN CH4 HC3N HC2NC CH2C2

HCOOH H2CNH H2C2O H2NCN HNC3 SiH4 C4 Si H2COH+ HC3NH+

6
C5H l-H2C4 C2H4 C5S? CH3CN CH3NC CH3OH CH3SH
HC2CHO HCOC2H HCONH2 HC3NH+

7
C6H HC5N CH2CHCN CH3C2H HC5N HCOCH3 NH2CH3

c-C2H4O CH3CHO

8 C7H H2C6 CH3COOH CH3C3N HCOOCH3

9 C8H HC7N CH3C4H CH3CH2CN (CH3)2O CH3CH2OH
10 CH3C5N? (CH3)2CO

11 HC9N

12

13 HC11N

2.2.1 Rotating Diatomic Molecules

The simplest molecular line spectra are due to diatomic molecules in rota-
tional motion. These molecules emit in the infrared and microwave regions of
the electromagnetic spectrum and produce a spectrum of emission or absorp-
tion lines which are nearly equally spaced in frequency (or energy). These
lines are formed by transitions between quantized rotational energy levels
which are directly related to the masses and inter–atomic spacing of the
atoms in the molecules.

To a first approximation a slowly spinning diatomic molecule can be con-
sidered as a rigid rotator – that is, the interatomic spacing is constant. In
reality, as the molecules spin faster centrifugal effects can change the atomic
spacing and hence the energy level spacing. Fortunately, many molecular
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species such as H2 detected in diffuse astrophysical plasmas are observed in
the lowest spin levels where the rigid rotator model is a fair approximation
to the truth.

The rotation of a rigid diatomic rotator is equivalent to the motion of
a single reduced mass µ on a sphere of radius r from the centre of rota-
tion, analagous with the hydrogen atom discussed above. The rotator is a
bit simpler though, because while the reduced system is spherical, it has a
fixed radius. The wavefunctions can be separated into Θ(θ) and Φ(φ) angu-
lar components in spherical coordinates as usual, but the radial component
disappears and need not be included.

The solutions are quantised in two variables, mj the quantum number of
the z component of the angular momentum and J the rotational quantum
number (analogous to l in one electron atoms). For the mj the simplest
determining expression is:

d2Φ

dφ2
= −m2

jΦ, (2.25)

The quantum number J is related to the moment of inertia, µ and r2, and
the rotational energy E by:

8π2µr2E

h2
= J(J + 1) (2.26)

and the wave equation constrains J to integral values and J ≥ |mj |, so there
are 2J + 1 values of mj for each value of J .

Some of the rigid rotator wavefunctions are represented in figure (2.3) for
J = 0 up to J = 4. The complex wavefunction Ψ is represented as two rectan-
gular φ - θ maps, analogous to a mercator projection world map. This is done
in preference to the more usual polar line plots because it shows the sym-
metry properties of the wavefunctions more clearly. The probability density
Ψ∗Ψ is shown, and black represents the regions where the rotating particle
spends the most time as it spins. The high J , high |mj | plots show the trend
towards the classical high angular momentum result with the nuclei spinning
in a well defined equatorial plane. The probability plots are also mapped onto
a spherical representation to aid visualising the molecule’s motion.

From equation (2.26), the possible rotational energy levels in the rigid
rotator are:

Erot = J(J + 1)
h2

8π2I
. (2.27)

Transitions between different J levels are possible through absorption and
emission of photons. However, since photons have a spin angular momentum
of h/2π, and so the conservation of angular momentum limits the change in
angular momentum of the molecule to ∆J = ±1. In collisional processes, the
colliding particle can inject or carry away any amount of angular momentum,
so here transitions with |∆J | > 1 are possible. The energy of a transition is
given by,
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E′ − E′′ = ∆E =
h2

8π2I
[J ′(J ′ + 1) − J ′′(J ′′ + 1)]. (2.28)

When J ′ = J ′′ + 1 = J + 1, for radiative transitions, this reduces to

∆E =
h2

4π2I
(J + 1), (2.29)

and the lines frequencies are,

ν =
∆E

h
=

h

4π2I
(J + 1) = 2B(J + 1), J = 0, 1, 2... (2.30)

where B is the commonly used molecular rotation constant h/(8π2I). Equa-
tion (2.30) implies that the successive J transitions are separated by a con-
stant value in frequency; ∆ν = 2B. Astrophysical examples of such rota-
tional ladders are presented by the CO or CS molecules. In CO the observed
wavelengths of the J = 1 − 0, J = 2 − 1 and J = 3 − 2 transitions are
115271.204 MHz, 230537.974 MHz and 345795.900 MHz, respectively. If the
separations were rigorously identical, then we would expect the J = 2 − 1
and J = 3 − 2 transitions to occur at 115271.204 MHz, 230542.408 MHz and
345813.612 MHz, respectively. The slight lowering of the observed frequency
compared with that predicted is due to the centrifugal distortion mentioned
above. This increases the separation of the molecules, and hence the moment
of inertia, and so lowers the energy of the transition, as observed. The change
in the moment of inertia of the molecule obtained by substituting a 13C for
the 12C in the CO molecule shifts the frequency of the J = 1 − 0 transition
to 110201.370 MHz ( c.f. 110204.338 MHz expected simply from the ratio of
the reduced masses of the two molecules).

2.2.2 Rotational Wavefunction Symmetry

Advanced Section
In addition to angular momentum conservation, considerations of symme-

try places important restrictions on the allowable rotational transitions. In
any quantum wavefunction system, such as an atomic or molecular system,
the wave equation (Eqn ??) should remain unchanged after reflection about
the origin (x, y, z replaced by −x, −y, −z), that is, it should not depend on
the choice of coordinate systems. However the eigenfunctions, or solutions,
as shown in Figure (2.5) may be affected by reflection about the origin, and
will be either unchanged or have a sign reversal after the reflection. To see
this, take a wavefunction in Figure (2.4), Ψ(real) for J = 3 and |mj | = 2 for
example, flip it vertically and then shift it left to right by half the width of the
diagram with wrap around. Doing this results in the black and white pattern
exactly inverting. This process is the graphical equivalent of reflection about
the origin point, that is θ′ = π− θ and φ′ = π+ φ. Inspection will show that
all the wavefunctions for even values of J are identical (symmetric) after this
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Fig. 2.5. Angular spherical wavefunctions.
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process, and all the wavefunctions for odd values of J invert or change sign,
and are thus anti–symmetric.

The rotational eigenvalues or levels are classified as either positive or neg-
ative depending on the symmetry of the total wavefunction under reflection,

Ψtot. = Ψe

(
1
r

)
ΨνΨrot. (2.31)

this total wavefunction being a combination of nearly independent electronic
(Ψe), vibrational ((1/r)Ψν) and rotational (Ψrot.) wavefunctions. In positive
rotational levels Ψtot. remains unchanged on reflection and for negative ro-
tational levels Ψtot. change sign. This is analogous to even and odd atomic
energy levels.

Now, the vibration wavefunction is only a function of separation r, and is
unchanged by reflection. In diatomic molecules, the net angular momentum
about the inter–nuclear axis is typically zero (Λ = 0), although there are
exceptions, so the electronic wavefunction (Ψe) is also typically symmetric
under reflection. In this case the parity, positive or negative, will be deter-
mined by the symmetry of the rotational wavefunctions alone. Positive levels
are symmetric and negative levels are anti–symmetric. If Ψe is anti–symmetric
then the reverse is true and positive levels are anti–symmetric rotation levels
and negative levels are symmetric. This principle is true even if the total
wavefunction is not perfectly separable as implied in eqn (2.31).

Using symmetry, a selection rule for transitions between positive and
negative rotational levels can be found by considering the symmetry of the
quantum mechanical operator associated with the transition. In the case of
electric dipole transitions, the dipole operator D is a vector sum of charge
displacements, and point reflection will change the vector direction to ex-
actly the opposite, and D is therefore anti–symmetric under this reflection.
The transition probabilities between two states Ψ1 and Ψ2 are determined by
the associated operators (in general O) for the transition in so–called matrix
elements, which are integrals over all space dτ ,

P (1 − 2) =
∫
Ψ1OΨ2dτ. (2.32)

The integral, under situations where symmetry is present, can be one of two
alternatives:

1. When the integrand Ψ1OΨ2 is symmetric the integral can take on values
other than zero.

2. When the integrand Ψ1OΨ2 is anti–symmetric the integral will be exactly
zero.

The symmetry of the integrand is the product of the symmetry of the
terms. If the operator O is anti–symmetric like the dipole operator D then
the symmetry of the integrand is determined using simple product rules. Let
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S be any symmetric function and A be any anti–symmetric one, then the
following apply:

SS → S

SA → A

AS → A

AA→ S

So, for the transition probability to be non–zero, with an anti–symmetric
operator like D, the wavefunctions Ψ1 and Ψ2 must be of opposite symmetry.
This can be confirmed by taking triplets of S s and As with the middle term
being A and multiplying through with the above rules.

In the rotator case, all the positive levels are either symmetric or anti–
symmetric and similarly for the negative levels. So the only transitions that
are allowed under the dipole operator are positive to negative and negative
to positive transitions. This is more general but is still consistent with the
∆J = ±1 rule derived earlier. Other operators such as for magnetic dipole
or quadrupole transitions can be symmetric under point reflection and thus
have the opposite selection rule, however they are still restricted by angular
momentum restrictions.

2.2.3 Rotating Diatomic Molecules with Identical nuclei

If the two nuclei of the diatomic molecule are identical, such as in the astro-
physically important H2 molecule, further more rigorous symmetry occurs.
In addition to reflection symmetry about the origin point, there is symmetry
under the exchange of the two nuclei – or reflection about a plane between
the nuclei. The total wavefunction must remain unchanged or change sign
after the exchange of the two nuclei. The states are either symmetric or
anti–symmetric in the nuclei respectively.

For a given electronic state, Ψe, either all the positive (in origin reflec-
tion) rotational states are symmetric (in the nuclei) and the negative levels
are anti–symmetric or the opposite is true. If Ψe does not change sign on
exchange, and Λ = 0, then the states with positive symmetric and negative
anti–symmetric levels are designated Σ+

g and those with negative symmetric
and positive anti–symmetric levels are designated Σ+

u . If the Ψe does change
sign on exchange, then the equivalent states are Σ−

u and Σ−
g .

If the nuclei have zero spin, or nuclear spin is ignored, then there is a very
strict selection rule in addition to the previous ones. Here, transitions between
symmetric and anti–symmetric states are completely forbidden, for not only
any radiative transitions, but also for all collisional and other processes as
well.

First consider dipole radiative transitions. Previously we had the dipole
operator D in the matrix element integrals anti–symmetric under point origin
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reflection, forcing the product of the two level wavefunctions Ψ1 and Ψ2 to
be anti–symmetric under reflection so the integral would be symmetric and
hence able to have a non–zero value. This could only be achieved if the levels
were positive and negative or emphvise versa. Under nuclear exchange, or
plane reflection symmetry, the dipole operator D is always symmetric, as is
any other multipole. Therefore, for the integrand Ψ1DΨ2 to be symmetric,
and the integral be able to have values other than 0, Ψ1 and Ψ2 must have the
same symmetry. If they do not then the integral will be 0 and the transition
forbidden. Even in collisional processes, any third particle interacting with
the diatomic nucleus cannot distinguish between the exchange of the nuclei,
so the collisional processes are symmetric in the nuclei, and so cannot perform
transitions between symmetric and anti–symmetric states. Since symmetry
alternates between symmetric and anti–symmetric levels in J , ∆J is never
an odd number of levels.

The implication of this is that systems of zero nuclear spin, like O2, and
C2, could exist in two distinct populations, one with only symmetric rotation
levels, and one with anti–symmetric rotation levels, depending on what sym-
metry the molecules were formed with. These molecules would not be seen
directly in dipole transitions between rotational levels, but may be seen in
rotational fine structure of the vibration lines of electronic transitions. Obser-
vationally only the odd J levels are occupied, which are symmetric, and no
anti–symmetric rotational levels are present. In Raman spectra of O2, where
transitions occur with ∆J = 0 or ±2 and thus are allowed, all the even num-
bered lines are missing, supporting the hypothesis that while anti–symmetric
levels are mathematically possible, in our universe only the symmetric ones
are used. This is presumably related to the intrinsic symmetry of the nuclei
before the molecule formation and the symmetry of the process that forms
them.

In the case of H2, the nuclei have non–zero spin – namely ±1/2. The
nuclear spin of the molecule can take on values according to the vector sums
of the two spins, either 1 (both +1/2, or parallel, anti–symmetric) or 0 (
one +1/2 and the other −1/2, anti–parallel , symmetric). More generally for
various spins, the total nuclear spin can take on the values,

N = 2I, 2I − 1, ..., 0 (2.33)

where I is the spin number of each nucleus. Also each value of N has a
statistical weight of 2N + 1 in the usual manner. For H2, I = 1/2 and the
parallel state has a statistical weight of 3 and the anti–parallel a weight of 1.
Furthermore, when the nuclear wavefunction is combined with the rest of the
molecule wavefunction in eqn (2.31), the symmetry of the nuclear wavefunc-
tion can change the symmetry of the overall wavefunction. For example, an
anti–symmetric nuclear function multiplied by a symmetric molecular func-
tion will become anti–symmetric overall. However this alone is not sufficient
to allow symmetric to anti–symmetric transitions to occur. If the nuclear
wavefunction Ω and molecular wavefunction Ψ are separable:
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Ψtot. = ΨΩ (2.34)

In this case the transition matrix element integrals are also separable, and
each part must still obey the symmetry laws and be strictly zero for sym-
metric to anti–symmetric states. However if the nuclear function is coupled
to the molecular wavefunction, so that some part ε is not separable,

Ψtot. = ΨΩ + ε. (2.35)

Then the symmetry of the rotational components of the total wavefunction
are not perfectly symmetrical and the transition probabilities will be non–
zero. The nuclear coupling is usually extremely weak however, and the tran-
sition rates are very small indeed. The mean lifetime of a molecule of one
rotational symmetry before it makes a transition to a state of another sym-
metry (∆J = ±1) can be years.

As a result of this there are two types of H2 molecules; one with anti–
symmetric (parallel) nuclear and anti–symmetric rotational wavefunctions
(odd J numbers), and one with symmetric (anti–parallel) nuclear and sym-
metric rotational wavefunctions (giving even J numbers). Because of their
long lifetimes, these behave as two separate rotation systems which can only
very slowly mix with one another. Given enough time - and that is a lot,
they will come into statistical equilibrium with each other in the ratio of
their statistical weights, that is 3 : 1. The most common type is known as
the ortho- variety, ortho–hydrogen or o−H2, and the less common variety is
para-hydrogen or p−H2. In homonuclear molecules with integral spins, i.e.
deuterium, D2, with I = 1, a similar circumstance arises, with the most com-
mon variety also known as ortho–deuterium, however in this case the ortho
variety are the symmetric systems and the para variety is the less common
anti–symmetric type.

Notes on Chapter 2

• A very useful introductory summary of quantum physics is given by James
William Rohlf “Modern Physics from α to Z0”, John Wiley & Sons: NY,
1994.

• The quantum mechanics of molecules is fully treated in the book by P.W.
Atkins “Molecular Quantum Mechanics” Second Edition, 1983, (Oxford
University Press: Oxford), ISBN 0-19-855170-3.

• The atomic and molecular physics relevant to IR and radio astronomy
is clearly summarised by Reinhard Genzel in Saas–Fee Advanced Course
21, “The Galactic Interstellar Medium”, 1991, (Springer–Verlag: Berlin),
ISBN 3-540-55805-5, whose work has been used in the preparation of this
chapter and in Chapter 4.
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• The key reference work of atomic terms, configurations and energy levels
is “Grotrian Diagrams”.

Exercise 2.2.1. What makes the following transition forbidden: 1D2 →
3P2?

Exercise 2.2.2. How many optically–active electrons does the O2+ (or O iii)
ion contain? What is the electron configuration of the ground terms? What
are the multiplets of the ground terms?

Exercise 2.2.3. The J = 1 − 0 transition in 12CO occurs at 115271.204
MHz. Calculate the interatomic separation of this molecule in Å (10−8 cm).
Assume the mass of a hydrogen atom is 1.66x10−24 g.



    

3. Collisional Excitation

“High o’er the fence leaps Sunny Jim,
‘Force’ is the food that raises him”
— Minnie Hanff (Advertising slogan, 1903)

Under the density conditions that are found in most of the interstellar
medium, most of the atoms of any particular element and ionization state
reside in the ground state. The excited states of atoms are mostly populated
as a result of collisions with charged species (usually electrons or protons),
and the collision excitation timescale is often long enough that the atoms
are free to decay back to the ground state by radiative processes. A low
enough densities, this condition will remain true even if the excited state
has a radiative lifetime of several seconds. This is freqently the case for the
forbidden transitions observed in ionized plasmas.

In these conditions, the flux produced in an emission line resulting from
the radiative decay of the excited level will depend on the number of collisions,
which is proportional to the product of the number densities of the two
colliding species multiplied by the probability that a collision will produce
a collisional excitation. In turn, this probability depends on the collisional
excitation cross section integrated over the energy distribution of the colliding
species; determined by the temperature T . It is almost intuitive that if the
energy gap between the ground state and the excited state, E12, is much larger
than the mean energy of the colliding species ∼ kT , then, because there are
few very energetic collisions, few collisional excitations can occur and the
resulting line will be very much weaker than when E12 ≤ kT . This gives us
the possibility of measuring temperature from the relative strengths of lines
coming from different excited levels. The same kind of thing can happen
in molecules. For example, molecular collisions can excite various rotational
states of molecular hydrogen, so a comparison of the column densities in
the various rotationally-excited levels can be used to estimate the kinetic
temperature.

At high enough densities, the collision timescales are short, and the pop-
ulation in any upper level is set by the balance between collision excitation,
and the collision de-excitation out of these levels. Under these conditions, the
populations in the excited states are governed by the Boltzmann equilibrium;
equation (1.1). At intermediate densities where the collisional rates and the
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Fig. 3.1. Above the threshold energy for collisional excitation, the cross section
decreases approximately inversely as energy.

radiative decay rates are comparable, the intensity of an emission line is de-
termined both by the temperature and the density. Thus if the temperature
is known, the density can be determined from the intensity ratio of two such
lines. These simple considerations hold the key to the spectroscopic determi-
nation of the physical conditions in any given parcel of interstellar plasma.
Let us now consider the physics of collisional excitation in more detail.

3.1 Collisional Excitation by Electron Impact

Consider an (idealised) atom with only two energy states, a ground state and
an excited state which can radiate back down to the ground state. Electron
impacts can collisionally excite an atom into an upper level. Once there, if
left alone, it will return to the ground state by a radiative transition. If,
on the other hand, it suffers another collision with an electron while still
in the excited state, it may collisionally de–excite back down to the ground
state. The collisional cross–section is a strongly varying function of energy,
in general varying approximately inversely as the impact energy.

Therefore, the collision strength, Ω12, defined in terms of the collisional
cross–section, σ12(E):

σ12(E) =
(

h2

8πmeE

)(
Ω12

g1

)
cm2, (3.1)
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is a more convenient quantity to use, since it removes the primary energy
dependence for most atomic transitions. In this equation, me is the electron
mass, E is the electron energy, and g1 is the statistical weight of the ground
state. In addition Ω12 has another advantage; that of symmetry between
the upper and the lower states. This is readily demonstrated. Consider the
situation at very high density, where the population of the ground and the
excited level are determined entirely by collisions, the radiative rate being
negligible by comparison to either the collision excitation rate or the col-
lisional de–excitation rate. These circumstances ensure that the atom is in
Local Thermodynamic Equilibrium (LTE) and that the two levels are popu-
lated according to the Boltzmann equilibrium (equation 1.1) at the electron
temperature, T , (equation 1.2):

N2

N1
=
g2
g1

exp
[−E12

kT

]
(3.2)

Consider the equation of detailed balance at high density (Boltzmann
Equilibrium). However we can also compute the population ratio from equa-
tion (3.1), using the principle of detailed balance. This states that, in equi-
librium, the rate of population of the upper level per unit volume, through
collisional excitation, R12 ( cm−3 s−1) is equal to the rate of depopulation
through collisional de–excitation, R21 ( cm−3 s−1). If the electron density is
ne ( cm−3), and these are distributed according to the Maxwell–Boltzmann
energy distribution function f(E)dE; given by equation (1.2), then:

R12 = neN1

∞∫
E12

σ12(E).E.f(E)dE

= neN1 α12 (3.3)

= neN1

(
2πh̄4

km3
e

)1/2

T−1/2

(
Ω12

g1

)
exp

[−E12

kT

]
cm−3 s−1,

and

R21 = neN2

∞∫
0

σ21(E).E.f(E)dE

= neN2 α21 (3.4)

= neN2

(
2πh̄4

km3
e

)1/2

T−1/2

(
Ω21

g2

)
cm−3 s−1.

(it is a useful exercise to derive these two equations). The alphas, α12 amd
α21 are known as the collisional excitation and de–excitation coefficients, have
units of cm3 s−1, and in general α12 = α21 because of the Boltzmann factor
exp[−E12/kT ] and different statistical weights.
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Applying detailed balance by setting the rate in equation (3.3) to that of
equation (3.4) gives the ratio of the two level populations in terms of the rate
corefficients:

N2

N1
=
α12

α21
=
(
Ω12

g1

)(
g2
Ω21

)
exp

[−E12

kT

]
(3.5)

Comparing this with the Boltzmann Equation (eqn 3.2), it follows that the
collision strength, Ω, has to be symmetric between the levels, i.e. Ω12 = Ω21.

There is a simple quantum mechanical sum rule for collision strengths for
the case that one term consists of a single level, and the second consists of
a multiplet. This occurs, for example, in the case that one of the levels has
had its degeneracy removed by spin–orbital interactions, as in, for example,
the individual levels within the term 3P0,1,2. For such terms:

Ω(L1,S1.J1:L2,S2.J2) =
(2J2 + 1)

(2S2 + 1)(2L2 + 1)
Ω(L1,S1:L2,S2)

(3.6)

provided that either S = 0 or L = 0. Here, the factor (2J2+1) is the statistical
weight of an individual level in the multiplet, and (2S2 + 1)(2L2 + 1) is the
statistical weight of the multiplet. In the example of the term 3P0,1,2, we can
regard the collision strength as being “shared out” amongst these levels in
proportion to the statistical weights of the individual levels; gJ = (2J + 1).
Thus, the 3P0 level will carry 1/9 of the total collision strength, the 3P1 level
has a fraction 3/9, and the 3P2 level accounts for 5/9 of the total.

Quantum mechanical calculations show that the resonance structure in
the collision strengths is important, and that, for neutral species, the col-
lision strength increases with energy. However, because of the property of
resonances that they oscillate -ve and +ve over a small energy range, then
the effect on the temperature averaged collision strength (average over the
Maxwell–Boltzmann distribution ), Ωij is usually small, and can be usually
fitted by a simple power law; Ωij = A+B(T/104K)n. For electric dipole tran-
sitions, the collision strength and the gf value of the transition are related
through the equation given by Seaton (1958):

Ωij =
(

8π√
3

)
E−1
ij gfijG(T ) (3.7)

where G(T ) is a Gaunt Factor, which is a numerical multiplication factor
which changes the result of a “classical” calculation into one which is rigor-
ously identical to the result produced by a full quantum mechanical calcu-
lation ( often a ‘fudge’ factor or an empirical value when the full quantum
solution is not solved yet). In this case, the G(T ) is a fairly complex function
of temperature. This can be written (from Landini & Monsignori Fosse, 1991)
in terms of the first exponential integral E1 as:

G(x) = A+ exp[x]
(
Bx− Cx2 +Dx3 + E

)
E1(x) + (C +D)x−Dx2. (3.8)
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Electron Energy, E ⇒Electron Energy, E ⇒

Ω12(E)
Forbidden Line of
a Ionised Species

Forbidden Line of
a Neutral Species

Fig. 3.2. Computed variation of the collision strength for an ionised and a neutral
species, taken from the work of the Opacity Project (REF**)

However, for simple approximate purposes, a temperature averaged Gaunt
factor can be substituted in equation.(3.7) to give

Ωij =
8π√

3

(
IH
Eij

)
gfij , (3.9)

where here IH is the ionisation potential of hydrogen.

3.1.1 Limiting Cases

Let us now consider some important limiting cases of the two level atom.
First, in the low density limit, the collisional rate between atoms and electrons
is much slower than the radiative de–excitation rate of the excited level. Thus
we can balance the collisional feeding into level 2, given by equation (3.3) by
the rate of radiative transitions back down to level 1; R12 = A21N2, where
A21 is the radiative transition probability downwards. Balancing these two
rates gives:

N2 = neN1
α12

A21
(3.10)

= neN1 β A
−1
21 T

−1/2

(
Ω12

g1

)
exp

[−E12

kT

]
cm−3
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where β is the collection of constants: β =
[
(2πh̄4)/(km3

e)
]1/2

, which has
the value 8.62942 × 10−6 in c.g.s units. The emission line flux can then be
computed, since it is the product of the number of transitions occurring per
unit time and the energy of each photon, F12 = E12A21N2. Substituting
equation (3.10 ) into this, we have;

F12 = χin
2
e β E12T

−1/2

(
Ω12

g1

)
exp

[−E12

kT

]
erg cm−3 s−1 (3.11)

where χi is the relative abundance (by number) of the ion considered;
Ni = χine. The form of this is shown in fig ?? (below). Note that, for low
temperatures, the exponential term dominates because few electrons have
energy above the threshold for collisional excitation, so that the line rapidly
fades with decreasing temperature. At high temperatures, the T−1/2 term
controls the cooling rate, so the line fades slowly with increasing tempera-
ture. From equation (3.11), it is evident that the line flux reaches a maximum
at a temperature T = E12/k .

In the high density limit, the level populations are set by the Boltzmann
equilibrium equation (3.2), so that the line flux is now:

F12 = χineE12A21

(
g2
g1

)
exp

[−E12

kT

]
erg cm−3 s−1. (3.12)

Here, the line flux scales as ne rather than n2
e, but the line flux tends to

a constant value at high temperature. The change of the power of density
dependence implies the existence of a critical density, ncrit., defined as the
density where the radiative depopulation rate matches the collisional de–
excitation for the excited state; A21 = R21 , i.e.

A21N2 = β(Ω12/g2)T−1/2ncrit.N2. (3.13)

from which:

ncrit. =
(
A21g2T

1/2

βΩ12

)
cm−3 (3.14)

At around this density, the line emissivity plotted on log : log coordinates
changes slope from +2 to +1, and so this density can be considered to rep-
resent the transition from the low density limit to LTE populations for this
particular transition.

3.2 The Three–Level Atom

Although all ions have many excited states, nonetheless nature provides a
large number of atoms which, for ISM studies can be effectively treated
as three–level systems. Generally, these involve transitions between differ-
ent terms (including the ground term) having the same principal quantum



      

3.2 The Three–Level Atom 39

number. As a consequence, many of the transitions that are involved are
forbidden, and are only important at the low densities characteristic of the
ISM. However, many of these transitions occur at optical wavelengths, and
counted amongst the strongest lines in ground–based spectra of ionised nebu-
lae. Such systems provide an instructive insight into the main way line ratios
can be used for plasma diagnostics for the ISM, and have given us our basic
understanding of the physical conditions applying in ionised regions in the
ISM.

Let Cij be the collision rate (Cij = neαij s−1) between any two levels
defined by equations (3.3) and (3.4), above; depending on whether the rate
represents a collisional excitation or a collisional de–excitation. If the Aij are
the radiative transitional rates, then the equations of statistical equilibrium
for a three–level atom are:

N1C13 +N2C23 = N3(C31 + C32 +A32 +A31)
N1C12 +N3(C23 +A32) = N2(C23 + C21 +A21) (3.15)
N1 +N2 +N3 = 1

The last line normalises of the populations in all of the levels to sum to
unity, so the populations of individual levels are given as a fraction per ion.
Clearly, these are three linear equations, and can be readily solved. However,
to illustrate the way in which such an atom can be used to determine the
physical parameters of temperature and density, it is interesting to consider
two special cases.

3.2.1 Low Density Limit; E12 ∼ E23

In this case, because of the low density, collisional de–excitations of the ex-
cited levels can be safely ignored (Cij ∼ 0 for i > j). Also, because of the
increasing threshold energies to excite each level, N3 � N2 � N1 so that
equation (3.15) can be reduced to:

N1C13 = N3(A32 +A31)
N1C12 +N3A32 = N2A21 (3.16)
N1 +N2 +N3 = 1

hence, N3 = N1C13/(A32 + A31) and N2 = N1C12/A21. If we now form the
line intensity ratio for the 3 → 2 and 2 → 1 transitions, and substitute
equations (3.3) and (3.4) in the resulting expression we have:

F32

F12
=

E32A32C13

E21(A32 +A31)C12

=
E32A32Ω13

E21(A32 +A31)Ω12
exp

[−E23

kT

]
(3.17)
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Fig. 3.3. A three–level atom with nearly equi–spaced excited states. Such a level
configuration allows the ion to be used for temperature diagnostic purposes.

Because this line ratio varies as exp [−E23/kT ], it can be used to measure
the electron temperature in the plasma.

Astrophysical examples of such temperature–sensitive emission line ratios
are to be found in the forbidden lines of the p2 and p4 ions. These are typically
excited by thermal electrons at nebular temperatures ∼10000K. An example
of the temperature diagnostics is shown for the case of the [O iii] ion in Figure
(??). The reason we can use the three level approximation for ions such as
these is that the characteristic resonance lines have much higher threshold
energies, and are unimportant as cooling transitions at these temperatures
and densities.

For these atoms, the ground term is a triplet, as a result of the spin–orbit
interactions. However, the ground term splitting is small, so the atom can
be approximated by a three–level system. In addition, the relative intensities
of the individual transitions to the ground term can easily be worked out.
Quantum mechanics shows that, apart from relativistic corrections;

A(1D2 →3 P2) : A(1D2 →3 P1) ≈ 3 : 1 (3.18)

and
A(1S0 →3 P2) : A(1S0 →3 P1) ≈ 3 : 1. (3.19)

In Table 3.1 we list the wavelengths of some important nebular lines in p2

and p2 ions. Note that in the p4 ions the order of the ground term energy
levels is reversed.
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Fig. 3.4. The temperature dependence of the emissivity (left) and the ratio (right)
of the two [ O iii] lines, λ 5007Å and λ 4363Å .

Table 3.1. Some important nebular lines (Å)

p2 Ions [N ii] [O iii] [Nev] [S iii]
1S0 → 1D2 5755 4363 2974 6312
1D2 → 3P2 6583 5007 3426 9532
1D2 → 3P1 6548 4959 3346 9069

p4 Ions [O i] [Ne iii] [Ar iii]
1S0 → 1D2 5577 3343 5192
1D2 → 3D2 6300 3869 7136
1D2 → 3P1 6363 3968 7751

3.2.2 Ions in which E23 � E12

For three–level ions configuration like that shown in figure (3.5 ), and in the
low density limit, we can neglect collisionally induced transitions between the
higher levels. Hence, N1C12 = N2A21 and N1C13 = N3A31 . Therefore, in
the low density case the line flux ratio is given by :

F32

F12
=
E32A32N3

E21A21N2
=
E31C13

E21C12
=
Ω31

Ω21
exp

[−E23

kT

]
∼ Ω31

Ω21
. (3.20)

using the quantum mechanical sum rule for collision strengths equation (3.6)
yields the result:
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Fig. 3.5. An idealised three–level ion with a small energy separation between the
excited states. Ions having configurations like this can be used for density diagnostic
purposes,

F32

F12
∼ Ω31

Ω21
=
g3
g2
. (3.21)

On the other hand, in the high density limit, the upper levels are pop-
ulated according to their Boltzmann ratios, N3/N2 = g3/g2. Therefore, the
line flux ratio:

F32

F12
=
E32A32N3

E32A32N3
=
A31g3
A21g2

. (3.22)

Note that in both cases, the small energy gap between the second and
third level has the effect of supressing the temperature dependence, i.e. as
∆E/kT � 1, exp[∆E/kT ] → 1. These equations imply that the line ratios at
low density and at high density both tend to a limit, and that these limits are
different, provided that the transition probabilities are not the same. Thus
lines of ions with configurations like this can be used as density diagnostics
in the regime between the critical densities for de–excitation of each of the
transitions. Equation (3.14 ) shows that the critical densities scale as T 1/2,
so that the line intensity ratio in this intermediate range of density, where
the line ratio is sensitive to the electron density, is only weakly dependent
upon temperature.

The physical reason the line ratio is dependent on density can be un-
derstood if we think of the atom as behaving as two independent two–level
atoms involving the second level and the ground state and the third level
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Fig. 3.6. The behaviour of the emissivity (left) and the line ratio (right) as a
function of density in the [S ii] doublet which provides useful density diagnostics.

Table 3.2. Some density sensitive nebula lines(Å)

p2 Ions [O ii] [S ii] [Ne iv] [Ar iv]
2D3/2 → 4S3/2 3726 6731 2423 4740
2D3/2 → 4S3/2 3729 6716 2426 4711

and the ground state. For each line, the line intensity increases as the square
of the density, according to equation (3.11), up to the critical density given
by equation (3.14), after which it continues to increase proportional to the
density according to equation (3.12). Since each level has a different critical
density, the line ratio changes smoothly in the range between the two critical
densities. This is illustrated in Fig. (3.6), which illustrates the specific case
of the [S ii] ion at an electron temperature of 104K.

Such transitions are found in the forbidden lines of the ground terms of
the p3 ions. For example:

These ions also have a higher 2P term, which is well separated from the
2D term in energy. Thus transitions between these terms form temperature
sensitive line ratios, while transitions between the two lower terms are den-
sity sensitive. Thus, observations of both line ratios allows for a simultane-
ous solution of both temperature and density in the nebular zone contain-
ing these ions. An example of such a pair of line ratios is, in the [O ii] ion
the λλ(7318+7329)/(3726+3729)Å and the λλ(3726)/(3729)Å line ratio. An-
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Fig. 3.7. The temperature and density dependence of the O iii forbidden line ratio
λλ4363/5007Å and the forbidden to intercombination line ratio λλ4363/1663Å.
At low densities both are temperature diagnostics, but at high enough densities,
both density and temperature can be determined. This pair of ratios would be a
useful diagnostic in objects such as young nova shells, and in active galactic nuclear
emission line regions.

other example is provided by the [S ii] λλ(4069+4076))/(6716+6731)Å and
the λλ(6731)/(6716)Å line ratio.

In practice, almost any two line ratios for a given ion can be used for such
diagnostics. At successively higher densities, the ratio of a intercombination
to a forbidden line, the ratio of a resonance to an intercombination or the
even ratio of two resonance lines may be used. An example of the use of
this is shown for the case of the O iii ion in Figure (3.7). Here we plot the
ratio which is usually used as a temperature sensitive line ratio at low density,
the O iii(λ 4363/λ 5007Å) line ratio against the ratio of the intercombination
and forbidden line, the O iii(λ4363/λλ(1660+1666)Å)line ratio (which is also
sensitive mainly to temperature at low densities). See Figure (2.4) for the
terms involved.

Note the way in which each of these ratios becomes sensitive to density in
turn, once the critical density for one of the lines involved in the line ratio is
exceeded. For forbidden lines, the range of density sensitivity is typically 100
– 107 cm−3, while intercombination lines extend the range up to ∼ 1010 cm−3,
and resonance lines could, in principle, be used up to the point of transition
to full LTE conditions. However, in practice, this is not usually possible, since
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the radiative line transfer problems and radiative pumping of levels will tend
to dominate.

3.2.3 Infrared Line Diagnostics

In dense regions of rapid star formation, or in regions close to the centres of
galaxies, the visible light is often blocked from view by the surrounding dust.
In order to probe the conditions of such regions, we need to observe in the
far–infrared, where the dust obscuration is low, allowing us to probe these
dense regions. In addition, the dust itself displays a rich emission spectrum at
these wavelengths, allowing us to identify the nature, composition, and size
distribution of the dust component itself. The advent of the Infrared Astron-
omy Satellite (IRAS) and the Infrared Space Observatory (ISO) opened up
this far–infrared window of the electromagnetic spectrum to detailed study.
It is necessary to observe in space because at most ground–based sites, the re-
gion of the spectrum covering roughly 15-250µm is blocked from observation
by atmospheric absorption, mainly caused by water vapour.

The far–IR region of the spectrum contains most of the emission lines
which are responsible for cooling plasmas with temperatures of between 100
– 3000 K, but these lines are still important in even hotter plasmas. The
principal ions which give rise to lines in this region are the p2 and p4 ions,
since these have the multiplet ground terms in which hyperfine transitions
may occur. Because the transition probabilities are low in these transitions,
the critical densities are also quite low (unless the species is highly ionised),
so that ratios of lines from the same ion form useful density diagnostics.
However, the mean thermal energy of the electrons or ions is usually ap-
preciably higher than the excitation energies of the upper states, so nothing
can usually be gleaned about the temperature. More useful is the fact that
the emissivity in any line which is not affected by collisional de–excitation
is simply proportional to the ionic abundance, thus these lines be used as
abundance diagnostics, and ratios of lines of different ionisation may also be
used to measure the excitation of the plasma. In Table (3.2), we list some
of the most important lines detected with ISO. Here the critical density is
given in terms of the collisions with atomic hydrogen. Collisions with molec-
ular hydrogen may also be important for IR transitions involving un–ionised
atomic species.

3.3 The General Multi–Level Atom

It is easy to generalise the equations of statistical equilibrium given in equa-
tion (3.15) up to an arbitrary number of levels. In equilibrium, the rate of
collisional and radiative population of any level is matched by the collisional
and radiative depopulation rates of that same level. When combined with the
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Table 3.3. Important lines detected with ISO

Species Transition λ(µm) ncrit. (cm−3) IP(eV)
[C ii] 2P0

3/2− 2P0
1/2 157.74 3 × 103 11.26

[O i] 3P0− 3P1 145.50 9 × 104 . . .
[O i] 3P1− 3P2 63.18 5 × 105 . . .
[O iii] 3P1− 3P0 88.36 4 × 103 35.12
[O iii] 3P2− 3P1 51.82 5 × 102 35.12
[O iv] 2P3/2− 2P1/2 25.87 1 × 104 54.93
[N ii] 3P1− 3P0 203.5 5 × 101 14.53
[N ii] 3P2− 3P1 121.9 3 × 102 14.53
[N iii] 2P3/2− 2P1/2 57.32 3 × 103 29.60
[N iv] 3P1−3P2 . . . 1 × 106 47.45
[Ne ii] 3P1/2− 3P3/2 12.81 5 × 105 21.56
[Ne iii] 3P0−3P1 36.02 4 × 104 40.96
[Ne iii] 3P1−3P2 15.55 3 × 105 40.96
[Nev] 3P1−3P0 24.28 5 × 104 126.2
[Nev] 3P2−3P1 14.33 4 × 105 126.2
[S iii] 3P1−3P0 33.48 2 × 103 23.33
[S iii] 3P2−3P1 18.71 2 × 104 23.33
[S iv] 2P3/2− 2P1/2 10.51 6 × 104 34.83
[Si ii] 2P0

3/2− 2P0
1/2 34.81 3 × 105 8.15

[Ar ii] 2P1/2− 2P3/2 6.99 2 × 105 6.99
[Ar iii] 3P1− 3P2 8.99 3 × 105 27.63
[Ar iii] 3P0− 3P1 21.8 3 × 104 27.63
[Fe ii] 6D7/2− 6D9/2 25.99 2 × 106 16.18
[Fe ii] 6D5/2− 6D7/2 35.35 3 × 106 16.18

population normalisation equation (the sum of the populations of all levels
must add up to the total number of ions, we have a linear set of simultaneous
equations which may be solved in the standard way. Formally the equations
of statistical equilibrium for all levels j and the population normalisation
equation can be written:

∞∑
J �=j

NJCJj +
∞∑
J>j

NJAJj −Nj


 ∞∑
J �=j

CjJ +
∞∑
J<j

AjJ


 = 0

∞∑
J=1

NJ = 1. (3.23)

This can be expressed in a more convenient form by splitting the collisional
excitation (E) rates from the collisional de–excitation (D) rates as:

∞∑
J

NJ(CD
Jj + CE

Jj +AJj) −Nj

∞∑
J

(
CD
jJ + CE

jJ +AjJ
)

= 0
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∞∑
J=1

NJ = 1, (3.24)

with:

AJj = 0; CD
jJ = 0; J ≥ j

CE
jJ = 0; 1 ≤ J ≤ j.

Since the population of the higher levels is usually much lower than that of
the lower levels, a rather stable way of solving these equations is by diag-
onalising the matrix, followed by back substitution to solve for individual
level populations, starting with the most excited. After equations (3.24) have
been solved to give the population of each level, the rate of cooling in each
transition, FJj , can be then calculated from the level populations and the
ionic abundance (by number, relative to hydrogen NH), ηi,

FJj = ηiNHNJEjJAJj . (3.25)

At low density, the populations NJ are proportional to the square of
the density, or more precisely, the product of the electron density and the
number density of the ion. So we can introduce the idea of a total emission
line cooling function by summing the fluxes in all the radiative transitions for
all the atoms and ions in the plasma;

Λline =
(

1
nHne

)∑
A,I

ZA,I

∞∑
J=1

FJj . (3.26)

In the low density limit, the density dependence of the emission is removed
in this expression, and Λline is effectively a function of temperature only. The
implicit assumption here is that the emission flux produced in each line is
free to escape from the region of diffuse plasma where it is generated.

Exercise 3.3.1. An atom has three fine structure states, 3P, 1S0 (Excitation
Energy 0.5eV) and 1D2 (Excitation Energy 1.2 eV). From the ground term,
the total collision strength to both excited levels is 1.0. Three transition
probabilities are A(1S0 - 3P1) = 5 s−1 , A(1D2 - 3P1) = 20 s−1 and A(1D2 -
1S1) = 10 s−1.

1. What are the transition probabilities A(1S0 - 3P2) and A(1D2 - 3P2)?
2. Assuming that the ground term splitting is negligible, what are the wave-

lengths of the forbidden lines produced by the atom?
3. In this case, what is the critical density for each forbidden line?
4. Plot the flux ratio F(1D2 - 3P1,2) / F(1S0 - 3P1,2) as a function of tem-

perature for low densities, and at the limit of high densities.

Exercise 3.3.2. Here is a set of atomic data for a five–level atom: J-
Quantum numbers of Levels 1 through 5: 3/2, 5/2, 3/2, 3/2, 1/2
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1. What are the statistical weights of each level?
2. What are the wavelengths (nm) of the transitions produced by this ion?

(1%)
3. Using any technique (Maple, C–program, Mathematica etc...), plot the

intensity ratio of the (2 - 1) and the (3 - 1) transitions as a function of
electron density, log (ne), in the range 1 ≤ log (ne ) ≤ 5. Please show
your working.

Energy Level Matrix (ergs):

Level 1 2 3 4 5
1 0 5.32589E-12 5.32976E-12 8.03878E-12 8.03900E-12
2 0 3.87000E-15 2.71289E-12 2.71311E-12
3 0 2.70902E-12 2.70924E-12
4 0 2.2E-16
5 0

Transition Probability Matrix ( s−1):

Level 1 2 3 4 5
1 0 3.82E-05 1.65E-04 5.64E-02 2.32E-02
2 0 1.20E-07 1.17E-01 6.15E-02
3 0 6.14E-02 1.02E-01
4 0 0
5 0

Collision Strength Matrix :

Level 1 2 3 4 5
1 0 8.01E-01 5.34E-01 2.70E-01 1.35E-01
2 8.01E-01 0 1.17E+00 7.30E-01 2.95E-01
3 5.34E-01 1.17E+00 0 4.08E-01 2.75E-01
4 2.70E-01 4.08E-01 7.30E-01 0 2.87E-01
5 1.35E-01 2.95E-01 2.75E-01 2.87E-01 0



     

4. Line Transfer Effects

“There are no such things as applied sciences,
only applications of science”
— Louis Pasteur

4.1 Resonance Line Transfer

The discussion of the previous chapter has established the way in which emis-
sion lines may be produced by collisional excitation locally within a nebula.
However, whether the observer can see the emission depends upon whether
the nebula is optically thick or optically thin to the escape of this radiation.
This in turn depends upon the optical depth of the nebula at the frequency,
ν, considered; τν . For transmission of light through an absorbing screen of
material, the optical depth is defined by the factor by which the intensity of
the radiation has been reduced, I(ν)/I0(ν) = exp[− τν ]. The optical depth is
the integral along the line of sight of the linear absorption coefficient (cm−1)
κ(s, ν); τν =

∫
κ(s, ν)ds. However a more useful measure is the mass ab-

sorption coefficient (cm2g−1), κν , which measures the effective cross section
contributed per unit mass of matter at this frequency, κν = κ(s, ν)/ρ(s). This
is also called the opacity of matter. Since matter can either scatter light (re–
radiation at the same frequency), or absorb it one frequency to re–radiate at
another, we have to recognise that the total opacity is the sum of these two
contributions κν = κν(scat)+κν(abs). Absorption is produced by either dust,
nebular continuum processes, or by fluorescence (degradation of the original
photon into two or more photons, which occurs when the excited state of the
atom has more than one permitted decay route). Scattering can be produced
by free electrons, or by resonant scattering in lines.

In the case of a scattering screen, a photon in the beam of light from
a distant object is first removed from the beam, and then re–radiated in
all directions, so is effectively lost from the beam. Thus, in resonance line
absorption by the ISM, we see a series of dark lines superimposed on the
intrinsic continuum spectrum of the distant object (star, galaxy or whatever).
Let us first consider this process in a little more detail.
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4.1.1 Resonance Line Absorption by Heavy Elements

Consider an excited state, j = 2, and the corresponding resonance transition
to the ground state, j = 1. The width in energy (or frequency) of an excited
state is not a perfect delta function. This is because the lifetime ∆t, of the
excited state is finite, determined by the transition probablility back down to
the ground state, A21; given by equation (??) or (2.5):∆t = 1/A21. This finite
lifetime implies finite energy width by the Heisenberg uncertainty principle
of quantum mechanics; ∆E.∆t ≥ h̄. Thus, this energy uncertainty trans-
lates to a natural line width in terms of frequency (full width half maximum;
FWHM), ∆νN =A21/2π. Since the frequency dependence of the absorption
profile can be represented as the Fourier transform of an exponentially de-
caying harmonic oscillator, the effective absorption coefficient at frequency ν
has a natural line shape which is Lorentzian, centered at the frequency of the
transition ν0 and having a FWHM ∆ν . In terms of the population of the
ground level, N1, and the absorption oscillator strength f12, the cross section
is given by:

σ(ν) =
πe2

mec
f12N1

[
1 − g1N2

g2N1

]
∆ν/2π

(ν − ν0)2 + (∆ν/2)2
(4.1)

Here, the term in square brackets contains the factor which corrects for the
stimulated emission, and the frequency function has been normalised so that
its integral over the full line profile is unity. This function declines as a power
law with frequency for frequencies which lie far away from the line core. These
are often referred to as the damping wings of the profile. If we neglect the
correction for stimulated emission, and assume that at the low density limit
all of the atoms are in their ground state, then at the line centre the cross
section per atom is σ(ν0) = 2e2(mec)−1f1j∆ν

−1
N ∼ 0.0169f1j∆ν−1 cm2.

In most cases, near the line core, the line broadening is not dominated
by the natural width, but by the Doppler broadening caused by the thermal
motions of the atoms along the line of sight, vx. The Doppler shift in frequency
produced by this velocity relative to the line center is given by (ν − ν0) =
ν0vx/c. At a given ionic temperature T , the fraction of ions, with mass M ,
in the velocity range vx to vx + dvx is given by the one dimensional Maxwell
distribution:

dN(vx) =
(

M

2πKT

)1/2

exp
[−Mv2x

2kT

]
dvx. (4.2)

This will produce an absorption cross section profile which is Gaussian:

σ(ν) =
πe2

mec
f12N1

[
1 − g1N2

g2N1

](
M

2πKT

)1/2

exp

[
−Mc2 (ν − ν0)2

2kTν2
0

]
. (4.3)

In this case the line width of the Doppler profile, ∆νD, (FWHM) is given by
∆νD = 2(ln 2)1/2(2kT/M)1/2(ν0/c). Again, neglect the correction for stimu-
lated emission, and assume that at the low density limit all of the atoms are
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in their ground state, then at the line centre, the cross section per atom is
σ(ν0) = 2(π ln 2)1/2e2(mec)−1f1j∆ν

−1
D ∼ 0.0249f1j∆ν−1

D cm2. In addition to
these natural and thermally–broadened line profiles, the absorption line will
also be broadened by the internal turbulence of the gas cloud in which it is
formed, and shifted to higher or lower frequencies by the Doppler shift due
to bulk motion of the cloud with respect to the observer.

What is the effect of these absorbers on the light of a continuum source of
intensity I0 located behind the cloud? At any frequency, the fraction of light
which gets through is determined by the optical depth at that frequency,
τ(ν) = Nσ(ν), where N is the total column density of absorbing atoms
through the cloud. Thus:

I(ν) = I0 exp [−Nσ(ν)] (4.4)

It is convenient to define an equivalent width, W , for the line, which measures
the net flux removed from the incident beam by the absorption line. This
quantity is useful because it can be measured even when the spectrograph
used to observe it does not have the resolution needed to resolve the details
of the actual line profile. By the definition of equivalent width, the total flux
removed from the beam by the line is I0W . We can also write this product
as:

I0W = I0

∫
dν −

∫
I(ν)dν (4.5)

that is, the flux that was in the beam before absorption less the flux that
remains in the beam after absorption. However, from this equation, and equa-
tion (4.4), it is clear that we can write W as:

W =
∫

(1 − exp [−Nσ(ν)]) dν (4.6)

When the optical depth of the cloud is small at all frequencies, τ(ν) =
Nσ(ν) � 1, it follows that W = N

∫
σ(ν)dν so that the equivalent width is

directly proportional to the number of atoms on the line of sight. If this con-
dition is satisfied, then we refer to the line as lying on the “linear” portion of
its curve of growth. From observational usage, the equivalent width is often
presented in terms of wavelength rather than frequency. In this convention,
a very convenient form for the column density in the linear portion of the
curve of growth is:

[
N/cm−2

]
= 1.13 × 1017f−1

12

[
λ/Å

]−2 [
Wλ/mÅ

]
(4.7)

This equation is extensively used in observational studies.
When the line becomes optically thick in its core, then the residual flux in

these regions is very small, and so the equivalent width can only increase as
a result of absorption in the Doppler wings of the profile in equation (4.3). In
this case, the effective width of the line core is determined by the condition
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that τ(ν) = Nσ(ν) ∼ 1. Because this effective width grows only rather slowly,
there is only a weak dependence of equivalent width on column density, W ∝
(c+ lnN)1/2. This is referred to as the “flat” portion of the curve of growth.
In this region very little can be inferred about the column density at low
resolution, and any meaningful analysis requires observations made at very
high resolution and excellent signal to noise to study the detailed line profile
in the wings. This gives the apparent column density profiles, from which
true column densities may be derived provided that the smearing produced
by the instrumental response can be adequately modelled and corrected for.

Finally, when the column density is very high indeed, the relationship
between the equivalent width and the column density is dominated by the
damping wings of the Lorentzian line profile of equation (4.1). In this “damp-
ing” portion of the curve of growth, the equivalent width grows rather more
quickly once more, with a square root dependence, W ∝ N1/2. This is con-
veniently rendered for the observationalist as:

[
N/cm−2

]
= 1.7 × 1032f−1

12 ∆ν
−1
[
λ/Å

]−4 [
Wλ/mÅ

]2
. (4.8)

In the interstellar medium, column densities this large are usually only seen
in the case of the Lyα line or in the Mg ii doublet λλ 2796,2803Å.

If we want to accurately derive the column density of a particular ion, it is
best if a fairly large number of transitions with widely different gf values are
observed, so that absorption lines in the linear, flat and damping portions of
the curve of growth are all observed. This is possible for lines formed in the
atmospheres of stars, and here the damping portion of the curve of growth
can also be used to measure the pressure broadening of the natural line width
caused by collisions between atoms effectively shortening the lifetime of the
excited state. However, in the interstellar and intergalactic medium, we can
rarely observe transitions of a particular ion covering the full curve growth.

4.1.2 Absorption Line Studies of the ISM

The techniques described in the previous section have been widely and ex-
tensively applied to studies of the ISM, and indeed, to studies of the IGM
as well. The virtue of the technique is the sensitivity to very low column
densities of gas. Consider, for example the case of the Zn ii line at λ2026Å,
which has been used to study the chemical evolution of the IGM in lines
of sight to high redshift QSOs. This line has f12 = 0.489, so from equation
(4.7), a line with an equivalent width of 100mÅ (easy to measure with mod-
ern instrumentation on a large telescope) is produced by a column density of
only ∼ 6 × 1012 cm−2. If Zn ii is the main ionisation stage present, then this
corresponds to a hydrogen column density of ∼ 3×1017 cm−2. Such a column
density would be very hard to detect if we were relying upon the emission
measure of the hydrogen gas, and any emission in this zinc line would lie
many orders of magnitude below the sensitivity limits of our instruments.
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Relatively few lines of atomic or molecular species are accessible from
ground–based observation. However, the number of species which are ob-
servable increases strongly as we penetrate further into the ultraviolet. The
wavelength range between 1200 and 3200Å was opened up with the advent of
the IUE satellite, and has been exploited by the much greater capabilities of
the GHRS instrument on the Hubble Space Telescope (HST). However, the
region shortward of Lyα has been little studied between the 1970s, when the
Copernicus satellite first opened up this region to study, and the late 1990s
with the launching of the FUSE (Far Ultraviolet Spectroscopic Explorer)
satellite. These lines can be resolved into many cloud components along the
line of sight, and are observed both on their linear portions of their curves of
growth, and into saturation. Figure (4.1) shows some of the remarkable data
that has been obtained with the Hubble Space Telescope in a line of sight to
a reddened halo star in the Galaxy. Here we can see lines in the linear portion
of their curve of growth, and others that have gone well into saturation on
the flat part of the curve of growth. Table (4.1.2) lists the species which have
so far been detected in the ISM.

Table 4.1. Interstellar absorption lines detected in the ISM.

Optical λ> 3200Å
Atoms: Li i, Ca i, K i, Fe i, Ca ii, Ti ii
Molecules: C2, CO, CO+, N2, NO, NO+, OH, CN+, CS, SiO,

MgH+, HCl, CH2, H2O

UV 1200Å< λ < 3200Å
Atoms: H i, D i, C i, C ii, C iv, N i, Nv, O i, Mg i, Mg ii

Al ii, Al iii, Si i, Si ii, Si iii, Si iv, P i, P ii, P iii, S i,
S ii, S iii, Cl i, Cr ii, Mn ii, Fe ii, Co ii, Ni ii, Cu ii,
Zn ii, Ga ii, Ge ii, As ii, Se ii, Kr ii, Sn ii, Tl ii, Pb ii

Molecules: H2,
12CO, 13CO, C17O, C18O, C2, HCl

One of the most startling successes of these observations has been the
very direct evidence that has been gleaned about the nature and chemical
composition of interstellar dust. When the gas phase abundances derived for a
gas cloud lying along the line of sight to a fairly heavily reddened nearby star,
such as ζOph, are compared with the abundances derived for, say, the sun,
it is found that the heavy non–volatile elements are very strongly depleted
in their relative abundances. The inescapable conclusion is that the elements
missing from the gas phase exist in the solid form, as interstellar dust grains.
A very striking correlation between the condensation temperature and the
degree of depletion is found, see Figure (4.2).
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Fig. 4.1. Interstellar line profiles observed towards the reddened halo star HD
93521. Many velocity components are evident in this montage which covers both
weak and strong lines. Analyses of such data give the physical conditions and chem-
ical abundances in the different clouds (after Spitzer & Fitzpatrick, 1993).

Along other lines of sight, or even in other cloud components along the
same line of sight, we see different patterns of depletion. These are connected
with the temperature, density and thermal history of the ISM within them,
and collectively they give insight into the way in which energetic processes
in the ISM, such as shocks, or heating by radiation fields, can destroy the
interstellar dust.

The ratio of deuterium to hydrogen in the cosmos is one of the key obser-
vational parameters which probe the nature of the Big Bang. This is because
deuterium is made in the Big Bang nucleosynthesis, and the amount that is
made is very sensitive to the cosmological parameters. The deuterium Lyα
line lies 0.331Å to the shortward of the hydrogen Lyα line, thanks to the
isotope shift which is due the difference in the reduced mass of the electron
in deuterium as compared with hydrogen. Provided that the absorption line
due to deuterium is strong enough to be detected in the wings of the hydro-
gen Lyα line, then the deuterium abundance can be accurately determined
because the deuterium line lies on the linear section of the curve of growth,
when equation (4.7) applies; whereas the hydrogen line is firmly in the damp-
ing portion of its curve of growth, for which equation (4.6) applies. This is
evident from Figure (4.3). The GHRS observations for Capella yield (D/H)
= 1.60 × 10−5 (±0.09 × 10−5);(+0.05; −0.10 × 10−5) (Linsky et al. 1995),
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Fig. 4.2. The depletion of the gas–phase abundances of various elements, plotted
as a function of their condensation temperatures for dust formation. This is derived
from resonance line absorption measurements made along the line of sight to ζ Oph,
which passes through a dense cool interstellar cloud (after Savage & Sembach, 1996).

which is currently one of the most accurate value yet determined for this
ratio. During the process of nucleosynthesis, deuterium is easily destroyed in
stars, measured interstellar abundances only provide an upper limit to the
primordial deuterium abundance. Nonetheless, this is still sufficient to place a
strong upper limit on the local baryon density of ΩBh75

<∼ 0.055; where ΩB is
the ratio of the local baryon density to the critical density needed to close the
universe, and h75 is the Hubble Constant in units of 75 km s−1Mpc−1. Even
tighter limits can in principle be obtained by using lines of sight to distant
QSOs. These probe the intergalactic medium present in the early universe,
in which very little of the deuterium should have been destroyed.

In these distant reaches of space, a much greater proportion of the gas
is located in clouds between the galaxies. Deep observations with large tele-
scopes have revealed these from the Lyα absorption line which they produce.
These enable us to detect H column densities as small as 1014 cm−2. In the
denser clouds, absorption lines of heavier elements such as Fe or Zn are also
detected, which allow us to investigate the chemical evolution of the inter-
galactic medium (IGM) of the early universe.
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Fig. 4.3. The Lyα line profile in β Cas measured using the GHRS instrument on
HST. The intrinsic line profile of the star is shown as a smooth curve, as is the
model fit including absorption. The D/H ratio can be accurately measured because
the deuterium line is detected in its linear portion of the curve of growth, while the
H i line is in the damping portion (after Dring et al. 1997).

Finally, absorption line studies have been used to probe the hot phase of
gas, and the nature of the diffuse plasma in the halo of our galaxy and in the
Magellanic Clouds, using such ions as Si iv, C iv, and Nv. In the local ISM
this hot phase was also studied by the Copernicus satellite in the Ovi ion.
With the advent of the FUSE satellite, we will obtain a much deeper insight
into this phase, and, linking these data with observations in the soft X–ray
region of the spectrum, we should be able to finally understand the energy
balance of hot galactic halos. Some of these applications will be discussed in
more detail in section (7.6).

4.1.3 Line Transfer in Emission Resonance Lines

When the plasma is ionised, and hot enough that electron excitation becomes
important, the equation of transfer in the line has to be modified to include
the local emissivity, jν , of the plasma in the resonance line:

dI(ν)
ds

= −κνI(ν) + jν (4.9)

Now, suppose that we have a slab of emitting material illuminated by some
background source with intensity I0(ν), then, substituting for the optical
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depth dτ(ν) = κνds, we can integrate equation (4.9) through the slab (of
total optical depth τT (ν) ) to give:

I(ν) = I0(ν) exp[−τT (ν)] +
∫ τT (ν)

0

jν
κν

exp[τT (ν) − τ(ν)]dτ(ν) (4.10)

The first term represents the attenuated initial radiation field. Thus, when
the line optical depth is much greater than unity, the emergent intensity is
governed by the ratio jν/κν in the cloud. From equation (4.9), in a neb-
ula which is extremely optically thick in the line, so that dI(ν)/ds = 0, the
equilibrium intensity of the radiation field in the line is I(ν) = jν/κν . This
radiation field represents a local thermal equilibrium, which, since it does
not depend on any external factors, must be therefore be a function of tem-
perature only. Common sense suggests that when this condition is satisfied,
we have LTE, at least as far as the line is concerned. We can check this by
writing down this condition of balance for the radiation energy density, that
the emission rate in the line is equal to the absorption rate (corrected for the
effect of stimulated emission):

4πI(ν)
c

(n1B12 − n2B21) = n2A21 (4.11)

where B12 and B21 are the Einstein coefficients of absorption and stimulated
emission, respectively. However, we have these from equations (??) and (??),
viz. g1B12 = g2B21 and B21 =

(
c3/8πhν3

)
A21. Additionally, we can sub-

stitute the Boltzmann equation (3.2) for the populations in the ground and
the excited state, since LTE applies between the levels. Substituting all of
these in equation (4.11) we find the line intensity is in fact the Planck value
appropriate to the plasma temperature:

I(ν) =
2hν3

c2
(
exp

[
hν
kT

]
− 1

) = B(ν, T ) (4.12)

This means that, when the line is extremely optically thick, the radiation
field is limited by its black–body value in the line, and that (from equation
4.10) Kirchhoff’s law applies: B(ν, T ) = jν/κν . At the low photon energies
appropriate to radio wavelengths, the Rayleigh–Jeans limit of the black–body
law applies B(ν, T ) ∼ 2KTν2/c2, so we can re–write equation (4.10) in terms
of the brightness temperature of the source. Brightness temperature is defined
as the temperature that a black body would have to be at in order to give
the same intensity I(ν) in the frequency range as is observed. This gives:

TB = TB,0 exp[−τT (ν)] + T (1 − exp[−τT (ν)]) (4.13)

In the limit of high line optical depth, the fact that the photons observed arise
in a very thin surface near the front edge of the cloud means that we can
think of the cloud as possessing a photosphere in the line. As long as the line
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remains optically thick, the emitted flux is limited at its black–body value, so
that, provided the cloud is spatially resolved by the telescope which observes
it, TB = T (minus 2.7K to correct for the cosmic microwave background
radiation), which enables us to directly measure the cloud temperature at
the photophere).

Over the fully optically–thick region of the observed line profile the emer-
gent flux is constant at the black–body value. The existence of an effective
photosphere in the line limits the total flux that can be emitted in the line;
Fline = A∆νB(ν, T ), where A is the emitting area, and ∆ν is the line width.
This also means that optically–thick lines cannot be used to probe the de-
tails of cloud structure inside the effective photosphere. Such a situation is
encountered fairly frequently in the case of radio–frequency molecular tran-
sitions. The most famous (or infamous) example is the 12CO(1-0) transition
at 115.271 GHz – a key coolant in cool molecular clouds.

Because the line flux in an optically–thick line is independent of the abun-
dance of the species which produce the line, we cannot use these lines to
infer molecular ratios (such as the 12CO/H2 ratio, as has been frequently at-
tempted in the literature, c.f. Section 13.1.4). Instead, we must find species
which are optically thin, for which a cooling function such as equation (3.11)
applies. In CO, such a line would be the 13CO(1-0) 110.201 GHz transition, or
perhaps a higher transition such as 13CO(2-1) at 220.399 GHz. However, such
lines have much lower surface brightnesses and are therefore much harder to
observe.

Let us now look at the problem of resonant line scattering. If the photons
are produced in an (optically–thick) region of radius R, the line will, in gen-
eral, be scattered before it escapes. Generally, for the line transfer problem,
we adopt the Sobolev Approximation. In this we assume that each line re–
emission process is independent of the line absorption process which preceded
it. Thus, regardless of where in the line profile the absorption occurred, the
re–emitted photon will be redistributed in frequency according to the Doppler
line profile, with a probability amplitude that is the same as the (normalised)
Doppler profile. Thus, the Sobolev approximation is tantamount to assuming
that the scattering redistributes the photon into the original Doppler profile.
In this case, most of the photons escaping the nebula can only do so by being
scattered into the wings of the profile where the optical depth is low.

The escape probability depends on the details of the geometry and dy-
namics of the region. A simple example is that of an (unexpanding) spherical
nebula or radius R, and central optical depth τT (ν).

If jν is the line emissivity, then the emergent intensity along the ray shown
is:

I(θ, ν) =
∫ 2τT (ν) cos θ

0

jν
κν

exp[−τ(ν)]dτ(ν)

=
jν
κν

(1 − exp[−2τT (ν) cos θ]) (4.14)
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Place Holder
Figure

Fig. 4.4. The escape probability for a sphere, needs a better caption.

Hence, the total outward flux per unit area and per unit time is given by
integrating over all possible angles:

πF (τT , ν) = 2π
∫ π/2

0

I(θ, ν) cos θ sin θdθ

=
πjν

2κντ2
T

(
2τ2

T − 1 + (2τT + 1) exp[−2τT ]
)

(4.15)

Comparing (4.15) with the flux which emerges when τT = 0, for which
πF (0, ν) = (4π/3)jνR, we can estimate the escape probability, P (τT ) as:

P (τT ) =
πF (τT , ν)
πF (0, ν)

=
3

4τT

(
1 − 1

2τ2
T

+
(

1
τT

+
1

2τ2
T

)
exp[−2τT ]

)
(4.16)

Note that as τT → 0; P (τT ) → 1 and, as τT → ∞; P (τT ) → 3/4τT .
In a plane parallel nebula, of optical thickness τ , a reasonable approxi-

mation to the escape probability is:

P (τ) =
1
τ

(1 − exp[−τ ]) ; τ ≤ e;

=
1

τ(ln τ)1/2
(1 − exp[−τ ]) ; τ > e; (4.17)

In this case therefore: as τ → 0; P (τ) → 1 and, as τT → ∞; P (τT ) →
1/τ(ln τ)1/2.
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Fig. 4.5. The escape probability for the Lyα line as a function of the optical depth
in the line and of the electron density. After Drake & Ulrich (1980).

In both these cases, and as also proves to be the case in other geometries,
the escape probability at high optical depth varies approximately inversely as
the optical depth, rather than as exp[−τ ], as we might have näively expected.
The reason for this is that the photon can only escape if it is produced within
the optically thin zone at the boundary of the nebula or at the boundary of
the line profile, and the probability of that varies as 1/τ .

In detailed line transfer computations, the escape probability from the line
in enhanced at high densities by pressure broadening of the natural width of
the line, as is shown in Figure (4.4). Such densities are appropriate for the
broad line regions around active galactic nuclei.

4.1.4 Line Transfer in the Lyman Series

As Figure (4.4) makes clear, enormous optical depths can be achieved in the
Lyα line. In H ii regions which are ionised by hot stars, the Lyα line optical
depths are of order 104 while in collisionally excited and ionised plasmas found
in the accretion disks near active galactic nuclei, Lyα line optical depths are
estimated to rise to several million. In these conditions, all the other lines in
the Lyman series become optically thick as well.

Consider, as the simplest example, the fate of Lyβ photons in such a
nebula. Although the Lyα line itself is condemned to be emitted and re–
absorbed for as long as it is trapped in the emitting region, or as long as the
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Fig. 4.6. Decay paths from the 3 2P state of hydrogen. Lyβ photons will eventually
be degraded into an Hα and a Lyα photon.

photon is not destroyed by some other means, the same is not true for the
higher members of the Lyman series. However, it is clear from figure (4.5)
that there exists another route for the radiative decay from the n = 3 level.
For hydrogen, the relative probabilities of radiative decay from the excited
(n = 3) level are: P (32P − 12S) = 0.882; P (32P − 22S) = 0.118. Thus, the
Lyβ photon has roughly a 12% chance of being destroyed in each scattering.
After a few scatterings, the survival probability for a Lyβ photon becomes
negligibly small, as Table 4.1.4 shows.

Table 4.2. Lyβ photon scattering and survival.

No. of Scatterings 1 5 10 100 1000
Survival Probability 0.882 0.534 0.285 3.5 × 10−6 2.9 × 10−55

All similar cascades resulting from the fluorescent conversion of higher
members of the Lyman series must eventually produce a Lyα photon, since
even were they to produce another Lyman series photon with lower n, this
would quickly be converted in its turn. Thus, in nebulae, each photon belong-
ing to a higher member of the Lyman series is rapidly converted to a Lyα
photon plus members of other series (Balmer, Paschen, Pfund etc.).
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Fig. 4.7. The Bowen fluorescent process. This is active in highly–ionised regions
such as in the inner regions of planetary nebulae, novae, or active galactic nuclei.

4.2 Fluorescent Processes

Fluorescence occurs where there is a coincidence (or near–coincidence) in
wavelength between two transitions in different ions, in which case photons
emitted by one ion can be re–absorbed by another and degraded into two or
more photons of lower energy. This occurs in a number of nebular situations,
and through a variety of physical processes which we will now briefly review.

4.2.1 The Bowen Mechanism

The near coincidence of the He iiLyα line at λ303.78Å and the 2p2 3P2 – 3d
3P2 resonance transition in [O iii] at λ303.80Å, allows conversion of some of
the He iiLyα photons to O iii photons in the 2800-3810Å region, notably the
transitions at λλ3133, 3312, 3341, 3429, and 3444Å. This fluorescent cascade
is shown in Figure (4.7). Since the number of fluorescent photons is related
to the number of He iiLyα photons in the nebula, the Bowen mechanism has
been used to estimate the rate of He ionisations. This places observational
constraints on the shape of the EUV spectrum of the exciting object (plane-
tary nebula nucleus, nova core, or the active galactic nucleus).
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4.2.2 O i Fluorescence with Lyβ.

A close coincidence exists between the UV4 line of O i (2p4 3P – 3d 3D) at
λ1025Å and the Lyβ line at λ1026Å. However, as we described above, the Lyβ
line is itself fluorescently degraded after only a few scatterings. Therefore, in
order to induce fluorescence in O i we require that neutral plasma is located
immediately adjacent to ionised plasma producing a strong Lyβ line. Such
a geometry occurs in the early evolution of nova shells, when the expanding
ejected shell is just starting to become photoionised by the hot central core,
or in young planetary nebulae with dense neutral inclusions. The optical
signature of this fluorescence is the very strong λ8446Å (3p 3P – 3s 3S) line
produced as part of the fluorescent cascade back down to the ground state (3d

3D 11287Å→ 3p 3P 8446Å→ 3s 3S1302Å→ 2p4 3P). This line, which is very prominent
in the early spectra of nova shells fades dramatically as the shell expands and
becomes more fully ionised.

4.2.3 H2 Fluorescence with Lyα

Advanced Section
In the warm molecular gas surrounding a source of Lyα photons, a number

of low lying excited H2 transitions, notably the (1-2)P(5) line, can resonantly
absorb Lyα and convert this to a variety of emission lines in the 1100Å– 1700Å
region. As the simplified level diagram in Figure(4.7) shows, the process only
works if the molecular hydrogen is in a vibrationally and rotationally excited
state in the ground electronic state of molecular hydrogen. This requires
the molecular hydrogen region to be heated to perhaps a couple of thousand
degrees. This most likely requires that it has been recently shocked. However,
the shock cannot have too high a velocity, since this would have dissociated
the molecular hydrogen. At the same time, the molecular gas has to be in
close contact with ionised plasma producing the Lyα line.

This process was first observed by Jordan et al. (1977) in spectra of
sunspots, and has since been observed by Schwartz (1983) and Curiel et al.
(1995) in low excitation Herbig–Haro objects. These objects are dense shocked
regions around young stellar objects with fast ionised outflows, and so fulfill
the rather stringent conditions for this process to work.

4.2.4 Raman Scattering Fluorescence

Advanced Section
When there is a near coincidence of an excited state of an abundant

ion with a large oscillator strength, the cross–section for scattering is much
enhanced. Although the atom, following absorption of the photon, is in a
virtual state it nonetheless has an electron configuration which is very sim-
ilar to that of the nearby bound state, and as a consequence, its lifetime is
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Fig. 4.9. Some fluorescent lines of molecular hydrogen observed in the Herbig–
Haro object HH47 using the GHRS instrument on the Hubble Space Telescope
(after Curiel et al. 1995)
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enhanced, producing a rapid increase of scattering cross section as the virtual
state approaches the bound state. This virtual state can then fluorescently
decay by radiation to other excited states of the scattering atom or ion. The
best example of this phenomenon is the Raman scattering of the Ovi reso-
nance lines by H i which is seen in Symbiotic stars (see 4.10). The theory was
given by Schmid (1989).

If the incoming photon has frequency νi and the scattered photon as
frequency νf then the cross–section for Raman Scattering, σR, is given in
terms of the Thompson scattering cross–section, σT = (8π/3)(e2/mec

2)2 =
6.65 × 10−25 cm2, by:

σR = σT
νi
νf

|M |2 (4.18)

with:

|M | =
∑
m

νiνf
4

(
gf1mgffm
ν1mνfm

)1/2 (ν1m + vfm)
(ν1m − vi) (νfm + vi)

(4.19)

Since the Doppler width of the incoming line (in energy space) is un-
changed in the scattering, but the scattered photon has much lower en-
ergy, the apparent Doppler line width of the outgoing photons at λ6825Åand
λ6825Åare larger in the ratio:

(∆λ/λ)f = (∆λ/λ)i(λf/λi). (4.20)

This ratio is about 6.7 in the case of the Ovi resonance. This increase in
apparent line width is clearly visible in Figure (4.11). Both the identification
of these two lines, and their unusual width were a great mysteries when these
were first observed in the spectra of symbiotic stars (Allen, 1980).

4.3 Astrophysical Masers

4.3.1 Theory

Recall equation (4.3), which gives the absorption cross–section as a function
of frequency for a line broadened by Doppler motions:

σ(ν) =
πe2

mec
f12N1

[
1 − g1N2

g2N1

](
M

2πKT

)1/2

exp

[
−Mc2 (ν − ν0)2

2kTν2
0

]
(4.21)

Consider the term in square brackets, which represents the correction due
to stimulated emission. When the level populations are in their Boltzmann
ratio, this term equals (1− exp[−hν/kT ]). For transitions giving rise to lines
in the optical, the correction factor due to stimulated emission is negligible.
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Fig. 4.10. Raman scattering of Lyα by Ovi. This occurs in the interacting at-
mospheres of ‘symbiotic’ stars, which are close binary systems consisting of a hot
white dwarf and a cool red giant star.

However, for lines in the microwave region, and at the temperatures com-
monly encountered in molecular clouds (10-100K), the correction factor may
be quite large. Now, suppose that there is a third transition which is being
pumped by collisions or by photons, such as is shown in Figure (4.12).

In general, transition rates vary as the cube of the frequency. Thus, if the
pumping transition (1-3) and the cascade transition (3-2) are at a much higher
frequency than the transition (2-1), then in most cases the transition rates
in the pump (1-3) and (3-2) will be very much larger than the transition rate
back to ground (2-1). This process therefore tends to build up the population
in level (2) at the expense of level (1). If a population inversion (g1N2 > g2N1)
can occur through this process, then 1 − −g1N2 > g2N1 < 0, which drives
the effective absorption coefficient in equation (4.21) negative. That is to say,
the light in the line is amplified rather than attenuated along the direction
of the light propagation. Provided that the pumping rate is rapid, the light
intensity increases exponentially over a distance determined by this negative
absorption coefficient, called the maser gain G, viz. I(x) = I0 exp[Gx]. Such
a maser is termed unsaturated. Interstellar masers therefore operate as one–
pass travelling–wave masers without feedback. In such a cloud, the gain is a
function of frequency:

G = G(ν) = G0 exp
[−Mc2∆ν2

2kTν2
0

]
(4.22)
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Fig. 4.11. The λ6830 and λ7088Å O iv fluorescent lines in the spectrum of V1016
Cygni, a symbiotic star. The large width of these lines compared with the other
lines in the spectra is obvious. Note that the 7088Å line is weaker, because the
virtual state which gives rise to it is further from the resonance line, and therefore
has a lower Raman scattering cross section (after Schmid, 1989).

The consequence of this gain function is that the line is preferentially am-
plified closest to the line centre, so that the line width becomes progressively
narrower than the Doppler width as it passes through the amplifying region.
Figure (4.13) shows this effect as a function of the thermal e–folding line
width, (2kTν2

0/Mc
2)1/2.

Equation (4.22) implicitly assumes that the pumping rate is sufficiently
rapid that there is always a population inversion, regardless of how intense
the maser has become. In practice, the pumping rate can become a limiting
factor, and the amplification then only depends on the rate of pumping into
the upper masing level. In this case, the amplification is determined only
by the number of atoms processed through the masing beam of surface area
A(x). If this covers a solid angle Ω, then G(x) ∝ xA(x) ∝ x3Ω; since the area
of the beam increases as x2. Masers which are limited by the pumping rate
are known as saturated masers. Such masers do not produce line narrowing,
since the growth rate of the signal becomes uniform across the line.

Since the pumping rate is set by the rate for spontaneous emission in the
pumping transition, saturation constrains the brightness temperature, TB , of
the maser to be less than:
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Fig. 4.12. Schematic of a masering transition. The transition between the two lower
states is pumped by photon excitation into the upper state, followed by radiative
decay to the second level. Under certain circumstances, this cycle is rapid enough
to produce a population inversion between the two lower states.

TB ≤
(
A13

A12

)(
4π
Ω

)(
hν12
k

)
(4.23)

The first two factors determine the ratio of the brightness temperature to the
thermal temperature. Thus, for a maser with Ω ∼ 10−3 and A13/A12 ∼ 107,
which might be considered ‘typical’ values, the brightness temperature in
saturation could be as high as 1012 K! Strong interstellar masers are almost
certainly saturated.

Since each maser photon requires at least one pump photon, we can relate
the brightness temperature of the pump, as seen at the masing cloud to the
brightness temperature of the masing source. This is called the Manley–Rowe
relationship:

Tpump ≥
(

Ω

Ωpump

)(
ν12
ν13

)
TB (4.24)

It is clear from this relationship that very high maser brightness temperatures
can only be produced when the pumping source is close to the masing volume.
Ideally the pump is generated by thermal processes, such as shocks, within
the masing volume itself.
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Fig. 4.13. Narrowing of the thermal line profile such as can occur for an unsatu-
rated maser. Here the gain factors at the line centre, G0x, are given for 5, 10, 20
and 30.

4.3.2 Observations of Galactic Masers

Advanced Topic
Maser emission has been observed in eight different molecular species, OH,

H2O, SiO, HCN, CH, CH3OH, H2CO and NH3, although not all of these are
true interstellar masers. Here we will only discuss the OH and H2O masers in
detail. Of these, the OH sources show the highest brightness temperatures (as
high as TB ∼ 1015K!). Such brightness temperatures are only possible because
they are produced in the outer atmospheres of mass–losing luminous old stars,
where both the matter and radiation field densities are very high, and much
higher than the interstellar medium in general. Maser sources are classified
according to their isotropic luminosity, that is the luminosity that they would
have if Ω = 4π. Needless to say, this overestimates the true luminosity of
the source by factors of possibly several thousand. Only a small fraction of
the luminosity of the pumping source is converted to maser luminoisty. For
example, a typical galactic OH source has an isotropic luminosity of only
10−3L�, although the central star may be as luminous as 104L�.

The mechanisms which drive the OH maser emission have been explained
in detail by Elitzur (1992), see notes. Because the OH molecule is symmetric
about the inter–nuclear axis, projections of the internal angular momenta
on this axis (the z-axis) are conserved quantities. Since the projection of
the end over end rotational angular momentum on this axis is always zero,
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Jz = Lz + Sz. The electronic spin S = 1/2, and the ground electronic state
is a Π-state (Lz = 1), so Jz = 1 ± 1/2 which gives rise to two rotational
ladders, 2Π1/2 and 2Π3/2. For each of these levels, the electronic interaction
with the next electronic configuration, the Σ-state, removes the degeneracy
between each parity state in the doublet, producing level splitting, the so–
called Λ−doubling. The hyperfine interaction with the nuclear spin I further
splits each member of the doublet into two further levels according to total
angular momentum F = J + I. The allowed transitions follow the dipole selec-
tion rules which require a parity change and∆F = 0,±1 but with F = 0 → 0.
The ∆F = 0 lines at 1665 and 1667 MHz are called the main lines, while the
∆F = 1 lines at 1612 and 1720 MHz are the satellite lines. Maser emission
has been observed in all four levels as well as in the lines of some low–lying
excited rotational states.

OH masers are found to be associated with the dusty mass–loss regions of
evolved stars – the so–called OH/IR stars which are stars on the asymptotic
giant branch stage of evolution, the last before the planetary nebular stage
of evolution. The OH/IR stars are classified as Type I if they emit in the
main lines, or as Type II if the 1612 MHz satellite lines are strongest. Type II
sources generally emit in the main lines as well, but the 1720 MHz satellite line
is never seen. This difference reflects the difference in the physical conditions
and pumping in the maser excitation region in the two classes.

Because variations in the 1612 MHz emission in the Type II sources follow
the variations in the radiation of the central star in lockstep, Harvey et al.
(1974) were able to prove that this class of sources is pumped by rotational
excitations caused by IR photons. This result is consistent with the absence
of the 1720 MHz satellite line, which Elitzur (1976) showed can only be pro-
duced by collisions in a plasma with temperature less than about 200 K.
This proportionality of maser luminosity and IR (pumping) luminosity also
implies that the 1612 MHz OH masers are running in the saturated regime.
The Type II masers show a “two–horn” velocity structure, consistent with
the maser emission being produced in a relatively narrow, non–accelerating
but expanding shell about the star. Shell radii are typically inferred to be in
the range 1016 to 1017 cm.

The pumping mechanism of the main line Type I sources is more complex.
To generate the required inversion of the ground–state Λ− doublet requires
preferential excitation of the upper Λ− doublet components of the rotational
ladders. This can be accomplished (Elitzur, 1978) by a radiation field whose
photon ocupation number increases with frequency, and this can be generated
by warm, optically thin dust emission. Detailed calculations show that dust
temperatures in excess of 100 K are sufficient to produce main–line population
inversion.

Observationally, the 1667 MHz emission line is stronger than, and occurs
more often than, the 1665 MHz emission. This places limits on the dust tem-
perature TD in the range 150 K < TD < 280 K. The models imply that every
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OH/IR star should exhibit main–line emission close to the central star, but
that the Type II sources with the 1612 MHz line are produced only when the
mass–loss rates from the central star are high.

OH maser activity is also seen in star–formation regions, in the vicinity of
ultra–compact ionised hydrogen regions associated with newly–born massive
stars. The masering regions have ages of only a few hundred thousand years.
The individual spots of maser emission are only a few 1014 cm across, and
their separations are similar, so it is probable that their observed size is their
real physical size, although it is likely that they are filamentary along the line
of sight to provide favourable conditions for amplification. The masering spots
have individual velocity dispersions of order 1 km s−1, but the ensemble of
spots seems to be formed in a dense expanding shell of compressed molecular
gas surrounding the ionised region. This has an expansion velocity of a few
km s−1. Extensive masering activity is also seen in the excited states of OH.

The details of the excitation mechanism in star fomring regions remains
to be fully worked out. Unlike the case in OH/IR stars, conditions are not so
suitable for radiative pumping – both the intensity of the radiation field and
the dust temperatures are lower, but the maser luminosities are higher. This
would be impossible if the maser is saturated as is the case in the OH/IR
stars. It is likely therefore that collisional excitation is playing a key role in
the masers seen in ultra–compact H ii regions.

Masering activity is seen in the H2O molecule in the OH/IR stars and
is also associated with star formation in the vicinity of the ultra–compact
H ii regions. The pumping process which excites the H2O masers is definitely
collisional, and it requires excitation temperatures of order 1000 K.

The H2O molecule is planar with an axis of symmetry passing through
the O atom and between the two H atoms. It is clear that the moment of
inertia in this axis and in the two orthogonal axes are all different. In rotation
the molecule acts neither as a symmetric prolate rotator not as a symmetric
oblate rotator – it is intermediate between these two limits. However, the
rotational states are quantised according to the total angular momentum
quantum number (J) and its projection on these two axes (K− and K+),
and labelled as JK−K+. For example, in order of increasing energy, the lowest
rotational level is split in two levels, 101 and 110, the J = 2 state is split into
two levels, 212 and 221, the J = 3 state is split into four levels, 303, 312,
321, and 330, in order of increasing excitation energy and the J = 4 state is
likewise split into four levels, 414, 423, 432, and 441.

The radiative selection rules require that K− and K+ must change their
parity, and that ∆J = 0,±1. Thus, in collisional excitation of the molecule,
within each J multiplet, radiative cascade down to the lowest–lying state
is permitted, and this tends to build up a larger than LTE population in
the 110, 212, 303, 414 and higher states. This creates a population inversion
between these states, and the radiatively accessible state of next lower J ,
leading to maser activity between these levels. The radiative feeding of this
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excited state also leads to inversion of its population with respect to the next
lower radiatively accessible J state, giving rise to a second masering tran-
sition, and so on for all radiatively accessible states. For example, masering
activity can occur in all of the radiative sequence 707 → 625 → 532 → 441.
Many of the masering transitions of H2O occur in the millimetric or sub–
millimetric region of the spectrum, and are usually unobservable from earth,
ironically thanks to absorption caused by the H2O molecule in the earth’s
atmosphere. The first masering transition to be observed, the 22 GHz line of
the 616 → 523 transition just happens to occur at an unusually low frequency.

All late–type stars which display OH masering activity are thought to also
contain H2O masers, observable provided that sufficient sensitivity is used.
The H2O emission region is typically 15–50 times smaller than the OH emis-
sion region, and is subject to much greater (and more irregular) amplitude
variability. This puts the masering region in the zone where the mass–loss
wind is still being accelerated by radiation pressure acting on dust grains.
The excitation is by neutral collisions (Deguchi, 1977; Cooke & Elitzur, 1985;
Palma et al. 1988). The intensity of the maser luminosity is dependent on
the mass–loss rate, and the inner boundary of the masering region is set by
the point at which collisions thermalise the level populations.

The H2O masers which are associated with newly–formed stars occur
where there is a high–velocity outflow region interacting with the dense molec-
ular cloud out of which the star has formed. These high velocity outflows are
produced by the central star as it sheds the excess angular momentum of
the accreted material (See Section (8.4.4)). Radial velocities and transverse
motions of the masering spots (measured by very long baseline interferome-
try, VLBI), can easily range up to 100 km s−1, and can be attributed to local
turbulence and shearing flows within clouds in the size range 1014 − 1015 cm,
and having lifetimes of only a few years. The brightness temperatures of
these sources are enormous, typically ranging from 1011 to 1013 K. The sites
of formation of the H2O masers are most likely to be found in the dense
cooling regions of shocks. These are either in the tails of fast, dissociative
shocks where the chemistry favours the production of a large column density
of warm (∼ 400 K) water molecules (Elitzur, Hollenbach & McKee, 1989)
and where the masers can be efficiently pumped (Neufeld & Melnick, 1991).
Alternatively the sites are in slower, non–dissociative shocks (described in
Section (8.5)) where the kinetic temperature is higher, in excess of 1000K,
allowing for the pumping of highly excited levels. These two possibilities can
be distinguished by observations in the sub–millimeter range, where higher
transitions can be accessed. Such observations favour the idea that non–
dissociative shocks are involved, since intensity ratios of masering transitions
suggest a high kinetic temperature (Melnick et al. 1993).

4.3.3 Observations of Extragalactic Masers

Advanced Section
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In extragalactic sources, masing activity has been observed in the OH,
H2O, H2CO and CH molecules. Generally speaking the extragalactic sources
are much more intense than the galactic ones, so a specialised “hyperspeak”
has been developed to describe them. Extragalactic OH masers with isotropic
luminosities in the range 1 – 1000 L� (103-106 times more luminous than
galactic sources) are (somewhat inaccurately) called megamasers, and sources
even more luminous than this are termed gigamasers.

The OH megamasers galaxies form a well defined subclass. The host galax-
ies are either luminous IR galaxies which are interacting or merging and
therefore display very rapid rates of shock–induced star formation, or else
they are feeding gas into a luminous (Seyfert) active galactic nucleus (AGN).
In both of these classes, the re–processing of the stellar or AGN radiation
field by a high column density of hot dust dominates the far–IR spectrum.
In the most luminous of such sources the total dust luminosity can exceed
1012L�!

The accepted model for the production of the megamaser activity was
developed by Baan & Haschick (1984) and Baan (1985). In this, the maser
represents low–gain, unsaturated amplification of the background radio con-
tinuum (originating either from the nucleus or from other radio sources in the
galaxy) by the foreground molecular material. Despite the high luminosity of
the OH maser, the required amplification factors are only a few (at most).
The pumping is supplied by the far–IR photons, similar to the case of the
galactic OH/IR sources.

Clear evidence in support of this scheme is provided by the fact that the
properties of the OH megamasers are very closely tied to the properties of
the host galaxy. Masing occurs when the slope of the spectrum in the 25
to 60µmwavelength range is particularly steep; log(S25µm/S60µm) < −0.55.
There is also a close correlation between the OH and the IR luminosity;
LOH ∝ L2

IR (Baan, 1989). It follows that the probability of detecting OH
megamasers increases as the luminosity of the parent galaxy. This quadratic
behaviour of the OH luminosity with the IR luminosity can be explained
if the masers are unsaturated with relatively small gain and amplify the
background radio continuum. In this case, the gain depends linearly on the
OH column density and therefore the luminosity depends on the product
of the background radio luminosity and the gain. However, observationally,
the radio continuum is seen to depend linearly on the IR luminosity (with
remarkably little scatter), and so if the OH column density also scales as the
luminosity of the source, we recover the LOH ∝ L2

IR relationship.
The extragalactic H2O maser sources fall into two classes, those which

display galaxy–wide distributed emission of the same nature as the maser
sources found in the Galactic star–formation regions, and those that are as-
sociated with active galactic nuclei (AGN). These are more than two orders
of magnitude brighter. For example the famous case of NGC 4258 displays
an isotropic luminosity of 120 L� and the luminous Seyfert NGC 1068 has
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a isotropic luminosity of 350 L�. This compares with the galactic star for-
mation region W49 – the most luminous in the Galaxy – which can reach an
isotropic luminosity ∼ 1L�, at best. At the time of writing, some sixteen of
these sources are known (Braatz, Wilson & Henkel, 1994, 1996; Koekemoer
et al. 1995).

The nature of the H2O maser emission in the AGN sources was recently
reviewed by Maloney (1997). In many of them the emission arises in a dense,
shocked molecular ring embedded in the accretion disk around the central ob-
ject, near to the point at which the H2O molecules become photo–dissociated.
This ring is in Keplerian rotation within about one parsec of the central en-
gine. The maser emission is seen in edge–on systems in regions where the
velocity shear along the line of sight is low. This condition is satisfied di-
rectly in front of the central engine, where the masering amplitude is also
assisted by the radio emission produced of the central engine and its asso-
ciated radio emission regions. Low velocity shear also occurs at the tangent
point in the orbiting ring of material, where the column densities may be
much larger. These masers amplify the weaker radio emsision in the disk of
the Galaxy. Masers produced here are either red–shifted or blue–shifted (by
several thousand km s−1) by the Keplerian orbital motion, vorb =

√
GM/R,

where R is the radius of the molecular ring, and M is the mass interior to it.
The size of the observed orbital motion can be used to infer that there ex-

ists a massive Black Hole in the centre of such galaxies. For example, Miyoshi
et al. (1995) and Greenhill et al. (1995) find that the mass enclosed within
0.2 pc of the centre of NGC 4258 is 2.1 × 107 M�. The central object inthis
galaxy must be a Black Hole because the matter density implied by these
numbers is in excess of 109 M� pc−3, and a cluster this dense cannot possibly
remain stable for a timescale comparable to the age of the galaxy. (Figure
4.14) The Seyfert NGC 1068 provides a similar case, with the Black Hole
mass inferred to be ∼ 107 M� (Greenhill et al. 1996). For the AGN sources,
not only can the mass of the Black Hole be estimated, but the distance to the
galaxy can be estimated to a remarkable accuracy (∼ 4%) from the proper
motion of the individual spots of H2O maser activity as they pass in front of
the central continuum source. At the same time, these features march steadily
in velocity through the central emission complex (up to 600 km s−1) thanks
to the variation in vrad = vorb sin θ, where θ is the (small) angle measured
along the orbit from the line of sight.

Notes on Chapter 4

• An excellent introduction to absorption line techniques and to atomic
physics in the interstellar medium in general is that by Lyman Spitzer, Jr.
1978, Physical Processes in the Interstellar Medium, (Wiley:New York),
ISBN 0-471-02232-2, which we have made extensive use of here. This book
has recently been republished in the Wiley Classics Library Series.
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Fig. 4.14. NGC 4258 Rotation curve. (after Nakai et al 1995)

• An excellent recent review of interstellar line abundance analyses using the
Hubble Space Telescope is by Savage, B.D., and Sembach, K.R. 1996, Ann.
Rev. A&Ap, 34, 279.

• Recent compilations of oscillator strengths are to found in Verner, D,
Barthel, P., and Tytler, D. 1994, ApJS, 62, 109 and Cardelli, J.A., Fe-
derman, S.R., Lambert, D.L., and Theodosiou, C.E. 1993, ApJL, 416, L41.

• A coherent account of the whole field of maser emission processes is that by
Moshe Elitzur, 1992, Astronomical Masers, Astrophysics & Space Sciences
Library v.170, Kluwer: Dordrecht, ISBN 0-7923-1216-3. This represents es-
sential further reading for those interested in the field.
A fairly recent review of extragalactic masers is by Henkel, C., Baan, W.A.
& Mauersberger, R. 1991, Astronomy and Astrophysics Review, 3, 47.
Progress in the whole field was also reviewed by Moshe Elitzur, 1992, Ann.
Rev. A&Ap, 30, 75.

Exercises

Exercise 4.3.1. What happens to the local radiation intensity at a fre-
quency corresponding to the centre of a strong, optically-thick resonance
line produced by an excited state of an ion radiating to the ground state:
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a. Within a nebula in which the upper level population is determined by
collisions to and from the ground state and by the resonance line radiation
itself (assume that the nebula is very optically-thick in the line).

b. Outside the nebula, where the radiation density in the resonance line is
very low, but where the ion involved in the transition is the most abundant
ion

c. Outside the nebula, where the radiation density in the resonance line
is very low, but where the temperature is too low or too high to produce this
ion in appreciable abundance

Exercise 4.3.2. A particular ion has an a line at 1548Å which has an os-
cillator strength of 3.0 (change to fit C IV?). Along a particular sight line,
it is observed as an unsaturated absorption line with an equivalent width of
255mÅ.

a. What is the column density of this ion along the line of sight?
b. The line is broadened by turbulent motions to a velocity width of 60

km.s−1. What then is the optical depth at the line centre?

Exercise 4.3.3. Assuming that the J = 1 − 0 transition in 12CO at
115271.204 MHz is optically thick in a molecular cloud of radius 1.0pc, that
the cloud has a temperature of 200 K, and an internal microturbulence of 1.3
km.s−1 , then what is the luminosity of the cloud in this CO line?

Exercise 4.3.4. An active galaxy is thought to have a massive Black Hole
associated with it. An H2O maser source associated with this nucleus shows
three components, one at the (known) redshift of the centre of the galaxy,
and the other two at ±2200 km.s−1 with respect this velocity.

a. Where do you think each of these components are formed?
The central component shows a complex structure, with subcomponents

appearing at −50 km.s−1with respect to the central velocity, moving in ve-
locity linearly with time, and eventually disappearing at +50 km.s−1, about
1000 days after they first appeared.

b. How would you explain these observations?
c. In the light of your interpretation, what would you estimate the mass

of the central black hole to be, in solar masses (1.998 × 1033 g)?



    

5. Collisional Ionisation Equilibrium

“Hangs in the uncertain balance of proud time”
— Robert Greene

Collisional ionisation equilibrium (sometimes called coronal equilibrium
from its application to the hot coronae of stars) is a dynamic balance at a
given temperature between collisional ionisation from the ground states of
the various atoms and ions present in the plasma, and the processes of re-
combination from the higher ionisation stages. It is to be distinguished from
the ionisation balance which is achieved under conditions of Local Thermody-
namic Equilibrium (LTE). This equilibrium is described by the Saha Equation
(frequently used in stellar theory). This describes a different equilibrium from
the coronal approximation because in LTE the excited states are populated
according to the Boltzmann law, which therefore play an important role in
determining the ionisation state of the medium.

In practice, coronal equilibrium may never (or hardly ever) be achieved
in real diffuse astrophysical plasmas, for reasons that are developed in the
next chapter. However, its study offers many valuable physical insights into
the ionisation balance of X–ray emitting plasmas, and in the past has been
extensively (if often incorrectly) used in interpreting X–ray or UV line data
obtained in astrophysical sources.

In this chapter we will develop the equations of collisional ionisation equi-
librium, which is probably the simplest ionisation balance condition to un-
derstand. In order to do this, we must first review the various ionisation and
recombination processes that we need to consider. Here we will emphasise the
use of simple analytical fitting formulae for the various processes, since these
provide the most convenient form for inclusion into computational codes.
However, as accurate, self–consistent quantum mechanical calculations be-
come increasingly available, more complex data will have to be incorperated
into codes in numerical form, often as tabular data.

5.1 Collisional Ionisation

Direct collisional ionisation is the process whereby an electron strikes an ion,
A ( with charge i+ ), with sufficient energy to strip out a bound electron:
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Ca+

1 2 3 4
Electron Energy (E/I)

Fig. 5.1. The collisional ionisation cross–section for the Ca ii, showing how the
cross–section increases once more as the threshold for ionisation to an excited state
is crossed.

Ai+ + e− → A(i+1)+ + 2e− −∆EAi+ (5.1)

An energy equal to the ionisation potential of the atom, ∆EAi+ , is removed
from the incoming electron. Collisional ionisation is therefore a process which
effectively cools the electron gas. Note that the inverse process:

A(i+1)+ + 2e− → Ai+ + e− (5.2)

is known as di–electronic recombination. This process is discussed further
below.

With sufficient energy of impact, when the energy of the incoming electron
exceeds the sum of the ionisation potential and the excitation potential, the
ionisation may occur into an excited state of the more highly ionised ion,
followed by a radiative return to the ground state. When the kinetic energy
in the system exceeds the threshold energy for this process, a new channel for
ionisation is opened up, and the cross–section for ionisation is correspondingly
increased. This is illustrated in Figure (5.1) for the Ca ii ion.

The process of collisional ionisation can be considered as essentially simi-
lar to collisional excitation, except instead of excitation occurring to a single
level, it occurs to a continuum of levels above the ionisation potential of the
ion concerned. Provided that the electrons have a thermal Maxwell distribu-
tion, the collisional ionisation rate RA,icoll ( cm−3 s−1) for an atom A in its ith
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ionisation stage is given in terms of the ionisation cross–section σcoll(E) and
the number density of electrons, ne, and ions, nA,i, as (c.f. equation 3.3):

RA,icoll = nenA,iα
A,i
coll

= nenA,i

∞∫
I

σcoll(E).E.f(E)dE cm3 s−1, (5.3)

where f(E) is the Maxwell distribution of the electrons in energy.
The cross–section is best calculated (Arnaud & Rothenflug 1985; Suther-

land & Dopita 1993) using the methods of Younger (1981, 1982, 1983), based
on a five parameter fit to each channel of the collision cross–section. These
parameters can be derived either directly from collision cross–section exper-
iments, or from theoretical calculations. The fits are made on a channel–by–
channel basis which separates the contribution due to each electron config-
uration in the more highly ionised species. The cross–section for the mth.
channel is expressed as (c.f. equation 3.8):

uI2A,iσcoll(m,u) = A

(
1 − 1

u

)
+B

(
1 − 1

u

)2

+ C ln [u] +
D

u
ln [u] (5.4)

with u = E/IA,i. Integrating the collisional ionisation cross–section over the
Maxwell distribution at temperature Te gives the collisional ionisation rate:

αA,icoll(n) =
6.69 × 10−7x3/2

I
3/2
A,i

∫ ∞

1

uI2A,iσcoll(m,u) exp [−ux] du cm3 s−1. (5.5)

with xe being the ratio of the ionisation energy of the ion to the thermal
energy of the electron gas, IA,i/kTe. The actual rate of collisional ionisations
per unit volume is then given by the product

RA,icoll = nenA,iα
A,i
coll cm

−3 s−1. (5.6)

Using equation (5.4), equation (5.5) can be integrated explicitly over all
the channels (m = 1 → mmax) which contribute to the total ionisation cross–
section:

αA,icoll =
6.69 × 10−7

kT 3/2

m=mmax∑
m=1

exp [−xm]
xm

Φ (xm) (5.7)

with :
Φ (x) = A+B (1 + x) −

(
C +Ax−B(2x− x2)

)
E1(x) exp [x]

+DE2(x) exp [x]

where E1 and E2 are the first and second Exponential integrals. For impact
energies close to the threshold, kTe � IA,i, the contributions of higher energy
channels (n > 1) can be neglected.
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A major advantage of this method of solution for the collisional ionisation
rate is that the coefficients show a regular progression along isoelectronic
sequences. Thus, the coefficients may be estimated with good accuracy in
those cases where laboratory of theoretical estimates might be lacking.

At sufficiently high electron impact energies, more than one electron of the
target nucleus may be excited, leaving the atom in an unstable state, which
is stabilised by the radiationless ejection of an electron, possibly followed by
a radiative decay of the ionised atom back to its ground state:

Ai+ + e− → Ai+∗ + e− − E1

followed by :

Ai+∗ → A
(i+1)+
∗ + e− + E2 : A(i+1)+

∗ → A(i+1)+ + hν

This process is known as excitation–autoionisation, and is favoured in heavy
elements which have a large number of inner shell electrons and only one or
two electrons in the outer shell. The complexity of this process means that
is is often more difficult to give simple fitting formulae. However, for many
ions excitation–autoionisation cross–sections of the following form provide an
adequate fit:

σEA(u) =
a

u

(
1 − 1

u3

)
. (5.8)

Here u = E/IEA and the effective excitation–autoionisation potential along
a given iso–electronic sequence is given by IEA = E0(Z−N)p where Z is the
atomic number, N is the number of inner–shell electrons in the isoelectronic
sequence, and p is some power.

5.1.1 The Case of Hydrogen

The collisional cross–section for hydrogen according to equation (5.4) is
shown in Figure 5.2. In this case there is, by definition, only one channel for
ionisation. In fact, a reasonable approximation to this cross section can be
obtained using the older semi–empirical Lotz formula, which was extensively
used before good–quality theoretical and experimental cross sections were
available. The Lotz formula is obtained by setting A,B and D in equation
(5.4) equal to zero, and adopting C = 4×10−14 cm2 eV2. An even simpler (but
still useful) approximation is obtained by a linear fit to the collisional ioni-
sation cross–section in the region of the threshold: σcoll,H = σ0(E − IH)/IH
with σ0 ∼ 10−16 cm2 for hydrogen.

With this linear approximation, the collisional ionisation rate ( cm3 s−1)
is then:

αHcoll(Te) = 2.4849 × 106 σ0

IH

∫ ∞

IH

(E − IH)E exp [−IH/kTe] (5.9)

where the numerical constant is 27/2(πme)−1/2(kTe)−3/2. After integration
by parts, and substitution for σ0 this gives:
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Place Holder
Figure

Fig. 5.2. The collisional ionisation cross–section for hydrogen calculated from equa-
tion (5.4) as a function of electron energy (measured in units of the ionisation
potential, 13.6eV)

αHcoll(Te) = 2.5 × 10−10

(
1 +

T

78, 945

)
T 1/2
e exp [−157, 890/Te] , (5.10)

and as before the actual ionisations occuring per second per unit volume is
the product of of this rate and the electron and hydrogen densities

RHcoll = nenHα
H
coll. (5.11)

The similarity of a collisional ionisation rate equation such as (5.10) and
a collisional excitation rate equation such as (3.11) is obvious, the difference
in the power–law dependence on temperature being simply related to the
difference in the behaviour of the excitation and the ionisation cross–sections
with energy above their respective thresholds.

[Table of collisional ionisation rate coeffs for some ions]

5.2 Recombination

Radiative recombination is the process of capture of an electron by an ion
with the excess energy being radiated away in a photon. In most cases the
electron is captured into an excited state, and usually into a state of large
principal quantum number and high angular momentum state, so that the



     

82 5. Collisional Ionisation Equilibrium

recombined, excited, ion radiates several photons in a radiative cascade back
down to the ground state:

Ai+ + e− → A
(i−1)+
∗ + hν

A
(i−1)+
∗ → A(i−1)+ + hν1 + hν2 + hν3 . . .

the photon in the first line represents a recombination continuum photon,
since the energy of the impacting electron may take any value. However
photons ν1, ν2, ν3 . . . represent quantised transitions between bound states,
and are therefore termed recombination lines.

For any atom, as the principle quantum number, n, decreases, the number
of states of different angular momentum quantum number, l, also decreases.
However, the initial capture of the electron in recombination tends to occur
into states of high angular momentum due to the initial orbital angular mo-
mentum of the electron around the ion. In the cascade to lower states, the
selection rules of quantum mechanics force ∆l = ±1. Electrons which find
themselves in low angular momentum states can make either kind of tran-
sition. However, electrons which are initially in a high angular momentum
state tend to get trapped into the highest l state consistent with the principal
quantum number, and are thereby forced to cascade down to the ground state
though transitions of the kind, ∆n = −1, ∆l = −1. Thus, in a recombining
gas, within any n− state of any ion, the l sub–levels are not populated in
proportion to their statistical weights, as would be the case in a plasma in
Local Thermodynamic Equilibrium (LTE). In addition, the n levels are not
populated in anything like that expected from the Boltzmann Equation. To
describe the actual level populations in the excited states, we generally use an
occupation factor defined by the ratio of the population in the excited state
compared with the population this state would have under LTE conditions
at the same electron temperature and density; ne, Te, respectively:

bnl(ne, Te) = N(n, l)/NLTE(n, l) (5.12)

The factor NLTE(n, l) can be readily derived. In LTE at the ionisation bal-
ance is given by the Saha Equation:

nA,i+1ne
nA,i

=
(

2πmekTe
h2

)3/2

exp
[
−IAi+

kTe

]
(5.13)

where IA,i is the ionisation potential of the ion Ai+. On the other hand, the
population of the n, l sub–level with excitation energy EA,i+1(n, l), will be
given by the Boltzmann equation:

nLTE
A,i+1(n, l)
nA,i

= (2l + 1) exp
[
−EA,i+1(n, l)

kTe

]
(5.14)

so therefore it follows that:
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nLTE
A,i+1(n, l) = (2l + 1)nenA,i+1

(
2πmekTe
h2

)−3/2

exp
[ xn
kT

]
(5.15)

with xn = IA,i − EA,i(n, l) ∼ IA,i/n2.

5.2.1 Radiative Recombination Rates

For a given ion of an element, Ai+, the radiative recombination rate to level
n per unit time and volume is given in terms of the number densities of the
more highly ionised ion nA,i+1 and of the electrons, ne, and in terms of the
electron capture cross–section to level n of the ion Ai at a given electron
velocity v; σA,irec(n, v):

RrecA
i

(n, Te) = nenA,i+1

∫ ∞

0

σA,irec(n, v)
[
1 +

c3ρ(ν)
8πhν3

]
vf(v)dv cm3 s−1

= nenA,i+1α
A,i
rad(n, Te) (5.16)

where ρ(ν) is the radiation density at the frequency ν, of the recombina-
tion continuum photon produced by recombination to level n, and f(v) is
the Boltzmann distribution function for the electrons at electron tempera-
ture Te. In this equation, the second term in square brackets represents the
radiation–induced recombination, analagous to the stimulated emission term
in emission line theory. In practice, this term is not usually important in
diffuse astrophysical plasmas, and is usually neglected.

The total effective recombination rate to all states can then be written as
the sum of the recombination rate to each state:

αA,irad(Te) =
∑
n

α(n, Te) (5.17)

For hydrogenic ions, the radiative recombination rates can be calculated using
a formula due to Seaton (1959) based on a expansion of the Kramers–Gaunt
factor:

αA
i

rad(Te) = 5.197 × 10−14Zλ1/2
(
0.4288 + 0.4 ln [λ] + 0.469λ−1/3

)
cm3 s−1.

(5.18)
where λ = I(Ai)/kTe = 157890Z2/Te. For hydrogen, this can be approxi-
mated by a simple power law;

αHrad(Te) = 4.18 × 10−13[T/104 K]−0.72 cm3 s−1, (5.19)

which is applicable in the range 5000–20000 K.
For non–hydrogenic atoms, the usual way to compute radiative recombi-

nation rate is to evaluate the recombination rate to the ground state using
the Milne relation (see Section 5.3.3), and then to compute the recombination



     

84 5. Collisional Ionisation Equilibrium

rate to the excited states using the hydrogenic approximation. The result is
then often fitted to a simple power law with temperature:

αA
i

rad(T ) = Arad[T/104K]−η cm3 s−1. (5.20)

[Table of recombination rate coeffs for some ions]

5.2.2 Di–electronic Recombination Rates

As mentioned above, di–electronic recombination is the inverse of collisional
ionisation. The main pathway for di–electronic recombination is through an
excitation of a core electron with capture of the passing electron;

Ai+(1s, . . .) + e− → A
(i−1)+
∗ (n1l1;n2l2) (5.21)

Here, one of the electrons is in an autoionising state, n1l1, and the other is
in an excited state, n2l2.The ion first stabilises itself by one of the valence
electrons radiating back to the ground state:

A
(i−1)+
∗ (n1l1;n2l2) → A

(i−1)+
∗ (n3l3;n2l2) + hν (5.22)

and then the ion is free to return to its ground state by radiative cascade:

A
(i−1)+
∗ (n3l3;n2l2) → A(i−1)+(n3l3;n4l4) + hν1 + hν2 + . . . .. (5.23)

At high temperatures, core relaxation is the most important stabilising pro-
cess, while at low temperatures the electron is captured via low–lying res-
onance states. There are thus two contributions to the total di–electronic
recombination rate:

αA,idiel.(Te) = αA,iLo−T (Te) + αA,iHi−T (Te) cm3 s−1. (5.24)

A fitting formula for low temperatures is given by Nussbaumer & Storey
(1983):

αA,iLo−T (t) = 10−12t−3/2
(a
t

+ b+ ct+ dt2
)

exp
[
−f
t

]
cm3 s−1, (5.25)

with t = Te/104 K; a, b, c, d and f being fitting constants for each ion. At
high temperatures the Shull & Van Steenberg (1982) form can be used:

αA,iHi−T (t) = Adielt
−3/2

(
1 +Bdiel exp

[−t0
t

])
exp

[
− t1
t

]
cm3 s−1, (5.26)

with Adiel, Adiel, t0 and t1 being fitting constants for each ion.
In general, the low–temperature di–electronic recombination contribution

is important at temperatures of about 1000–3000 K and the high temperature
term is dominant above 20000 K. Single electron recombination dominates
at very low temperatures and is usually an important contributor in the
region 5000–20000 K. This is illustrated in Figure (5.3) for the case of carbon
ions, taken from the fully self–consistent quantum mechanical calculations of
Nahar & Pradhan (1997).

[Table of dielectronic rate coeffs for some ions]
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.

Fig. 5.3. Total recombination rate coefficients for C ii, C iii, C ivand Cv. The
dashed line is the radiative recombination from a fit of the form (5.14 ), the dotted
line represents the low temperature di–electronic term (5.17), and the dot–dashed
line is the high temperature part fitted by (5.18). The fitted circles are another
calculation of this same contribution (after Nahar & Pradhan, 1997).

5.3 Photoionisation

5.3.1 From Outer Shells

Photoionisation is the inverse process to radiative recombination. As a conse-
quence, there is an intimate connection between the radiative recombination
cross–sections and the photoionisation cross section. This will be discussed
later. Photoionisation, as the name suggests, is the ionisation of an atomic
species by the absorption of a photon:

Ai + hν → A(i+1)+ + e− +∆E (5.27)

If the incoming photon has sufficient energy, it may leave the more highly
ionised species in an excited state which subsequently decays by a radiative
cascade back to down to the ground state:

Ai + hν → A
(i+1)
∗ + e− +∆E

A
(i+1)
∗ → A

(i+1)
∗ + hν1 + hν2 . . .

In this way, an appreciable number of additional channels to the photoionisa-
tion process become energetically available at higher energy, thus increasing
the photoionisation cross–section. For example:
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O0(2p4 3P) + hν → O0(2p3 4S) + e− : hν > 13.6eV
O0(2p4 3P) + hν → O0(2p3 2D) + e− : hν > 16.9eV
O0(2p4 3P) + hν → O0(2p3 2P) + e− : hν > 18.6eV

in this example, the ionisation occurs to different terms of the same electron
configuration.

5.3.2 From Inner Shells

If we increase the energy of the incoming photon still further, it becomes
possible to remove one of the inner shell electrons by inner shell photoionisa-
tion which also results in a change the electron configuration in the excited
species, i.e. :

O0(1s22s22p4 3P)+hν → O+(1s2s22p4 2P or 4P)+e− : hν > 544 eV (5.28)

This may be followed by a radiative re–adjustment back to the ground state.
However, in this particular case another mode of photoionisation becomes
not only energetically possible, but indeed more probable; that of Auger ion-
isation. This is a photoionisation from an inner K– or L–shell, followed by
a radiationless autoionisation, and is completed by radiative cascade back
down to the ground state:

Ai + hν → A
(i+1)+
∗∗ + e− +∆E1

A
(i+1)
∗∗ → A

(i+m+1)
∗ +me− +∆E2

A
(i+m+1)
∗ → A(i+m+1) + hν1 + hν2 . . .

For example, in the case of the oxygen inner–shell photoionisation given
above, the Auger ionisation path is (mostly) into the 3P excited state of
O iii:

O+(1s2s22p4 2P or4P) → O++(1s22s22p2 3P ) + e− (5.29)

followed by radiative transitions to the ground state. In some cases these
radiative transitions can affect the intensity of the weak lines which are nor-
mally used as temperature or density diagnostics in objects such as Active
Galactic Nuclei. This was pointed out by Aldovandi & Gruenwald (1985).
This process has recently been investigated for carbon, nitrogen and oxygen
lines in a series of papers by Petrini and his co–workers. (Petrini & Da Silva
1997, Petrini & Farras 1994, Petrini and Da Aranjo 1994)

Note that the radiationless autoionisation may produce more than one
electron. In general, m becomes greater than unity above some threshold
energy, and increases as more channels for the Auger process become ener-
getically accessible.

In inner shell photoionisation followed by Auger ionisation, two high en-
ergy electrons are produced, the first from the primary photoionisation, with
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an energy equal to the photon energy less the binding energy of the ejected
electron, and the second from the Auger ionisation. This has an energy which
is roughly equal to the difference in binding energies of electrons in the inner
shell and outer shells less the binding energy of the outer shell electron. This
could be several hundred eV. Such fast, supra–thermal electrons are capable
of either heating the gas, or of collisionally exciting and/or ionising ions with
excitation or ionisation potential less than the energy of the fast electron.
This secondary ionisation process becomes quite important when the supra–
thermal electrons find themselves in a partially ionised zone. In this case,
much of the energy of the fast electron is lost by collisional excitation and
ionisation of hydrogen and, to a lesser extent, of neutral helium.

Analytic fits to Monte–Carlo models of this process have been given by
Shull & Van Steenberg (1985) as a function of the fractional H– ionisation
of the medium, x. The fraction of the primary photoelectron energy lost as
heat is given by:

FHeat = C
[
1 − (1 − xa)b

]
(5.30)

with C, a and b equal to 0.9971, 0.2662 and 1.3163, respectively. For the
fraction of primary photoelectron energy lost through the other processes, a
formula of the form:

F = C (1 − xa)b (5.31)

gave a good description of the results. The coefficients (C, a, b) are (0.3908,
0.4092, 1.7592) for collisional ionisation of hydrogen, (0.0554, 0.4614, 1.6660)
for collisional ionisation of helium, (0.4766, 0.2735, 1.5221) for collisional exci-
tation of hydrogen Lyα, and (0.0246, 0.4049, 1.6594) for collisional excitation
of the He i Lyα line. The average number of collisional ionisations and ex-
citations induced per fast electron can be easily calculated using the energy
lost by each of these processes; 10.2eV and 13.6eV for collisional excitation
and ionisation of hydrogen, respectively, and 19.95eV and 24.58eV for the
corresponding processes in helium.

5.3.3 The Milne Relation

Clearly, the inverse process of photoionisation from a given level in an atom or
ion is recombination by radiative capture of an electron into this same level.
The intimate relation between the two processes emphasises the need to treat
them both self–consistently and with the same set of atomic eigenfunctions.
The Milne relation is a formula which relates the cross section for photoion-
isation with the cross–section for recombination, and was derived using the
principle ofdetailed balance in the condition of Local Thermodynamic Equi-
librium (LTE). In this condition, detailed balance requires that all the rates
of the various atomic processes are balanced by the rates of their inverse pro-
cesses. For a particular atom, ion and state with ionisation energy IA,i = hνI ,
the principle of detailed balance applied to photoionisation–recombination
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states that the rate of spontaneous + radiatively induced recombinations of
electrons in the velocity range v → v + dv is matched by the photoionisa-
tion rate in the frequency range ν → ν + dν, where mev

2/2 + hνI = hν. As
a consequence of this, mevdv = hdν. In LTE, the radiation field density is
given by the Black–Body value, and the induced radiative recombination rate
is a factor exp[−hν/kTe] of the photoionisation rate. The detailed balance
equation between the number of atoms of atomic species A in their (i+ 1)th.
stage of ionisation; nA,i+1, and the number of atoms of atomic species A in
their ith. stage of ionisation; nA,i is therefore:

nenA,i+1σrec(v)f(v)dv = nA,i (1 − exp[−hν/kTe])
4πBν(Te)
hν

σphot(ν)dv

(5.32)
where σphot(ν) is the photoionisation cross–section, σrec(v) is the recombina-
tion cross–section for electron velocity v, f(v) is the Boltzmann Distribution
in velocity at temperature Te :

f(v) =
4
π1/2

(
me

2kTe

)3/2

v2 exp
[
−mev

2

2kTe

]
(5.33)

and Bν(Te) is the Planck Function:

Bν(Te) =
2hv3

c2
(exp[−hν/kTe] − 1)−1 (5.34)

However, in LTE the Saha equation of ionisation balance also applies:

nenA,i+1

nA,i
=

2gi+1

gi

(
2πmekTe
h2

)3/2

exp
[
− hν

kTe

]
(5.35)

where here g is the statistical weight of a state. Combining all of these equa-
tions, we obtain the Milne Relation between the two cross–sections:

(mecv)
2
σrec(v) =

gi
gi+1

(hν)2 σphot(ν) (5.36)

5.3.4 Photoionisation Cross–sections

Because of the intimate connections between the ionisation process, colli-
sional ionisation and photoionisation and their inverse processes, di–electronic
recombination and radiative recombination, respectively, the rate calculations
of all of these processes should be computed in a fundamentally consistent
manner using the same set of atomic eigenfunctions. Since such calculations
of photoionisation cross–sections would automatically include autoionising
resonances, the electron–ion recombination rates would also include both the
radiative and the di–electronic recombination processes. In the past, these
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have usually been treated separately, and by different methods, and (where
possible) made self–consistent by applying the Milne relation.

The calculations of Nahar & Pradhan (1997) represent the first such fully–
self consistent computations using the R−matrix method developed for the
Opacity Project and the Iron Project (Berrington et al. 1987; Hummer et al.
1993) and extended by Nahar & Pradhan (1994). We have already shown the
computations of the carbon ion recombination rates in Figure (5.3), above,
and the corresponding photoionisation rates are shown in Figure (5.4).

When such calculations become available for more ions, then theoretical
models of the ionisation state of the interstellar medium will have to include
these in tabular form for each ion of each element. For the time being, how-
ever, a parametric fit in the same spirit as those already presented for the
other processes can also be applied to photoionisation cross–sections.

For H–like ions, the photoionisation cross–section, σ1s(E), and the thresh-
old energy, E1s, can be calculated analytically:

E1s = Z2IH and

σ1s(ν) =
29π2αa2

0

3Z2e4

(
E1s

hν

)3.5

=
6.3042 × 10−18

Z2

(
ν

ν0

)−3.5

cm2, (5.37)

where IH is the ionisation potential of hydrogen, one Rydberg (13.6 eV), ν0
is the associated frequency, α is the Fine Structure Constant, and a0 is the
Bohr Radius (h2/4πme2 = 0.529 × 10−8 cm).

For other atoms and ions, an interpolation formula of the form given by
Daltabuit & Cox (1972) is frequently used:

σphot(ν) = σ0

[
β

(
ν

ν0

)−s
+ (1 − β)

(
ν

ν0

)−(s+1)
]

(5.38)

where ν0 is the frequency at threshold, and σ0, β and s are fitting parameters.
For inner (K–shell) ionisation, Band et al. (1990) present a very useful set

of fitting formulae using a modification of the hydrogen–like formula, based
on the similarity of photoionisation cross–sections for a given shell, but across
different atoms and ions. Here:

σphot(E) = σ1y
−3/2

(
1 + y1/2

)−4

: y =
E

E1
(5.39)

where the fitting parameters σ1 (in mega–Barns; 10−18 cm2) and E1 are given
in terms of the atomic number Z, and the number of bound electrons in the
ion, N , by:

E1(eV ) = a1 + a2Z + a3Z
2 + (a4 + a5Z)N

σ1(Mb) =
(
b1 + b2Z + b3Z2 + b4N

)−1
(5.40)

with :
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Fig. 5.4. The computed C i and C ii photoionisation cross–section in mega–Barns
(10−18 cm2) after Nahar and Pradhan (1997). Note the complex resonance struc-
ture,
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a1 = 11.132 : a1 = 5.612 : a1 = 6.9668 : a4 = 11.132
a5 = 0.35327 : b1 = 1.6798 × 10−2 : b2 = 3.6703 × 10−4 :
b3 = 9.7991 × 10−4 : b4 = 8.0332 × 10−3

while the threshold energies are given in the range 1 ≤ Z ≤ 26; 1 ≤ N ≤ Z
by:

Eth = IHZ
2Nγ : γ = 0.20 − 0.39/ log[Z] (5.41)

5.4 Charge–Exchange

During the collision of two ionic species, the charge clouds surrounding each
interact, and it is possible that an electron is exchanged between them. Since,
in virtually all diffuse astrophysical plasmas, hydrogen and helium are over-
whelmingly the most abundant species, the charge–exchange reactions which
are significant to the ionisation balance of the plasma are:

A(i+1)+ + H0 ⇀↽ Ai+ + H+ +∆E and
A(i+1)+ + He0 ⇀↽ Ai+ + He+ +∆E

The reactions are exothermic, because of the lower ionisation potential
of the Ai ion, and therefore there is an energy barrier against the reverse
reaction. This is the energy needed to push the two charged species to within
a distance at which charge–exchange can occur in the presence of the Coulomb
barrier. Thus, the reverse reaction channel only opens up when kTe >∼ ∆E.
In many cases we only have to consider the forward reaction.

Charge–exchange may also occur in collisions of molecules with atoms,
i.e.

CO+ + H0 → CO + H+ (5.42)

this process is also closely related to ion–molecule reactions such as:

CH+ + O0 → CO + H+ (5.43)

and to associative detachment reactions such as

O− + O → O2 + e− (5.44)

These and other molecular reactions are dicussed in Chapter 13.
Advanced Section:
During the collision, between an ion A(i+1) and a hydrogen or helium

atom, we can regard a charged molecule of the form HA(i+1) or HeA(i+1) to
have been effectively formed, albeit for a rather short time. In the A(i+1)+H0

channel, the interaction potential as a function of inter–nuclear distance, r,
results from the polarisability of the H0 or He0 atom, αpol:
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Fig. 5.5. Potential states formed in a charge–exchange reaction.

Vpol(r) = −αpol
2

(e
r

)4

(5.45)

where αpol(H) = 6.7 × 10−25 cm2 and αpol(He) = 2.07 × 10−25 cm2.
In the Ai+ + H+ channel the Coulomb interaction determines the long–

range interaction potential:

Vcoul(r) = i
(e
r

)2

(5.46)

These two potential curves cross at an inter–nuclear distance, R, determined
by Vcoul(R)−∆E = Vpol(R). When Vpol(R) � ∆E, which is usually the case,
then R ∼ ie2/∆E.

Two classes of charg–exchange interaction are possible:

• Those in which the collision timescale, tcoll, is long enough that the elec-
trons have a chance to continually adjust to the changing inter–nuclear
distance. In this case, the interaction potential curves do not cross, but
instead follow a form sketched by the dotted lines in Figure (5.5). Such an
interaction is adiabatic.

• Those (high impact energy) interactions in which the collision timescale
is too short for electronic orbital adjustment to occur. These are called
diabatic interactions.

The collision timescale is determined by the period in which the atoms
are within their interaction radius; tcoll ∼ ∆R/v(R), while the timescale
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for adjustment of the electrons is determined by the Heisenberg Uncertainty
Principle; telec ∼ h/∆V .

In the case of adiabatic collisions, tcoll/telec � 1, the ions are effectively
in orbit about one another, and the critical impact parameter (projected
internuclear distance in the initial direction of impact), for any impact energy
E is determined from energetic considerations:

r12 =
(

2e2αpol
E

)1/4

(5.47)

During the collision, the electron will lose all memory of which channel it
approached in, and so it is equally likely to emerge in either channel. The
probability of charge–exchange is therefore 1/2, and the effective cross sec-
tion for charge–exchange is therefore σce = πr212/2. The rate constant is
the product of the cross–section and the velocity v = (2E/µ)1/2: where
µ = m1m2/(m1 +m2) is the reduced mass of the reactants;

αce = 〈σcev〉 = πe

(
αpol
µ

)1/2

(5.48)

∼ 1.5 × 10−9 cm3 s−1 for c.e. with H
∼ 8 × 10−10 cm3 s−1 for c.e. with He.

In the Landau–Zenner case of diabatic charge–exchange the rate is
summed over the contributions arising from the different orbital angular mo-
mentum quantum numbers. Since more channels open up as energy increases,
the charge–exchange rate initially increases rapidly with temperature, but
with increasing impact energy, the probability of charge exchange decreases,
and the charge–exchange rate falls. This behaviour is illustrated in Figure
(5.6).

Normally, the charge–exchange reaction will leave the ion in the lowest
available energy state. However, provided that this charge–exchange reac-
tion is sufficiently exothermic, then charge–exchange which leaves the ion
in various excited states becomes energetically possible, increasing the total
charge–exchange reaction rate. This is illustrated in the case of Si3+ in its
charge–exchange reactions with H:

Si3+(3s 2S) + H → Si2+(3s2p 1P0) + H+ + 9.62eV
Si3+(3s 2S) + H → Si2+(3p2 1D) + H+ + 4.74eV
Si3+(3s 2S) + H → Si2+(3p2 3P0) + H+ + 3.80eV
Si3+(3s 2S) + H → Si2+(3s3d 3P0) + H+ + 2.17eV

and in its charge–exchange reactions with He:

Si3+(3s 2S) + He → Si2+(3s2 1S) + He+ + 8.88eV
Si3+(3s 2S) + He → Si2+(3s3p 3P) + He+ + 2.30eV
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Fig. 5.6. Rate of the Si2++H0 → Si++H+ charge exchange reaction as a function
of temperature., compared with the expectations of the orbiting approximation
(after McCarroll & Valiron, 1976).

5.5 Coronal Equilibrium

Collisional ionisation balance involves, in general, three ionisation stages of
a given element, A(i−1)+, Ai+, and A(i+1)+, coupled through collisional ion-
isation, the various means of recombination and through charge–exchange
reactions. If the number density of these species are nA,i−1, nA,i, and nA,i+1,
respectively , then the collisional ionisation equilibrium condition is:

nenA,iα
A,i
coll + nA,i

∑
x=H0,He0

nxα
A,i
ce

= nenA,i+1α
A,i+1
rec + nA,i+1

∑
x=H0,He0

nxα
A,i+1
ce (5.49)

Here, for all except the neutral species, Coulomb interactions ensure that
the dominant path for charge–exchange reactions is towards a decrease in
the ionisation state of the atom (i.e. reactions of the type H0 + Ai+ →
H++A(i−1)+, or the corresponding reaction with helium). In equation (5.49),
therefore we have therefore ignored charge–exchange reactions which work in
the opposite sense, and so have eliminated the coupling to the (i − 1) stage
of ionisation.

Implicit in this equation (the coronal approximation) is the assumption
that the ionization rates on the left–hand side refer to the ground state of the



     

5.5 Coronal Equilibrium 95

ion. This will only be true provided that radiative and collisional processes
between levels in an ion proceed on much faster timescales than photoionisa-
tion and recombination. This certainly applies in the limit of low densities,
but breaks down at higher densities when some excited states may become
significantly populated in their approach towards LTE conditions.

If charge–exchange reactions can be ignored entirely (which would be true
for hydrogen or helium in a plasma with solar abundances) then equation
(5.49) simplifies marvellously, to give the ionisation balance directly:

nA,i+1

nA,i
=

αA,icoll

αA,i+1
rec

(5.50)

An elegant and simple result indeed!

5.5.1 The Case of a Pure Hydrogen Plasma

The case of a pure hydrogen plasma provides insight into the behaviour of
collisional ionised plasmas in general. Here, of course, the electrons are pro-
vided only by the ionisations, so that the coupling between the electrons and
ions is closer than in other plasmas in which the ion is simply a trace element.
In this case the hydrogen ionisation balance is:

nH+

nH0
=
αH

0

coll

αH+
rec

= F (T ) (5.51)

and the fractional ionisation of hydrogen, χH , can therefore be expressed in
terms of the function of temperature F (Te) :

χH =
nH+

nH
=

nH+

(nH0 + nH+)
=

F (T )
[1 + F (T )]

(5.52)

Now, an analytic approximation to RH
0

coll has already been given above, in
equation (5.10), and a good approximation to αH

+

rec was given following equa-
tion (5.18); αH

+

rec = 4.18 × 10−13
[
T/104K

]−0.72, from which:

F (Te) = 0.788T 1.22
e (1 + Te/78945) exp [−157890/Te] (5.53)

The fractional ionisation of hydrogen is given in Table 5.1. In an optically–
thin plasma hydrogen is 50% ionised at Te ∼ 14000K and is 98% ionised
by 20000K. At lower temperatures, the ionisation fraction falls away in a
precipitate manner as a result of the exponential factor in eqn (5.53). Note
that the ionisation temperature, defined as the temperature where the ion
reaches 50% ionisation is very much lower than the ionisation potential energy
expressed as a temperature (157890 K). This is the case for heavier elements
as well.
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Table 5.1. Fractional ionisation of H as a function of the electron temperature

log[Te(K)] 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4
log[χH ] -9.300 -6.372 -4.024 -2.143 -0.716 -0.098 -0.011 -0.002
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Fig. 5.7. The collisional ionisation equilibrium balance of oxygen and iron as a
function of temperature. Note the persistence of hydrogen–like and helium–like
species to very high temperatures, and the way in which the ionisation balance
echoes the shell structure of the atoms.

5.5.2 Ionisation Equilibrium of Heavy Elements

The ionisation balance of heavy elements can be computed with reasonable
accuracy with equation (5.50). However, in practice we solve the full colli-
sional ionisation balance equations (5.49). Figure (5.7) shows the full ion-
isation balance for the ions of oxygen and of iron taken from the detailed
calculations of Sutherland & Dopita (1993).

Note the persistence of the hydrogen–like and helium–like ions to very
high temperature. This is because of the difficulty of removing the inner K–
shell electrons due to their very high ionisation potentials (739 and 871 eV,
respectively in the case of oxygen, compared with 138 eV for the ionisation
potential of the Lithium–like ion). In the case of iron, similar behaviour can
also be seen for the L–shell electrons at the ion Fexviii where the ionisation
potential jumps from 489 eV to 1.4 keV.
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Recalling the difference in the shape of the collisional ionisation and colli-
sional excitation cross–sections near the threshold energy (c.f. Figures ?? and
??), it is clear that the H– and He– like Lyα lines will have relatively large
collisional excitation cross–sections compared with the collisional ionisation
cross–sections near the threshold energy for ionisation. As a consequence,
each ion will be collisionally excited several times before it is collisionally
ionised. This fact makes the Lyα lines of H– and He–like species very impor-
tant as X–ray cooling lines.

Charge–exchange plays a particularly important role in determining the
O i/ O ii ionisation balance. This is because the ionisation potential of the
O i is 13.618 eV, compared with 13.598 eV for hydrogen. As a consequence
the charge–exchange reaction:

O+ +H0 ⇀↽ O0 +H+ + 0.02eV (5.54)

is almost resonant, and the reverse reaction is opened up for temperatures
above about 1000 K. However, hydrogen becomes ionised at about 14000 K,
as we demonstrated above. In effect, the oxygen ionisation balance is locked
to that of hydrogen in the temperature range where are both partially ionised.

Notes on Chapter 5

• The best source for analytic fits to the collisional ionisation and excitation
autoionisation cross–sections is that of Arnaud, M. & Rothenflug, 1985,
A&AS, 60, 425.

• Auger ionisation data is given by Kaastra, J.S. & Mewe, R. 1993, A&AS,
97, 443.

Exercise 5.5.1. The ionisation balance of nitrogen and oxygen (at least as
far as the un-ionized and singly-ionized states are concerned) is locked to that
of hydrogen by the (nearly resonant) charge exchange reactions:

O+ + H0 ⇀↽ O0 + H+ + 0.019eV
N+ + H0 ⇀↽ N0 + H+ + 0.935eV

Because these reactions are exothermic by a small amount of energy ∆E, the
rate of the forward reaction is higher than the rate of the reverse reaction by
the ratio g1

g2 exp[∆E/kT ] where the reatio of the statistical weights, g1
g2 = 9

8

for the oxygen charge-exchange reaction, and g1
g2 = 2

9 for the nitrogen charge
exchange reaction. Assuming that hydrogen is in collisional ionization equi-
librium as given in Table (5.1), calculate the equilibrium ionization fractions
of oxygen and nitrogen at the same temperatures as in the Table.

Exercise 5.5.2. Using the formulae given in section (5.3.4), calculate the
K-shell photoionization threshold energies and the photoionization cross sec-
tions just above these energies for O I through O VIII. For the case of O
VIII, how well do equations (5.37) and (5.39) agree?
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Exercise 5.5.3. (for advanced students) Using any technique (Fortran, Pas-
cal or C program, Maple, Mathematica or just pen, pencil and brain) answer
the following questions. Hint: read section (5.5):

a. If a cloud of plasma in a supernova remnant is at in collisional ionization
equilibrium at a temperature of 250,000K, then what are the fractions of each
of the carbon ions present?

b. In collisional ionization equilibrium, at what temperature would Car-
bon IV be the most abundant ion? (solve graphically in the temperature
range 3 × 104− 3 × 104 ).

Data for the problem:
Use the following simplified formulae for the required rates (from Landini

& Monsignori Fosse, 1990, A&AS, 82, 229):
Collisional rates:

αc = Acol
T 1/2

(1 + 0.1T/Tcol)
exp

[
−Tcol

T

]

Radiative Recombination Rates:

αr = Arad

[
T

104K

]−Xrad

Di-electronic Recombination Rates:

αd = AdiT
−3/2 exp

[
T0

T

](
1 +Bdi exp

[
−Ti

T

])

Atomic Data for Carbon:
Ion Acol Tcol Arad Xrad Adi Bdi T0 Ti

I 1.44E-10 1.31E5 0 0 0 0 0 0
II 4.20E-11 2.83E5 4.7E-13 0.624 2.54E-3 4.42E-2 1.57E5 3.74E5
III 1.92E-11 5.56E5 2.3E-12 0.645 6.15E-3 5.88E-2 1.41E5 1.41E5
IV 5.32E-11 7.48E5 3.2E-12 0.770 1.62E-3 3.43E-1 8.19E4 1.59E5
V 2.87E-13 4.55E6 4.9E-12 0.803 4.78E-2 3.62E-1 3.44E6 5.87E5
VI 9.16E-14 5.68E6 9.2E-12 0.791 3.22E-2 3.15E-1 4.06E6 8.31E5
VII 0 0 3.2e-11 0.718 0 0 0
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“I ask you to look both ways.
For the road to a knowledge of the stars leads through the atom;
and important knowledge of the atom has been reached through the

stars”
— Sir Arthur Eddington (Stars & Atoms, 1928)

Transitions of electrons between discrete levels of an atomic or molecular
system can produce photons of specific energies. These nearly monochromatic
photons form the by now familiar line emission from and absorption by as-
trophysical plasmas. The discrete levels as also known as bound levels and
they arise in the quantum mechanical description as quantised solutions to
electrons bound to a nucleus in some form of potential. Outside the potential
electrons are unbound or free. The free electrons can take on any energy and
can occupy any of a continuum of states. Nevertheless, electrons can make
transitions between these free states, known as free–free transitions, and be-
tween bound atomic levels and free states, known as bound–free or free–bound
transitions. Using this nomenclature then the line transitions discussed so far
are bound–bound transitions.

Free–free and free–bound transitions can emit photons of a whole range
of energies, and tend to form a ’continuum’ or continuous emission, providing
a background on which the lines appear in a spectrum.

6.1 Free–Free Continuum Emission

In a classical result first established by Larmor in 1897, any charge which is
accelerated in space will emit electromagnetic radiation. For an electron, the
total power radiated, P , is:

P =
2e2

3c3

(
dv

dt

)2

(6.1)

Such accelerations occur in ionised plasmas as a result of the collision
between an electron and a proton or other ion in the plasma, and this gives
a mechanical description of the basis of free–free emission. Taking an en-
semble of particles with thermal velocities and cross–sections a model which
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Place Holder
Figure

Fig. 6.1. Spectrum Showing Lines and Continuum

works out the distribution of deflections experienced and corresponding ac-
celerations could be used to predict a spectrum. For example, the classical
cross–section for free–free absorption is given by Kramers (1923),

dσclass = a0Z
2 32π
3
√

3

(
e2

h̄c

)[(
Ry

hν

)3
d(hν)
Ry

]
. (6.2)

However,a quantum wave mechanical description can also provide a spectrum,
with the added advantage that the wave description correctly treats the inter-
actions on the atomic scale where simple mechanics fail. Atoms and electrons,
protons and other ions are not well treated as particles on the smallest scales
and this changes the ’collisions’ and simple application of equation [] will not
suffice. Finally, we can use techniques for free–free and free–bound transi-
tions that have been used for bound–bound transitions, largely by changing
the functional form of the wavefunctions. Instead of a real bound spherical
harmonic wavefunction, the free states can be considered as infinitely oscil-
lating sinusoidal plane wave. Infinitely oscillating waves are often represented
in complex mathematical terms with imaginary terms.

The approach generally used in all kinds of continuum emission calcu-
lations is to use the classical result computed on the basis of straight me-
chanics, charge separations and accelerations, and then to work out the full
wave–mechanical solution and express the difference as a correction factor
to the classical result. This approach was first make popular for continuum
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by Gaunt (1930) and these ’correction’ factors are known as Kramers–Gaunt
factors or more simply as Gaunt factors. When the classical result is accu-
rate these factors are approximately 1.0 and can vary above and below this
as quantum mechanics becomes important. Elsewhere in plasma and atomic
physics other correction (fudge!) factors used to modify results, such as col-
lision rates, are also called gaunt factors (but usually with a small g). These
gaunt factors are generally used to encompass more difficult physics which
may be difficult or impossible to compute exactly and allow that to be at
least allowed for without unduly complicating matters.

Finally, Gaunt factors for given transitions can be integrated and averaged
in various ways for example the free–free Gaunt factor refers to state and
electron energies only. To get a Gaunt factor that can be used on a plasma
with a Thermal Maxwellian velocity distribution, the Gaunt factor can be
averaged over the energy distribution to get a thermal average gaunt factor.
This can in turn be integrated over all frequencies to get a gaunt factor useful
for correcting the classical expression for the total power emitted by a thermal
plasma in free–free emission for example.

Note: this section is pretty symbol heavy. To streamline it and reduce the
’where x is ...’ count, a glossary of symbols are collected at the end of the
chapter.

6.1.1 free–free Gaunt factors

An electron of initial energy Ei = h̄2k2
i /2me has a cross–section for absorp-

tion of a photon of energy hν to a final energy Ef = h̄2k2
f/2me which is

related to the equivalent cross–section for emission of a photon hν from a
electron of energy Ef . Hence,

σi,ν−f =
vf
c

ρf
ρi,ν

σf−i,ν , (6.3)

where vf is the electron velocity and ρi and ρf are the state or continuum
level densities:

ρf =
mekf

π2h̄2 , (6.4)

ρi =
4ν2

h̄c2
meki

π2h̄2 , (6.5)

with the free electron wave functions normalised to plane waves of unit density
at infinity. This means that emission and absorption are related processes
and that if we work out one process we can infer the other. We can begin
by looking at absorption and know that the result can be equally applied to
emission.

Using overlap integrals τl′,l between the two electron wavefunctions,
the differential cross–section of absorption according to wave mechanics is
(Karsas & Latter 1961):
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dσabi,ν−f = a2
0Z

2 64
3

(
e2

h̄c

)[(
Ry

hν

)3
d(hν)
Ry

] [
2π2h̄2

meki

]

×kikf
∞∑
l=0

[(l + 1)τ2
l+1,l + lτ

2
l−1,l], (6.6)

where τl′,l is the radial integral of the wave-functions Ψl′ and Ψl:

τl′,l =
∫ ∞

0

r2Ψl′(r, Ei)
1
r2
Ψl(r, Ef )dr, (6.7)

and Ψl ∼ sin(kr + δl)/kr asymptotically.
To compute the effective transition probabilities between all the contin-

uum of free states we can again use hypergeometric functions as in Chapter
2 §?? to perform the overlap integrals. Now, because the wave–functions are
unbound sinusoidal waves, the hypergeometric functions here (Il, Gl and 2F1)
have complex arguments rather than the real arguments used in Chapter 2
when computing single transition probabilities in bound–bound transitions
of hydrogen. The sums here are also more complicated because we are sum-
ming over infinite waves rather than finite bound ones. The infinite sum Σ
in equation (6.6) may be expressed in terms of variables ηi = Z/(a0ki) and
ηf = Z/(a0kf ) and hypergeometric functions,

Σ =
I0
kikf

[(k2
i + k2

f + 2k2
fη

2
f )

I0
kikf

− 2kikf (1 + η2
i )

1/2(1 + η2
f )

1/2 I1
kikf

], (6.8)

with

Il =
1
4

[
4kikf

(ki − kf )2
]l+1

exp
[π
2
|ηi − ηf |

] |Γ (l + 1 + iηi)Γ (l + 1 + iηf )|
Γ (2l + 1)

Gl,

(6.9)
and

Gl =
∣∣∣∣kf − kikf + ki

∣∣∣∣
iηi+iηf

2F1

[
l + 1 − iηf , l + 1 − iηi, 2l + 2;− 4kikf

(ki − kf )2
]
,

(6.10)
with a complex exponent in the first term and complex values for the first
two arguments of 2F1.

Finally, after the cross–section is converted to the right units to compare
with the classical result we get:

dσe,i,ν−f = a2
0Z

2 64
3

(
e2

h̄c

)[(
Ry

hν

)3
d(hν)
Ry

]

× I0
ηiηf

[(η2
i + η2

f + 2η2
i η

2
f )I0

−2ηiηf (1 + η2
i )

1/2(1 + η2
f )

1/2I1]. (6.11)
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The ratio of this to equation (??) is the correction factor, or Gaunt factor
(Gaunt 1930) for free–free transitions. In uniform η variables, it is:

gff (ηi, ηf ) =
2
√

3
πηiηf

I0[(η2
i + η2

f + 2η2
i η

2
f )I0 − 2ηiηf (1 + η2

i )
1/2(1 + η2

f )
1/2I1],

(6.12)
where the ηs are also related to the electron energies by η2

i = Z2Ry/Ei,
η2
f = Z2Ry/Ef .

Normalising units, working in scaled electron energy, εi = Ei/Z
2Ry, and

scaled photon energy, w = hν/Z2Ry, with ηi = 1/ε1/2i and ηf = 1/(εi+w)1/2,
equation [6.12] was then evaluated, giving gff (εi, w) over the ranges 10−8 <
ε < 109 and 10−8 < w < 109 in figures ?? & ?? and in abbreviated form in
Table ??.

Temperature Averaged Gaunt Factors. Assuming a Maxwell–Boltzmann
electron distribution, it is a straightforward calculation to integrate gff (εi, w)
over the electron distribution, for a range of photon energies.

Changing variables and integrating we get the temperature averaged free–
free gaunt factor

< gff (γ2, u) >=
∫ ∞

0

e−xgff

(
εi =

√
x

γ
,w =

u

γ2

)
dx, (6.13)

where γ2 = Z2Ry/kT and u = hν/kT .
This factor is plotted in figures ?? to ??.

Free–Free Emissivity. By summing over all ions present in a plasma, the
total free–free emission from the plasma can be evaluated at a given frequency
and temperature using

Pff (ν, T ) = nenHfk
exp(−u)√

T

∑
el,Z

Aelχel,ZZ
2 < gff (γ2, u) > erg cm−3 s−1,

(6.14)
where fk is the collection of constants:

fk =
16

3
√

3

(
π

2km3
e

)1/2(e2

c

)3

, (6.15)

and has a numerical value of 5.44436 × 10−39 using modern constants in
c.g.s. units. The variables ne and nH are the number densities of electron
and hydrogen atoms respectively, and Ael is the abundance of the element
el relative to hydrogen by number, and χel,Z is the ionisation fraction of the
ions of element el in stage Z.

Total Free–Free Emission Gaunt Factors. Integration of the tempera-
ture averaged Gaunt factor over the photon spectrum, in u yields the total
energy emission Gaunt factor,
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Place Holder
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Fig. 6.2. log− log plot of the integrated free–free Gaunt factor < gff(γ2) > as a
function of γ2 = Z2Ry/kT .

< gff (γ2) >=
∫ ∞

0

exp(−u) < gff (γ2, u) > du. (6.16)

The total free–free emission due to electrons at a given temperature, from
a plasma of many ions is,

Λff = nenHFk
√
T
∑
el,Z

Aelχel,ZZ
2 < gff (γ2

eff ) > ergs cm−3 s−1 (6.17)

where γ2
eff = Iel,Z/kT is the scaled ionisation potential of element el in

ionisation stage Z for each ion (serving the same function as Z2Ry), and the
collection of constants,

Fk =
16

3
√

3

(
2πk
h̄2m3

e

)1/2(e2

c

)3

, (6.18)

has the numerical value of 1.42554 × 10−27 in c.g.s units.

6.2 The Free–Bound Continuum

Free–bound transitions is just another way of describing the recombination
process. Since the free electron can have a range of energy, usually in a thermal
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Fig. 6.3. Computed free–free emission efficiencies χff = Λff/Λtot., for power–law
photoionised plasmas. The solid curve represents a series of solar metallicity models
and the dashed curve is for a primordial H and He composition. Free–free emission
can account for as much as 10-20% of the total emission in extreme solar metallicity
models, and more in metal poor models.

Table 6.1. < gff (γ2, u) >

log(u = hν/kT )

log(γ2) -4.0 -2.0 0.0 2.0 4.0
-4.0 5.5243(0) 5.4983(0) 5.0090(0) 3.8317(0) 2.7008(0)
-3.0 4.2581(0) 4.2403(0) 3.7816(0) 2.7008(0) 1.8041(0)
-2.0 3.0048(0) 3.0152(0) 2.6560(0) 1.8071(0) 1.2771(0)
-1.0 1.8153(0) 1.8880(0) 1.7825(0) 1.2886(0) 1.0747(0)
0.0 8.5314(-1) 9.6975(-1) 1.2939(0) 1.1033(0) 1.0237(0)
1.0 3.1012(-1) 3.9000(-1) 9.7254(-1) 1.0825(0) 1.0202(0)
2.0 1.0069(-1) 1.3352(-1) 5.1714(-1) 1.1065(0) 1.0355(0)
3.0 3.1977(-2) 4.3211(-2) 1.9971(-1) 9.5479(-1) 1.0680(0)
4.0 1.0121(-2) 1.3760(-2) 6.7498(-2) 5.1462(-1) 1.1040(0)
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Table 6.2. < gff (γ2) >

log(γ2) < gff (γ2) > log(γ2) < gff (γ2) >
-4.0 1.11388 0.0 1.43220
-3.8 1.11698 0.2 1.41391
-3.6 1.12089 0.4 1.38830
-3.4 1.12581 0.6 1.35832
-3.2 1.13200 0.8 1.32658
-3.0 1.13975 1.0 1.29496
-2.8 1.14945 1.2 1.26462
-2.6 1.16149 1.4 1.23618
-2.4 1.17635 1.6 1.20993
-2.2 1.19447 1.8 1.18594
-2.0 1.21622 2.0 1.16421
-1.8 1.24182 2.2 1.14464
-1.6 1.27104 2.4 1.12711
-1.4 1.30328 2.6 1.11147
-1.2 1.33711 2.8 1.09757
-1.0 1.37040 3.0 1.08526
-0.8 1.40029 3.2 1.07438
-0.6 1.42365 3.4 1.06481
-0.4 1.43768 3.6 1.05640
-0.2 1.44060 3.8 1.04904
0.0 1.43220 4.0 1.04264

distribution, the possible transition energies range from the energy difference
between the level energy and the ionisation potential of the ion, where the
contunuum begins, up to the highest energy available in the free electrons. In
a spectrum this appears as an ‘edge’ followed by a continuum of emission to
higer and higher energies. The shape, or energy dependence, of the continuum
is a function of the distribution of electron energies in the continuum and the
cross–section for capture as a function of the electron energy. At sufficently
high energies both the decreasing availabilty of electrons and the low overlap
integral between the free electron wave function and the bound level wave
function both serve to cut off the high energy continuum from a given edge.

In a manner analagous to computing the free–free transition gaunt fac-
tors, a free–bound gaunt factor can be worked out. In this case the free
wavefunction is an imaginary oscillating wave and the bound function is a
real function. This is also then similar to the bound–bound transition prob-
ability calcualtions of chapter 2. As might be expected the transition gaunt
factors can be evalutated using hypergeometric functions when the bound
level is a hydrogen like state.

[eqn b-f gaunt factor]
In nebula calculations the continuum is often evaluted at a given frequency

(energy) in terms of both the sum of the free–free gaunt factors for each
species (each Z) present and the and the sum of all bound–free gaunt factors
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Fig. 6.4. free-bound energy diagram

(one for each edge below the energy in question, for each species present)
all of which are added and the net continuum emission for both processes is
calculated by:

[eqn free–free + free–bound continuum ]
Free–bound gaunt factors for hydrogenic species have been computed ac-

curately (Karsas & Latter 1961; Ferland 1980) and species more complex
than hydrogen are sometimes evalutated numerically, using hydrogenic ap-
proximations or using experimental data.

6.3 The Two–Photon Process

In the recombination of hydrogen, an appreciable fraction of captured elec-
trons will end up in the 2s level. In addition, the absorption of Lyα photons
in an ionised nebula will overpopulate the 2s level, encouraging the collisional
transition to the 2p state, rather than the return to the 1s state with the re–
emission of another Lyα photon. (See Figure ??) The transition 2p → 1s is
forbidden for dipole radiation according to the selection rules, and although
a magnetic dipole transition to the ground state is possible, it turns out that
the so–called two–photon process is more probable. The theory of this pro-
cess was worked out by Breit and Teller (1940) and first applied to ionised
nebulae by Spitzer & Greenstein (1951).
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The two–photon process can be thought of as a spontaneous dipole tran-
sition into a virtual p level between the excited 2s state and the ground level,
accompanied by a simultaneous transition from this excited state back down
to the ground level. Two photons are therefore emitted, each carrying away
one quantum unit of angular momentum. The conservation of angular mo-
mentum demands that the emission probability is proportional to the square
of the cosine of the angle between the polarization vectors.

Consider an intermediate p state lying ∆E = hν1 below the 2s level.
In this case two photons will be emitted such that v1 + ν2 = να, where
να = 3cRH/4h is the frequency of the Lyα transition and RH is the Rydberg
constant for hydrogen. From equations (??) and (??) it is evident that the
joint transition probability is:

A = AaAb ∝
(

64π4e2

3hc3

)2

ν3
1ν

3
2 |F (r)|2 (6.19)

where F (r) is a function of the quantum mechanical radial integrals. Note
that the probability of emission of a photon of frequency ν will be symmetric
about να/2. However, the emissivity is weighted by the energy of the photon,
with the result that the emissivity peaks at higher frequency than this, at a
wavelength of about 1550Å rather than at 2403Å.

The terms with frequency dependence can be collected into a function
ψ(ν/να) giving the probability of emission of a photon of frequency ν and a
second of frequency (1 − ν/να) να:

dA2s1s (v) =
3
4

(
πe2

hc

)6

ψ(ν/να)dν = 1.7696 × 10−15ψ(ν/να)dν (6.20)

The total two–photon transition probability is half of the integral of this
function over all frequencies, since there are two photons for each transition to
the ground state. The function ψ(ν/να) is tabulated by Spitzer & Greenstein
(1951), who also evaluate the integral

να∫
0

ψ(ν/να)d(ν/να) = 3.770, (6.21)

giving the total two–photon transition probability A2s1s = 8.227 s−1.
Two–photon continuum emission will arise wherever there is a metastable

excited s – state. For example in helium, the transition 1s2s 2S0 → 2s2 1S
is forbidden for dipole or multipole transitions, be they electric or magnetic.
Nonetheless, these are connected by the two–photon emission with a proba-
bility similar to that of hydrogen.

Under certain circumstances the strength of the two–photon continuum
can be enhanced relative to the recombination line or continuum emission.
As was shown in the previous chapter, the optical depth in the Lyα line may
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become very high. Although the transition probability back to the ground
state is very high; A2p1s = 4.68× 108 s−1, there is a finite probability (1.76×
10−8) that in very optically–thick plasmas, the excited electron will make a
collisional 2p→ 2s transition followed by a two photon transition back to the
ground state. If the optical depth in the Lyα can exceed a few 107, then this
route may lead to the loss of an appreciable fraction of Lyα photons into the
two–photon continuum. Such conditions are rare, but may occur for example,
in supernova fireballs or in the broad–line regions of active galactic nuclei.

A more common reason for the enhancement of the two–photon contin-
uum is population of the 2s state by direct collisions from the ground state,
followed by radiative decay through the two–photon continuum. This will
occur when the plasma has been shock–excited to a high (but not too high)
temperature so that a number of collisional excitations can occur to the 2s
and 2s levels before the hydrogen atom becomes ionised. These conditions are
satisfied for, and the effect is very prominent in the low–excitation Herbig–
Haro objects – as was shown by Dopita, Binette & Schwartz (1982).

[Table Two Photon Probabilty function]

6.4 Recombination Line Emission

6.4.1 Recombination Line Spectra

The permitted hydrogen and helium lines observed at UV, optical and IR
wavelengths in ionised nebulae arise as a result of radiative recombination;
see Section (5.2). As we will see in later sections, the recombination line
spectrum is fundamental to an understanding of the physics of H ii regions.
In particular, the ratio of intensities of the forbidden lines of heavier elements
to the recombination lines of hydrogen provides us with the principal means
of determining chemical abundances in ionised plasmas. Furthermore, since
the ratio of recombination line intensities are well–determined from theory,
we can use the observed ratios to determine the reddening ; the degree to
which dust has absorbed the light of the nebula in its wavelength–dependent
fashion.

Consider a transition from an excited state of hydrogen or helium with
principal quantum number m to a lower one with principal quantum number
n. In the limit that collisional excitations are unimportant in populating any
of the levels, then the population of level n must be entirely due to the sum
of direct recombinations from the continuum, and from recombinations into
higher levels, followed by radiative cascade leading to the n-th level. The line
emissivity per unit volume in the m→ n transition is therefore:

Fmn = hνmn


αm +

∞∑
j>m

αjCjm


Pmnnine = hνmnα

eff
mnnIne (6.22)
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where ni is the number density of the ion which is recombining ( H+, He+

or He++), ne is the electron density, αj is the direct recombination rate to
excited state, and Cjm is the probability that a recombination to level j
is followed by a radiative cascade from the j-th to the m-th state over all
possible paths. The term in parentheses is therefore the total recombination
coefficient into the exited level. Pmn is the branching probability ; that is, the
probability that downward transitions from the n-th level proceed through
the m − n transition. As equation (6.22) also shows, we can combine all of
the physics of the recombination – cascade into a single number αeffmn for each
transition, which is the effective recombination rate for the production of a
photon in the m − n transition. The trick is to calculate these numbers for
any particular temperature, density, and optical depth in the line.

Although, for H+ and He++, the recombination rates and all the relevant
transition probabilities can be calculated exactly from quantum mechanics,
there are a number of complicating factors which make the solution of (6.22)
non–trivial. First amongst these is the fact that the ionised (H ii) region will
frequently be optically thick in the Lyman line series.

A more complex problem arises from the fact that the different l –terms
of the level with the same principal quantum number n are not populated
amongst themselves according to their LTE ratios. We already explained
how this comes about in Section (5.2). Cascades from high l states tend to
proceed one step at a time through n, l → (n− 1) , (l − 1) transitions, since
these are the only ones permitted by the selection rules. On the other hand,
the nP–levels (or the nS–levels with n > 2, which have no place other than
the nP–levels in which to cascade) are rather efficiently drained towards the
ground state, since transitions such as n, 1 → 1, 0 or n, 1 → 2, 0 are not only
permitted but have very large transition probabilities.

The full n, l recombination – cascade problem must therefore be solved
(i.e. Brocklehurst, 1971; Brocklehurst & Seaton, 1972). The branching prob-
ability for the n1, l1 → n, l transition is then given by:

Pn1,l1:n,l = An1,l1:n,l/

(
n1−1∑
n2=n0

∑
l2=l1±1

An1,l1:n2,l2

)
(6.23)

where n0 = 1 in Case A and n0 = 2 in Case B, and the total recombination
coefficient into the excited n1, l1 state is:

αtotn1,l1 = αn1,l1 +
∞∑

n3>n1

∑
l3=l1±1

Pn3,l3:n1,l1α
tot
n3,l3 (6.24)

With these equations, the full recombination line spectrum can be solved by
proceeding from higher to lower levels, provided the sum over the n states
is pursued to high enough n. In practice, the bn.l occupation factors of the
highest n states tend towards unity, as the transition probabilities are small
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enough to allow collisions to redistribute electrons between the different l and
n states.

Extensive tables of effective recombination coefficients and of relative line
intensities helium– and hydrogen– line series are given as a function of tem-
perature and density in Brocklehurst (1971), Seaton (1978) and in the various
references given in the notes, and will not be repeated here. Also Hummer
1987, 1996)

[ Appendix ]

6.4.2 The Radio Recombination Lines

Advanced Section
In section (5.2), we gave a qualitative discussion of the level occupation

factors bn,l, applying to recombining atoms. The occupation factor is defined
as the ratio of the actual level population to that which would be expected
if LTE conditions apply. As a result of radiative captures to excited states,
and the radiative cascade down to the ground state, in hydrogen this may
produce bn,l factors which differ very much from unity, especially for the
states of lower principal quantum number n where even the occupation factors
between different l sub–levels may differ strongly both from unity and from
each other.

However, a small fraction of recombinations, of order one in a million
will occur to states with n > 50, and these will produce recombination lines
at radio frequencies less than about 50GHz. For these recombinations the
radiative transition probabilities are very much lower, and because of the
very large electronic orbitals, the collisional rate is very much higher. These
are the conditions needed to restore LTE conditions, and states with large
enough n, the bn,l factors will tend to return to unity. However, deviations
from strict LTE in the excited states which produce radio recombination
lines are still sufficient to produce interesting physical effects, which were
first described properly by Goldberg (1966).

The mean orbital radius for an atom in an n > 50 state is very large, and
the central charge will appear point–like. For such a configuration, the energy
levels are hydrogenic. In this case, the frequency of a transition between
an upper state with principal quantum number m and a lower state with
principal quantum number n is:

ν

ν0
=
(

1
m2

− 1
n2

)
∼ 2(m− n)

n3
(6.25)

where ν0 is the ionisation potential of the ion of interest expressed as a
frequency (for hydrogen, this is the frequency of the Lyman limit). Usually,
only the recombination lines of hydrogen and helium are strong enough to
be observable at radio frequencies. We generally refer to the states having
m − n = 1 as α transitions, those with m − n = 2 as β transitions by
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analogy with the corresponding nomenclature for low-n transitions such as
Lyα, Lyβ or Paα, Paβ etc. Likewise, since these UV, optical or IR series are
united by a common lower state ( n = 1 for the Lyman series; n = 3 for the
Paschen series) we identify the particular transition by the atom and the m
quantum number. For example H40α refers to the m = 41; n = 40 transition
in hydrogen, and He50γ refers to the m = 53; n = 50 transition in helium.

The transition probability is given by equation (2.5). When n � 1 and
m− n� n, the oscillator strength can be approximated by (Brown, 1987):

fmn = f(m−n)

(
1 +

3 (m− n)
2n

)
(6.26)

with f(m−n) = 0.19077, 0.026332, 0.0081056 and 0.0034917 for the α, β, γ and
δ transitions, respectively. From this equation and (2.5), the Hnαtransition
probability is therefore:

Anα ∼ 1.167 × 109/n6 (6.27)

and the radiative decay timescale, τrad = (Anα +Anβ + ..)−1. Since the
orbiting electron is at large distance from the nucleus; r = a0n

2, where
a0 = 0.529 × 10−8 cm is the radius of the first Bohr orbit, we can take
the electron to be localised in its orbital, and therefore we can assume that
collisional redistribution of energy will take place on the free electron inter-
action timescale appropriate to a plasma with a temperature of order 104 K.
This gives τeq. ∼ 1.95 × 104/ne s. Collisions with free electrons will produce
LTE level populations in the excited bound states when τeeq � τrad. For
hydrogen this condition yields:

n > 168n−1/6
e (6.28)

as the principal quantum number above which which the transition to full
LTE conditions begins. The transition will first occur amongst the different
l− levels, which have no energy barrier associated with them, but for colli-
sional ionisations the energy barrier in effect means that the effective logΛ is
smaller, the effective collisional timescale longer, and the transition to LTE
will occur at higher n. Since the bnl factors of the lower states are less than
unity, dbn/dn is positive. These results are in fair agreement with detailed cal-
culations (Seaton, 1964; Brocklehurst & Seaton 1972), and serve to illustrate
the basic physics.

The line emission coefficient and absorption coefficient can be written in
terms of the transition probabilities, and the Einstein coefficients (c.f. Section
(4.1.3). The emission coefficient is:

jLv = AmnNmhνΦ(ν), (6.29)

where Nm is the population in the upper level, Φ(ν) is a normalised line
profile function such that

∫
Φ(ν)dν =1. The absorption coefficient is:
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κLν = (NnBnm −NmBmn)hνΦ(ν), (6.30)

or, in terms of the bn factors from their definition in Section (5.4):

κLν = NnBnmhνΦ(ν)
(

1 − bm
bn

exp [−hν/kTe]
)
. (6.31)

Since bm > bn, and hν/kTe � 1, then there is a stimulated emission effect
to be taken into account in the line transfer and analysis of the radio recom-
bination lines. The coupling of optical depth, and stimulated emission and
line–continuum effects make the problem of the analysis of the recombina-
tion line observations a difficult and complex problem even for quite simple
nebular geometries. Despite these problems, radio recombination lines can be
used, and have been used to map the electron temperature distribution and
to determine the ratio of ionised helium to ionised hydrogen in photoionised
regions throughout the galaxy, with the result that N(H)/N(He)=0.09, with
little evidence of variation according to the radial location in the galaxy.

Notes on Chapter 6

• The radio spectrum of ionised regions is fully discussed by Brown, R.L.
1987, in Spectroscopy of Astrophysical Plasmas, eds. A. Dargarno & D.
Layzer, CUP:Cambridge, p. 35-58. (ISBN 0 512 23615 8).
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Symbol Definition
2F1 : Standard hypergeometric function
α : Radiation power–law index in frequency units
a0 : The Bohr radius h̄2/(mee

2), cm
Ael : The abundance of the element el by number relative to H
c : The speed of light, cm/s

χel,Z : Ionisation fraction of element el in stage Z
χff : Free–free emission as a fraction of the total emission Λff
ηi, ηf : The scaled inverse initial and final electron energy,

√
Z2Ry/E

εi : The scaled initial electron energy, Ei/Z2Ry
e : The electron charge in electrostatic units

Ei, Ef : The Initial and final electron energies, ergs
fk : Free–free continuum constant for emission as a function of frequency
Fk : Free–free continuum constant for total emission
Fν : Radiation flux in frequency units, ergs cm−2 s−1 Hz−1 sr−1

Γ : The standard complex Γ function
γ2 : The scaled inverse temperature experienced by an ion, Z2Ry/kT
Gl : A matrix element, defined in terms of l, ηi, ηf and 2F1

h, h̄ : Planck’s constant and h/2π respectively
Il : An integral, defined in terms of l, ηi, ηf , Γ and Gl

Iel,Z : Ionisation potential of element el in ion stage Z
k : Boltzmann constant, ergs K−1

ki, kf : Wavenumbers of electrons in initial and final states
Λff : Total free–free emission, ergs cm−1 s−1

l : Angular momentum quantum number of electron state, 0, 1, 2 . . .∞
me : The electron mass, g
ν : Frequency of a photon, Hz

ne, nH : The number densities of electron and hydrogen atoms, respectively
Ψl : Electron wavefunction for state l
Pff : Free–free emissivity as a function of ν and T
Qε : Ionisation parameter above energy ε, cm s−1

QH : Ionisation parameter above 13.59844eV, cm s−1

r : Radial coordinate
ρf , ρi : Quantum state densities
Ry : Rydberg energy, ergs , 2π2e4me/h

2

σi,ν−f : Cross–section for free–free absorption of a photon ν by state i
σf−i,ν : Cross–section for free–free photon emission of a photon ν by state f

s1, s2, s3 : Spline coefficients
T, Te : Electron temperature, K

u : Thermal scaled photon energy, hν/kT
U : Dimensionless ionisation parameter, Qε/c
vf : Velocity of electron in final state f
w : Scaled photon energy, hν/Z2Ry
x : Dummy variable
Y : Mass fraction of helium
z : A complex number
Z : Ion charge



    

7. Cooling Plasmas

“What after all is a halo? Its only one more thing to keep clean”
— Cristopher Fry (The Lady’s not for burning, 1949)

7.1 The Cooling Function

The total energy radiated by a plasma per unit volume and per unit time
is the sum of the various contributions to the local cooling (or heating). In
general, it is a function of temperature, density, and chemical abundances of
the elements:

.

Q (ne, Te, ZA) =
.

Qline +
.

Qcoll −
.

Qrec +
.

Qcont −
.

Qphot ±
.

QCompt. (7.1)

where the various heating or cooling terms represent collisional excitation
cooling through emission lines (

.

Qline), collisional ionisation losses (
.

Qline),
heating through recombinations (

.

Qrec), emission through continuum process
(
.

Qcont), heating by photoionisation (
.

Qphot), and Compton heating or cooling

(
.

QCompt.). Two points should be noted here:
First, the recombination term is a heating effect locally, since recombina-

tions preferentially remove the lower energy electrons from the electron gas,
because it is for these electrons that the density of virtual states in the con-
tinuum is greatest. Often in the past, recombinations have been regarded as
a loss process, in view of the recombination line emission that they produce.
However, if we think about this for a moment, we will realise that the energy
which these lines represent was removed earlier, at the time of the collisional
ionisation of the species, since this is the moment when an energy equal to
the ionisation potential of the ion was extracted from the electron gas. The
fact that this energy is emitted later, after recombination, is in some sense
immaterial, since the recombination line emission does not affect the local
thermal balance of the plasma. This delicate distinction does not much mat-
ter for a plasma in photoionision equilibrium, since the rate of ionisations
and the recombinations are in temporal balance in a given spatial region.
However, it becomes very important in cooling plasmas where the regions of
ionisation and of recombination may be quite separated in space and / or
time.
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Second, the Compton heating term accounts for the heating (or cooling)
effect of inelastic or superelastic scattering of photons by the electron gas.
This term may occur with either sign, depending on the ratio of the thermal
energy of the electrons and the mean energy of the photons that are being
scattered. From Krolik et al. (1981), the Compton term is given by:

.

QCompt.=
∫
ν

Fνσv,γ
ne
mec2

(4kTe − hν) dν (7.2)

where Fν is the flux of radiation at frequency ν, and σv,γ is the scattering
cross - section which is dependent on the ratio of the energy of the photon, hν,
and the energy of the electron. Expressing the electron energy as E = γmec

2,
the scattering cross - section is given by the (fully relativistic) Klein-Nishina
formula:

σv,γ =
3σT
4

{
(1 + q)
q3

(
2q (1 + q)
(1 + 2q)

− ln [1 + 2q]
)

+
1
2q

ln [1 + 2q] − (1 + 3q)
(1 + 2q)2

}

with q =
γhν

mec2
and σT = (8π/3)

(
e2/mec

2
)2

= 6.65 × 10−25cm2 (7.3)

Here, σT is simply the Thompson electron scattering cross - section. In the
non-relativistic thermal plasmas that we are dealing with here 〈γ〉 = 3kTe

2mec2
.

This scattering cross - section takes the following asymptotic forms:

σv,γ = σT : q � 1

σv,γ =
3σT
8q

{
1
2

+ ln [2q]
}

: q � 1 (7.4)

Because the difference of the thermal and the photon energy appears in equa-
tion (7.2), the Compton term changes sign when q = 8γ2/3.

In computations of optically thin, low density cooling plasmas, the photon
density is usually assumed to be so low (and/or the plasma so highly ionised)
that both the photoionisation and the Compton terms can be neglected. In
addition, in the coronal approximation, only the ground state of any partic-
ular ion is populated to any appreciable extent. In this limit, all rates of the
remaining processes depend on two-body interactions, and any term in the
heat loss equation can be written as:

.

Q (ne, Te, ZA) = nenAR
A(Te) = nenΛ(Te, ZA) (7.5)

where n is the total density of atoms and ions per unit volume. Writing the
heat loss in this form allows the density dependence to be separated from the
temperature dependence. The cooling function of the plasma (in units of erg
cm3s−1) is therefore:

Λ(Te, ZA) = Λline + Λcoll − Λrec + Λcont (7.6)
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Fig. 7.1. The collisional-ionisation cooling function as a function of metallicity.
At zero “metals” (elements heavier than helium) the peaks due to hydrogen and
helium are apparent, while those of carbon, oxygen, neon, silicon and iron become
apparent in the other curves. After Sutherland & Dopita (1993).

Figure (7.1) shows the cooling function derived for collisional ionisation
equilibrium conditions as a function of the heavy element abundance, from
Sutherland & Dopita (1993).

When only hydrogen and helium are present, the cooling function is dom-
inated by the collisional excitation of excited states in H0 and He0 for the
temperature range log[Te] <∼ 4.6. For higher temperatures, up to log[Te] ∼ 5.6,
collisional excitation of He+ dominates the cooling. At higher temperatures
still, the electron Bremsstrahlung (free-free) cooling is dominant. The X-ray
spectrum of such a Bremsstrahlung-dominated plasma is very simple, and is
given by the sum of the free-free emissivity of all the ions present:

εff (Te, ZA, ν) =
25πe6

3mec3

(
2π

3mek

)1/2

∑

A,i

gff (Te, i, ν)nA,ii2




x neT−1/2
e exp

[
− hν
kT

]
(7.7)

Thus νFν (which measures the spectral distribution in energy) increases lin-
early until hν ∼ kT , after which it cuts off exponentially. This is shown in
Figure (7.2). As the metal abundances approach solar, collisional excitation
of the heavy elements provides the dominant cooling term, and continue to do
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Fig. 7.2. The CIE X-ray spectra for different electron temperatures. The under-
lying shape of the electron Brehmsstrahlung spectrum becomes apparent at high
temperatures, while at lower temperatures this is drowned by the emission lines,
free-free and bound-free continuua of heavy elements. After Sutherland & Dopita,
(1993).

so with increasing temperature until the K-shell electrons are finally stripped
from Fe; above log[Te] ∼ 8.0. In the temperature regime log[Te] >∼ 7.3 the
Fe K line at 7 keV is the strongest in the spectrum, and provides a powerful
X-ray diagnostic tool for such hot plasmas. Up to about 105 K the princi-
pal emission lines are found in the optical/UV region of the spectrum, but
above this, they are located mainly in the EUV and X-ray regions of the
electromagnetic spectrum.

7.2 Conditions for Non-Equilibrium Cooling

The total heat content of the plasma (energy per unit volume), assumed
to be monoatomic and with an ion temperature Tion which is the same as
the electron temperature, is Q = 3/2(ne + n)kTe, where n is the total ion
density. The assumption that Tion = Te may break down in certain highly
non-equilibrium situations, as we will see later. Combining this heat content
with the heat loss equation (7.5) leads to the local cooling timescale:

τcool =
Q
.

Q
=

3(ne + n)kTe
2n2Λ(Te, ZA)

(7.8)
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Frequently, the cooling timescale is simplified as a simple function of tem-
perature and the inverse of the density, by fitting the Λ(Te, ZA) to a simple
power law of the temperature, determined by the slope of the local tangent
to the cooling function on a log : log scale; Λ(Te) = Λ0T

p
e . In this case, as-

suming that all the electrons are supplied by either hydrogen or helium and
that both are assumed to be fully ionised):

τcool ∼
3k [1 + 2.5Z(He)]
Λ0 [1 + Z(He)]

T 1−p
e n−1 (7.9)

where Z(He) = nHe/nH ∼ 0.1 in most diffuse astrophysical plasmas.
This approximation is exact at the high temperatures where the electron

bremsstrahlung is the dominant cooling term and the cooling function is then
Λ ∼ 3 × 10−27T

1/2
e . In this case τcool ∼ 5 × 107nT

1/2
8 years, where n is the

total atom density (cm−3) and T8 is the temperature in units of 108 K. In
the Universe, the longest time available is of order of the Hubble timescale,
τHubb ∼ 1.5×1010 years. This implies that plasmas with densities ≤ 3×10−3

cm−3 which have been heated to a temperature of 108 K or greater can never
cool again.

The idea that collisional ionisation equilibrium represents a realistic state
for the plasma is founded on two assumptions. The first is an implicit assump-
tion; the so-called coronal approximation discussed in section (5.5). This takes
the plasma to be optically thin to the escape of all radiation produced within
its volume, ignores photoionisation, and assumes that only the population
in the ground term of each ionic species is populated to any appreciable de-
gree. The second requires that equilibrium between the various collisional
processes has been achieved. This may not necessarily be the case, even if
the conditions of the coronal approximation are valid. Assume the plasma is
at a sufficiently high temperature that the charge-exchange reactions can be
neglected, and consider the time-dependent ionisation balance equation for
any ion of any atom; Ai+:

dnA,i
dt

= nenA,i+1α
A,i+1
rec −nenA,iαA,irec−nenA,iRA,icoll+nenA,i−1R

A,i−1
coll (7.10)

or, introducing the fractional ionisation xA,i = nA,i/nA this is written:

1
xA,i

dxA,i
dt

= ne

(
xA,i+1

xA,i
αA,i+1
rec − αA,irec −RA,icoll +

xA,i−1

xA,i
RA,i−1
coll

)
(7.11)

When the plasma is under-ionised as compared with its equilibrium value,
then it is driven towards the equilibrium value by collisional ionisations from
lower ionisation states, so that the second and third terms in this equation
dominate over the first. When the gas is over-ionised for its temperature,
then the recombination term from the more highly ionised states is the key
factor in determinining the approach to equilibrium. Thus, we can define the
collisional equilibration timescale, τCIE , as:
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Fig. 7.3. The temperature dependence of the collisional ionisation equilibration
timescale for the various ions of carbon (left) and of iron (right) are shown here
compared with the cooling timescale for a plasma of solar composition. The as-
sumption of CIE clearly breaks down at low temperatures, low ionisation state and
for the lighter elements.

τCIE =
(
xA,i+1

xA,i
αA,i+1
rec − αA,irec −RA,icoll +

xA,i−1

xA,i
RA,i−1
coll

)−1

n−1
e (7.12)

For most purposes, the approximation:

τCIE =
1(

αA,irec +RA,icoll

)
ne

(7.13)

provides an adequate means of estimating the equilibration timescale.
Because of this finite collisional equilibration timescale, a plasma which

cools too quickly will never be able to come into equilibrium at its instan-
taneous temperature. Such rapid cooling is clearly favoured when the abun-
dances of the heavy elements in the plasma are high, since it is these elements
which provide most of the cooling. The condition that collisional ionisation
equilibrium is valid in a coronal plasma is simply:

τcool � τCIE (7.14)

for all the ionic species present.
Does this condition apply in the case of a plasma with solar abundances?

In Figure (7.3) we show the cooling timescale for the plasma as a whole, and
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the CIE timescales for the various ions of C and of Fe. For Fe, CIE is an
excellent approximation for log Te >∼ 5.5, but it fails at lower temperatures
than this thanks to the decrease in the cooling timescale, and the increasing
recombination timescale for species of low ionic charge. For C, CIE is a fair
approximation only for log Te >∼ 6, and clearly fails for the hydrogen-like and
helium-like species which have particularly long recombination timescales. In
general, this is true for all the lighter atomic species.

The departures from CIE become even more apparent for a plasma that
has been heated suddenly from a much lower temperature. Since, initially,
the plasma is very much under-ionised compared with its equilibrium value,
both Λline and Λcoll are strongly enhanced over their equilibrium values.
This has the consequence that τcool is much smaller than in the equilibrium
plasma of the same temperature. Line cooling from collisional excitation of
helium- and hydrogen- like Lyman lines is particularly important, since the
ionisation timescale of such ions is long, and many collisional excitations
occur for each ionisation. In such plasmas, the initial temperature must be
such that log Te >∼ 7.5 for the plasma to “forget” its initial ionisation state,
and settle down into CIE during the subsequent cooling.

In a plasma which is undergoing non-CIE cooling, the plasma eventually
reaches a state in which the recombination timescales become long compared
with the cooling timescales and the plasma ionisation lags the equilibrium
at that temperature. As a result, it is over-ionised. In this state Λline is
surpressed compared with its equilibrium value, because the temperature is
too low for the electrons to overcome the larger energy barriers for collisional
excitation of the more highly ionised ions which are present. As a consequence
the whole shape of the cooling function is altered, as shown in Figure (7.4).

In summary, collisional ionisation equilibrium is an approximation which
is fully valid only in very hot plasmas. At low temperatures, all cooling plas-
mas are strongly out of CIE. The temperature at which the CIE approxi-
mation fails depends strongly on the relative importance of the line cooling,
which is a strong function of both the abundance of the heavier atoms and of
the thermal history of the plasma, and which dominates the cooling function
below log Te >∼ 7.0.

7.3 Heat Transport

Advanced Topic
The non-CIE effects in a cooling plasma which were described in the

previous section may to some extent be vitiated if the plasma is able to
redistribute the thermal energy content from the hotter to the cooler regions.
This can occur as a result of heat conduction or through wave or turbulent
transport. We will consider here the extent to which these may be important.
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Fig. 7.4. The cooling function under conditions of non-equilibrium cooling as a
function of metallicity. Note how the peaks of Figure (7.1) are smeared out. After
Sutherland & Dopita, 1993

7.3.1 Electron Conduction

In a thermally conductive medium, the heat flux carried by electron conduc-
tion per unit area follows from the definition of the thermal conductivity, κ,
by

.
q= −κ∇T. In a plasma with a shallow temperature gradient, each elec-

tron suffers many collisions over the scale length of the temperature gradient.
In this case the conductivity is directly proportional to the mean path for
electron energy exchange, λ, which from Cowie & McKee (1977) is given by:

κ = 1.31nekλ
(
kTe
me

)1/2

(7.15)

Here, the numerical factor takes into account the fact that thermal transport
by electrons cannot cause an electric field to be set up. This reduces the
conductivity by a factor of 2.5 (under most conditions) from the factor that
kinetic theory might otherwise have suggested (Spitzer, 1956). The mean
free path of the electrons is expressed in terms of the electron equipartition
timescale, τeeq and the mean electron thermal velocity, ve = (3kTe/me)1/2:

λ = τeeq

(
3kTe
me

)1/2

(7.16)
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so that to compute the electron conductivity, it remains to estimate τeeq. This
timescale is determined by the timescale over which each electron loses all in-
formation about its initial drift velocity relative to the bulk of the electron gas
as a result of collisions with other electrons. In a collision between two elec-
trons, each is scattered through an angle (π − 2ψ) where tanψ = bmev

2
e/2e

2

where b is the impact parameter, the distance between the centres of the two
approaching particles measured along the trajectories at infinity. A collision
which is effective in redistributing the momentum of the colliding particles is
one in which the electron paths are deflected by 90o, i.e. tanψ =1, in which
case b = b0. We can therefore write the electron-electron collision timescale
τecoll as:

τecoll =
(
πb20ne2ve

)−1
=

33/2m
1/2
e

2πnee4
(kTe)

3/2 (7.17)

τeeq is shorter than this τecoll because of the combined effects of many
distant collisions, which alter the momentum vector of the colliding electrons
only a little. The fractional change in momentum when ψ is in the small angle
limit is given by dp/p = 2bmev

2
e/e

2 and the number of collisions increases
as πb2. As a result, the equipartition timescale is shorter than the collision
timescale defined above by a (Coulomb integral) factor of approximately

τecoll
τeeq

= 2

bmax∫
bmin

b−1db = 2 ln
(
bmax

bmin

)
= 2 lnΛcoul (7.18)

where the upper limit to the integral is determined by Coulomb shielding
effects of the other charged particles present. An exact calculation (Spitzer,
1956) gives:

τeeq =
3m1/2

e (kTe)
3/2

4π1/2nee4 lnΛcoul
(7.19)

with

Λcoul =
3 (kTe)

3/2

2π1/2n
1/2
e e3

[
1 +

ve
2αc

]−1

(7.20)

Here the second term in the square brackets allows for the effect of electron
diffraction which modifies the classical result when the thermal velocity of
the electrons divided by the speed of light becomes comparable with the fine
structure constant α = e2/hc =1/137.1.. . Putting all these results together,
we obtain the Classical formula given by Spitzer (1962) for the thermal con-
ductivity of a fully ionised plasma:

κ = 1.84 × 10−5T 5/2
e / lnΛcoul ergs-1cm-1K-1 (7.21)

where for Te > 4 × 105 K;

lnΛcoul = 32 + ln
[
n−1/2
e

(
Te/107K

)]
(7.22)
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When a cool cloud is in contact with a coronal medium, there will be a very
steep temperature gradient at the boundary. In this circumstance equation
(7.21) may break down, since the basic assumption involved in its deriva-
tion, that many collisions take place over the scale length of the temperature
variation, is invalid. As a result, equation (7.21) grossly overestimates the
importance of electron conduction. Cowie and McKee (1977) suggested that
in the limit of steep temperature gradients, the heat flux is limited simply
by the ability of the electrons to diffuse across the boundary between the
hot and the cold medium. The limiting heat flux through the boundary is
therefore:

.
q =

π/2∫
0

menev
3
e

2
cos θdθ =

3
2

(
8
9π

)1/2(
kTe
me

)1/2

nekTe

=
(

2
π

)1/2(
kTe
me

)1/2

nekTe (7.23)

Cowie & McKee further assume that this flux is reduced by 2.5, the same
factor as for classical conductivity, as a result of the requirement that the con-
duction be electric field-free. With this modification, equation (7.23) provides
an estimate of the saturated electron heat conductivity.

Any magnetic field which is present has a dramatic effect on the thermal
conductivity, since the gyroradius of thermal electrons about the field lines,
reg = (mev⊥c/eB) = (2mekTe)

1/2
c/eB, is quite small compared with any

other significant scale length.
In the presence of a magnetic field the conductive heat flux is reduced to:

.
q= −κ

(
B
B

)
∧∇T (7.24)

This is lower than the field-free case by a factor cosϕ where ϕ is the angle be-
tween the local field direction and the direction of the temperature gradient.
Since conduction along field lines is not inhibited, while conduction across
field lines is supressed, the regions of cooled plasma will tend to form thin
filaments in the direction of the field lines. Because the electrical conductivity
of a fully ionised plasma is very high, the field is pinned to gas as it cools,
and the magnetic field increases as the gas cools isobarically. Eventually the
pressure due to the transverse magnetic field will match the gas pressure in
the hot medium, B2/8π = (n+ ne) kTe, after which further compression in
this direction becomes impossible.

7.3.2 Boundary Layer Mixing

A second means of transporting energy from the hot to the cool meduim is
through boundary layer mixing. This will occur most efficiently in astrophys-
ical plasmas if there is a velocity shear across the boundary layer. Such a
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flow could exist in many astrophysical situations. Examples that could be
cited are in during the breakout of a hot bubble of gas produced by winds
or supernova explosions from the plane of the galaxy, in the outflow of hot
gas from active galactic nuclei, or as a result of Rayleigh-Taylor instabilities
in the hot ejecta of supernovae (Rayleigh-Taylor instabilities occur when a
low density medium tries to accelerate a denser medium of the same pres-
sure. The boundary layer breaks up into dense blobs, which are left behind
expanding bubbles of the low density fluid).

Shear flows between two fluids of different temperatures but the same
pressure excite the Kelvin-Helmholz instabilities which initially appear as
thransverse travelling waves along the boundary between the two fluids, which
grow, become breakers, so that a layer of turbulent mixing is formed. The
mixing cascades in turbulent eddies down to the dissipative level, which pro-
duces a layer of gas at an intermediate temperature. In this layer the energy
flux input by turbulent motions is balanced by the cooling rate per unit area,
for as long as the hot gas remains to supply the heat flux. Such mixing layers
were proposed by Begelman & Fabian (1990) and the theory was developed
by Slavin, Shull and Begelman (1993). If TH is the temperature of the hot
medium, and TC the temperature of the cold, and vturb is the mean turbulent
velocity in the mixing layer, then the mean temperature of the mixed layer
is given by:

〈Te〉 =
.
mH TH+

.
mC Tc

.
mH +

.
mC

(7.25)

with
.
mH = ηHρHvturb
.
mC = ηC (ρHρC)1/2 vturb (7.26)

and the heat flux balance condition in the layer is given by:

.
q= Λ 〈Te〉nne 〈s〉 =

5
2

(n+ ne) k 〈Te〉 ηHvturb (7.27)

where 〈s〉 is the thickness of the boundary layer. The turbulent velocity is
somewhat less than, but of the same order as the sound speed of the gas at
the temperature 〈Te〉. Typically this will be a few tens of km s−1. The main
uncertainty in these equations is the size of ηH , the fraction of the mass in
the mixing layer contributed by the hot medium, and of ηC , the efficiency of
the hydrodynamical mixing, which cannot be estimated a priori, and which
require a detailed high-resolution hydrodynamic model to calculate.

7.4 Cold Clouds in Hot Gas

In principle, it is possible to find an equilibrium in which small cold clouds
exist in hot gas. In this case, the pressure in the cloud and in the surrounding
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hot medium must be the same so that ρC/ρH = TH/TC . However, conduction
and cooling can disrupt this balance. If more heat is conducted into the cold
cloud than can be radiated away, then the cloud must evaporate. If the reverse
is true, then cooling will dominate around its boundary, and instead it will
accrete matter from the hot medium. A given parcel of gas will be heated
by conduction only if the conductive energy flux exceeds the radiative losses
within it. The ratio of conduction to radiation is given by (Begelman &
McKee, 1990):

∇.κ∇T
Λn2

∼ κT

L2
.

1
Λn2

(7.28)

where L is a distance about equal to the temperature scale height. We may
therefore define a Field Length, λF , equal to:

λF =
(
κT

Λn2

)1/2

(7.29)

From equation (7.28), it is clear that when the scale length is less than
λF thermal conduction will dominate over radiative processes, and when the
scale length is greater than λF radiative losses are dominant. The Field length
therefore determines the fate of small clouds embedded in a hot medium
(neglecting any effects of turbulent transport of heat). If the cloud radius is
less than λF the cloud will rapidly evaporate, while if it is larger than this,
it will be stabilised by radiative losses around its periphery.

Consider a spherical cloud, and assume that there is a steady, constant
pressure evaporative flow with mass flux

.

M driven from it by the conductive
heating. Matching the heat transport through a surface gives the equation of
motion (McCray, 1987):

5
.

M k

2µmH

dTe
dr

=
d

dr

(
4πr2κ

dTe
dr

)
(7.30)

where µ is the mean atomic weight. In the case of classical conductivity
κ = ζT

5/2
e ; ζ being a constant, which from equations (7.21) and (7.22) is

about 5.7 × 10−7. Equation (7.30) has the solution:

Te(r) = TH (1 −RC/r)2/5 (7.31)

for evaporating clouds with cloud radius RC < λF , the mass flux is:

.

M=
16πµmHζ

25k
RCT

5/2
H ∼ 1.1 × 10−4R1T

5/2
7 M�yr−1 (7.32)

where R1 is the cloud radius in units of parsecs (3.0856 × 1018 cm) and T7

is the intercloud temperature in units of 107 K. Taking the pressure equi-
librium condition between the cloud and intercloud medium, this implies an
evaporative destruction timescale for the cloud:
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τevap =
25k

12µmHζ

(
TH
TC

)
ρHT

−5/2
H R2

C

∼ 8.5 × 105

(
TH
TC

)
n−2T

−5/2
7 R2

1 yr. (7.33)

where n−2 is the number density in the hot medium in units of 10−2 cm−3.
If we assume that the cold medium is in the molecular form, then we can
expect TC ∼ 100K, so for T7 ∼ 1, TH/TC ∼ 105. The cold cloud will survive
if the hot medium cools down within the evaporative lifetime; τevap > τcool.
The cooling time for the hot medium will be less than or about equal to the
free-free cooling timescale we estimated following equation (7.9); above so
clouds will certainly survive if τevap > τff . Since τff ∼ 1.6 × 109n−1

−2T
1/2
7

, using the same units as those of equation (7.33), the condition for cloud
survival becomes:

RC > 0.14T 3/2
7 pc. (7.34)

However, this size is much smaller than the electron-electron collision length
estimated from equations (7.16) and (7.19); λ ∼ 32T 2

7 n
−1
−2 pc, so small clouds

will be in the saturated electron conduction regime. We leave it as an exercise
for the reader to estimate the survival condition of such clouds.

At the critical radius where the conduction into the cloud matches the
radiative losses in the cloud, there is no bulk flow of material either into, or
away from, the cloud. In this case the equation of energy balance becomes:

d

dr

(
κ
dTe
dr

)
+

2
r
κ
dTe
dr

− nenΛ(Te) = 0 (7.35)

McKee and Cowie (1977) have solved this equation in a semi-analytic fashion
by dividing the solution into zones where either the radiative losses are greater
than the spherical divergence of the heat flux, or where the reverse is true,
and by fitting the cooling function to power-law segments, as we described
in section (7.2). Their results on the critical radius can be approximated by:

Rcrit ∼ 2000T 2
7 n

−1
−2 pc. (7.36)

which implies that, at these pressures (P/k ∼ 105 K cm−3) subsonic accretion
by cooling is unimportant.

In summary, very small clouds can be destroyed by thermal conduction
in the saturated regime, while the larger clouds may initially lose only a thin
outer layer before the hot gas cools.

7.5 Thermal Instabilities

The problem of thermal instabilities was properly addressed for the first
time in a classical paper by Field (1965), and here we follow the exposition
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given by Balbus (1995). The basic idea is simple. A region with a certain
temperature will cool on a timescale τcool(n, Te, ZA) given by equation (7.8).
Now, consider an embedded region with a slightly lower temperature, and
assume that any expansion or contraction is homogeneous. The medium will
be thermally unstable if the temperature contrast between the warmer and
the cooler regions increases with time. This requires that the cooling timescale
in the cooler region be less than the cooling timescale in the hotter region.
If the cooler region is sufficiently small that sound waves can travel across
it, then the pressures in the hotter and the cooler region will equalise during
the cooling, and the cooling (apart from any ram-pressure terms) will occur
isobarically. On the other hand, if the region is large, the cooling will (at least
initially) be at constant density. This is called isochoric cooling. Because the
cooling timescale goes inversely as the square of the density (equation 7.8)
and the density increases as T−1

e , in isobaric cooling the cooling timescale
in the lower temperature region decreases more rapidly during the cooling,
which tends to make the instability even worse.

7.5.1 In a Stationary Medium

The second law of thermodynamics states that:

Te
dS

dt
= − (γ − 1)

.

Q (7.37)

where S is the entropy per gram, and γ = 5/3 for a monatomic gas. Now the
gas is thermally stable if, in a perturbation of the entropy of a fluid element
from S to S+∆S, the magnitude of∆S tends to decrease with time. However,

d ln |∆S|
dt

= −2
3


∂

( .

Q /Te

)
∂S



A

(7.38)

where A is the thermodynamic variable (pressure for isobaric disturbances or
density for isochoric perturbations) held constant. The medium is therefore
thermally stable if: 

∂
( .

Q /Te

)
∂S



A

> 0 (7.39)

Now, the change in entropy for a process involving an ideal gas with gas con-
stant �, specific heat at constant volume, CV , and specific heat at constant
pressure, Cp, is:

dS = CP
dT

T
− n�dP

P

= CV
dT

T
+ n�dV

V
(7.40)
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So that the stability condition, equation (7.39) reduces to the Parker (1953)
criterion: [

∂
.

Q

∂Te

]
ρ

> 0 (7.41)

for isochoric perturbations and to the Field (1965) criterion:[
∂

.

Q

∂Te

]
P

> 0 (7.42)

for isobaric perturbations. If the cooling is represented by a local power-
law on the temperature, then

.

Q= Λ0T
p
e n

2. It follows that the medium is
thermally stable in isochoric cooling if p > 0 and that it is thermally stable
in isobaric cooling if p > +1. However, from the form of the non-CIE cooling
function given in Figure (7.4), it is clear that p is rarely as large as unity, and
is greater than zero only below (roughly) 105 K and above 107 K. Coronal
plasmas are therefore usually thermally unstable, and will tend to break up
into blobs or filaments.

Regions that are cooling isochorically are losing their internal pressure.
If sound waves can carry from the hotter region into the cooler one on a
timescale which is short compared with the cooling timescale, then cooling-
induced pressure fluctuations will tend to be washed out, and the cooling is
isobaric, as mentioned above. The sound speed in the ionised plasma, which
we will term cII (to distinguish it from sound speeds in un-ionised gas, cI ),
is, for a perfect gas:

cII =
(
dP

dρ

)1/2

=
(
γP

ρ

)1/2

=
(
γkTe
µmH

)1/2

(7.43)

In a medium with a strong enough magnetic field, magnetic waves rather than
sound waves may carry the information from one region to another instead.
The Alfvén velocity vA, is defined as:

vA =
B

(4πρ)1/2
(7.44)

When the wave vector is aligned with the magnetic field, the magnetic Alfvén
waves are transverse oscillations of the magnetic field, like waves in a skipping
rope, and so do not help to equalise the pressure. In this case, as in the mag-
netic field-free case the pressure adjustment (a compression wave) is carried
by the longitudinal sound waves. However, when the direction of the wave
vector is perpendicular to the magnetic field direction, information is carried
by longitudinal magnetosonic waves at the magnetosonic sound speed:

v⊥ =
(
c2II + v2A

)1/2
(7.45)
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Depending on which case applies, the condition for isobaric cooling is there-
fore:

R < cIIτcool : or R < v⊥τcool (7.46)

Since the sound speed and the cooling timescale both decrease with tem-
perature, the size of the regions within which isobaric cooling is occurring
becomes smaller and smaller, so that the medium tends to break up into a
fractal heirarchy of blobs and filaments.

In practice, the rapid cooling of some parts of the plasma may cause their
internal pressure to become decoupled from the surrounding hot medium.
In this case, a compression wave from the hot medium steepens into a shock
which serves to reheat and re-pressurise the cloud. The physics of such shock-
waves is given in the next chapter.

7.5.2 In an Expanding Medium

Advanced Topic
In many fields of astronomy we have to deal with expanding clouds of hot

gas. Examples include, the very early Universe before the epoch of recombina-
tion, the early phases of supernova explosions, and nova ejections, and in hot
stellar winds. Here we will consider only plasmas in free expansion, so that
the density of the substrate hot medium, ρH , behaves as ρH = ρ0 (t/to)

−3. If
this substrate had initially been heated up to a very high temperature then
cooling is initially unimportant. However, it may well become important at a
later phase due to the temperature decrease caused by the work done in the
adiabatic expansion of the gas, TH = T0 (t/to)

−(γ−1), where γ is the usual
ratio of the specific heats (equal to 5/3 for a monatomic plasma).

We can distinguish between two types of growth of the thermal insta-
bility; absolute growth, in which both the density in the thermally unstable
condensation and the density contrast between the blob and its surround-
ings increases in an absolute sense, and relative growth, in which the density
contrast between the thermally unstable condensation and the surrounding
medium increases but during which the density in the condensation is de-
creasing in an absolute sense. For absolute growth we have:

dρC
dt

> 0;
d (ρC/ρH)

dt
> 0 (7.47)

here the second condition is redundant to the definition. According to the
mathematical identity (the chain rule):

d (ρC/ρH)
dt

=
1
ρH

dρC
dt

− ρC
ρ2H

dρH
dt

(7.48)

This implies that, since ρC > 0, ρH > 0 and dρH/dt < 0, the second condi-
tion of equation(7.49) is automatically true in general. Now if we define two
timescales:
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τC =
ρC

(dρC/dt)
: τH =

ρH
|dρH/dt|

(7.49)

then the condition for absolute growth can be simply written:

τH
τC

> 0 (7.50)

since ρC, ρH and |dρH/dt| are all greater than zero.
Now consider the conditions for relative growth:

dρC
dt

< 0;
d (ρC/ρH)

dt
> 0 (7.51)

these are equivalent, using the identity (7.48) to;

0 >
dρC
dt

>
ρC
ρH

dρH
dt

(7.52)

or, in terms of the timescales defined above:

0 >
τH
τC

> −1 (7.53)

For a uniform expansion, ρH = ρ0 (t/to)
−3 and τH is simply related to the

Dynamical timescale of the expansion, to; τH = to/3. The timescale τC ex-
presses the competition between the dynamical timescale which reduces the
densities in the cloud, and the cooling timescale, which works to increase the
cloud density; τ−1

C = τ−1
cool − τ−1

H , approximately. Thus, from equation (7.50)
absolute growth will occur when the cooling timescale becomes shorter than
one third of the dynamical timescale, and relative growth will start to occur
from the beginning of the expansion, but will only become significant once
the cooling timescale becomes of the same order as the expansion timescale.
This suggests that it is valid to think of thermal instabilities in an expanding
medium as occurring at a particular epoch in the expansion at which time
blobs and filaments of cold material condense out of a previously more-or-less
uniform substrate.

7.6 Hot Galactic Coronae

7.6.1 Early-Type Galaxies

X-ray observations with the Einstein and the ROSAT satellites have revealed
that hot, extended galactic coronae are a common (but not universally ob-
served) property of both spiral and early-type galaxies. For the E and S0
galaxies, the range of the X-ray observed luminosities is 43 > logLX > 39,
where the lower limit is determined effectively by the sensitivity limit of the
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samples. There is a correlation with the optical luminosity, but this corre-
lation shows a very large scatter of up to 100 in the X-ray luminosity for a
given stellar luminosity. For the intrinsically more luminous galaxies, the X-
ray luminosity rises more quickly than the stellar luminosity at optical blue
wavelengths; LX ∼ L1.7−2

B . For the X-ray faint galaxies, the X-rays appear to
originate from stellar X-ray sources (binaries, catacylismic variables and the
like), rather than from hot interstellar gas, which can be distinguished by its
“softer” X-ray spectrum (Fabbiano, Kim & Trinchieri, 1992). For the more
X-ray luminous galaxies, what then is the source of the hot, extended gas?

In the models of Ciotti et al. (1992), this comes from stellar mass-loss pro-
cesses, either in the form of winds, or through the more violent thermonuclear
(Type I) supernova explosions. Most of the stellar wind mass-loss occurs in
the late stages of stellar evolution along the asymptotic giant branch, lead-
ing finally to ejection of planetary nebula (PNe) shells. These two processes
eject material of quite different chemical composition. The stellar mass-loss
is mostly from outer stellar envelopes which have been chemically unaltered
since the star first formed out of the interstellar medium. However added
to this are some products of incomplete hydrogen burning (mostly He, C
and N and the heavy elements formed by slow neutron capture; the s-process
elements). Type I supernova explosions, on the other hand, burn a fair frac-
tion of the mass to nuclear statistical equilibrium composition at very high
temperatures, leading to the ejection of mostly Fe and the iron-peak group
of elements and heavy elements formed from rapid neutron capture in the
explosion; the r-process elements. Thus, we may be certain that the compo-
sition of the X-ray haloes of early-type galaxies is unlike that of the local
interstellar medium in our Galaxy. Rather, it must contain a greater fraction
of heavy elements, which will lead to both an increase in the X-ray emissivity
and a corresponding reduction in the cooling timescale of the gas.

Even when ejected in a hot phase from a stellar explosion, the the gas
must cool again due to adiabatic losses. In order for it to be seen again as
an diffuse X-ray emitter, it must be reheated by collisions in the galaxy.
For the PNe, the source of this heating would be the energy associated with
the orbital motion of the precursor star. For a stellar population of a given
velocity dispersion, conventionally written as σ, collisions will heat the gas
up to a temperature given by;

3
2
kTe ∼

1
2
µmHσ

2 (7.54)

From the definition of the sound speed (equation 7.43), this implies that the
effective Mach number of the stellar population with respect to the hot gas is
M ∼ 3/51/2, or about 1.34. In this way, the gas temperature is related directly
to the galaxian properties. For a typical galaxian velocity dispersion of 300
km.s−1, the gas will reach a temperature of order 2× 106 K (kTe ∼ 150 eV).
In the case of Type I supernova ejecta the relevant velocity is the mean
velocity of ejection of the material (∼ 3000 km s−1), which is much larger
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than the velocity dispersion in the galaxy, and so this gas is initially heated
to 2 × 108K (kTe ∼ 15 keV). The Type I ejecta mixes with the PN ejecta,
so that the final temperature achieved by the gas depends upon the relative
mass fractions of these two components and the importance of the radiative
cooling. It is generally observed to be of order kTe ∼ 1 keV.

At this temperature, the sound-crossing timescale for the hot gas is only a
few million years, while the cooling time is much longer, of order 108 years for
the density of 0.01cm−3 implied by the X-ray properties of a typical galaxy.
In this case, if the hot gas is bound to the galaxy, it can be assumed to be
near its hydrostatic equilibrium:

∇PH = −ρH∇Φ(r) (7.55)

where the hot gas has a pressure and density of PH and ρH , respectively, and
Φ(r) is the gravitational potential of the galaxy. For spherical symmetry, this
becomes:

1
ρH

dPH
dr

= −GM(r)
r2

(7.56)

This has an important observational consequence. What we can observe is the
radial distribution of the surface brightness and the X-ray spectrum of the
hot gas as a function of radius. If we fit these to models of the CIE emissivity
working in from the outside, then we can then reconstruct ρH(r), Te(r) and
hence PH(r). These can then be used in the hydrostatic equation (7.56) to
obtain M(r), which includes the contribution to the mass of the visible stars
as well as the contribution of whatever dark matter components happen to
be present. In this way X-ray observations provide a powerful technique to
determine the mass inventory of the Universe.

These models also provide the means of calculating the mass of the hot
component. The typical values found are in the range 8 < logM� < 11,
which is, in most cases comfortably lower than the mass of the galaxy, and
the self-potential of the hot gas can be ignored in equation (7.56).

A useful approximation to the mass distribution for early-type galaxies
is the analytical approximation to an isothermal distribution by King, for
which the local (star + dark) matter density is given in terms of the core
radius, rcore, by:

ρ(r) = ρ0
(
1 + x2

)−3/2
: x = r/rcore (7.57)

which provides a potential distribution:

Φ(r) = −4πGρ0r2core
ln
[
x+

(
1 + x2

)1/2]
x

(7.58)

The central density ρ0, the core radius and the velocity dispersion are all
related:
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σ2 = (4π/9)Gρ0r2core (7.59)

so that the central potential is Φ0 = −9σ2. This implies that if the tempera-
ture of the hot gas exceeds about 1.8 × 107 K (kTe ∼ 1.4 keV) then the gas
would no longer be bound, and then would flow out in a thermal wind into
the cluster or intercluster medium. In fact, the models of Ciotti et al. (1991)
show that this can happen in the early phases when the energy input exceeds
the ability of the gas to cool, but this evolves to a subsonic flow and finally
develops into a cooling flow as the ratio

.

Emech /
.

Ecool decreases during the
ageing of the stellar population. Paradoxically, models with a strong wind
are much less luminous in X-rays than models with a cooling flow, since the
wind models are non-radiative, and the energy put in by supernovae goes
into mechanical energy in the outflow.

7.6.2 Clusters of Galaxies

Virtually all of the discussion in the previous section carries over to the case
of hot gas in clusters of galaxies. However, the typical velocity dispersions
of the clusters are about 1000 km s−1, so the potential is much deeper, and
gas temperatures of 5 × 107 K (kTe ∼ 4 keV) are typical. In this case we
are clearly into the electron Brehmstrahlung-dominated zone of the cooling
function, and the cooling timescale is τff ∼ 5 × 1010n−1

−3T
1/2
8 yr, with the

density and temperature in units of 10−3 cm−3 and 108 K, respectively. In
most cases, the cooling timescale is generally longer than the age of the
Universe.

Using the Einstein X-ray observatory (Sarazin, 1988) the cluster lumi-
nosity is found to lie in the range 39 < logLX < 43 while the mass of
X-ray gas is estimated to cover the range 12 < logM� < 14.5, (assuming
H0 = 75km s−1 Mpc−1). These parameters nicely extend the range observed
for single galaxies.

The hot cluster gas is metal-rich, and so must have been derived from
the stellar populations of the cluster members. This can occur in four ways.
First, the gas may have come from the hot galactic winds of individual clus-
ter members. Second, it may be derived from stars which have been tidally
stripped from galaxies in the cluster. It is known, for example, that an im-
portant intra-cluster population of PNe exists in the Virgo cluster. Thirdly,
some portion may have been stripped from individual galaxies by the ram-
pressure of the intra-cluster hot gas. In this case, if the orbital velocity of
the galaxy in the cluster is vgal, and the pressure in the hot medium in the
vicinity of the galaxy is P , the galaxy will be stripped of its hot halo down
to a radius r, given roughly by P ∼ ρgal(r)v2gal. Clearly, galaxies that fall in
plunging orbits towards the cluster centre will be more likely to be stripped
by this process. Lastly, it may have been ejected from individual galaxies by
the result of the interaction of relativistic jets of gas from an active galactic
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Fig. 7.5. Contour plot of the X-ray surface brightness of the central 4.4 Mpc of the
A2597 cluster, superimposed on the optical image. This is a cooling-flow cluster,
with a mass inflow of about 350 solar masses. There are more than 1014 solar masses
of hot gas. The data were obtained with the ROSAT X-ray satellite by Sarazin &
McNamara (1997).

nucleus (AGN) with the interstellar medium of the galaxy. We return to this
point later in Section(8.3.3).

Because the density of the hot gas is directly related to the depth of the
potential, it may be that the cooling timescale in the cluster core becomes
shorter than the dynamical timescale, even though in the outer regions of
the cluster the cooling timescale is much longer than a Hubble time. In this
case, the pressure term in the hydrostatic equation (7.56) is removed, and a
stationary solution is no longer possible. Instead a cooling flow develops in
the central region of the cluster, which is not only bright in X-rays, but may
also become prominent at optical wavelengths as the temperatures fall to a
point where recombination of hydrogen can occur.

Provided that the change in the gravitational potential is unimportant
compared with the energy lost in the cooling, then the mass flux in the cooling
flow,

.

M , can be estimated from the X-ray luminosity of gas at any particular
temperature, since this simply reflects the loss of the thermal energy of the
gas:

∆L (Te) =
5k∆Te

.

M

2µmH
(7.60)
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However, for the optical flux, such estimates break down. Since each hy-
drogen atom involved in a cooling flow must ultimately recombine, the re-
combination flux should, in principle, provide an estimate of the mass flux in
the cooling flow (M� yr−1). In practice this is difficult because each hydrogen
atom involved in the flow makes a number of recombinations, and collisional
excitations also increase the Balmer line flux. The multiple recombinations
are caused by two effects. First, the cooling instabilities generate secondary
(re-heating) shocks which re-ionise hydrogen atoms possibly more than once,
and second, the EUV photons generated in the cooling plasma (particularly
below 107 K), are produced very close to the recombination zone of the flow,
and so are efficiently trapped by the cooler gas. This produces many pho-
toionisations, each of which leads to another recombination. The Balmer flux
may thus be enhanced by a factor up to 10 to 30 times over what would be
expected on the basis of a single recombination. With this correction factor,
the mass fluxes in the cooling flows agree with those derived from the X-ray
data, and may be considerable (up to about 500 M� yr−1!). The problem
then arises, what happens to all of this gas which is dropping out of the hot
phase in and around the central galaxy; which is usually of the massive cD
type. It has been argued that this may be forming many new low-mass stars
in the central galaxy. Some of it may also find its way down the core of the
central galaxy and be used to feed the massive black hole which lurks there.

If the local input of energy is greater than the radiative losses, and the
energy of injection is greater than the binding energy, then a cluster wind
will develop instead. This is analagous to the thermally-driven Parker winds
which may occur from stars. Provided that the flows are subsonic and spher-
ically symmetric, both winds and cooling flows can be described by the equa-
tions of continuity, momentum and the energy conservation. These equations
must be solved numerically, and a wide variety of models have been generated
in this way.

Apart from the production of X-rays, the existence of a hot cluster
medium can be inferred in at least three other ways; through observations
of ram-pressure stripping of cluster galaxies, through the influence of the
cluster medium on the cosmic microwave background, and through the fre-
quency dependence of the Faraday rotation it induces in linearly polarised
radio sources seen through the cluster.

Gas-rich disk galaxies (spiral or irregulars) moving in the cluster medium
will experience ram-pressure stripping down to a radius r wherever the ram
pressure of the hot gas on the galaxy exceeds the gravitational force binding
the gas to the host galaxy:

ρHv
2
⊥ > 2πGσT (r)σg (r) (7.61)

where σT (r) is the total surface density in the galactic disk at radius r,
σg (r) is the gas surface density, ρH is the density in the hot medium, and
v⊥ is the component of the galaxy’s motion through the cluster along the
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perpendicular to the disk. Graphical observational evidendence that such
ram pressure stripping occurs has been obtained by Cayatte et al. (1989),
who find that in the Virgo cluster, the H i disk sizes of cluster spiral galaxies
becomes systematically smaller the closer they are to the cluster centre. In
addition, Giovanelli & Haynes (1985) observed the H i content of galaxies in
a number of clusters, and found that the fraction of galaxies displaying an
H i deficiency for their Hubble type increased as the X-ray luminosity of the
cluster increases.

Even though the cluster gas is of very low density, radiative transfer effects
through it may become important. For example, a massive cooling flow has
a Thompson electron scattering optical depth given by equation (7.3)). This
is of the order 10−2 . The hot gas is therefore capable of scattering as much
as a few percent of the visible starlight. In addition, this finite optical depth
is important in scattering the cosmic microwave background (CMB) photons
which are the relict of the Big Bang. Because the electrons in the cluster are
much hotter (∼108 K) than the radiation temperature of the CMB (2.7 K),
they heat the CMB photons, leading to a diminuntion of the CMB at radio
wavelengths. This is called the Sunyaev-Zel ′dovich effect, and it provides a
very powerful set of cosmological tests.

Finally, the magnetic field in the cluster produces an anisotropy in the
speed of transmission of radio radiation through it. That is, the electron
medium with a directional magnetic field is birefringent and is capable of
rotating the plane of polarisation of linearly polarised radio sources embedded
within or behind it, such as the synchrotron emission from Active Galactic
Nuclei or the jets which they produce. The angle of this Faraday rotation, φ,
is:

φ = Rmλ
2

Rm =
e3

2πm2
ec

4

∫
neB‖dl (7.62)

where B‖ is the component of the magnetic field parallel to the direction
of propagation of the radiation. If the path length through the medium, l,
is measured in parsecs, the density in cm−3 and the field in µG, then the
rotation measure Rm is 0.815 rad.m−2, so a cluster may produce a rotation
measure of a few hundred. The very bright and extended double-lobe radio
source Fornax A provides an ideal source with which to study the spatial
variations of the product of magnetic field and density provided by Faraday
rotation measurements.

7.6.3 Disk Galaxies

Although some disk galaxies also appear to contain both hot and cooling
gas, the physics of the heating of this material, and its escape from the disk
to form a hot corona is physically rather different from the cases described
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above. This is because the energy input in disk galaxies is derived mostly
from the winds of hot, young stars and their supernova explosions, and the
heated gas interacts strongly with the dense interstellar medium of the galaxy
before escaping into the halo.In addition, the systematic rotation of the disk
can be an important factor.

Shapiro & Field (1976) first suggested that the material which escapes into
the halo does so by passing through buoyant and over-pressurised bubbles,
chimneys, or “worm-holes”. As a result, it flows up and away from the galactic
plane until such time as it cools, loses buoyancy and falls back to the disk in
dense blobs and filaments to complete the “Galactic fountain”.

In our own Galaxy, there is a lot of observational evidence revealing the
existence of a highly-ionised component. This has been recently reviewed by
Savage (1995). From H i observations, or from UV absorption measurements
along the lines of sight to stars at high galactic latitude, the density profile
of the un-ionised gas in the solar neighbourhood can be established (Bohlin,
Savage & Drake 1978; Diplas & Savage 1994; Dickey & Lockman 1990). Com-
bining the results of these works, the gas density profile can be fitted with
two components; the so-called cold neutral medium (CNM) and the warm
neutral medium (WNM):

〈
nH i

〉
∼ 0.4 exp

[
− z2

2h2
CNM

]
+ 0.16 exp

[
− z

hWNM

]
cm−3 (7.63)

where the (gaussian) scale height of the CNM, h2
CNM is about 110 pc, and

the (exponential) scale height of the WNM is about 360 pc.
The presence of a warm ionised medium (WIM), sometimes called dif-

fuse ionised gas (DIG), or, more confusingly, the Lockman-Reynolds layer
can be inferred either directly from observations of diffuse Hα emission, or
through observations of pulsar dispersion measures. These two techniques
give a different weighting to the material along the line of sight, since the
Hα emission measure depends on

〈
n2
el
〉

while the time delay between two
frequencies induced in the pulsar signal, ∆τD, depends on 〈nl〉 ;

∆τD =
e2

2πmec

[
ν−2
1 − ν−2

2

] l∫
0

nedl (7.64)

where the integral is called the dispersion measure (DM) (cm−2). The pul-
sar dispersion measurements should give the most reliable result since the
quantity we are most interested in is being directly measured, and since the
distances of the pulsars can be accurately determined. The mean z - distri-
bution of matter is determined from the component of dispersion measure
perpendicular to the galactic plane, DM.sin|b|. Reynolds (1993) finds that a
two-component fit is best, while Nordgren, Cordes and Terzian fit a simple
exponential:
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〈
nH ii

〉
∼ 0.022 exp

[
− z

h2

]
cm−3 (7.65)

with h2 = 670 pc. This ionised gas is probably at about 104K and is kept
ionised by the combination of H ii regions and supernovae in the disk, al-
though stars cooling to become White Dwarfs should be more important
sources of ionising radiation at high scale heights. While these relations es-
tablish the distribution of the major gaseous components of the disk, they do
not say anything about the hot gas which may be present. Indeed, they are
not even able to establish the pressure of this component, even if is in approx-
imate pressure balance with the WNM+WIM, since the local density of these
components may be much higher than suggested by (7.63) and (7.65), depend-
ing on the (unknown) volume filling factor of these components. Reynolds
(1980) estimated P/k ∼ 3000 cm−3 K from a study of high-latitude Hα emis-
sion, however the total pressure may be a good deal higher than this once
the pressure of the magnetic field is taken into account.

The existence of a truly hot component can be directly established
through observations of a diffuse X-ray component, or through UV ab-
sorption line observations of highly ionised species in the line of sight to
halo stars. The diffuse X-ray measurements are confusing because it is un-
certain how much of the observed flux comes from the local hot bubble
of gas associated with local massive star formation, or how much comes
from unresolved X-ray sources at cosmological distances (AGN and the
like). However, UV absorption measurements reveal interstellar absorption
of Si iv, C iv, Nv and O iii which can only have come from a hot compo-
nent. In general, the higher excitation species seem to be confined closer
to the plane of the disk. In the column of gas in front of the QSO 3C273,
the only extragalactic object where Ovi has so far been detected (using
the Hopkins Ultraviolet Telescope); log [N(Ovi)/N(C iv)] ∼ −0.1. For the
stars in the halo, log [N(Ovi)/N(C iv)] ∼ 0, while for stars in the disk,
log [N(Ovi)/N(C iv)] ∼ 0.8 (Spitzer, 1996). In addition, Sembach & Sav-
age (1992) find that the scale height of the gas derived from Nv absorption
measuements is about 1.6 kpc, while in C iv absorption the scale height ∼
5kpc.

Even though these species are highly ionised, they cannot arise in gas as
hot as 106 K. With some dependence on their mode of ionisation, most likely
come from a gas of 1 - 3) × 105 K. This presents something of a problem
to models, since this is very near the peak of the cooling curve, where the
cooling timescales are very short. The highly ionised species must therefore
arise in a layer which has a continuous source of energy input, and with a
rather generous energy budget. Since about one supernova explosion occurs
in our Galaxy roughly once every 30 years, and each liberates about 1051 ergs
of kinetic energy, then the energy required by the hot halo gas is up to about
10% of the energy produced by all the supernova explosions in the galaxy.
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The mechanism of this energy input is still rather uncertain. Shull and
Slavin (1994) advocate turbulent mixing layers and isobarically-cooling su-
pernova remnants to provide a mass flux of about 20-40 M� yr−1 and
∼ 1041 erg s−1 into the halo. Shapiro and Benjamin (1993) suggest that
cooling gas is by itself able to explain the absorption line observations, pro-
vided that the absorption of the ionising photons produced in the cooling
flow is properly taken into account, while Spitzer (1996) proposes that the
highly ionised species arise in conduction fronts and turbulent mixing layers.

The energy balance of the Galactic corona was discussed in a classical
paper by Chevalier & Oegerle (1979). If the gas is in hydrostatic equilibrium,
then we must solve the hydrostatic equation in cylindrical coordinates, taking
account of the centrifugal term due to the rotation of the disk, c.f. equation
(7.56);

1
ρH

dPH
dz

= −dΦ
dz

1
ρH

dPH
dr

= −dΦ
dr

+
v2rot
r

(7.66)

where vrot is the local rotational velocity. Presumably, the gas is initially
rotationally supported, since it is produced by the rotationally supported
stellar population of the disk. However, it has an additional thermal energy
component, and as it rises into the hot halo, it will also expand radially. The
hot gas in the halo should therefore rotate more slowly than the disk.

In order to escape from the Galaxy as a galactic wind, the gas has to
overcome the gravitational potential of the galaxy, so that, if it is ejected
from the plane an initial radius r0 at an intial velocity of v0, it must have an
initial temperature higher than the critical value, Tcrit :

Tcrit >
γ − 1
γ

mH

k

(
Φ (r0, 0) − v2rot

2
− v20

2

)
(7.67)

If the inital velocity of ejection is small compared with the rotation velocity,
and the gravitating mass is centrally condensed then the term in brackets is
of order v2esc(r0)/2. This would imply a critical temperature of about 106 K
in the solar neighbourhood, and about 4×106 K in the Galactic centre, above
which,in the absence of significant cooling, a wind will be driven.

For our Galaxy, the parameters estimated for the galactic halo (P/k ∼
3000 cm−3 K,

.

M∼20-40 M� yr−1 and
.

E∼ 1041 erg s−1 appear to preclude
the possibility of a galactic wind. However, there is now a deal of evidence
that starburst galaxies galaxies do produce winds, either because their low
mass in the case of dwarf galaxies, or because a high energy production
through supernova explosions allows them to satisfy equation (7.67). For the
dwarf galaxies, an important fraction of the nucleosynthesis products from
supernova explosions may be carried away into intergalactic space by this
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process, and so dwarf galaxies may be significant contributors to the intra-
cluster medium at the current epoch.

For our Galaxy there is evidence that a tenuous hot phase is found at very
large distances from the galactic plane. This is furnished by the Magellanic
Stream (Mathewson & Ford, 1985), which is an enormous trail of H i clouds
streaming out along the orbital path traced out by the Magellanic Clouds.
The most compelling theory of its origin is that it is gas removed by ram pres-
sure stripping of the hot halo as the two Magellanic clouds plunged in towards
the Galaxy in their orbit over the last few hundred million years (Meurer et al.
1985; Moore and Davis, 1994). Currently, the Magellanic Clouds are almost
at perigalacticon, and are moving at about 300 km.s−1, so that the ram
pressure is at its greatest. Faint X-ray emission has been detected with the
ROSAT satellite (Wang & McCray) and Hα emission has been detected at
the cloud leading edges, which allows an estimate of the halo density. This is
of order 10−4 cm−3 at a distance of 50 kpc from the Galactic centre (Weiner
& Williams, 1996).

Notes on Chapter 7

• Equilibrium and non-equilibrium cooling functions were given by Suther-
land, R.S. & Dopita, M.A. 1993, ApJS, 88, 253.

• The best source of information on thermal conduction remains Spitzer, L.
Jr., 1956, The Physics of fully Ionised Gases, 2nd. ed. J.Wiley Interscience:
NY.

• The theory of turbulent mixing layers was developed by Slavin, J.D., Shull,
J.M. & Begelman, M.C. 1993, ApJ, 407, 83.

• An up to date account of the theory of thermal instabilities is to be found
in Balbus, S.A. 1995, in The Physics of the Interstellar Medium and Inter-
galactic Medium, ASP Conf. Ser. v80; eds A. Ferrara, C.F. McKee, C.Heiles
& P.R. Shapiro, ASP:SanFrancisco, p328 (ISBN 0-9377-7-99-6 ). This vol-
ume also contains very useful reviews on the galactic corona (Savage, B.D.
p233) and the hot ISM in galaxies (Fabbiano, G., p419), all of which have
been used extensively in the preparation of this chapter.

• For further reading on the subject of hot gas in clusters of galaxies see
Sarazin, C.L. 1988, X-ray Emissions from Clusters of Galaxies, CUP:Cambridge
(ISBN 0-512-32957-4). For the observational material on the X-ray haloes
of galaxies, see Fabbiano, G., Kim, D-W., & Trinchieri, G. 1992, ApJS, 80,
531.

• A classical and most readable paper on the physics of the hot gas in
the Galactic halo is by Chevalier, R.A. & Oegerle, W.R. 1979, ApJ, 227,
398. The observational material is best summarised by Savage, B.D. in
The Physics of the Interstellar Medium and Intergalactic Medium, ASP
Conf. Ser. v80; eds A. Ferrara, C.F. McKee, C.Heiles & P.R. Shapiro,
(ASP:SanFrancisco), p233 (ISBN 0-9377-7-99-6 ).
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Exercise 7.6.1. Assume that an astrophysical plasma consists (by number
of atoms) of 90% hydrogen, 9% helium and just 1% heavier elements with a
mean atomic number of 8.

a. Calculate the mean atomic weight of the plasma in the limits when it
is un-ionised, and when it is fully-ionised.

b. What is the mean thermal energy per particle (ions and electrons both)
of this plasma at a temperature T , assuming that the plasma is fully ionized?

c. What is the total thermal heat content of the plasma per unit volume
at a temperature T and a particle density n?

d. Assuming that the plasma cools by the electron bremssrahlung (free-
free) process with a cooling rate given by Λ = 3 × 10−27T−1/2 ergcm3s−1,
provide an exact expression for the characteristic cooling timescale of the
plasma at the temperature T and particle density n.

e. Provide an exact expression for the time taken for this plasma to cool
at constant pressure down to absolute zero, assuming that the gas can remain
fully ionized and cools only by the bremssrahlung process.

Exercise 7.6.2. In the halo of our Galaxy, there is a warm (˜10,000K)
ionised medium extending to more than 1kpc above the galactic plane. This
is often called the Reynolds Layer, named after the researcher who has stud-
ied it in most detail. Assume that this medium is heated by photons from
starlight, which are absorbed by the gas, and deliver a heating rate to the gas
of Γg = 10−24n2 erg cm−3s−1, and which are also absorbed by the dust, and
deliver a heating rate of Γd = 10−26n erg cm−3s−1 to the gas. The cooling
rate of the gas can be approximated by Λ = 10−24n2T4 erg cm−3s−1, where
T4 is the temperature of the gas measured in units of 10,000K. Assuming that
the Reynolds Layer has a density distribution n(z) = 0.1 exp [−z/1kpc] cm-3,
where z iis the height above the Galactic midplane, calculate an expression
for the temperature distribution as a function of height above the plane.

Exercise 7.6.3. A (highly idealized theoretician’s) spherical galaxy has a
total massM , a total radius R0, and a stellar density distribution which varies
as r−2. These stars are in circular orbits with random angular momentum
about the centre, giving no net rotation to the system. Gas is blown off stars
in the galaxy with a very low initial velocity relative to the stars, and this
gas is heated by cloud-cloud collisions to coronal temperatures.

a. What is the velocity dispersion of the stars as a function of radius?
b. Assuming M =5.0x1011M� and R0 =10 kpc (1pc = 3.08x1013 km;

solar mass = 1.99x1030 kg), what is the average relative velocity of the stars as
a function of radius? If the hot gas contains 10% by number of helium atoms,
negligible numbers of heavier atoms and is fully ionized, to what temperature
is the gas heated, again as a function of radius?

c. If the hot gas is in hydrostatic equilibrium and fully ionized at all radii,
and the density at R0 is 10−2 cm−3, what will be the hydrogen density at a
radius of 1 kpc?
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d. Assuming that the gas cools at a rate = 10−22(T/106K)−1/2n2
H

erg cm−3s−1; what is the cooling timescale of the hot gas at 10 kpc and
at 1 kpc? Comment on the validity of the assumptions made in part (1.3),
above.

Exercise 7.6.4. 1 The cooling function of a plasma at low temperature is
dominated by IR lines which, taken together, can be taken to be only weakly
dependent on temperature. Taking Λ = 10−24 erg.cm3s−1, estimate the radius
below which a cool cloud will be destroyed by thermal conduction in the
saturated regime.





     

8. Interstellar Shocks

“Awaiting the sensation of a short sharp shock
From a cheap and chippy chopper on a big black block”
— W.S. Gilbert (The Mikado, 1885)

Violent events occur everywhere in the interstellar and intergalactic
medium. Stars explode in supernova events, newly born stars blow energetic
winds, or produce UV photons to ionise and heat their surroundings creating
a region of overpressure in the ISM which produces a violent expansion into
the lower pressure gas beyond. In the far reaches of space, galaxies and even
whole clusters collide with one another, and the active nuclei of individual
galaxies spew out gas at velocities approaching the speed of light. All of these
events create shock waves, which are the major source of the hot plasma dis-
cussed in the previous chapter. In this chapter we will attempt to come to
grips with the basic physics of such shockwaves.

8.1 Why Do Shocks Exist?

Fluid dynamical motion is governed by the conservation of mass, momentum,
and energy. In addition, the Maxwell equations must also apply, and the flow
is also subject to an equation of state which relates the pressure to the other
thermodynamic variables; density and temperature. Let us first restrict our
attention to flows without magnetic fields, and to flows which are also radi-
ationless and thermodynamically reversible, so that the entropy is constant
throughout the flow. All such flows must satisfy the conservation of mass and
of momentum. The continuity equation which describes the conservation of
mass is written in its general vectorial form as:

∂ρ

∂t
+ ∇.(ρv) = 0. (8.1)

This simply states that the rate of change in the local density is determined
by the difference of the rate of flow of material into a given test volume, and
out of the same test volume, along the direction of motion. For a flow which
is restricted to one dimension, this simplifies to:
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dρ

dt
+
d

dx
(ρv) = 0. (8.2)

Further simplification occurs for steady flows, i.e. flows which are invariant
with respect to time. For these:

d

dx
(ρv) = 0. (8.3)

Turning now to the next conservation equation, that of momentum. In
vectorial form this is:

ρ

(
∂v
∂t

+ (v.∇)v
)

= F −∇P. (8.4)

This equation, the Eulers’s Force Equation states that the rate of change of
momentum of material within a test volume is equal to the flux of momentum
into that volume plus the forces acting upon this material. These are com-
posed of both external forces such as gravitational forces, etc., and internal
forces resulting from the pressure gradient. For a one dimensional flow which
is not subject to any external forces, this simplifies to:

ρ
dv

dt
+ ρv

dv

dx
= −dP

dx
. (8.5)

This equation simplifies still further for steady flows. Again, the time deriva-
tive vanishes, and since, from the continuity equation ρv is a constant, we
now obtain:

d

dx
(P + ρv2) = 0. (8.6)

Finally, to complete the description of a one dimensional, thermodynam-
ically reversible, steady flow, we require the (adiabatic) equation of state,

P = Kργ (8.7)

where K (a function of the entropy) is a constant, and where γ = CP /CV is
the ratio of the specific heats at constant pressure and at constant volume.
In a monatomic gas, γ = 5/3, is 7/5 for a diatomic molecular gas such as H2,
and is 4/3 for a polyatomic gas with many internal degrees of freedom.

Now, consider what happens when a small disturbance is propagated in
an (initially steady) one-dimensional flow. Assume that the fluid is initially
at rest, that the change in velocity is small and that the change in the other
flow variables ρ, P is small compared with their initial values ρ0, P0. In this
case we can neglect the second term on the left hand side of equation(8.5),
since it is the product of two small quantities. Likewise we can neglect the
second part of the expansion of d(ρv)/dx in the continuity equation (8.2), so
that:

dv

dx
= − 1

ρ0

dρ

dt
. (8.8)
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Furthermore, from the equation of state (8.7) we can write the pressure
change in terms of the density change:

dP =
(
γP0

ρ0

)
dρ. (8.9)

This gives, when subsituted into the linearised momentum equation (i.e. the
momentum equation obtained by retaining only the first order quantities),

dv

dt
= − 1

ρ0

(
γP0

ρ0

)
dρ

dx
. (8.10)

Differentiating equation (8.8) with respect to time, and equation (8.10) with
respect to distance, and subtracting the two resulting equations, we have
finally;

d2ρ

dt2
+
(
γP0

ρ0

)
d2ρ

dx2
= 0 (8.11)

This should be recognised as the wave equation. It implies that changes in
density are propagated in the fluid at a certain velocity (the speed of sound),
cs:

cs =
(
γP

ρ

)1/2

(8.12)

Thus, if a change is made at one place and time, such as a sudden local
increase or decrease in pressure, the effects can propagate relative to a given
fluid element at the sound speed.

As a consequence, analogous to probelems involving causality in special
relativity, we can define a time-like region, within which points are connected
causally through the propagation of sound waves. In this region, the local
fluid variables can change in response to the disturbance. There is also a
space-like region within which no change can occur; see figure (8.1). In x, y, t
-space, the time-like region is a cone and in x, y, z, t -space the time-like region
is an (expanding) sphere. As figure (8.1) shows, motion of the medium tips
the cone, so that if the velocity of the medium exceeds the speed of sound,
information about the change can never be carried backward in the spatial
(Eulerian) x -coordinate.

Now, suppose the change which is being propagated is an adiabatic com-
pression of the medium which increases the density from an initial density ρ1
to ρ2. Such an adiabatic compression obeys P = Kργ so that equation (8.12)
implies that, following the compression, the speed of sound in the medium is
increased in the ratio (ρ2/ρ1)

(γ−1)/2, or in the ratio (ρ2/ρ1)
1/3 in the case of

a monoatomic gas. As a result, the most compressed region has a tendency
to catch up with and to overrun the uncompressed region. This clearly has
the potential to create a discontinuity in the variables of the fluid flow.

To consider this effect in more detail, suppose that the object creating
the compression is a piston which has been smoothly accelerated from rest to
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Fig. 8.1. In a fluid, information about changes in conditions is carried by sound
waves from place to place. In a stationary medium (left), points in the time-like
cone are accessible to one another, while points in the space-like region are not. In
a moving medium (right) the time-like cone is tipped over. When the velocity of
the medium exceeds the speed of sound, information cannot propagate backwards
in the spatial (Eulerian) coordinate.

some high velocity, greater than the sound speed in the undisturbed medium
as in figure (8.2). Initially, sound waves can be carried forward at a speed
which is faster than the speed at which the piston is moving, and a smooth
gradient of density is therefore set up ahead of the piston. However, with time
and with the acceleration of the piston, the forward propagating sound waves
converge closer and closer until at a certain point they merge together. At this
point in the flow, a discontinuity in the flow variables (a shock) develops, and
the information which was carried by the separate sound waves is lost. This
information (in principle) would have allowed us to reconstruct the details
of the acceleration of the piston. Loss of information equates to an increase
of the entropy, and therefore the development of a shock is an irreversible
process.

If instead, the piston were to be withdrawn, the fluid variables remain
continuous throughout the flow. This is shown in figure (8.3). In this case the
particle trajectories diverge. Since the work done by the adiabatic expansion
of the gas causes it to cool, lowering the sound speed, the forward- and
backward- propagating soundwave trajectories tend to approach the particle
trajectories asymptotically. If the piston is withdrawn too rapidly, the internal



        

8.2 J-Shocks 149

x

t

C-C+

Fig. 8.2. A sketch of the particle trajectories and the paths of sound waves for a
smoothly accelerated piston. The increase of sound speed with density leads first to
a convergence of sound waves, and then to the development of a shock discontinuity
in the flow, in which information is lost and entropy is therefore increased. The shock
gradually thickens as more and more gas is swept up.

energy of the gas is depleted entirely. The maximum expansion velocity of
the gas is c1 [2/ (γ − 1)]1/2, where c1 is the speed of sound in the undisturbed
plasma. If the piston is withdrawn faster than this, a vacuum develops behind
the piston. The disturbance which results from an expansion such as depicted
in figure (8.3) is termed a rarefaction wave.

8.2 J-Shocks

The sketch presented in Figure (8.2) suggests that in the shock which develops
in a compression wave, the flow variables change in a discontinuous way. In
practice, this is effectively true when the plasma is highly ionised, since in this
case the ions and electrons are strongly coupled by the Coulomb interactions,
and the effective mean free path of any charged species is very short. Such
shocks are referred to as Jump-shocks (J-Shocks) to distinguish them from
shocks in which some of the flow variable change in a more continuous manner
over space, which are called Continuous or C-Shocks.

Across the shock, the equation of continuity and momentum conservation
apply. The momentum equation is very easily modified to take into account
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x

t

C-C+

Fig. 8.3. A schematic of the development of a rarefaction wave caused by the
withdrawal of a piston. Particle trajectories and the trajectories of soundwaves all
diverge, so in this case no discontinuities in the flow can develop.

an internal magnetic field. If the field lies along the direction of motion,
it plays no part in the hydrodynamic flow, since it unchanged by the flow
and also provides no pressure support to the flow. If, on the other hand, it
lies transverse to the flow, we must include the effects of the magnetic field
pressure, since the field can be either compressed or rarefied by the flow. If
the component of the magnetic field transverse to the direction of flow is B,
the momentum equation becomes:

d

dx
(P + ρv2 +

B2

8π
) = 0. (8.13)

If the plasma has a reasonable degree of ionisation so that its conductivity is
high, then it is reasonable to regard the magnetic field as being frozen into
the flow. In this case we can write an equation of magnetic flux conservation:

d

dx
(Bv) = 0. (8.14)

Across the shock, energy is also conserved. However, in the shock flow
as a whole, energy may be lost or gained by the emission or absorption of
radiation. In its general form, the law of Conservation of Energy requires
that the rate of change of energy of the gas within any volume must equate
to the net flux of energy through the surface which bounds that volume. Let
us write this in generalised vectorial form:
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∂

∂t

[
ρv2

2
+ ρU + ρΦ

]
+ ∇.

[
ρv
(
v2

2
+H + Φ

)]
+ ∇.F = 0 (8.15)

Here the terms in the time derivative represent the kinetic energy, the
internal energy, and the potential energy (usually gravitational).H = U+P/ρ
is the Enthalpy per unit mass (the Specific Enthalpy). This represents the
total amount of energy per unit mass available to the gas. The last term
represents the divergence of the radiative flux:

∇.F = −4πκJ + n2Λ (8.16)

where κ is the net absorption coefficient of the gas, and J is the intensity
of the local radiation field, so that the first of the two terms on the right
hand side of equation (8.16) represents the energy absorbed inside the test
volume from the radiation field. Λ is the cooling function defined in Section
(7.1), and n is the total particle density, so that the final term in the equation
represents the radiative losses from the test volume. (Here, we write these
losses as n2Λ rather than as nenΛ since in the un-ionised molecular or atomic
plasmas which we will also wish to consider, electron-particle collisions are
not the main radiative loss mechanism). For a one-dimensional, potential-
free, steady flow, the time derivatives vanish. Including a term to account
for the magnetic field energy stored in the magnetic field transverse to the
direction of flow, equations (8.15) and (8.16) reduce to:

d

dx

(
ρv3

2
+ (U + P )v +

B2v

4π

)
= 4πκJ − n2Λ (8.17)

8.2.1 The Rankine-Hugoniot Jump Conditions

The energy equation (8.17), together with the equation of continuity (8.3), the
momentum equation (8.13), the magnetic flux conservation equation (8.14),
and the equation of state (8.7), provide a complete description of all one-
dimensional, potential-free steady flows, and can be readily integrated to
provide relationships between any two regions of the flow. Consider an “ini-
tial” point in the flow with hydrodynamical variables v0, P0, ρ0 and magnetic
field B0 and a later point in the flow where these have changed to v1, P1, ρ1
and B1. If we eliminate the internal energy term from equation (8.17), using
the equation of state; U = P/(γ−1) we can then write the Rankine-Hugoniot
Jump conditions in terms of the difference in the fluid variables evaluated at
the two points (0 and 1; respectively:

[ρv]10 = 0

[Bv]10 = 0[
P + ρv2 +

B2

8π

]1

0

= 0 (8.18)

[
ρv3

2
+

γ

γ − 1
Pv +

B2v

4π
+ F

]1

0

= 0
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Provided that the initial conditions are specified, and the energy loss term
is calculable, these can then be used to derive the flow variables and the
magnetic field at any other point in the flow. Because we are dealing with
steady flows, it should be clearly understood that for these conditions to
apply, any flow discontinuities (shocks) must be stationary in the frame of
reference in which the jump conditions are evaluated, since otherwise we
would have to re-introduce time derivatives.

8.2.2 Radiationless Shocks

For simplicity, let us consider for the moment only flows without magnetic
fields. In a radiation-free change, such as will occur if the flow variables
change suddenly, as in a shock, [F ]10 = 0. With these approximations, the
Rankine-Hugoniot jump conditions simplify still more to:

[ρv]10 = 0[
P + ρv2

]1
0

= 0 (8.19)[
v2

2
+

γ

γ − 1
P

ρ

]1

0

= 0

Since ρ1 = ρ1v0/v1 from the continuity condition, then the momentum con-
dition yields P1 = P0 + ρ0v0 (v0 + v1). Substituting both of these into the
energy condition and collecting terms:(

γ + 1
γ − 1

)
v21 −

(
2γ
γ − 1

)(
P0 + ρ0v20
ρ0v0

)
v1 +

(
2γ
γ − 1

P0

ρ0
+ v20

)
= 0 (8.20)

This simple quadratic equation can be further simplified by eliminating P0

in favour of the sound speed c.f. equation (8.12), and dividing throughout by
v20 to make the equation dimensionless :

(
γ + 1
γ − 1

)(
v1
v0

)2

−
(

2
γ − 1

)([
c0
v0

]2

+ γ

)(
v1
v0

)
+

(
2

γ − 1

[
c0
v0

]2

+ 1

)
= 0

(8.21)
In fluid dynamics the ratio of the flow speed to the sound speed is defined
to be the Mach Number of the flow, M, so that equation (8.21) is further
simplified to:(
γ + 1
γ − 1

)(
v1
v0

)2

−
(

2
γ − 1

)(
M−2 + γ

)(v1
v0

)
+
(

2M−2

γ − 1
+ 1

)
= 0. (8.22)

For a sufficiently fast flow, the M−2 terms in this equation can be neglected,
and therefore in a monatomic gas with γ = 5/3 we have the solutions:

v1 = v0 : v1 = v0/4
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The first of these is the trivial solution; nothing happens in the flow. The
second solution is the more interesting strong shock solution, and implies that
the monatomic gas can only be compressed at most by a factor of four in its
passage through the shock. The strong shock limit is essentially the condition
that the gas pressure in the pre-shock gas be negligible compared with the
ram pressure. Since the shock is stationary in the frame of reference we are
using, v0 can be equated to the shock velocity, v0 ≡ vs. The full solution for
the post-shock flow variables in this case, the strong shock limit, is therefore:

v1 = vs/4
ρ1 = 4ρ0 (8.23)
P1 = 3ρ0v2s/4.

The kinetic energy in the flow is decreased by the passage through the
shock. Energy is conserved, so that the decrease in flow energy must be
matched by an increase in thermal energy of the plasma. The specific internal
energy of the post-shock gas is:

εint =
3P1

2ρ1
=

9
32
v2s (8.24)

Interestingly enough, this is the same as the (rest frame) kinetic energy of
the post-shock gas,

εkin =
1
2

(3vs/4)2 =
9
32
v2s (8.25)

Since the equation of state can be written P/ρ = kT/µmH we can obtain
the post-shock temperature in the strong shock limit from equation (8.23 ):

T1 =
3µmHv

2
s

16k
(8.26)

∼ 1.38x105v2100 : (fully ionised plasma)
∼ 2.90x105v2100 : (neutral atomic plasma)
∼ 3.04x106v2100 : (atomic oxygen plasma)

Here, numerical values have been given for three paricular cases normalised
to a shock velocity, v100, of 100 km s−1. The first and second cases apply
to ionised and atomic plasmas with solar composition, respectively, and the
third to an atomic oxygen plasma such as we might find in a young supernova
remnant of a massive star.

As a result of the vastly increased temperature of the post-shock plasma,
the velocity of the post-shock flow is comfortably sub-sonic. From equations
(8.23) and (8.12), we have M1 = 5−1/2 in a monatomic plasma. Because
the flow is quite subsonic, its ram pressure is relatively unimportant, so that
isobaric cooling represents a good approximation to the subsequent flow.

The presence of a magnetic field does not influence the structure of the
shock front. The magnetic pressure is increased at most by a factor of sixteen
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across a strong shock, but the gas pressure can increase by an arbitarily large
value, depending on the velocity of the shock.

8.2.3 Isothermal Shocks

As soon the gas is heated by the shock, it begins to radiate and cool, so that
the full Rankine-Hugoniot conditions must be used to solve for the subse-
quent flow parameters. However, a useful limiting case occurs when the gas
is fully cooled and has returned to its original temperature. This occurs, for
example, when the initial and final temperatures are maintained by cosmic
ray heating or by photoionisation heating. Such a fully radiative shock is
called an isothermal shock. In this case the sound speed in the post-shock
gas is the same as in the pre-shock gas, and we can use this condition in the
place of the energy conservation condition:

[ρv]10 = 0[
P + ρv2

]1
0

= 0 (8.27)[
P

ρ

]1

0

= 0

The equation of state for an isothermal plasma is P = constρ, so that ef-
fectively, γ = 1 at the two control points in the pre-shock and post-shock
plasma.The speed of sound is c2s = P/ρ. Solving equation(8.27) in terms of
the Mach number of the pre-shock flow provides the quadratic equation:(

v1
vs

)2

−
(
M−2 + 1

)(v1
vs

)
+ M−2 = 0. (8.28)

which has the solutions:

v1 = vs : v1 = M−2vs (8.29)

Again, as in the radiationless shock case, we have the trivial solution and the
shock solution. From the shock solution, and using the equation of continuity,
it is clear that the maximum compression in an isothermal shock is equal to
the square of the Mach number of the shock. The total energy radiated in
the shock is given by the energy equation (8.17), which shows that the total
shock luminosity per unit area, in the absence of a magnetic field is:

.

E=
ρ0v

3
s

2
(
1 −M−2

)
(8.30)

this equation is particularly useful in astrophysical applications to relate the
total shock luminosity to the other shock parameters.

When there is a (transverse) magnetic field present in the pre-shock
medium, the pressure due to the transverse component of the magnetic field
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is likely to come to dominate the gas pressure at some point in the post-
shock plasma, since the magnetic pressure increases as the square of the
density, but, according to equation (8.23), the gas pressure is limited by the
ram pressure of the material entering the shock. The implication of this is
that, at a certain point in the cooling plasma, the shock switches from being
gas-pressure supported to being supported by the magnetic pressure. If the
magnetic field pressure in the post-shock gas dominates the gas pressure and
the ram-pressure terms, and if the gas and magnetic pressure in the pre-shock
gas are negligible compared with the ram pressure (the fast shock limit) then,
from the momentum equation, we have:

B1 = 8πρ0v2s . (8.31)

Furthermore, if the magnetic field is also frozen in the flow then equating the
pre-shock ram pressure to the post-shock transverse magnetic pressure, we
obtain the maximum compression factor attainable in the shock:

ρ1
ρ0

= 21/2MA (8.32)

where the Alfvén Mach Number, MA, is defined as the ratio of the shock
velocity to the Alfvén velocity defined in equation (7.44); v2A = B2/4πρ.
In fact, the jump conditions can be readily solved for an arbitary ratio of
magnetic pressure to gas pressure in pre-shock gas (see Draine & McKee,
1993; referenced in the notes) to give the general formula for the compression
factor in an isothermal shock:

ρ1
ρ0

= 4
{

2M−2 + M−2
A +

[(
2M−2 + M−2

A

)2
+ 8M−2

A

]1/2}−1

(8.33)

In a fully-ionised interstellar medium, the Alfvén velocity in the pre-shock
gas is likely (although not certainly) to be of order of the sound speed, cII .
This is because turbulence in the ISM tends to wind up any pre-existing field.
Suppose that magnetic pressure initially provided no pressure support, then
the turbulence is not damped by the presence of the magnetic field. However,
as the magnetic field increases (at a given density), the magnetic pressure
and the magnetic energy both increase. Eventually, we reach an equipartition
value for the magnetic field, where the turbulence is dissipated through Alfvén
waves making the medium “magnetically stiff”. For a fully ionised plasma
of solar abundances, the condition of equipartion of energy densities in the
thermal and magnetic components gives 〈B〉2 /4π ∼ 2.3nHkT0 where 〈B〉
is the strength of the local magnetic field, and nH is the hydrogen particle
density. This is effectively the same as the condition vA ∼ cII , which gives,
from equations (7.43) and (7.44) 〈B〉2 /4π ∼ 5nHkT0/3. If these conditions
are assumed to hold then the transverse field is related to the pre-shock
density by B2

0/4π ∼ n0kT0, approximately.
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8.3 The Drivers of Interstellar Shocks

As we have seen, an interstellar shock requires a compressive piston. Such
pistons arise in nature in three ways; from supernova explosions which deposit
a large quantity of energetic plasma at a single point in space and time, from
radiatively-driven stellar winds originating in hot stellar atmospheres, and
from energetic outflows from newly born low mass stars or from the nuclei of
active galaxies (where the outflows are relativistic).

Here we will consider the simplified hydrodynamics of each of these three
classes of object. This treatment draws heavily on Dyson & Williams (1997),
to which book the interested reader is directed for further information. For
observational aspects we strongly recommend the book by Lozinskaya (1992)
referred to in the notes to this chapter.

8.3.1 Supernova Explosions

A supernova explosion deposits a kinetic energy typically ∼ 2 × 1051 ergs
into the interstellar medium. In the case of massive stars, the explosion is
driven by the outward pressure exerted by escaping neutrinos produced in the
collapse of the stellar core to a neutron star or a black hole. This is remarkable
when one considers that the opacity of ordinary matter to neutrinos is so
low that they can pass through a thickness of several light years of lead
before being stopped! In the case of low mass stars ( M < 12M� initially,
and M ∼ 1.4M� at the time of the explosion), the explosion results from
an explosive thermonuclear burning of the stellar material under initially
electron-degenerate conditions, which results in much of the star being burnt
to a state of nuclear statistical equilibrium, which is dominated by the iron-
peak elements. For a detailed discussion of these processes, see Arnett (1996).

Initially, in the fireball stage, the ejected material cools by adiabatic ex-
pansion following emergence of the shock at the stellar surface, and the bright
optical display is driven by the diffusion of radiation from the core produced
by the radioactive β−decay sequence 56Ni → 56Co → 56Fe. As the stored
radioactive energy, the ionised fireball recombines until finally it becomes
optically-thin to the escape of radiation. At this time, it has become clumpy
through the action of thermal instabilities and incomplete mixing, and, be-
cause the internal pressure is nearly equalised, moves out with a velocity
which conforms closely to the law v (r) ∝ r.

When the supernova ejecta first interacts with the surrounding interstellar
gas with density ρo, at radius R, it initially drives a shock at a velocity
vs determined by the fastest moving ejecta with density ρ (R, t) and with
velocity v (R, t); ρov2s = ρ (R, t) v2 (R, t). Very shortly thereafter however,
the blast wave is slowed down as interstellar material is swept into a shell.
At this point a reverse shock is propagated back into the freely expanding
ejecta, converting the kinetic energy of expansion into thermal energy. The
hot shocked ejecta and the hot shocked interstellar material are separated by
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a. Supernova Remnant: pre Sedov-Taylor Phase b. Supernova Remnant: Sedov-Taylor Phase

c. Supernova Remnant: post Sedov-Taylor Phase d. Stellar Wind Bubble
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Fig. 8.4. The schematic hydrodynamic structure of a supernova remnant in the
various evolutionary phases described in the text, and (d), of a stellar wind-blown
bubble.

a contact discontinuity. The schematic hydrodynamic structure in this phase,
and in subsequent phases is illustrated in Figure (8.4).

Usually the gas on either side of the contact discontinuity has different
temperatures and densities, although the thermal pressures are the same. If
the shocked stellar ejecta are cooler and denser than the swept-up interstellar
gas, the contact discontinuity is Rayleigh-Taylor unstable, since the velocity
of expansion is slowing with time. This configuration will produce mixing
across the contact discontinuity.
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Consider the case that the ejecta are not clumpy and the interstellar gas
has a density ρ0. When the mass of interstellar gas that has been swept
up is quite a bit larger than the mass ejected, the reverse shock has swept
back down to the explosion centre and all the ejecta have been shocked to
high temperature. This marks the start of Sedov-Taylor phase of evolution. In
this phase, we can regard the expanding bubble of hot plasma as suppling the
piston to drive the blast wave outward. The specific internal (thermal) and
the kinetic energies behind the strong adiabatic blast-wave shock at radius
R are given by equations (8.24) and (8.25) respectively;

εint = εkin =
9
32

.

R
2

(8.34)

where vs = dR/dt =
.

R. Since the blast wave is slowing down with time, the
specific energy of the internal gas varies with radius within the bubble of hot
gas. However, it turns out that this quantity, and the other thermodynamic
and flow variables, vary in a self-similar way with respect to the dimensionless
radial space variable r/R. The total energy in the bubble of hot gas, equal to
the energy injected by the supernova explosion, E0 since the radiative losses
are negligible, is therefore given by:

E0 = φ
4π
3
R3ρ0 (εint + εkin)

= φ
3π
4
ρ0R

3
.

R
2

(8.35)

where φ is a structure parameter, a numerical factor of order unity which
accounts for the distribution of specific energy within the bubble. Equation
(8.35) represents the equation of motion of the bubble. When t→ 0, R→ 0,
so that this equation has the solution:

R =
(

25
3πφ

)1/5(
E0

ρ0

)1/5

t2/5 (8.36)

and the instantaneous blast-wave velocity in the Sedov - Taylor phase is
therefore:

vs =
2
5

(
25

3πφ

)1/5(
E0

ρ0

)1/5

t−3/5 (8.37)

The Sedov-Taylor phase is terminated when radiative losses behind the
outward moving blast wave start to become important and a thin shell of
cooled gas forms near this outer boundary. This phase sets in when the cooling
timescale of the shocked plasma at the blast wave, found from equations (7.8),
(8.37) and (8.26) becomes shorter than the dynamical expansion time, τexp =
R/vs = 5t/2; from equations (8.36) and (8.37). From this point onward,
the PdV work done on the interstellar gas is subsequently radiated away,
decreasing the total energy content of the hot bubble. The energy equation
is therefore:
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.

E= −P4πR2
.

R (8.38)

and the adiabatic equation of state gives:

E =
4π

3 (γ − 1)
R3P (8.39)

where E is the instantaneous energy content of the bubble. When combined
with the equations of mass and momentum conservation:

M =
4π
3
R3ρ0 (8.40)

d(M
.

R)
dt

= 4πR2P (8.41)

these equations provide a solution for the intermediate evolution of the shell;
R ∝ t2/7 (McKee & Ostriker, 1977).

In the late phase of evolution, the stored thermal energy has been en-
tirely radiated away, and only the momentum of the dense shell keeps the
remnant expanding into the interstellar medium. This momentum conserv-
ing snow-plough phase of evolution was first considered by Oort (1946). The
equation of conservation of momentum is, ignoring the momentum carried
by the supernova ejecta at late times:

M0v0 =
4π
3
R3ρ0

.

R (8.42)

where M0 is the mass of the ejecta, thrown out in the supernova explosion
at a mean velocity v0. This equation has the solution:

R =
(

3M0v0
πρ0

)1/4

t1/4 (8.43)

Towards the end of this phase, the expansion velocity becomes sonic or sub-
sonic with respect to the interstellar sonic or magnetosonic speed, and the re-
maining energy of the ancient supernova remnant is finally dissipated through
incompressible turbulent cascade.

In summary, evolving in a constant density medium, the supernova ex-
pansion velocity is constantly slowed by its interaction with the surrounding
medium, as we would expect intuitively. Initially, R ∝ t, but later R ∝ t3/5,
then R ∝ t2/7, and finally R ∝ t1/4. The middle two phases correspond to the
phases where energetic radiative or partially-radiative shock waves are seen,
first in the X-rays, but later at optical wavelengths as the stored internal
energy is drained away in doing PdV work on the interstellar gas.

If the ejecta or the interstellar medium is cloudy, the evolution is more
complex. In the case of cloudy ejecta, the onset of the Sedov-Taylor phase is
blurred, as first the intercloud medium is thermalised, and then the clouds
are thermalised over an extended period of time.
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In the case of a cloudy interstellar medium, the blast wave sweeps over and
compresses the denser regions, which then evaporate slowly into the shock-
heated low density post-shock medium through the processes of turbulent
shredding, mixing and thermal conduction (Cowie & McKee, 1977; McKee
& Cowie, 1977); see Sections (7.3) and (7.4 ).

8.3.2 Stellar Wind Bubbles

All hot stars, be they either young and massive, or the old low mass objects
at the cores of planetary nebulae, produce fast winds driven by radiation
pressure. The physics of such winds is now well understood eg Sellmaier
et al. (1993). In brief, radiation from the central star is scattered by the
atmosphere, so that the momentum carried in the radiation field, L∗/c, is
transferred to the atmospheric gas, to produce an outflowing wind. If vw is
the terminal velocity attained by the wind, and Ṁw its mass flux (typically
of order 10−5 M� yr−1 for massive stars and 10−8 M� yr−1 for the central
stars of planetary nebulae), then:

Ṁwvw =
ηL∗
c

(8.44)

Here, the factor η accounts for the fact that each photon may be scattered
many times before it escapes, enhancing the total amount of momentum that
can be deposited. This process is limited, since the wind cannot carry away
more energy than is produced by the star:

1
2
Ṁwv

2
w < L∗ (8.45)

Thus, from equations (8.44) and (8.45), η < 2c/vw. In stars, the full appli-
cation of the radiatively-driven wind theory shows that η ∼ 3 − 4, typically.
In such radiatively-driven winds, the outflow velocity is a factor 1 <∼ ε <∼ 3
times the escape velocity at the base of the outflow:

vw = ε

(
GM∗
r∗

)1/2

∼ 1000 − 4000 km.s−1 (8.46)

This wind flows out in free expansion until it is affected by the interaction
with the surrounding interstellar medium with density ρ0. At this point it
passes through an adiabatic shock, at an inner radius Rin, analogous to the
reverse shock in the early supernova evolution. It is thermalised and feeds into
a thick and hot pad of gas. In essence, it is this hot gas which is providing
the piston to inflate the stellar wind bubble; see Figure(8.4d). The pressure
P throughout the region between the inner shock and the outer shock can be
taken as approximately constant, since the hot gas has a sound speed of order
500 km s−1, and therefore the sound-crossing timescale in the hot plasma is
much shorter than the dynamical expansion timescale of the bubble, which
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has an expansion velocity in the range 20-100 km s−1, typically. The pressure
in the hot plasma is given by the rate of change of momentum per unit area
of the stellar wind across the inner shock:

P =
3Ṁwvw
16πR2

in

(8.47)

The relatively low expansion velocity of the bubble will ensure that the
outer shock is radiative, and isothermal at the temperature (∼ 10000 K) of
the pre-shock gas, which is kept ionised by the photons from the central star.
We can therefore assume that the shocked interstellar gas forms a thin shell
at the outer radius of the bubble. The equation of conservation of momentum
is therefore:

d

dt

(
4
3π
ρ0R

3
.

R

)
= 4πR2P (8.48)

or, equivalently,
P

ρ0
=

.

R
2

+
1
3

..

R R (8.49)

Assume that the hot gas occupies a constant fraction φ = 1 − (Rin/R)3

of the total volume. The energy input by the stellar wind,
.

Ew= Ṁwv
2
w/2 is

equal to the sum of the rate of change of thermal energy in the hot gas and
the rate of PdV work it does on the interstellar gas. This gives the energy
conservation equation;

.

Ew=
d

dt
(
3P
2

3πφ
4
R3) + P

d

dt

(
3π
4
R3

)
(8.50)

The variable of pressure can then be eliminated from (8.49) and (8.50) to
give the equation of motion of the shell. If we assume that the solution of
this is a power law:

R = Θtβ (8.51)

which has the correct boundary conditions, R → 0 as t → 0, then it follows
by substituting for R and its derivatives with repect to time into the equation
of motion that β = 3/5 and that:

Θ =
(

125
154πφ

)1/5
( .

Ew

ρ0

)1/5

(8.52)

so that

R =
(

125
154πφ

)1/5
( .

Ew

ρ0

)1/5

t3/5 (8.53)

This solution was worked out by Castor, McCray & Weaver (1975) and
Weaveret al. (1977). For further reading and for much more detail on the
observation and the theory of stellar wind-blown bubbles, see Lozinskaya
(1992).
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8.3.3 Galactic Jet-Driven Bubbles

Advanced Section
In active galaxies, an accretion disk of gas forms around the central mas-

sive black hole. Some of this material, accreted from the innermost stable
orbit, and falls through the event horizon while providing the energy for the
luminous display. A small fraction of the inflowing matter is ejected in the
form of a pair of well-collimated relativistic jets of material shot out in the
polar directions. These jets may carry a mechanical energy flux which is an
appreciable fraction (∼ 30%) of the total luminosity. This material moves out,
disturbed only by relatively weak internal shocks, until it interacts with the
surrounding galactic (or intergalactic) medium. At this point, the jet flow is
disrupted as it passes through a strong termination shock and the resultant
hot shocked gas flows away from the shocked region, mixing in some of the
shocked and swept-up galactic medium as it does so. However, we know from
the observational and theoretical studies of jets on the kiloparsec scale, that
these jets jitter about inside the cavity they have produced in the “dentist’s
drill” fashion first envisaged by Scheuer (1982). As a result, over time, the jet
forms a pair of elongated bubbles of shocked and relativistic plasma which
form a cocoon about the jets, and which provide the pressure to drive the
shocks into the surrounding galactic medium.

The jet and its cocoon of shocked gas may display very complex hydro-
dynamics, depending on whether the jet is denser, or less dense than the
surrounding interstellar gas, and upon whether the jet has a constant or
variable energy flux. The system of shocks that may be set up in a generic
jet (either from an active galaxy or from a young low-mass star) is shown in
Figure (8.5).

As was shown by Begelman (1996), and Bicknell, Dopita & O’Dea (1997)
the main factors which determine the evolution of the jet bubble are the jet
parameters; its energy flux,

.

EJ∼ 1043 − 1045 ergs s−1, and the relativistic
β = v/c ∼ 0.5 − 1. Other parameters are the average pressure in the cocoon
P ∼ 10−6 dynes cm−2, and the density of the surrounding medium (0.1−100
cm−3). Since in general this varies as with distance from the black hole, we
write the density as ρ (r). Towards the head of the cocoon, (in the x direction)
the mean pressure is higher, because this is the area, A, over which the
termination shock is jittering. Here we can take the pressure to be a factor ζ
times the average lobe pressure where ζ ≈ 2 − 10.

With these definitions, the approximate equations of motion for the ad-
vance of the tip of the cocoon, and for its sideways expansion are from Begel-
man (1996):

dx

dt
≈
(
β

.

EJ

ρ (x) cA

)1/2

≈ ζ1/2
(
P

ρ (x)

)1/2

(8.54)
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Fig. 8.5. The complex hydrodynamics of a jet powered by an active galactic nu-
cleus, or a young star. The shocks interior to the jet are moving into a medium
already in outflow, and may be oblique. As a result they tend to be weak, and show
large proper motions. The termination shock which disrupts the jet is strong, and
moves out slowly. The cocoon is a mixture of swept-up interstellar gas and of jet
gas which has back-filled from the termination shock region.

dr

dt
≈
(
P

ρ (r)

)1/2

(8.55)

and, with V as the cocoon volume, the energy equation for the cocoon is:
.
.

EJ= E + P
.

V (8.56)

where E = PV/ (γ − 1) = 3PV (since we are dealing with a predominantly
relativistic plasma) and V ∼ 2πxr2/3. If we assume a power-law distribution
of the surrounding galactic medium; ρ (r) = ρ0(r/r0)−δ, and the boundary
condition x→ 0 and r → 0 as t→ 0 then these equations have the solution:

x = r0ξ
1/(5−δ) (8.57)

P = P0 ξ
(2−δ)/(5−δ) (8.58)

where:

ξ (t) =
(5 − δ)3 ζ2
18π(8 − δ)

( .

EJ t
3

ρ0r50

)
(8.59)

P0(t) =
9

ζ (5 − δ)2 ρ0
(r0
t

)2

(8.60)
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For δ = 2 the bubble expands at a constant velocity. Expressing ρ0 and
FE in terms of ξ and P0 gives:

.

EJ =
2π(8 − δ)
(5 − δ)

P0r
3
0

t
ξ (8.61)

ρ0 =
ζ(5 − δ)2

9
P0

(r0
t

)−2

(8.62)

Typical dynamical ages are ∼ 106 − 107yr .
The above solution implies that the shock velocity at the sides of the

cocoon is:

vs = V0

(
r

r0

) (δ−2)
3

(8.63)

where the reference velocity of expansion,

V0 =
3ζ1/6

[18(8 − δ)π]1/3

( .

EJ

ρor20

)1/3

(8.64)

is of order (1 − 2) × 103 km s−1.
Finally, the work done by the expanding cocoon on the ambient medium

is:
P
dV

dt
=

3
8 − δ

.

EJ (8.65)

For δ = 2 this amounts to 0.5
.

EJ . If the cocoon is surrounded by radiative
shocks this will be equal to the total shock luminosity.

8.4 The Radiative Properties of J-shocks

8.4.1 Radiation Properties of Shock Fronts

Advanced Topic
Thus far, we have considered a shock as a discontinuous change in the flow

variables, accompanied by a discontinuous change in the Maxwell-Boltzmann
distributions of the electrons, neutrals and ions. However, in real shocks, even
those that are fully ionised, there will be a very small, but finite, width to
the shock front, determined by the stopping timescale of the fast ions, and
the equilibration timescale between the ions and the electrons. Within this
narrow zone, in general, Te = Tion. When the plasma is only partly ionised,
a problem first considered by Chevalier & Raymond (1978), the situation is
even more complex. In this case, the shock occurs first in the ions.
For an ion of mass mi and charge Ze the shock thickness is only of order
of the ion gyroradius, r = micvs/ZeB, which gives an effective ion stopping
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timescale of mic/ZeB, or a few minutes. These shocked ions may ionise neu-
tral species directly, or transfer their thermal energy to the electrons, and
which in turn collisionally ionise the neutrals. In addition, charge exchange
reactions may also be important, allowing the neutrals to be thermalised
more rapidly. Finally, streaming instabilities can be important, producing
more rapid mixing of the different species.

It should be evident from this brief overview that the details of the shock
front stucture can become exceedingly complex. Furthermore, not only can
we have Te = Tion = Tneut, but also the distribution functions can become
sufficiently unlike a Maxwell-Boltzmann distribution that even the concept of
a local temperature applied to a particular species in the plasma is no longer
valid.

Let us now consider the characteristic timescales for the various pro-
cesses. The electrons will lose their streaming motion and become fully ther-
malised at the post-shock temperature on the electron-electron equipartition
timescale, τeeq. These timescales have already been discussed in section (7.3.1)
in the context of electron conduction, with the result that:

τeeq =
3m1/2

e (kTe)
3/2

4π1/2nee4 lnΛcoul
∼ 0.065v3100n

−1
e years (8.66)

where, to provide a quantitative order of magnitude estimate for the timescale,
we have scaled the results to a 50% ionised pre-shock medium, and a shock
velocity, v100 given in units of 100 kms−1. In such a meduim, the cooling
timescale of the plasma in the post-shock region is a few hundred years, so it
is clear that the concept of a unique local electron temperature remains valid
throughout the shock.

The corresponding timescale for the electron-proton collisions is rather
similar, since the volume density of protons is similar to that of the electrons,
and the timescale scales as τ ∝ M2vcoll where M is the reduced mass of
the colliding system and vcoll is the characteristic velocity of the collision
(see section (7.3.1) for the justification of this). The reduced mass M =
m1m2/(m1 +m2) of the system of colliding particles is now M ∼ me rather
than M = me/2, but the characteristic velocity of the collisions is halved,
approximately, so that we have:

τepeq ∼ 2τeeq (8.67)

where τepeq is the electron-proton equipartition timescale. In a similar way,
we may scale the proton-proton collision timescale. Here the reduced mass is
M = mp/2. However in this case, since the shock occurs first in the ions, the
initial proton-proton collision timescale, τppcoll, is governed by the streaming
motions of the shocked and unshocked ionic populations; vcoll ∼ 3vs/4, so
that the time over which the streaming motions are lost through proton-
proton collisions is (approximately):
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τppcoll ∼ (npσvcoll)
−1

∼
33m2

pv
3
s

44πnpe4
∼ 53v3100n

−1
p years (8.68)

this is much longer than the electron-proton collision timescale. What occurs
instead is that the shocked protons provide thermal energy to the electrons,
which then collide with the streaming protons. Because the electrons are
lighter the momentum exchange per collision is lower, but the collision rate
is higher thanks to the larger thermal velocity of the electrons. The electrons
are therefore capable of removing the energy of the streaming motions on
a timescale that is shorter than the proton-proton collisional timescale by
a factor of (me/mp)

1/2, approximately, so that the effective electron-proton
collisional timescale is:

τepcoll ∼ 1.2v3100n
−1
p years (8.69)

Electron-proton collisions thereafter serve to thermalise the proton energy
distribution function, on a timescale τepeq, which is short compared with
τepcoll.

What about the neutral atomic species? Without Coulomb interactions,
the timescale of interaction can be very long, and the mean free path is
given by the gas kinetic theory. For example, heavy atoms such as helium
are initially unaffected by the shock, and arrive in the post-shock region
thermally cold, but at a streaming velocity, vcoll, which is 3/4 of the shock
velocity. In principle then, thermalisation could be accomplished through
helium-hydrogen collisions on a timescale of roughly:

τH,He ∼ (4nHσvcoll)
−1 =

4m1/2
H

31/2πa2
o (kTs)

1/2
nH

∼ 170v−1/2
100 n−1

H years (8.70)

where nH is the density of hydrogen atoms in the pre-shock gas. This
timescale is much longer than the characteristic timescale of charge exchange
reactions at high temperature; τce = (RcenA,i)

−1which is typically of order
1 to 10 years in the example we are using. Thus charge exchange is more
effective in producing thermalisation of the neutral stream. Even if charge
exchange is ineffective, then the ionisation by electron impact, which occurs
on a timescale τcoll = (Rcollne)

−1 provides for much more rapid ionisation of
the stream of neutrals than the time over which the atom-atom collisions op-
erate. In this way, both collisional ionisation and charge exchange processes
serve to ionise the fast-moving atomic stream, which is then thermalised to
the post-shock temperature by the strong Coulomb interactions.

Now let us consider how all of this affects the transient spectrum produced
in the immediate post-shock region as the ionic and electronic components
relax towards local equipartition of energy. In the shock front, itself, equation
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Fig. 8.6. Schematic structure of a fast shock front moving into a partially-ionised
medium. Here D is the distance from the ionic shock. Ions and electrons come into
equilibrium with one another through their Coulomb interactions at the same time
as the plasma is becoming more highly ionised by collisional ionisations caused by
both electron and ion impact.

(8.26) shows that the ions of different atomic weight may have quite differ-
ent thermal temperatures. This equation also shows that, in principle, the
electrons may have a temperature which is only (me/mp) of the post-shock
proton temperature. In practice, plasma instabilities will heat the electron
gas to a higher temperature than this, but by an amount which is currently
quite uncertain. As a consequence of the difference of electron and ion tem-
peratures, excitation of electronic states in ions may occur much more readily
by proton impact or alpha-particle impact rather than by electron impact,
as is usually the case (Laming et al. 1996). Ionisation to progressively higher
states occurs at a rate limited by the collisional ionisation timescale at the
local temperatures. Schematically, therefore, the structure of the resulting
shock front is as shown in Fig (8.6).

The emission spectrum of hydrogen is particularly interesting. When the
electron temperature is lower than about 105K, the rate of the resonance
charge exhange reaction, H0 +H+ ⇀↽ H+ +H0 exceeds the collisional ion-
isation rate. Thus, we obtain two populations of neutral hydrogen, one of
which belongs to the pre-shock stream, and is thermally cold, and the other
which has been thermalised at the post-shock temperature. As a consequence,
collisional excitation – which proceeds more rapidly than collisional ionisa-



      

168 8. Interstellar Shocks

tion – produces hydrogen emission with both a narrow (pre-shock) profile,
and an underlying broad (post-shock) emission component. Since the ratio of
the charge exchange reaction rare to the collisional ionisation and excitation
rates is a strong function of temperature, the ratio of the two components
can be used to investigate the post-shock temperature structure. In addition,
the width of the broad component provides a direct estimate of the shock
velocity. This, combined with proper-motion studies provides a direct means
of measuring the distance of young galactic supernova remnants.

Consider now the heavy ions. Since the forbidden lines have an emissivity
which scales as T−1/2 exp[−∆E/kT ], then at high temperatures they become
very weak relative to the Balmer lines. Such Balmer-dominated shocks have
been observed in young supernova remnants both in our Galaxy (i.e. SN1006,
Schweitzer & Lasker, 1978 or the Cygnus Loop, Hester, Raymond & Danielson
1986 and references therein) and in the LMC (Tuohy et al. 1982). However,
these high temperatures, combined with a relatively low ionisation state also
ensures that the UV resonance lines are strongly excited. In the far UV,
excitation of C iv λ1550Å, Nv λ1240,46Å and Ovi λ1032,38Å by fast ion
impact can be more important than excitation by electrons. However, for
some species such as He ii λ1640Å the reverse is true, giving an observational
means to probe the degree of equipartition between the electrons and the
ions.

Finally, when electron temperatures are high enough to provide X-ray
emission, the long ionisation timescales associated with the hydrogen-like and
helium-like atomic species ensures that collisional excitation of the Lyman-
like resonance lines of these species become much stronger than would be
expected in an equilibrium model. Examples of such lines include the Ovii
lines at 570-700 eV, the Oviii lines at 650-850 eV, the Ne ix lines at about
900 eV and the Nex lines at about 1.0 keV. These lines can be used to probe
the age of the shock (i.e. Winkler, Bromley & Canizares, 1983).

8.4.2 The Structure of Radiative J-Shocks

The structure and the emission spectrum of radiative J-shocks of moder-
ate velocity (<∼ 200 kms−1) and in plasma of solar composition is now well
understood following the work of Cox (1972), Dopita (1976,77), Raymond
(1979) and Shull & McKee (1979). Following the shock itself, in the equipar-
tition zone, the various components of the plasma relax towards equipartion
of energy so that a unique post-shock temperature can be defined for all the
plasma elements. The timescale for this is usually short with respect to any
of the other timescales relevant to the plasma.

In the ionisation zone which follows, the plasma ionisation state increases
rapidly, since pre-shock gas in an initially low ionisation state has been
plunged suddenly into a very hot substrate. The timescale governing this
process is the collisional ionisation timescale given (approximately) by equa-
tion (7.13); (see also figure 7.3). However, for shocks velocities slower than a
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few hundred km s−1 the plasma does not have time to reach collisional ioni-
sation equilibrium (CIE) before radiative losses become important. Radiative
losses behind the shock will become dominant within the cooling timescale
given by equation (7.8).

In the next zone, the cooling zone, the plasma cools approximately isobar-
ically, the density increases, and the cooling timescale becomes shorter and
shorter. As a consequence the ionisation state of the gas is governed primar-
ily by the recombination timescales of the various ions, so that the degree of
ionisation is higher than would be expected if CIE were to apply.

As the hot plasma cools, it is also producing EUV photons which are
capable of ionising hydrogen. If hot enough, it can also produce soft thermal
X-rays. When the temperature has fallen to about 104 K, the opacity due
to atomic hydrogen increases rapidly, and the plasma begins to absorb the
EUV photons from the hotter post-shock gas. As a consequence, we find a
photoionised zone where, for a while, the plasma is almost in photoionisation
equilibrium. In this region, the electron temperature is about 5000 to 8000
K, and hydrogen is typically about half ionised. Because of the compression
produced through the shock, the ratio of the number of photons passing into
this region per hydrogen atom is usully quite low for shocks slower than about
200 km s−1, so that the photoionised region is weak and not very spatially
extended. The effects of photoionisation in shocks faster than this, and in
plasmas with unusually high heavy-element abundances will be considered in
Chapter 11.

Half of the photons produced in the cooling zone pass upstream, back to
the shock front and on into the pre-shock gas where they are absorbed. This
produces a photoionised precursor to the shock. For shock velocities faster
than about 120 kms−1, the hydrogen entering the shock is effectively fully
ionised. Since the ionisation fraction of the material entering the shock is
a strong determinant of the subsequent shock structure, shock models need
to take this into account by iterating between the shock structure and the
pre-shock ionisation that this shock structure produces until a set of self-
consistent pre-ionisation conditions have been obtained.

Based on detailed shock models, the time taken for the plasma to cool
from when it was shocked to the point where hydrogen is about 50% ionised
is:

τcool ∼ 200
v4.4100

Zn0
years (8.71)

where v100 is the shock velocity in units of 100kms−1, n0 is the pre-shock
density (cm−3) and Z is the gas-phase abundance of the heavy elements
relative to solar values. Note how strongly this timescale depends on shock
velocity.

Eventually, as we pass further downstream in the shock structure, the
EUV photons are all used up, and, in the recombination zone, the plasma is
free to continue its cooling and recombination. The timescale is set by the
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Fig. 8.7. The thermal and density structure (left) and the ionisation structure in
oxygen ions (right) for a radiative shock of 150 km s−1. The various zones described
in the text are apparent. The tail of the shock is supported by magnetic pressure,
which limits the compression. The ionisation of O ii and O i are locked to hydrogen
through charge-exchange reactions.

recombination timescale. This is easily estimated for hydrogen from equation
(7.13) and from what follows equation (7.8);

τrec ∼ 8 × 104T
0.72
4

ne
years (8.72)

years, where T4 is the temperature in units of 104 K, and ne is the electron
density. This increases rapidly as the temperature and fractional ionisation
decrease, so that the recombination tail can be quite extensive.

In the tail end of the recombination zone, when the temperature has fallen
below about 3000K, the electrons have all but disappeared, and the temper-
ature is too low to generate either near-IR or optical lines. As a consequence,
the cooling timescale becomes very long, dominated by the spin-flip lines such
as [C i]. If the plasma is dense enough, then these conditions favour molecule
formation, so this zone may be regarded as a molecular formation zone.

In one of these phases, usually in the cooling phase, the pressure in the
transverse magnetic field becomes comparable with the gas pressure. From
that point, the shock becomes magnetically supported, limiting the compres-
sion factor that can be produced by the shock to that given by equation
(8.31) or (8.32).

All these zones, with the exception of the first and last are shown in figure
(8.7).

The spectrum of a radiative shock is very similar to that produced by
a plasma cooling under non-CIE conditions. At the hot end of the cooling
zone, the emission is mostly in lines and continua in the EUV region, which
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are not directly observable from the ground. However, as the temperature
cools below about 30000K, resonance lines of abundant species such as C ii,
C iii, C iv, Nv, O iv as a well as intercombination lines such as C iii],N iv],
O iii] become strong in the 900-3000Å UV waveband. When the plasma is
cooler than about 15000 K, the optical lines are emitted. Because the gas
is mostly collisionally excited, even in the photoionisation or recombination
zones, lines of low ionisation species are strong, especially those at the red end
of the spectrum where the thermal energy of the electrons are comparable
to the excitation energy of the atomic transitions. Such species include the
[O i], [O ii], and [S ii] lines.

Throghout the whole shock structure each hydrogen atom undergoes at
least one, and at most a few, recombinations. If the plasma is fully ionised
on entering the shock, then the flux in the higher lines of the Balmer series
increases as the mass flux through the shock, but is also somewhat depen-
dent on the shock velocity. However, as the velocity increases, and the effect
of photoionisation increases, and the Balmer line flux scales as the mass flux
through the shock, and as the number of photons produced in the shock,
which scales as the available enthalpy per unit mass divided by the mean
photon energy. As a consequence, the Balmer flux increases somewhat more
slowly than as the square of the shock velocity at low velocity, but this de-
pendence steepens to become closer to the cube of the shock velocity at high
velocities. This scaling can be used to estimate the pre-shock density if the
shock velocity can be estimated.

In cooling between any two particular temperatures in the post-shock
gas, there is only a certain amount of heat energy that can be radiated. As a
consequence, the sum of the emission in the lines and continuum is determined
by the application of the jump conditions between the two temperatures.
We can therefore regard the various atomic and ionic coolants as being in
competition with one another for their share of the total radiated energy.
This has the consequence that, if we gradually increase the abundance of a
particular coolant, the flux in any particular emission line of that species will
at first increase in proportion to the abundance, but only for so long as the
coolant contributes only a small fraction to the total cooling, i.e. it is a trace
coolant. However, once the coolant has become the dominant one, the flux in
its lines saturates at an absolute value related to the available enthalpy in the
shock. Thus, trace coolants (especially in the UV) can be used to estimate the
chemical abundances of the elements in the shock, but attempts to determine
abundances from the strong lines are much less reliable (Dopita, 1976; 1977,
Dopita et al. 1984).

8.4.3 Spectra of Old Supernova Remnants

Our theoretical treatment of the various evolutionary phases of a supernova
remnant assumed that the remnant is expanding into a uniform interstellar
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medium. The radiative phase, the phase at which the supernova remnant be-
comes bright at optical and UV wavelengths, was then assumed to commence
with shell formation at the end of the Sedov-Taylor phase of evolution. How-
ever, the interstellar gas is always cloudy, and, for supernovae of Type II, the
density contrast between the clouds and the inter-cloud medium may well
have been enhanced when the clouds were swept up into the stellar mass-loss
bubble of the precursor massive star.

When a cloud is swept up into a blast wave, a strong bow shock is formed
in the upstream direction, and a lower velocity shock is driven into the cloud.
It is this latter shock that first becomes radiative. The blast wave and the
bow shock are usually too fast to become radiative within an evolutionary
timescale, but these can be the source of X-ray and nonthermal radio emis-
sion from the remnant. The pressure on the leading edge of the cloud, the
stagnation pressure, is somewhat higher than the mean pressure within the
hot gas filling the interior of the supernova remnant. It is this pressure that
drives the cloud shock. If ρc is the pre-shock density of the cloud medium, and
ρ0 is the pre-shock density of the inter-cloud interstellar medium then the
relationship between the cloud shock velocity, vc, and the blast-wave velocity,
vs, is given by:

Pstag = ρcv
2
c = ξρ0v

2
s (8.73)

where ξ is a numerical factor in the range 1−4, dependent on the geometry of
the cloud. For optically radiative shocks observed in SNR, vc is in the range
60 − 300 km s−1. Pre-shock cloud densities are usually less than 100 cm−3.
However, it is clear that densities may be even higher than this in dense
molecular clouds, in which case the cloud shock is a slower molecular shock,
10 < vc < 25 km s−1, bright in the infrared lines of H2 and other species
such as CO. Molecular cloud shocks are observed in a number of supernova
remnants, amongst which IC443 and RCW103 are the best known examples.

For the cloud shock, the cooling timescale given by equation (8.71) pro-
vides a useful estimate of the time it takes to set up the steady-flow condition
throughout the shock. If the shock is younger than the cooling time, then the
shock will be only partially radiative. The hydrogen lines will be much weaker
in such objects, as a result of the lack of time available for recombination,
and in such shocks the UV lines and the lines of high-ionisation species must
be stronger than in the steady-flow conditions. Such incomplete or trun-
cated shocks have been used to explain the very large [O iii]λλ4959,5007/Hβ
and [O iii]λλ4959,5007/[O ii]λλ3727,9 ratios observed in parts of the Cygnus
loop supernova remnant (Fesen et al. 1982; Dopita & Binette 1983). In the
Cygnus Loop, the pressure driving all the optically-visible shocks is similar;
it is the pressure behind the blastwave. However, in this object the inter-
stellar medium is particularly cloudy so that, depending upon the cloud or
intercloud density, slow, fully radiative shocks (nc ∼ 5 − 10 cm−3; vs ∼ 100
km s−1), truncated shocks (nc ∼ 1 cm−3; vs ∼ 250 km s−1) and non-radiative
shockfronts (n0 ∼ 0.2 cm−3; vs ∼ 400 km s−1) are all observed.



     

8.4 The Radiative Properties of J-shocks 173

The luminosity per unit area of a fully radiative shock is given by equation
(8.30). Since the shocks in supernova remnants are hypersonic (characterised
by high Mach numbers), this can be written in terms of the pressure and
density; Ls ∼ Pvs/2. Clearly therefore, optically lumionus supernove rem-
nants occur where supernova explosions have occured in dense environments.
Since the cooling time behind the shock is short in this case, such supernova
remnants will also be compact and young. In the Galaxy, RCW103 and IC
443 are amongst the most luminous, and in the LMC the remnant N49 is the
brightest.

The optical spectra of radiative supernova remnants are characterised by
very strong forbidden lines of ions with low exitation potential, since these
arise from collisional excitation in the partially ionised gas near the recom-
bination zone of the shock. For example the [O ii]λλ3727,9Å lines are typ-
ically more than ten times the strength of the Hβ recombination line, and
the [O i]λλ6300,63Å and the [S ii]λλ6717,31Å lines are about as strong as
Hα. These line ratios set supernova remnants apart from nebulae which are
excited by UV photons from hot stars, and this difference has been very suc-
cessfully used to identify supernova remnant candidates in the Magellanic
Clouds (Mathewson et al. 1983) and beyond in local group galaxies (Sab-
badin, D’Odorico, Dopita & Benvenuti, 1980; Blair & Kirshner, 1985). Proof
that these objects are supernova remnants depends on obtaining optical spec-
troscopy showing large velocity dispersions, or on association of the optical
object with a source of thermal X-ray or radio non-thermal emission.

8.4.4 Spectra of Herbig-Haro Objects

Advanced Topic
Estimates of the specific angular momentum of the clouds that become

unstable to gravitational collapse and which subsequently form low mass
stars always come to be out much larger than the angular momentum of such
newly-formed stars. Left to itself, the collapsing gas cloud would form a flat
rotating pancake of gas which contains most of the mass. The central star
in this case would be small and rapidly rotating. In order to be able to form
stars such as are observed, the material which is finally incorporated into the
star must have exchanged its angular momentum with another portion of the
gas, which gains so much angular momentum that it is constrained to flow
out in an energetic wind. Such a wind becomes collimated above and below
the mid-plane of the disk to form a pair of fast jets. These jets become visible
as bipolar molecular ouflows. Where they drive shocks into the surrounding
medium, or are shocked internally, they are visible at optical wavelengths as
Herbig-Haro (HH) objects.

The most plausible model for this process has been developed in the x-
wind model of Shu et al. (1994). In this, the role of the magnetic field is
vital. If the star has mass M∗ and a magnetic moment µ∗ then the gas disk
is terminated at an inner radius RX ;
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RX ∼
(

µ4
∗

GM∗
.

M
2

)1/7

(8.74)

where
.

M is the accretion rate of gas into this inner radius. The inner edge of
this disk and the surface of the star are constrained to co-rotate, so that mag-
netic field lines connecting the inner edge of the disk (along which material
must be accreted onto the star) are not wound up by differential rotation. The
angular velocity, ΩX , of the inner edge of the accretion disk is the Kelperian
value, so that:

Ω∗ = ΩX =
(
GM∗
R3
X

)1/2

(8.75)

To satisfy mass and angular momentum balance, the accreting material
divides at RX into a wind fraction

.

MW= f
.

M and a fraction that is funneled
along the magnetic field lines leading down into the star,

.

M∗= (1 − f)
.

M
where:

f =
1−

−
J∗ +T

−
JW −

−
J∗

(8.76)

where
−
JW and

−
J∗ are the specific angular momenta of these two streams in

units of R2
XΩX and T is the viscous torque acting on the inner edge of the

disk measured in units of
.

M R2
XΩX . Since the specific angular momentum of

the material flling on the star is so low, the wind carries a significant fraction
of the mass, typically 25 - 35%.

At large distance from the pre-main sequence star, this wind is asymp-
totically collimated into a pair of oppositely-directed jets. Unlike the case
of the jets in AGN where the jets are relativistic, carry a large energy flux
and are usually less dense than their surroundings, these jets are cold and
relatively dense, and are moving at typically 400 km s−1. Nontheless, their
hydrodynamics is similar to that shown in Figure (8.5).

Weak internal shocks in jets can be set up by self-excited reflective modes
(Payne and Cohn, 1985). In this case, the shocked knots will form a string of
Mach diamonds such as is shown in Figure (8.5). Their spacing, ∆x, to jet
diameter, D, ratio is related to the Mach Number in the jet and the density
contrast between the interior of the jet and its surroundings:

∆x

D
≤ (0.6 − 0.8)

M
1 + (ρint/ρext)1/2

(8.77)

where the constant 0.8 applies to the first reflection pinching mode, a set of
regular constrictions and expansions of the jet diameter, and the 0.6 applies
to the helical Kelvin-Helmholtz pinching mode, a spiral twist in the jet surface
like the surface of a rope. These internal shocks are seen whenever the external
medium supplies a pressure which tends to confine the jet. When the jet
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escapes into a low-density medium, it goes into free expansion, and becomes
faint in the optical emission lines.

The internal jet shocks are highly oblique, and therefore weak. If θ is
the angle between the pre-shock flow direction and the shock front, and vJ
is the jet velocity, the transverse component of velocity, v‖ = vJ sin θ is
unchanged by passage through the shock, and the effective shock velocity is
the perpendicular component of velocity, v⊥,s = vJ cos θ.

In slow shocks the gas entering the shock front is only partially-ionised.
The relatively high temperature in the post shock gas ensures a high rate of
collisional excitation of the atomic hydrogen in the plasma. As a consequence,
Lyα becomes the principal coolant in the plasma, and the electron tempera-
ture swiftly decreases following the shock. Decreasing electron temperatures
increasingly favour collisional excitation of hydrogen over collisional ionisa-
tion, so an appreciable fraction of atomic hydrogen may persist throughout
the shock structure when the shock velocity is less than about 100 km s−1.

This has a number of effects on the spectra of jet shocks and weak wall
shocks in HH objects. First, the Hα/Hβ ratio becomes large, thanks to the
contribution of collisional excitation to the Hα line intensity. This is favoured
by the existence of a resonance structure in the Hα excitation cross section
just above threshold. Second, the flux of Lyα in the nebula becomes very
large. This is not seen directly because of the very large optical depth in the
Lyα line, but can be inferred indirectly in two ways, either through the strong
enhancement of the hydrogenic two-photon continuum in such objects (e.g
HH11, HH43, HH47; Dopita, Binette & Schwartz, 1982), or else through the
molecular hydrogen fluorescence with the Lyα photons discussed in section
(4.2.3), above. The final effect of partial ionisation of hydrogen in the pre-
shock plasma is that charge-exchange at these high temperatures locks both
the ionisation state of nitrogen and of oxygen to that of hydrogen. In addition,
the very short cooling timescale in the post-shock gas depresses the degree of
ionisation that can be attained in the shock. As a consequence, lines of low
ionisation species such as [O i], [N i] and [S ii] are unusually strong in these
objects. In extreme cases, the [N i] λλ(5198+5200)Å/ Hβ ratio exceeds 3!

The termination shock is the point at which the organised outflow is
disrupted due to the interaction with the interstellar medium. At this point,
the jet passes through a Mach Disk, a strong shock, and is thermalised to
high temperature. This hot plasma drives a bow-shock into the surrounding
interstellar medium, which may also be characterised by a relatively high (∼
100 km s−1) shock velocity. The PdV work done on the interstellar medium
is supplied by the jet energy flux. However, since the area of the jet shock is
smaller than the area of the bow shock, the jet shock is characterised by a
higher pressure, and therefore a smaller cooling time. Thus, we can encounter
cases such as HH47, where the jet termination shock is fully radiative, but
the bow-shock is only partially radiative, and is therefore is characterised by
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high [O iii]λ5007Å/Hβ ratios, and high [O iii] temperature, as measured by
the λλ4363/5007Å line ratio.

Many HH objects are characterised by very strong emission lines of re-
fractory elements such as [Fe ii], Ca ii or Mg ii. For these the gas-phase abun-
dances seem to approach solar values. The most likely explanation for this
is that the jet shocks arise in matter which originated very close to the star,
and where the interstellar dust has been largely destroyed. In this case we
should hope to distinguish spectroscopically between internal jet shocks and
interstellar shocks, based on the ratios of the [Fe ii] or Ca ii lines with respect
to Hβ. For a recent review of the spectroscopic data on HH objects, see Böhm
& Goodson, 1997.

8.5 C-Shocks

So far we have considered shocks where, except for a thin region near the
shock front itself, the flow variables in both the ionised and the neutral com-
ponents of the plasma can be considered as changing discontinuously. For slow
( vs <∼ 50km s−1) shocks in weakly ionised molecular gas, the energy trans-
fer between the ionised and neutral species may require a timescale which is
longer than the characteristic cooling timescale of the plasma. Under these
conditions, the hydrodynamic flow variables change continuously, and the
shock is referred to as a continuous or C- shock, for which the theory was
first constructed by Draine (1980).

In a C-shock, the shock occurs initially in the ions, which are in effect
a trace constituent of the plasma. Since the magnetic field is pinned to the
ionised part of the plasma, the magnetic field is compressed along with the
ions. In the limit, the shock in the ions would be effectively an isothermal
magnetically-supported J-shock with a compression factor given by equation
(8.32). In practice, a discontinuity in the flow variables does not occur. This
is because the Alfvén velocity in the neutral component of molecular clouds is
typically about 1-3 km s−1 (Heiles et al. 1993), while the degree of ionisation
that is produced by cosmic rays is only about 10−4. The Alfvén velocity
in the ion component is therefore (100-300) χ−1/2

−4 km s−1, where χ−4 is the
fractional ionisation in units of 10−4. This velocity may be lowered by a
factor of as much as ten if there is a population of charged grains along
with the ions, since these may contribute as much as 1% of the mass of the
fluid. However, in most cases the Alfvén velocity in the charged component
is comfortably greater than the C-shock velocity, so therefore the ionised
component remains sub-Afvénic throughout the flow. In this case information
about the approaching shock is communicated ahead of the shock in the form
of a magnetic precursor (Draine, 1980), within which the flow variables change
continuously. A shock in the ions will only occur if there exists a point in the
flow at which the ion Alfvén velocity is less than the shock speed.
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From the point at which the flow parameters in the ions begin to change,
the neutrals will begin to drift with respect to the ions and the magnetic field.
As a consequence there is a drag force produced by the collisional coupling
between the ions and the neutrals; principally the ion-neutral elastic collisions
and the charge-exchange process. At any point in the flow in which ion-neutral
slippage occurs, there is a balance between the magnetic force on the ions
and (ignoring the thermal pressure gradient) the collisional drag force on the
neutrals. The first of these acts upstream in the direction of the magnetic
field gradient while the drag term is determined by the drift velocity, and so
acts in the downstream direction:

d

dx

(
B2

8πρ

)
= 〈σv〉Mrni (vn − vi) (8.78)

where nn and ni are the local density of the neutrals and ions, respectively,
Mr is the reduced mass of the colliding species; mnmi/ (mn +mi) and 〈σv〉
is the rate coefficient for momentum transfer. This is of order of the rate
coefficient for resonant charge exchange in the orbiting approximation, given
by equation (5.48); 〈σv〉 ∼ 1.5 × 10−9 cm3s−1.

In a “pure” C-shock, the neutral fluid remains relatively cool, and there-
fore the flow (which will eventually become subsonic with respect to the
sound speed) remains supersonic with respect to the magnetosonic velocity
throughout, thanks to the field compression which has occured in the shock
structure. If the heating becomes too great, then we can get a transition case
in which the leading part of the shock has a C-shock structure, but we get a
J-shock formed in the neutrals downstream.

8.5.1 The Structure & Spectrum of C-Shocks

Advanced Topic
The theory of the structure of C-shocks was first constructed by Draine

(1980) and developed by Draine, Roberge & Dalgarno (1983). Notable con-
tributions have been made by Chernoff (1987), Smith & Brand (1990) and by
Smith in later papers (see Smith & MacLow 1997, and references therein). In
addition the molecular chemistry of C-shocks has been developed by Flower
et al. 1996).

An early success of the theory of C-shocks was that it provided a physical
explanation for some observations (i.e. Nadeau & Geballe, 1979) which were
otherwise inexplicable. These observations of molecular hydrogen in outflows
in the vicinity of pre-main sequence stars showed supersonic wings in the line
profiles extending out to ∼ 100 km s−1, which, along with excitation temper-
atures measured at about 2000K, suggested that the gas is being processed
through shocks of quite high velocity. If these shocks were J-shocks, then the
dissociation of molecular hydrogen should be complete, and such wings could
not exist. The physical explanation of these observations is, of course, the low
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temperature that is maintained by the neutral fluid throughout the C-shock
structure.

Within the layer where there is slippage between the ions and the neutrals,
the ion, electron and neutral species all have different temperatures. The ions
are heated by the elastic collisions with the neutrals and cooled by inelastic
collisions with the neutrals, and reach a characteristic temperature:

Ti = mn (vn − vi)2 /3k. (8.79)

where, for a fully molecular plasma, mn ∼ 7mH/3. This temperature is
∼30,000K in a C-shock with shock velocity, vs ∼ 40 km s−1, assuming a
drift velocity of roughly vs/2. The electron temperature is lower than the
ion temperature because the rate of momentum transfer through the elastic
collisions is less effective.

For the neutrals, the heating per unit volume due to the ion-neutral scat-
tering has to match the rate of radiative cooling per unit volume,

.

Q (Tn),
due to inelastic scattering at the characteristic temperature of the neutral
species, Tn:

.

Q (Tn) = χ 〈σv〉n2
nmn (vn − vi)2 (8.80)

The principal inelastic scattering processes are the excitation of vibra-
tional and rotation transitions in H2 or other abundant molecular species.
Unlike the cooling functions discussed up to this point, the H2 molecules are
in a high density environment, and generally rather closer to LTE, so that the
rate of radiative cooling per unit volume is proportional to density, rather
than to density squared. The H2 cooling rate is approximated by (Smith,
1993):

.

Q (Tn)(Tn) ∼ 4.2x10−31nH2T
3.3
n erg s−1 cm−3 (8.81)

These last two equations give the temperature of the neutrals ∼1750 K in a
shock with vs ∼40 km s−1, taking the drift velocity to be roughly vs/2, and
also assuming χ =10−4 and nH2 = 104 cm−3. If the C-shock is in atomic gas,
the cooling occurs mostly through far-IR electron spin flip transitions such
as the [C ii]λ157.7µmline.

Now, let us consider the flow in the shock in detail (Chernoff, 1987; Smith
& Brand, 1990). Taking a steady, one-dimensional flow in the shock frame
of reference, with shock velocity vs, and ignoring the momentum carried by
the ionised component itself, the laws of continuity and magnetic flux conser-
vation, momentum and energy flux can be combined to give the momentum
equations in the neutral and magnetic (ionised) fluids, respectively:

d

dx

(
mnnnv

2
n + nnkTn

)
= F (8.82)

d

dx

[(
vs
vi

)2
B2

0

8π

]
= −F (8.83)
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and the energy equation for the neutral medium:

d

dx

(
mnnnv

3
n

2
+

γ

γ − 1
nnkTnvn

)
= Fvn + Γ +G (8.84)

In these equations F is the drag force produced by the ion-neutral collisional
coupling:

F = 〈σv〉Mrnnni (vn − vi) (8.85)

Γ is the radiative loss rate term:

Γ = Λ (Tn)n2
n (8.86)

and G is the rate of change of internal energy:

G =
2 〈σv〉Mrnnni
mn +mi

[
1

γ − 1
k (Ti − Tn) +

mi

2
(vn − vi)2

]
(8.87)

It is helpful to make these equations dimensionless by first re-introducing
the concept of the Alfvén Mach number of the flow:

M2
A =

v2s
(B2

0/4πmnn0,n)
(8.88)

where mnn0,n = ρ0 is the density in the pre-shock flow (ignoring the mass of
the ions). We also introduce the following (dimensionless) variables:

ζ =
vn
vs

=
n0,n

nn

ξ =
vi
vs

=
n0,i

ni

t =
kTn
mnv2s

ψ =
mnnnΛ (Tn)
Mrni 〈σv〉 kTn

(8.89)

and finally, we define a quantity with the dimensions of length, which is
closely related to the characteristic length scale of the shock structure:

L =
mnvs

Mr 〈σv〉n0,i
(8.90)

In terms of these variables, equations (8.82) to (8.84) reduce to:

L
d

dx

(
ζ +

t

ζ

)
=
ξ − ζ
ξζ

(8.91)

L
dξ

dx
=
ξ2 (ξ − ζ)

ξζ
M2

A (8.92)
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Fig. 8.8. The ion and neutral velocity profiles (left) and temperature and density
profiles (right) for a steady-flow C-shock with vs = 40 kms−1, B0 = 100µG and
intital density of 104 cm−3 (after Flower et al. 1996). The magnetic precursor and
the neutral drift zones are approximately delineated.

and

L
d

dx

(
ζ2

2
+

γ

γ − 1
t

)
=
ξ − ζ
ζ

− ψt

ξζ
(8.93)

Eliminating x between these equations, and integrating the equation re-
sulting from the combination of (8.92) and (8.93) with the boundary condition
ζ = 1 when ξ = 1 yields:

dζ

dξ
=

(γ − 1)
M2

A

[(γζ/ (γ − 1) − ξ) (ζ − ξ) − ψt]
ζξ3 (ζ − ξ) (1 − γt/ζ2) (8.94)

and

ζ +
t

ζ
= 1 +

1
2M2

A

(
1 − 1

ξ2

)
(8.95)

These equations can be integrated analytically in various limits such as
energy-conserving flow or zero-temperature flow (Chernoff, 1987), or under
more general and physically realistic limits (Smith & Brand, 1990). It is clear
from the form of the equations that the nature of the particular shock solution
is determined by the parameters MA and ψ. This technique of reducing a
hydrodynamic problem to one that can be solved analytically in terms of
dimensionless parameters (frequently confined between zero and unity) is very
powerful, and has been frequently used in obtaining particular solutions for
hydrodynamical or, in this case, magnetohydrodynamical problems. Usually,
however, they are solved numerically, with the analytic solution providing a
test of the accuracy of the hydrodynamic code.

A typical solution for a steady-flow C-shock is shown in Figure (8.8).
Initially, outflows from young stellar objects should drive shocks which are
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J-type. It is only as the shock evolves, and the ratio of gas pressure to ram
pressure falls, that the shock makes a transition towards the C-shock struc-
ture shown in Figure (8.8). This transition has been investigated using a
full time-dependent magnetohydrodynamic treatment by Smith & Mac Low
(1997). They find that rapid ion motions lead to the formation of an ion
precursor, which then evolves towards a C-type structure as the J-shock in
the neutrals decays and the flow relaxes over several Alfvén wave crossing
timescales.

This evolution offers the potential to explain observations which had pre-
viously caused a good deal of confusion in their interpretation. For example,
the molecular H2 emission observed lines in the Infrared Space Observatory
(ISO) 2-17µmwaveband come from a wide variety of rotational and vibra-
tional states. This region includes the 0-0 S(1), the 0-0 S(7) the 3-2 S(1)
and the 3-2 S(3) transitions. The excitation temperatures of these transi-
tions range from about 1000 K up to over 19000 K, and so that their ratios
may be used for the purpose of shock diagnostics. The usual way of doing
this is to prepare a column density ratio diagram. This is a graph of the log-
arithm of the ratios of the column densities inferred from intensities of the
various lines with respect to some reference line plotted against the excitation
temperature of the various lines. The model fits are curves on this diagram,
which ideally should pass through the points. When this was done, the ob-
servations seemed to be more indicative of J-shocks than of C-shocks, even
though J-shocks needed were so fast that they would dissociate the molecular
hydrogen. The answer to this problem suggested by the work of Smith & Mac
Low (1997) is that the excitation is indeed due to C-shocks, but that these
have not yet fully evolved to the steady-flow solution.

Notes on Chapter 8

• An excellent introduction to gas dynamics is in Dyson, J.E. & Williams,
D.A. 1997 The Physics of the Interstellar Medium, 2nd. Ed., Institute of
Physics Publishing: Bristol, ISBN 0-7503-0460 (paperback). An elegant,
but alas, somewhat difficult to obtain account of gas dynamics is by Kaplan,
S.A. 1966, Interstellar Gas Dynamics, 2nd Revised Edition, ed. F.D. Kahn,
Pergamon Press: Oxford.

• A classical description of shock physics is by McKee, C.F. 1987, in Spec-
troscopy of Astrophysical Plasmas, Eds. A. Dalgarno & D. Layzer, CUP:Cambridge,
ISBN 0-521-26927 X (paperback), which has been very helpful in the prepa-
ration of this chapter. For those who are seeking a more advanced treat-
ment, Draine, B.T. & McKee, C.F., 1993, Ann. Rev. A&A, 31, 373, is a
good place to start.

• The physics of supernova explosions is dealt with very completely in Ar-
nett, D. 1996, Supernovae and Nucleosynthesis, Princeton University Press:
Princeton, ISBN 0-691-01148-6 (hardback), ISBN 0-691-01147-8 (paper-
back)
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• For C-shocks, this research field is in a state of rapid evolution. However, a
very clear exposition of the physics of such shocks is to be found in Smith
& Brand (1990), and the recent time-dependent results of Smith & Mac
Low (1997) is also worth reading.

Exercises

Exercise 8.5.1. Derive equations (8.30) and (8.32).

Exercise 8.5.2. A gas has a ratio of specific heats γ, and is at a pressure
P and temperature T in a piston with an internal diaphragm. Suddenly the
diaphragm is ruptured, and the gas expands into a vacuum down the cylinder.

Show that the maximum expansion velocity vexp is, in terms of the ini-
tial sound speed of the gas, c1; vexp = c1[2/(γ − 1]1/2, and write down the
temperature the gas achieves late in the expansion. Hint: write down the
internal energy of the gas, and convert all of this into kinetic energy.

Exercise 8.5.3. In supernova remnant evolution, the Sedov-Taylor phase
of evolution is terminated when the cooling timescale of the gas behind the
blast-wave becomes comparable to the expansion timescale of the supernova
remnant. Assuming that the supernova deposited 1051 ergs of energy, that
the remnant is expanding into an interstellar gas with hydrogen atom density
of 1.0 cm−3, and that the cooling function Λ is constant with temperature
and equals 10−22 erg cm3 s−1, compute the approximate radius at which
the remnant becomes radiative. Hint: use equations (7.8), (8.26) , (8.36) and
(8.37), and assume φ ∼ 1.

Exercise 8.5.4. a. Derive equations (8.52) and (8.53) from (8.49), (8.50)
and (8.51). b. Estimate the ratio Rin/R.

Exercise 8.5.5. The nuclear-burning lifetime of massive stars is approxi-
mately τ = 5(M/40M�)−0.4 Myr, and in this time thermonuclear reactions
convert approximately 0.3% of the rest mass energy into radiative energy.
Using: M� = 1.998 × 1033 g and R� = 6.6 × 1010 cm, and showing working,

a. What is the total luminous energy released by, and the luminosity
during its lifetime of, a 60 M� star?

Answer: 3.23 × 1053erg, 2.40 × 1039erg s−1

Stellar winds are driven by the momentum flux in the radiation field, and
carry a momentum flux

.
p= ηL/c, with η ∼ 3, as a result of multiple scattering

in the wind. The wind terminal velocity is given by v∞ = ε (GM/r)1/2 where
r is the radius of the star, and ε is a dimensionless factor, typically about 2.

b. Taking η = 3 and ε = 2, and assuming a stellar radius of 20 times that
of the sun, what is the momentum flux and stellar wind velocity in the stellar
wind of our 60 M� star? Answer:2.41 × 1029g cm s−1 and 1560 km s−1

c. Calculate the ratio of mechanical energy flux to the luminous energy
flux in this star during its lifetime.
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At the end of its life, the star explodes as a supernova, and deposits a
total of 2 × 1051 ergs into the surrounding interstellar medium.

d. What is larger, the energy deposited by the stellar winds, or the energy
produced in the supernova explosion? Answer: The winds

e. The density of the surrounding interstellar medium is 10−23 g cm−3.
Using equation (8.53),what is the diameter of the mass-loss driven bubble (in
parsecs, 3.08 × 1018 cm) when the supernova explodes?

Exercise 8.5.6. A protostar has been producing a highly supersonic and
highly collimated jet of material, which has propagated a long way into the
surrounding interstellar medium. The mass-loss rate

.
m in the jet is constant,

and the jet velocity v0 is also constant. Suddenly, the mass-loss rate and the
velocity of the jet start to increase linearly with time, until after time t1 both
are exactly twice their intial value. After some time, a dense sheet of material
forms in the flow, bounded on both its inner and outer surfaces by shocks,
which can be assumed to both radiative and isothermal. This dense layer is
called a working surface.

a. Explain why such a surface must form, and calculate how far from
the sar, and how long after the jet properties first start to change, that the
working surface makes its appearance.

b. Assuming that the working surface can be approximated by a thin
shell, compute an equation describing its equation of motion reckoned from
the time and the place that it first appears.

c. Give an algebraic expression for the luminosity of the working surface
as a function of time.

d. What would the equation of motion of the working surface be in the
general case, where the velocity increase in the jet is a factor θ times its initial
value and the mass loss rate increases by a factor ψ. Again, reckon the origin
of coordinates to be the place and the time where the working surface first
appears.

Hint: (a) Remember that two flows cannot overrun each other. In general
they are separated by a contact discontinuity across which the pressure is
balanced (even if the temperatures, molecular weights or densities are not).

(b) The relative kinetic energy of the colliding flows is radiated away (and
this quantity gives the answer to part (c) of this question), so for this part,
just worry about the conservation of mass and momentum.

Exercise 8.5.7. A powerful jet is propagating from the nucleus of an active
galaxy with a relativistic β = v/c. At its head, gas is shocked at a working
surface shock, thermalised, and back-flows to form a cocoon of hot plasma
around the jet. The gas pressure in this cocoon pushes a transverse shock
into the surrounding interstellar medium.

a. Assuming a constant density in the galaxian interstellar medium, ρ,
a jet energy flux,

.

E, and a jet opening angle θ, give an expression for the
velocity of advance of the jet as a function of radius in the galaxy, assuming
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that the bow-shock in the interstellar medium always remains close to the
jet shock. Compute this velocity for

.

E= 1044 erg s−1, β = 0.95, ρ = 10−24 g
cm−3 and r = 3 × 1021 cm ( 1.0 kpc).

Hint: Equate the ram pressure in the jet to the ram pressure across the
shock.

b. Assuming that the hot gas pressure in the cocoon is constant, P, and
that the transverse shocks are radiative, compute the transverse expansion
velocity of the cocoon, v0. What will this be (in km s−1) for P = 10−6

dynes cm−2 and ρ = 10−24 g cm−3?
c. Give an expression for the luminosity of the radiative shocks per unit

area, and compute this for the above values of pressure and density.
Hint: Equate the ram pressure in the jet to the ram pressure across the

shock and then compute the work done in the expansion.
d. At time t0, the jet suddenly breaks out of the confining galactic in-

terstellar medium, and the pressure in the cocoon drains away. Assuming a
constant density in the galaxian interstellar medium, derive an expression for
the velocity of the transverse shocks at time. Show your working.

Answer: v(t) = v0/[3(t/t0) − 2]2/3

Exercise 8.5.8. A shock in a Herbig-Haro object is propagating through
neutral gas at a velocity of 100 km s−1. The gas has a hydrogen number
density of 10 cm−3, a temperature of 10,000K, and also contains 10% (by
number) of helium atoms but negligible numbers of heavier atoms.

a. Assuming a monatomic gas, that magnetic fields are negligible, and
that the molecular weight of neutral gas is µ = 1.4, calculate the immediate
post-shock temperature and the compression factor across the shock.

b. What would be the post-shock temperature if the gas entering the
shock was ionized, assuming that the molecular weight of fully ionized gas is
0.70?

c. Assume that, following the shock in neutral gas, each hydrogen atom
is excited to the n = 2 level (10.2 eV above ground) on average two times
before it is ionized (which requires 13.6eV of energy) and that this is the
only cooling process. If, in the post-shock plasma, the gas cools isobarically,
and that other cooling processes are negligible, at what temperature does
hydrogen becomes fully ionized? In this case, what is the total compression
factor of the pre-shock gas at this point?

d. Assume that the gas has fully recombined before it cools to a tempera-
ture of 10,000K. What is the (exact) compression factor of the gas when the
gas has cooled to 10,000K?

e. If the pre-shock gas is threaded by a purely transverse magnetic field of
30µG, what is the sound speed, the Alvén speed and the magnetosonic speed
in this gas?

f. What would be the maximum compression factor across the shock in
this case?
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“How far that little candle throws his beams!
So shines a good deed in a naughty world”
— Shakespeare (The Merchant of Venice, Act5)

In this chapter, we move from considering plasmas that are excited by
predominantly collisional means to those that are heated by energetic photons
coming from a photoionising source, be it a star, a nucleus of an active galaxy,
or whatever. Such photoionisation-dominated plasmas are very commonly
observed in galaxies, and historically were one of the first to be studied in
detail, thanks to their bright and prominent emission line spectra at optical
wavelengths.

Within a photoionised region, the column density of neutral hydrogen has
to be very small. The reason for this can be readily understood. In a normal
plasma, hydrogen is by far the most abundant of the elements, outnumbering
the helium atoms by about ten and all the heavier elements taken together
by a factor of several hundred. As a result, the opacity of the ISM at EUV
frequencies above the Lyman Limit, ν0, is dominated by the absorptivity of
hydrogen, derived from equation (5.37):

κν = σ0

(
ν

ν0

)−3.5

nH0 (9.1)

where nH0 is the volume density of atomic hydrogen, and σ0 is the absorp-
tion cross-section at the threshold frequency for photoionisation of hydrogen
(6.3x10−18 cm2). From the model of the H i distribution in the local solar
neighbourhood, given by (7.63), the H i gas density at the mid-plane of our
Galaxy near the sun is about 0.6 cm−3. Thus for EUV photons at the thresh-
old for ionisation, an optical depth of unity is reached after only 0.09 pc,
and for EUV photons just below the threshold of ionisation of helium, this
point is reached after 0.6 pc. However, H ii regions in galaxies like our own
are observed to range in size up to radii of order 100 pc. This can only be
explained if within them, hydogen is of order 99% ionised, on average.

It is the absorption of the EUV photons by these trace amounts of neutral
hydrogen that provides the local heating rate,

.

Q, to the ionised plasma. In
equilibrium, this has to be balanced against the local cooling rate, provided
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mostly by collisional excitation of forbidden emission lines in heavier atomic
species. If I(ν) is the intensity of the local radiation field which extends up
to a maximum frequency of νmax, then the heat balance equation is:

.

Q=

νmax∫
ν0

(ν − ν0)
ν

I (ν)κνdν = Λnne (9.2)

where Λ is the cooling function (7.1) defined for the particular local ionisation
conditions and chemical abundances. The term (ν − ν0)/ν in this equation
arises because the electrons produced by photoionisation have to first over-
come the ionisation potential of hydrogen to escape the atom.

Most H ii regions tend to have an electron temperature in the vicinity of
104 K. This is because in this temperature region the cooling rate rises rapidly
by several orders of magnitude with temperature, while the heating rate
decreases slowly with temperature, since collisional ionisations of hydrogen
tend to deplete the population of neutral hydrogen atoms, which in turn
lowers κν . As a consequence, there is a strong “thermostat” effect tending to
keep the temperature constant.

The local radiation field which controls both the local ionisation state
and the electron temperature is determined by the radiative transfer through
the nebula. For a simple plane-parallel slab nebula, this is given by equation
(4.9):

dI(ν)
ds

= −κνI(ν) + jν (9.3)

Here, the local source term, jν , arises because recombination in hydrogen
atoms may occur directly from the continuum back down to the ground
state, producing a photon just above the Lyman limit, which is able to ionise
hydrogen in its turn.

Equations (9.1) to (9.3) make apparent the intimate coupling between the
radiative transfer, and the resulting ionisation and heat balance in an H ii
region. It is this coupling which provides the rich phenomenology of observed
H ii regions, and which we will investigate in this chapter.

9.1 Photoionisation of Hydrogen H ii Regions

9.1.1 Equilibrium Ionisation & Ionisation Parameters

Let us consider, for simplicity, the photoionisation of a nebula composed of
hydrogen only. When such a nebula is in photoionisation equilibrium, then
at each point in the nebula, the rate of recombinations must match the rate
of photoionisations. From (9.3) and (9.1), this equilibrium condition is (ne-
glecting the local radiation source term):
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α (Te)nH+ne =

νmax∫
ν0

κν
I(ν)
hν

dv

= nH0

νmax∫
ν0

σ0

(
ν

ν0

)−3.5
I(ν)
hν

dv (9.4)

where α (Te) is the effective recombination rate for hydrogen. Let us first sim-
plify the integral to S 〈σ〉, where S is the number of source photons passing
through a unit volume locally (cm−2s−1) and 〈σ〉 is the average photoioni-
sation cross section (cm2), weighted according to the shape of the ionising
source spectrum. If χ is the fractional ionisation of hydrogen, then we can
also set ne = nH+ = χn, and nH0 = (1 − χ)n to give:

χ2

1 − χ =
〈σ〉
α (Te)

S

n
(9.5)

Since 〈σ〉 and α (Te) usually vary only by a factor of a few, while S and n may
take almost any value, this equation clearly shows that the local ionisation
state of the plasma is primarily determined by the ratio S/n, which has
the dimensions of a velocity. This is called the ionisation parameter, q and
it has a simple physical meaning. Suppose that, instead of being incident
on a plasma in photoionisation equilibrium, the photon field S was instead
incident on atomic hydrogen of density n. In this case, the flux of photons
would have to match the number of new ionisations they produce, so that
the boundary of the ionised region will advance at a velocity dx/dt given by:

S = n
dx

dt
(9.6)

Thus q is simply the velocity of the ionisation front that the radiation field
could drive through the medium. In addition to the ionisation parameter q,
the dimensionless ionisation parameter U is also frequently used (confusingly
this is also referred to as the ionisation parameter by those that use it). This
is simply obtained by dividing q by the speed of light, c. It also has a simple
physical interpretation since:

U =
q

c
=

U

〈hν〉n (9.7)

where U is the local photon energy density. Thus U is simply the local ratio
of the density of photons to the density of atoms.

Occasionally, there is used another type of dimensionless ionisation pa-
rameter, Ξ, which is physically the ratio of the radiation pressure to the gas
pressure. This proves to be useful when considering the phase stability of the
ISM. It is simply related to the ionisation parameter U :
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Ξ =
(
Prad
Pgas

)
=
( 〈hv〉S/c

2nkTe

)
= U 〈hv〉

2kTe
(9.8)

With these definitions, let us return to equation (9.5). This shows that
the plasma will be half-ionised when q = α (Te) /2 〈σ〉. Let us substitute
numerical values. 〈σ〉 is taken from (9.1) with 〈ν〉 ∼ 1.5ν0, and α (Te) =
4.2 × 10−13 cm3 s−1; derived from the equation following (5.18) with Te ∼
104 K. Hydrogen becomes less than 50% ionised when q drops below about
105 cm s−1, a figure which is (coincidentally) roughly equal to the sound speed
in the neutral plasma. This point could be taken as the “edge” of the region
of ionised gas. Defining 〈τ〉 as the optical depth from this edge (χ = 1/2), to
another point within the ionised region, we have, from equation (9.5),

χ2

1 − χ =
1
2

exp [〈τ〉] (9.9)

with

〈τ〉 =

x∫
0

〈σ〉n(1 − χ)dx =

λ∫
0

(1 − χ)dλ (9.10)

where we have introduced a dimensionless length scale λ = 〈σ〉nx. These
equations provide a readily integrable approximate solution to the ionisation
balance in a plane-parallel slab of ionised hydrogen, for any incident radiation
field intensity. This is shown in Figure(??), and the local ionisation parame-
ter in the flow is indicated. It is evident that for the values of q encountered
in typical H ii regions ( 3 × 107 <∼ q <∼ 3 × 108 cm s−1 ), hydrogen remains
more than 98% ionised throughout the bulk of the ionised region. The col-
umn of material (cm−2) that can be kept ionised at any particular ionisation
parameter and density is referred to as the Strömgren Column, in honour of
the person who first developed the theory of H ii regions (Strömgren, 1939).

In a spherical nebula centred on the exciting source of radiation, we can
use the idea that hydrogen is effectively fully ionised throughout the ionised
volume to estimate the equilibrium radius of the ionised region of radius Rs
(the Strömgren Radius). This is obtained by setting the number of ionising
photons equal to the number of recombinations within the ionised volume. If
S∗ is the number of ionising photons produced by the star, then:

S∗ =
4π
3
α (Te)nH+neR

3
s (9.11)

With the assumption of a fully ionised plasma, nH+ = ne = n, we then have:

Rs =
(

3S∗
4πα (Te)n2

)1/3

(9.12)

This equation shows that, the lower the density, the larger the H ii region
produced. However, this larger size does not make the H ii region any easier
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Fig. 9.1. The approximate ionisation structure of hydrogen in an H ii region, ob-
tained by solution of equations (9.9) and (9.10). The ionising source is to the right.
The points at which the local ionisation parameter is 105, 106, 107 and 108 are
marked.

to observe. The total flux from the nebula in a hydrogen recombination line is
directly proportional to the total number of recombinations, which in turn,
using equation (9.11), is simply proportional to the flux from the central
ionising source, S∗, and is independent of the density. It is different for the
surface brightness. The surface brightness of the nebula in a recombination
line is proportional to the emission measure of the nebula, which from equa-
tion (1.3) is proportional to the product n2Rs. From equation (9.12), this
is proportional to n4/3. Thus, low density (large) nebulae have much lower
surface brightnesses than high density (compact) nebulae of the same total
flux, rendering them more difficult to observe against the night sky emission.

The ionisation balance within this spherical nebula is readily obtained
from equation (9.5), by integrating from a radius r = 0, allowing for the
spherical divergence of the radiation field, and its attenuation through the
ionised volume (ignoring the local diffuse field):

χ2

1 − χ =
〈σ〉
α (Te)

S∗ exp [−τ (r)]
4πr2n

=
τs
3

exp [−τ (r)]
(
r

Rs

)−2

(9.13)

where:
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τ (r) =

r∫
0

〈σ〉n(1 − χ)dr (9.14)

Here, we have defined τs as the mean optical depth of an sphere of neutral
hydrogen out to the radius of the Strömgren sphere; τs = 〈σ〉nRs. These
equations are very similar to those of the plane parallel case, equations (9.9)
and (9.10), and again, can be solved by numerical integration. However, in
this case they are dependent upon the geometry. The intensity of the radiation
field increases more quickly towards the source than the plane parallel case,
thanks to the spherical divergence term, so that the ionisation state of the
plasma near the inner edge of the nebula is higher.

Because of the very steep dependence of the hydrogen opacity with fre-
quency, the ionising photons with energies close to the Lyman limit are ab-
sorbed first. Consequently, the radiation field of the central source is “hard-
ened” (i.e. the average photon energy shifts towards higher frequencies) dur-
ing its passage through the nebula. Thus, although the space density of pho-
tons is decreasing, the energy delivered to the electron gas per ionisation is
increasing. Under certain geometries, this radiation hardening increases the
energy input per photoionisation sufficiently to counteract the decrease in the
product of the radiation density and the neutral fraction as we move outward
in the nebula. This may lead to an increase in the electron temperature to-
wards the outer boundary of the nebula, even though the state of ionisation
continues to fall towards this boundary.

9.1.2 The Diffuse Field: Case A & Case B.

So far we have simply ignored the jν term in the equation of transfer (9.3).
However, as has already been briefly mentioned, there is a local production
of a diffuse ionising radiation field resulting from recombination of hydrogen
directly to the ground state. Because of the selection rules, electrons which
are captured during recombinations of hydrogen to the ground 1S1/2 state
must be those that were in a (continuum) virtual P state before the collision.
The statistical probability of this decreases very quickly for energies above
the Lyman limit, and therefore we can regard the spectrum of the diffuse
photons as being a delta-function just above the Lyman limit.

Unlike the stellar photons, which are directed outwards, these diffuse pho-
tons may cross the nebula in any direction from the point of their production.
The escape of these photons from a spherical region in which the optical depth
at the Lyman limit, τν0 , is therefore governed by an escape probability of the
form of equation (4.16). According to equations (9.9) and (9.10), the mean
optical depth in the ionising photons from the inner to the outer edge of
the ionised region is typically 6-8, so the optical depth at the Lyman limit,
τν0 ∼30. This is sufficiently high that the diffuse photons will be re-absorbed
within the nebula close to where they were produced.
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We therefore introduce the idea of the on-the-spot approximation, which
avoids the tedious business of tracing the details of the radiative transfer of
the diffuse photons across the nebula. In this approximation, the Baker &
Menzel’s Case B, the recombinations to the ground state are ineffective in
reducing the state of ionisation, since they produce a diffuse photon which
promptly ionises another hydrogen atom in the vicinity. In Case B, therefore,
the state of ionisation of the plasma is somewhat higher, and we compute the
effective recombination coefficient as:

αHeff = αHtot − αH1S (9.15)

This reduces the recombination rate to about 60% of its Baker & Menzel’s
Case A value, the case where the nebula is so optically thin that all the
photons produced by direct recombination to the 1S level are free to escape
the nebula.

The fact that normal H ii regions are in Case B, and are therefore optically
thick in the Lyman continuum photons ensures that they are also optically
thick in all the Lyman series photons as well, and especially, in Ly α. This has
an observable effect on the ratios of the Balmer lines; the Balmer Decrement.

9.1.3 Ionisation Fronts

H ii regions are not born instantaneously. It takes time for the newly-formed
exciting star to switch on its EUV radiation field and for the ionised region
to expand towards its Strömgren radius. During this period, possibly only a
small fraction of the EUV photons emitted by the central source are being
used to maintain the ionisation in the nebula. In this circumstance, much of
this radiation reaches the boundary of the ionised region unabsorbed, and
these photons are available to push an ionisation front through the neutral
medium, at a velocity given by equation (9.6); dx

dt = q.
During the initial evolution of the ionisation front, the rate of advance

of the ionised region is equal to the ionisation parameter q at the boundary,
which is determined by the density, the radius, the number of photons pro-
duced by the central star, and the number of these that are being used to
maintain the ionisation in the body of the H ii region. Let us assume that the
ionised part of nebula is fully ionised, and that it is also in ionisation equilib-
rium, so that the number of ionisations equals the number of recombinations,
locally. In this case:

4πr2n
dr

dt
= S∗ −

4π
3
α (Te)n2r3 (9.16)

First, let us make this equation dimensionless by substituting the dimension-
less distance variable ξ = r/Rs for r, and the dimensionless time variable
τ = t/τs, where Rs is the Strömgren radius given in equation (9.12) and τs
is a “Strömgren timescale” defined as τs = 1/α (Te)n. This time is, in fact,
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the recombination timescale for the ionised plasma, τs ≡ τrec ∼ 105/n years.
With these substitutions quation (9.16) then simplifies to:

dξ

dτ
=

(
1 − ξ3

)
3ξ2

(9.17)

which has the solution:

ξ = (1 − exp [−τ ])1/3 (9.18)

This equation shows (as it should) that initally, the radius of the ionised
region is zero. However, equation (9.17) implies that the initial advance of
the ionisation front is very rapid, and its speed varies as the inverse square
of the radius. In reality, of course, the ionisation front cannot move faster
than the speed of light. Indeed, until τ is greater than unity, even the basic
assumption of ionisation equilibrium made in equation (9.16) is invalid. By
this time the H ii region has already grown to 86% of its Strömgren radius. At
this time, the characteristic velocity of the ionisation front is, from equation
(9.17 ), vIF = 0.09Rs/τrec. The actual velocity depends on the nature of
the exciting source, and on the density. If the central star is an O star, then
typically, S∗ ∼ 1049 sec−1. With S49 = S∗/1049 sec−1 we have:

vIF (τ=1) ∼ 57 (S49/n)
1/3 km s−1 (9.19)

The process of ionisation and heating of the plasma results in a large jump
in the gas pressure. Since the temperature of the plasma goes from around
102 K to around 104 K during the ionisation, the gas pressure is of order a
hundred times larger in the ionised plasma than in the atomic material ahead
of the ionisation front. However, an ionisation front velocity of the size given
by (9.19) is very much larger than the sound speed in either the ionised or
the atomic gas ahead of the ionisation front. Thus, neither the ionised nor the
neutral gas can react dynamically to the increased pressure in any significant
way.

In a fast ionisation front, provided that we can neglect the thermal pres-
sure in the neutral material, the ram pressure of the gas entering the front is
matched by the sum of the gas pressure and the ram pressure of the ionised
gas leaving the front. Thus the final velocity of the gas relative to the ionisa-
tion front is lower than the initial velocity, and the gas is compressed in the
passage through the front. Such an ionisation front is termed R-type (meaning
that the gas is rarefied ahead of the front). However, for a very fast ionisation
front where the ionisation front velocity is very much larger than the sound
speed in either the ionised or the atomic gas ahead of the ionisation front,
neither the ionised nor the neutral gas can react dynamically to the increased
pressure in any significant way. Such an ionisation front therefore produces
only a small change in the density across it, and is termed a weak R-type
front.
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As the H ii region expands towards its Strömgren radius, the velocity of
the ionisation front continues to fall, until it approaches the sound speed
in the ionised gas, but is still highly supersonic with respect to the atomic
medium. In the example given above this happens after about two recombi-
nation times (or about 2 × 105/n years, which is still very short compared
with the lifetime of an O star; ∼ 5 × 106 years). Now the plasma attempts
to adjust to the steep pressure gradient across the ionisation front, and the
density change across it is much greater. At a certain velocity the hot plasma
starts to push a strong compression shock into the atomic gas ahead of it.
The exact velocity at which this happens will be derived in Section (9.1.4).
Such an ionisation front is called an D-critical front.

As the expansion slows still further, the ionised region becomes detached
from a strong shock which is propagating into the neutral gas and we have
a D-type (dense) front, in which the gas ahead of the ionisation front is now
denser than the ionised gas behind it. Since the expansion velocity is decreas-
ing, the strength of this shock decays over time. Cooling may produce a shock
which is approximately isothermal, and so the neutral gas is compressed by
a factor of order one hundred. The pressure in the post-shock gas is now
more-or-less matched to the pressure in the ionised region. By this time, the
expansion velocity is subsonic with respect to the ionised plasma, so that the
pressure gradients in the ionised plasma are much reduced. Because of the
large density change, this type of front is dubbed strong D-type.

Eventually, the expansion velocity falls to the point where the motions
in both the ionised and neutral phases are subsonic. By this time dynamical
adjustments have allowed the pressure in the ionised plasma (2n2kT2) to fall
towards the pressure in the neutral plasma (nkT1) so that the final Strömgren
radius,

(
3S∗/4πα (Te)n2

2

)1/3, is very much greater than the initial Strömgren
radius. However the time required to reach this final configuration is much
longer than the lifetime of the ionising star in most cases. In any event,
the dynamical effects generated by the energetic stellar winds of hot stars
are much more important than the dynamical effects generated in ionisation
fronts at these late stages.

9.1.4 Jump Conditions in Ionisation Fronts

Advanced Topic
In this section, we will consider the gas dynamics across the ionisation

front in a little more detail. The theory and the nomenclature were first
worked out by Kahn (1958).

The thickness of the ionisation front is determined by equation (9.1),
which, as we have already seen, is only about 1% of the intial Strömgren
radius. In steady flow and in the frame of reference of the ionisation front,
we may therefore treat the ionisation front as a discontinuity in the flow
parameters, and apply the appropriate jump conditions across it.
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As equation (9.6) makes clear, the motion of an ionisation front is con-
trolled by the flux of ionising photons into it (or, equivalently, the ionisation
parameter immediately before it). The mass flux through the front is there-
fore determined by the photon flux, and is not an arbitrary parameter, as it
is in the case of shock waves:

ρ0v0 = ρ1v1 = mHS (9.20)

The gas pressure may be quite different on either side of the ionisation
front because of the large increase in the temperature of the gas as it becomes
ionised. On the other hand, we must also take the radiation pressure acting
across the ionisation front into account. The momentum equation is therefore:

P0 + ρ0v20 = P1 + ρ1v21 + Prad (9.21)

or more explicitly:

ρ0

(
c20
γ

+ v20

)
= ρ1

(
c21
γ

+ v21

)
+
h 〈ν〉S
c

(9.22)

where we have substituted for the sound speed c2 = γP/ρ. For the radiation
pressure term to be dominant, the radiation pressure must be comparable to
the gas pressure in the ionised plasma, which condition gives q >∼ λmHc

2
1/h.

Thus, the ionisation parameter q has to be greater than about 109 (U = 0.03).
This condition is not usually satisfied in normal H ii regions of planetary neb-
ulae, but radiation pressure may become important in photoionised regions
near active galactic nuclei, or in the shells of gas ejected in nova explosions.

Ignoring the production of radiation within the ionisation front itself, but
allowing for the heat energy produced by each photoionisation, the of energy
conservation can be written:

γ

γ − 1
P0

ρ0
+
v20
2

=
γ

γ − 1
P1

ρ1
+
v21
2

− h 〈ν − ν0〉S
mH

(9.23)

or, substituting for the sound speed and re-arranging:

c21 = c20 +
γ − 1

2
v20 − γ − 1

2
v21 − (γ − 1) ε (9.24)

where ε is the mean kinetic energy per unit mass liberated in the photoioni-
sation process.

Equations (9.20) (9.22) and (9.24) provide the general solution for the
motion of gas across a planar ionisation front. For simplicity, let us neglect the
radiation pressure term. Then, eliminating the density dependence between
the first two equations, we have:(

v1
v0

)2

−
[
1 +

1
γM2

0

](
v1
v0

)
+

1
γ M2

1

= 0 (9.25)
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with the Mach number of the ionisation front in the undisturbed and ionised
material being, respectively:

M0 = v0/c0 : M1 = v0/c1 (9.26)

M0 is defined by the initial conditions, and M1 can be determined from the
energy equation (9.24). The solution for v1/v0 given by equation (9.25) must
be both real and positive, which restricts the range of Mach numbers over
which solutions are possible. Recognising that, thanks to the large increase
in the temperature across the ionisation front M0 � M1, then the existence
of a real solution for large Mach numbers (R-type solution) requires that the
ionisation front must have, to first order:

M1 >
2
γ1/2

: or equivalently vR >
2c1
γ1/2

(9.27)

and the existence of a positive solution for small Mach numbers (D-type
solution) requires that, to first order:

M1 > 2γ1/2M2
0 : or equivalently vD <

c20
2γ1/2c1

(9.28)

Thus, since typically, c1 ∼ 12 km s−1, the evolving ionisation front slows
from weak-R to its R-critical value, vR−crit ∼ 16 km s−1 at which point it
detaches a strong (approximately) isothermal shock into the neutral medium,
which compresses the gas sufficiently to slow the ionisation front to its D-
critical value. By the time that this transition occurs, the H ii region has
already expanded to about 95% of its initial Strömgren radius. The motion
of shock is governed by the internal pressure in the H ii region. Since the
shock velocity, vs ∼ c1 ∼ 12 km s−1 and c0 ∼ 1 km s−1 the shock can be
regarded as strong. Additionally, we can take the post-shock cooling to be
strong enough that the shock can also be regarded as isothermal. Therefore:

Pram = ρ0v
2
s = mHn0

(
dr

dt

)2

and

Pion = c21ρ1 = mHn1c
2
1 = Pram (9.29)

However, because the H ii region is already very close to its Strömgren radius
at the time of shock detachment, the number of recombinations in the nebula
ionisations must be approximately the same as the number of ionising photons
produced by the central star:

S∗ =
4π
3
α(Te)n2

1r
3 (9.30)

Equations (9.29) and (9.30) give the equation of motion of the shock front
(behind which the ionisation front follows very closely):
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r3/2
(
dr

dt

)2

= c21R
3/2
s (9.31)

where we have made use of the definition of the Strömgren radius given
by (9.12). Substituting for the dimensionless distance variable of equation
(9.17); ξ = r/Rs, and defining a new dimensionless time variable based on
the sound-crossing timescale of the initial Strömgren sphere, τs = c1t/Rs,
equation (9.31) simplifies to:

ξ3/4
dξ

dτs
= 1 (9.32)

As pointed out above, the boundary condition ξ = 1; τs = 0 is valid to a
good level of approximation so that this equation can be integrated to give:

ξ = (1 + 7τs/4)4/7

dξ

dτs
= (1 + 7τs/4)−3/7 (9.33)

Since the sound-crossing timescale of a typical H ii region (r ∼ 10 pc) is of
order 106 years, this equation shows that the time taken to approach the final
Strömgren radius (at which the internal pressure of the H ii region matches
that of the ISM) is many times the lifetime of the central star. The star will
have blown up as a Type II supernova long before then.

9.1.5 Photoionisation of Neutral Condensations

Advanced Topic
H ii regions are not homogeneous. They all contain lumps, condensations,

partially ionised globules (PIGs!), and filaments of dense atomic and molec-
ular gas left behind the main ionisation front. On the large scale, these may
result from inhomogeneities in the placental cloud of neutral and atomic hy-
drogen or through crinkling instabilities in the ionisation front. On the small
scale, these are associated with the parent clouds and the gaseous disks associ-
ated with the formation of low-mass main sequence stars and their planetary
systems - stripped bare by the passage of the ionisation front when the excit-
ing star of the H ii region turns on. Very beautiful examples of both of these
classes of condensation have been revealed by the HST.

Once formed, a neutral condensation of gas is surprisingly resilient to the
destructive effects of photoionisation. This is because the layer of ionised gas
streaming off the condensation serves to shield the cloud. The photoionising
field at the ionisation front is weakened because much of it has been used in
maintaining the ionisation of the flow region. A second factor aiding in the
survival of such clouds is the fact that the recoil momentum of the ionised gas
flowing from the ionisation front serves to compress the neutral gas ahead of
it. This reduces the cross-section of the cloud to the ionising radiation field.
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The theory of the photoionisation by a diffuse photon field of a neutral
condensations in an H ii region was worked out many years ago by Dyson
(1968), and we follow his treatment here. The difference between a normal
ionisation front and the ionisation front around a neutral condensation is that
the photoionising field reaching the ionisation front is not a free variable, but
instead is controlled by the radiative transfer through the ionised flow region.
The radiative transfer through the flow region, the dynamics of the flow region
and the structure of the ionisation front are therefore coupled, and have to
be solved in a self-consistent way.

Dyson simplified the problem by making the eminently reasonable as-
sumption that the ionised flow region is isothermal, is in photoionisation equi-
librium, and has a steady-flow solution. The requirement for this to be satis-
fied is that the recombination timescale in the ionised flow is short compared
with the dynamical timescale of the outflow. This is easily satisfied for the
type of cloudlets seen in Orion. The dynamical timescale τdyn ∼ 300r16M−1

years, where M is the Mach number of the flow and r16 is the cloud radius in
units of 1016 cm, while the recombination timescale τrec ∼ 105/n years, as has
been already shown. Therefore, the recombination timescale is less than the
flow timescale for any flow with hydrogen number density n > 300r16M−1

cm−3. To solve the steady-flow requires an inner boundary condition. This is
obtained by making the assumption that in a self-shielded flow the ionisation
front has to be D-critical. In this case, the gas streams away from the ionisa-
tion front at the sound speed in the ionised medium, c1. This is a reasonable
assumption, because such a flow satisfies the Jouguet-point condition (see
Kaplan, 1966). In the D-critical case, the following relationships are satisfied:

v0 =
c20
2c1

: v1 = c1 :
ρ1
ρ0

=
c20
2c21

(9.34)

After ionisation, the input of energy from the photon field which keeps
the temperature constant also allows the gas to perform the PdV work of
expansion, and to continually accelerate in the flow region. The steady-flow
conditions of mass and momentum conservation in an isothermal outflow
provide the velocity and density profile of the outflowing gas:

r

rc
= M−1/2 exp

[M2 − 1
4

]
ρ

ρ1
= exp

[
−M2 − 1

2

]
(9.35)

where rc is the radius of the neutral condensation (or radius at the ionisation
front) and M is the Mach number of the flow.

The radiation field, initially isotropic at infinite distance, S∞/2π pho-
tons cm−2 sr−1, is attenuated through the flow as a function of both optical
depth and of angle. Most of that attenuation occurs close to the ionisation
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front. For example, by the time r ∼ 2rc, equation (9.35) shows that the den-
sity is only a tenth of that at the ionisation front, and the recombination
rate is reduced by a factor of a hundred. We may therefore adopt the plane-
parallel slab approximation to solve for the local radiation field at radius r;
S (r):

S (r) = S∞

π/2∫
θ=0

exp [−τ(r) sec θ] sin θdθ (9.36)

where τ(r) is the local optical depth in the ionising continuum. Close to the
ionisation front, the optical depth is large, so that significant contributions
to the local ionising field come only from small θ. With this additional ap-
proximation,

S (r) = S∞
exp [−τ (r)]
τ (r)

(9.37)

Since the number of new photoionisations has to match the number of
recombinations (α (Te)n (r)2) at each radial shell in the flow then:

S (r)
dτ (r)
dr

= −α (Te)n (r)2 (9.38)

using equation (9.37), integrating and substituting numerical values, this
gives the the (self-consistent) density of the ionised flow at the ionisation
front:

n (rc) = 1.94x106S1/2
∞ r−1/2

c cm−3 (9.39)

For the set of parameters which characterises the environment and the
condensations in the Orion nebula (number of ionising photons produced by
the exciting star, S∗ ∼ 1049 s−1, S ∼ 1012 cm−2 s−1, mean density of the
substrate nebula 〈n〉 ∼ 103 cm−3, and rc ∼ 1016 cm) equation (9.39) implies
that n (rc) ∼ 2 × 104 cm−3, which from equation(9.35) suggests the typical
densities in the neutral inclusions are ∼ 107 cm−3.

The outflow region is terminated when it interacts with the ionised sub-
strate of the nebula. This occurs when the ram pressure in the flow matches
the thermal pressure in the surrounding medium. At this point in the flow,
an (isothermal) termination shock is formed, and the under-dense outflow is
compressed by a factor of M2 to match the density of the substrate and to
be brought to rest with respect to it. From equation (9.35), therefore:

〈n〉
n (rc)

= M2 exp
[
−M2 − 1

2

]
(9.40)

which with the parameters we have taken for Orion gives M ∼ 3.5, r ∼
10rc ∼ 1017 cm. In practice, the substrate will not usually be stationary with
respect to the flow, so a low Mach number bow-shock structure is formed in
the substrate at the termination of the outflow. This will induce flows and
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turbulence with velocities of order of the sound speed. Both the spatial scale
(∼ 10

′′
at the distance of Orion, ∼ 500 pc) and the magnitude expected

of this turbulence (∼ 10 − 15 km s−1) is in good agreement with the high-
resolution data of Wilson et al. (1959). It is clear that ionised flows from dense
inclusions may drive both the large temperature and density fluctuations
which apparently characterise H ii regions as a whole.

9.2 H ii Regions with Heavy Elements

A real H ii region will always contain heavy elements. The reason we have
been able to go so far by considering only the hydrogen within the H ii region
is because atomic hydrogen is the dominant source of opacity for frequencies
at, and somewhat above, the Lyman limit, ν0. However, helium may also
contribute significantly to the opacity for photon energies high enough to
ionise this element; ν ≥ 1.8ν0. Heavy elements provide some contribution as
well, although this is much smaller than either hydrogen and helium, except
for frequencies approaching and into the X-ray region, where K and L -shell
ionisation of heavy elements provides the dominant opacity source.

Of course, our treatment so far has skipped lightly around the question of
the equilibrium temperature, which, according to equation (9.2) is dominated
by the collisional excitation cooling in emission lines of the heavy elements.
Proper photoionisation modelling of H ii regions would solve the full set of
coupled ionisation - cooling equations, including the radiative transfer of both
the direct and diffuse radiation fields and taking proper account of the geo-
metrical dilution and other physical and geometrical effects such as clumping
of the ionised matter and its distribution with respect to the central source.
This is done correctly in such modelling codes as CLOUDY (Ferland,1993),
MAPPINGS III (Sutherland & Dopita, 1993) and in a number of other codes
as well. However, in the spirit of our philosophy of seeking physical insight
through simplification, let us continue (for the time being) to assume that
the electron temperature is about 104K and consider the ionisation structure
that results in a nebula composed of only hydrogen and helium.

9.2.1 Ionisation Structure of Hydrogen & Helium Nebulae.

If hydrogen and helium are the only sources of opacity, then at any point in
the ionised volume, the element of optical depth is simply:

dτν = −κνdx = (nH0σH(ν) + nHe0σHe(ν) + nHe+σHe+(ν)) dx (9.41)

it is obvious, therefore, that the radiation field can be divided into three
parts, or bands according to how many of these opacity sources are active at
any particular frequency:
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Fig. 9.2. The opacity of (un-ionised) atomic interstellar gas of solar composition as
a function of photon frequency in Rydberg energy units (13.6 eV or 3.266×1015 Hz).

A-band : 1.0ν0 ≤ ν < 1.8ν0 : H0 -ionising
B-band : 1.8ν0 ≤ ν < 4.0ν0 : H0, He0 -ionising
C-band : 4.0ν0 ≤ ν : H0, He+ -ionising

where ν0 is the threshold for ionisation of hydrogen.
In normal H ii regions around young, hot stars, the number of C-band

photons are negligible, since the stellar effective temperatures are so low that
all such photons are absorbed in the passage through the stellar atmosphere.
However, for the radiative transfer in the nebula, the absorption of B-band
photons by helium cannot be neglected. Although the typical abundance
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of helium is a tenth by number with respect to hydrogen, this abundance
difference is made up by the much greater photoionisation cross-section of
helium to the B-band photons. At the threshold of ionisation of helium this
cross-section is almost ten times as great as that of hydrogen at the same fre-
quency; σHe(1.8ν0) ∼ 9.9σH(1.8ν0), and the ratio between the two increases
with frequency.

In the hydrogen nebula, the diffuse radiation field was fairly unimpor-
tant, since the only source of diffuse ionising photons was recombination to
the ground state, which can be accounted quite well by the on-the-spot ap-
proximation. Helium likewise produces a helium-ionising radiation field by
direct recombinations to the 1 1S ground state of He i, but this is less im-
portant than in hydrogen, because only 1/4 of all recombinations occur to
singlet levels, the remaining 3/4 occurring to levels in the triplet series. For
this transition, use of the on-the-spot treatment is a rather poor approxima-
tion to the radiative transfer problem, since the nebular opacity in the singlet
states of helium is much lower (by a factor of about 40) than for hydrogen.

Helium not only produces ionising photons by direct recombination to the
ground state, but also in transitions between its n = 2 and n = 1 states. All
of the recombinations to the triplet terms will produce a band A photon in
the 2 3P - 1 1S transition. Of the remaining recombinations to excited states
of the singlet series, about 2/3 will produce a hydrogen-ionising photon in
the 2 1P - 1 1S transition, and about 56% of the recombinations to the 2 1S
state will produce a hydrogen-ionising photon in the 2q continuum between
the 2 1S and the 1 1S terms. Summing all these contributions, we find that
(effectively) every recombination of helium produces an A-band photon.

In this circumstance, to a reasonable approximation, the helium radiative
transfer problem can be decoupled from the hydrogen transfer problem, and
we can therefore talk about a helium Strömgren sphere the size of which is
controlled only by the radiative transfer of the band B photons. Thus, if the
star produces S∗ = SA + SB photons, if helium is present at an abundance
ZHe = N(He)/N (H), and the number density of hydrogen atoms is nH ,
then the helium ionisation balance equations within the Helium Strömgren
sphere are written (c.f. equation (9.13));

(χH + ZHeχHe)χHe

1 − χHe
=

〈σHe〉
αHe (Te)

SB exp [−τB (r)]
4πr2nH

(9.42)

where:

τB (r) =

r∫
0

n [〈σH〉 (1 − χH) + ZHe 〈σHe〉 (1 − χHe)] dr (9.43)

〈σH〉 being the frequency-weighted mean photoionisation cross-section of hy-
drogen in the B-band photons, and 〈σHe〉 being the corresponding value for
helium. The (approximate) hydrogen ionisation balance equations are:
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(χH + ZHeχHe)χH
1 − χH

=
〈σ〉

αH (Te)
S∗ exp [−τA (r)]

4πr2nH
(9.44)

where 〈σ〉 is the frequency-weighted mean photoionisation cross-section of
hydrogen in the A-band photons, including the He diffuse field photons, and:

τA (r) =

r∫
0

n 〈σ〉 (1 − χH)dr (9.45)

These last two equations implicitly assume that the hydrogen-ionising
diffuse field produced by helium is absorbed by hydrogen according to the
on-the-spot approximation, which may not be particularly exact.

Equation (9.43) shows that helium will absorb most of the B-band photons
when:

ZHe
〈σHe〉
〈σH〉

(1 − χHe)
(1 − χH)

> 1 (9.46)

since ZHe 〈σHe〉 / 〈σH〉 ∼ 1 in a plasma with the solar abundances, this is
condition tantamount to the requirement that χHe < χH .

The helium Strömgren sphere will be smaller than the Hydrogen Strömgren
sphere, if, at the inner edge of the nebula the condition χHe < χH is also
satisfied. This is obvious from the form of the solution of the ionisation bal-
ance equation see, for example Figure(9.01); the lower the initial ionisation
state, the smaller the effective ionisation parameter at the inner boundary,
and the smaller (or thinner) the extent of the ionised region. Dividing equa-
tion (9.44) by (9.42) with the approximation that the fractional ionisation is
of order unity then yields the condition on the ratio of the B-band photons
to the total number of ionising photons:

SB
S∗

=
SB
SA+B

<
αHe (Te) 〈σ〉
αH (Te) 〈σHe〉

(9.47)

since this ratio is a strong function of the effective temperature of the ionising
source, this shows that the helium Strömgren sphere grows to fill the hydrogen
Strömgren sphere as the temperature is increased. Detailed calculations show
that they become effectively the same for stellar temperatures above about
40,000 K; see Figure (9.3).

Clearly, the helium Strömgren sphere cannot grow larger than the hy-
drogen Strömgren sphere, since helium is ionised wherever there are B-band
photons. At high stellar effective temperatures, most of the helium ionising
photons are absorbed by hydrogen.

From a practical viewpoint, it is very important to know the ratio of
the hydrogen and helium Strömgren spheres, since the measurement of the
primordial helium abundance, which is a critical cosmological parameter,
depends very critically upon the measurement of the ratios of helium and
hydrogen recombination lines in low-abundance H ii regions. Line ratios such
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Fig. 9.3. The ratio of helium-ionising photons to hydrogen-ionising photons as a
function of temperature (left) and the resulting ratio of the Strömgren radii (right),
from detailed photoionisation modelling with MAPPINGS III.

as He iλ4471Å/Hβ orHe iλ5876Å/Hα are used for this purpose. We therefore
effectively measure N(He+)/N(H+) when we would rather determine N(He+

+ He0)/N(H+) in the ionised region. The correction for the neutral helium is
therefore rather important. To do this properly requires not only a detailed
stellar atmosphere model, which tells us the intrinsic flux ratio of the A-band
to B-band photons, but also a detailed nebula model, which takes proper
account of the temperature and the ionisation structure of the nebula.

When band-C photons are present, for stellar effective temperatures above
about 80000 K, then a He++ Strömgren sphere is also formed, nestled inside
the He+ sphere. The presence of such a sphere is signalled by the appear-
ance of recombination lines such as He iiλ4686Å or He iiλ1640Å. As the
temperature increases, this zone also expands and tends to fill the hydrogen
Strömgren sphere. The limiting He iiλ4686Å/Hβ flux ratio (and indeed, any
similar ratio) is set by the ratio of the abundances, and the ratio of the effec-
tive recombination coefficients to produce the lines. In practice, the limiting
He iiλ4686Å/Hβ ratio lies in the range ∼ 0.5− 0.7, depending on the helium
abundance.

9.2.2 Nebular Structure with Heavy Elements

As mentioned above, it is the hydrogen and helium which dominate the opac-
ity, and consequently which control the local ionising field in the nebula. Since
the ionisation state of the heavy elements is determined by the local ionising
radiation field, then this must also be closely correlated to the local ionisation
state of hydrogen and helium. As a consequence, we can expect that those
elements which have ionisation potentials above 4 Rydbergs are located in
the He++ zone, those with ionisation potentials between 1.8 and 4 Rydbergs
are to be found in the He+ zone, those with ionisation potentials between
1 and 1.8 Rydbergs occur in the H+/He0 zone, and finally neutral species
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and ions with ionisation potentials below 1.0 Rydbergs are co-extensive with
the atomic hydrogen. This predicts that the dominant ionisation zones of the
nebula for the most abundant elements and important coolants are as follows:

H i, He i : C ii, N i, O i, Ne i, S ii

H ii, He i : C ii, (C iii), N ii, O ii, Ne ii, S ii, (S iii)
H ii, He ii : C iii, (C iv), N iii, O iii, Ne iii, S iii, (S iv, Sv)
H ii, He iii : C iv, N iv, O iv, Ne iii, Sv, and higher

where non-dominant ionisation stages are indicated in parentheses.
Within each of these zones, but especially in the first three, the ionisation

structure is appreciably modified by the charge-exchange reactions:

A(i+1)+ +H0 ⇀↽ Ai+ +H+ +∆E and
A(i+1)+ +He0 ⇀↽ Ai+ +He+ +∆E

these, for instance, lock the ionisation ratio O ii/O i so that it varies very much
as H ii/H iratio, and serve to lower the O iii/O ii ratio in the intermediate
ionisation zones.

The distinction between the atomic, A-band ionised and B-band ionised
regions can be clearly seen in Figure (9.4) which is a full MAPPINGS III
photoionisation model for an isochoric (constant density) region excited by a
star with an effective temperature of 3.5 × 104 K.

9.2.3 Nebular Equilibrium Temperature

In an H ii region, the local heat input is determined by the local rate of pho-
toionisations of hydrogen and helium and the mean energy of the liberated
photoelectrons, which is a function of the intensity and shape of the local
ionising radiation field: ε(U , Teff , τ). At low densities, the local energy loss
rate is given by the cooling function appropriate to the local electron tem-
perature, ionisation state and the heavy element abundance set; Λ(Te, Z). If,
locally, we also have photoionisation equilibrium, then the photoionisation
rate is equal to the recombination rate. Ignoring the small recombination
heating term, the heat balance equation (given in equation (9.2) for the case
where hydrogen supplies the photoelectric heating), can be then written:

.

Q = ε(U , Teff , τ) (αH(Te)nH+ne + αHe(Te)nHe+ne + αHe+(Te)nHe++ne)
= Λ(Te, Z)nne (9.48)

For plasmas with heavy element content below or about equal to solar, we
can approximate n ∼ nH +nHe = (1+Z(He))nH , so that in the zone where
only hydrogen is ionised (9.48) simplifies to:
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Fig. 9.5. The cooling function for a fixed ionisation produced by an O-star with
Teff = 40000K and with q = 108 cm s-1 is shown here as a function of electron
temperature. The heating rate is related to the recombination rate, as described in
the text. The equilibrium temperature is defined by the point at which these cross.
Quite wide variations in the heating rate would produce only small changes in Te,
which remains in the vicinity of 104 K.

ε(U , Teff , τ)αH(Te) = (1 + Z(He))Λ(Te, Z) (9.49)

and within the zone where hydrogen is ionised and helium is singly ionised:

ε(U , Teff , τ) (αH(Te) + Z(He)αHe(Te)) = (1 + Z(He))Λ(Te, Z) (9.50)

Since the recombination rates are of order 2 × 10−13 cm3 s−1 and the mean
energy per photoionisation is about a Rydberg (2× 10−11 ergs), the heating
rate is typically about 4 × 10−24 erg cm3 s−1.

In Figure (9.5), we show the cooling function for fixed ionisation, the equi-
librium ionisation in a O-star radiation field of 40000 K and with q = 108

cm s−1. The ground-term fine structure splitting of the abundant heavy ionic
species present produces many mid- and far- IR transitions with excitation
energies of order 100 K, which accounts for the rapid rise in the cooling func-
tion. At temperatures of a few thousand the optical forbidden lines between
the different terms with the same principal quantum number are excited, and
the cooling function rises rapidly with temperature. Above 15000 K, approxi-
mately, the UV resonance lines come to dominate the cooling function, which
continues to rise sharply with increasing temperature.
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Figure (9.5) shows how this rapid increase in cooling rate with tempera-
ture, combined with the decreasing heating rate, serves to “thermostat” the
H ii region within a rather narrow range of electron temperatures over quite
widely different heating rates, provided the temperature is above, or in the
vicinity of 104 K. This is the case in all H ii regions excited by O- or B-
stars, provided the abundance of the heavy elements is solar or less. Such
H ii regions produce a rich forbidden-line spectrum in which the strengths
of the forbidden lines exceeds the sum of the Balmer recombination lines of
hydrogen at optical wavelengths.

When the heavy elements are present only at very low abundance, the
electron temperature is so high that the cooling is dominated by the UV reso-
nance and intercombination lines. In the optical, the forbidden lines approach
their peak emissivity per atom (c.f. Figure (3.3)), but decreasing abundance
decreases their intensity relative to the Balmer lines, and the recombination
lines of hydrogen and helium come to dominate the spectrum. However, the
[O iii] lines remain an important coolant even at very low abundance. Even-
tually, when the abundance is lower than about a tenth to a thirtieth of solar,
even these fade away.

For metal-rich OB stars and nebulae with metallicities in excess of about
twice solar, the equilibrium electron temperature decreases rapidly with in-
creasing cooling rate (or decreasing heating rate) in the temperature range
3.8 > log Te > 2.8, approximately. Since metal-rich H ii regions are too cool
to excite the optical forbidden lines to any great extent, the optical spectrum
is dominated by the recombination lines.

Since the forbidden lines reach a peak relative intensity at a particular
abundance, any particular forbidden to Balmer line ratio is obtained for two
values of the abundance. To identify which branch represents the correct
solution, a measure of the electron temperature is required. This will be high
for low chemical abundance, and low for high abundances.

Finally, note that the photoionisation equilibrium represented in Figure
(9.5) is thermally stable, even where it is quite sensitive to changes in the
heating rate. Instabilities will only occur where there is an unstable time-
dependent feedback between the ionisation state and the cooling rate. This
requires that there be an appreciable fraction of neutral hydrogen in the
plasma.

9.3 Photoionisation by X-ray Sources

So far we have considered only the temperature and ionisation equilibrium of
regions ionised by UV sources which have an energy spectrum νF (ν) which
is effectively cut off at energies above about 100 eV. However sources much
“harder” than this are observed. These include the very hottest planetary
nuclei (PNn), which are observed as soft thermal X-ray sources, accreting
white dwarf stars in binary systems, which are bright even in hard X-rays,
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and various classes of active glactic nuclei (AGN). The theory of such regions
was pioneered by Williams (1967) and MacAlpine (1972), and developed in
the late 1970s and early 1980s by Koski (1978), Ferland & Netzer (1983)
and Stasinska (1984), and continues to be an active field of research (i.e.
Murayama & Taniguchi, 1998)

In H ii regions ionised by a photon field which extends up to X-ray fre-
quencies (even if it is not dominated energetically by the X-ray photons),
the physics described in Section (5.3.2) comes into play. The opacity of the
medium is now dominated by inner shell photoionisation processes in heavy
elements. These, and inner shell photoionisation / Auger ionisation processes
such as:

O2+(1s22s22p23P) + hν → O3+(1s2s22p22P) + e
O3+(1s2s22p22P) → O4+(1s22s22P) + e

couple ionisation stages which differ by two (or more) electrons, and produce
high-energy fast electrons capable of producing many collisional exciations
or secondary ionisations in hydrogen or helium.

In the region of an X-ray ionised H ii region which is closest to the source,
these processes coupled with the high ionisation parameter produce a hot,
highly ionised plasma with an intense and rich emission line spectrum at
optical and UV wavelengths. In such a plasma the [Nev]λλ3364,3426Ålines
are very strong, and the “coronal” lines of other species, so called because
they were first seen in the corona of the Sun, are prominent. These in-
clude [Fevii]λλ5720,6087Å, [Fex]λ6375Åand [Fexi]λ7892Ålines, which re-
quire photon energies up to at least hν >∼ 260 eV. In some extreme AGN
[Fexiv] λ5303Åhas even been seen.

In the bulk of the H ii region, however, the ionisation state is much lower,
and ions such [O iii] (which are found in normal H ii regions), are the domi-
nant ionisation stage. The difference between X-ray photoionised and normal
H ii regions is that the fast electrons generate collisional heating which pro-
duces a very rich optical and UV line spectrum. In general, the forbidden
lines are systematically stronger in an X-ray photoionised nebula, and be-
come stronger still as the spectrum of the central source becomes harder.

The most profound difference between an X-ray ionised region and a nor-
mal H ii region is found near the outer boundary. In a normal H ii region, the
opacity of hydrogen and helium increases sharply near this boundary, pro-
ducing the rapid transition between ionised and neutral plasma described in
Section (9.1.1), above. In an X-ray ionised region, the photon field becomes
very hard in the outer regions. Such a photon field is quite unaffected by
the state of ionisation of hydrogen and helium, and the mean free path of
the ionising photons is long. Although the local ionisation parameter is quite
low, these residual photons are very energetic, and are capable of producing
significant heating when absorbed. In addition, the energetic photoelectrons



        

9.4 Radio Continuum of H ii Regions 209

produce many collisional excitations and secondary ionisations in atomic hy-
drogen.

The result of all of this is that the hard-EUV/ soft-X-ray photons produce
an extended transition zone in which the temperature is maintained in the
range 5000 to 10000 K, and in which hydrogen has a significant fractional
ionisation (a few percent, typically). These conditions are ideal for producing
strong emission lines in neutral species, or species with ionisation potentials
below that of hydrogen, such as [O i]λλ6300,6363Å, [N i]λλ5198,5200Å, and
[S ii]λλ6717,6731Å or λλ4069,4076Å. Indeed, a high [O i] λλ6300/Hα ratio,
combined with the presence of lines of high excitation is an excellent diagnos-
tic for the presence of a source of hard photons. In addition, the collisional
excitations to the n = 3 level of hydrogen enhance the strength of Hα above
its Case B recombination value, so that X-ray ionised regions are also char-
acterised by a somewhat enhanced Balmer decrement.

9.4 Radio Continuum of H ii Regions

The source of the radio continuum emissivity of H ii regions is the thermal
free-free continuum (sometimes called the thermal bremsstrahlung) described
in Chapter 6. This continuum is produced by the acceleration of the free elec-
trons during Coulomb scatterings caused by the heavy ions, and is limited at
high frequencies by the requirement that the photon produced cannot exceed
the kinetic energy of the electron being scattered. At radio wavelengths, the
opacity (which may be large) is provided by the inverse process; free-free
absorption.

When the nebula is very optically thick, the emergent specific intensity
at any wavelength is simply the Planck Black-Body value appropriate to the
plasma temperature; given by equation (4.12):

I(ν) = B(ν, Te) =
2hν3

c2
(
exp

[
hν
kTe

]
− 1

)
∼ 2ν2kTe/c

2 : hν/kTe � 1 (9.51)

Here, the Rayleigh-Jeans approximation given in the second line is appro-
priate for H ii regions (with electron temperatures of several thousand K)
for radio frequencies of less than about 100GHz. In the limit of high optical
depth, the equation of transfer through the nebula is very simple:

dI (ν)
ds

= −κνI (ν) + jν = 0 (9.52)

These two equations gives the (Kirchhoff’s Law) relationship between the
emission and the absorption coefficient; jν = κνB (ν, Te). At the limit of high
optical depth, the brightness temperature, TB , defined as I (ν) = B (ν, TB)
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is identical to the electron temperature, and, from equation (9.51) the radio
continuum spectrum is simply a power law in frequency with slope +2; I (ν) ∝
ν2.

The emission coefficient for the free-free interaction of electrons with ions
of charge Zi is:

jν =
8gff

3

(
2π
3

)1/2
Z2
i e

6 exp [−hν/kTe]
m

3/2
e c3 (kTe)

1/2
nine (9.53)

= 5.44 × 10−39gffZ
2
i nineT

−1/2
e

x exp [−hν/kTe] erg cm−3 s−1 sr−1 Hz−1

where at radio wavelengths, the free-free Gaunt factor can be approximated
by:

gff = 11.96T 0.15
e ν−0.1 (9.54)

Combining equations (9.51),(9.53) and (9.54) into the Kirchoff relation-
ship then gives:

κν = 0.212Z2
i nineν

−2.1T−1.35
e cm−1 (9.55)

from this equation it then follows that, for a fully-ionised plasma of solar
composition, the optical depth for a column of length s for free-free absorp-
tion; τν = κνs, is directly related to the emission measure of the nebula
〈EM〉 =

∫
n2
eds:

τν ∼ 0.08235ν−2.1T−1.35
e 〈EM〉 (9.56)

The interesting thing about this equation is that it shows that the nebula
is optically thick at low frequencies, but becomes optically thin to free-free
absorption at high frequencies.

For finite optical depth, and in the Rayleigh-Jeans limit of equation (9.51),
the equation of transfer (9.52) is re-written in terms of the optical depth and
the brightness temperature defined above:

dTB
dτν

= −TB + Te (9.57)

thus, the emergent specific intensity, expressed in terms of the brightness
temperature is

TB (ν) = Te (1 − exp[−τν ]) + TB(0) (9.58)

where TB(0) is the brightness temperature of the sky background at this
frequency (with specific intensity I(0)). In the optically thin (high frequency)
limit, equation (9.56) gives (provided the Rayleigh-Jeans approximation is
still valid);

I(ν, Te) − I(0) = 2ν2τνkTe/c
2 ∝ ν−0.1T−0.35

e 〈EM〉 (9.59)

In summary: at low frequencies, the nebula is optically thick, the free-free
radio continuum spectrum has a flux which increases as the square of the fre-
quency, and from which the electron temperature can be determined. At high
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frequencies, where τν < 1, the flux varies as ν−0.1. At these high frequencies,
the emission measure of the nebula can be obtained from a determination of
the surface brightness in the radio continuum. This measurement provides
an accurate result provided that the electron temperature has been already
determined from the low-frequency spectrum, and provided that the radio
telescope has got sufficient spatial resolution to properly resolve the nebula
(including any small high-density inclusions which it might contain).

Note that the emission measure is closely related to the recombination
rate in the nebula. Integrating the surface brightness over the whole nebula
to give the flux density, S(ν), of the source, therefore gives a direct estimate
of the ionisation rate of the central source (and hence either the mass of the
nebula or the luminosity of the central source), provided that the distance can
be determined (and with it, the ionised volume). Putting numerical values
into equation (9.59):

S(ν) = 27.18 × 10−15ν−0.1T−0.35
e

〈
n2
e

〉
θ3D Jy (9.60)

where the flux density is expressed in Janskys (10−26 W m−2 Hz−1), and the
frequency is in Hz, θ is the angular radius of the H ii region in radians, D is
is the nebular distance (cm).

Notes on Chapter 9

• The theory of the dynamics of H ii regions by Dyson, J.E. & Williams,
D.A. 1997 The Physics of the Interstellar Medium, 2nd. Ed., Institute of
Physics Publishing: Bristol, ISBN 0-7503-0460 (paperback) is an excellent
place to start.

• The theory of ionisation fronts is carefully presented in Kaplan, S.A. 1966,
Interstellar Gas Dynamics, 2nd Revised Edition, ed. F.D. Kahn, Pergamon
Press: Oxford.

• A very complete discussion of the line and continuous spectra of H ii re-
gions is given in Aller, L.H. 1984, Physics of Thermal Gaseous Nebulae,
Reidel:Dordrecht, ISBN 90-277-1814-8, and in Osterbrock, D. The Astro-
physics of Gaseous Nebulae. A good exposition on radio observations of
H ii regions is by Brown, R.L. 1987, in Spectroscopy of Astrophysical Plas-
mas eds. A.Dalgarno & D. Layzer, CUP: Cambridge, ISBN 0-521-26315-8,
p35. All these sources have been used in the preparation of this chapter.

Exercise 9.4.1. Near the edge of a (plane-parallel) nebula, the mean pho-
toionization cross-section per hydrogen atom is σ, the mean energy given to
the gas per photoionisation is Γ ergs, and hydrogen accounts for effectively
all the photoionisations and the electrons which are present.

a. If the cooling rate of the plasma per unit volume is nenHΛ erg cm−3 s−1,
the effective recombination coefficient is α cm3 s−1, and the gas is in local
photoionization equilibrium, give expressions for the fractional ionization of
hydrogen x = ne/nH and the equilibrium cooling rate as a function of the
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dimensionless ionization parameter U defined in equation (9.7). Hint: Read
section (9.1) to work out the ionization fraction. Pick the sensible solution,
and then balance the heat gain against the heat loss.

b. (for advanced students) If the cooling rate of the plasma per unit
volume is nenHΛ (Te) ,erg cm−3 s−1, where Λ (Te) can be approximated by
the equation :

Λ (Te) = 10−23 exp
[
−1000K

Te

](
Te

104K

)−1/2

+10−21 exp
[
−20, 000K

Te

](
Te

104K

)−1/2

the effective recombination coefficient is α (Te) = 10−13
(

Te

104K

)−1
cm3 s−1,

the effective cross section per hydrogen atom is σ = 10−18 cm−2, and assum-
ing local photoionization equilibrium, compute graphically using any method
(FORTRAN, Pacal or C program, MATHEMATICA or MAPLE, pencil and
paper etc.) the fractional ionization of hydrogen and the equilibrium temper-
ate as a function of the ionization parameter U in the range 10−7 ≤ U ≤ 10−4.

Exercise 9.4.2. An active galaxy nucleus has an ionizing luminosity of 1044

erg s−1, and the mean photon energy is 50eV. It is surrounded by an extended
photoionised region with a density profile n(r) = 100[1+(r/100pc)−2] cm−3.

a. What is the size of the region that the active nucleus can ionize?
b. Assuming an inner radius of 30 pc for the ionized gas, is the ratio of

the radiation pressure to the gas pressure at this radius, assuming that the
gas temperature is 104 K?

c. Is this radiation pressure effective in accelerating the plasma at this
radius outwards? Explain your reasoning.

Exercise 9.4.3. An 80M� O star produces ionizing photons at a rate, S∗,
of 1050 s−1. The medium around the star consists of pure hydrogen, and has
a constant density, n0 = 10 cm−3.

a. If the recombination coefficient in the ionized gas, α = 3 × 10−13

cm3 s−1, what is the Strömgren radius, R0 , of the HII region that it ini-
tially produces, assuming that the difference in pressure between the ionised
region and the non-ionised region has not yet had time to produce any dy-
namical effects? Answer: 43.4 pc.

b. What would the final radius, R1 , of the HII region be when the internal
and the external pressure are matched assuming that the ratio of sound speeds
in the ionized gas and the undisturbed gas is 10:1? Answer: 201pc

c. Will the star die as a supernova before the HII region reaches its max-
imum extent? (Assume that the HII region expands rapidly to its initial
radius, and then expands at the speed of sound in the ionised gas, cII = 14
km s−1 to its final radius, and that the age of O stars when they explode is
given τ = 5(M/40M�)−0.4 Myr.) Answer: yes.

d. As the ionization front advance velocity slows during the evolution of
the HII region, a radiative isothermal shock is detatched from the ionisation
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front into the undisturbed neutral gas ahead, with sound speed cI . This
shock compresses the gas so that, across the ionization front, the pressure
in the neutral gas approximately matches the pressure in the ionized gas.
The structure of the HII region in its late evolution therefore consists of a
dense thin shell of neutral gas, driven outward by the pressure in the ionized
gas, and the sphere of ionized gas in which the ionizations produced by the
central star match the recombinations in the ionized gas. All the gas swept
up in the expansion of the HII region is contained in one or other of these
components. If the density profile of the undisturbed gas can be written as
n(r) = n0(r/R0)−1, and assuming that the HII region reaches its Strömgren
radius in a time t0, what is the equation of motion describing the expansion
of the HII region, given in terms of whatever of the following parameters are
needed: S∗, α, n0, R0, t0, cII and cI?

Exercise 9.4.4. An active galaxy is producing an isotropic flux of 1053 ion-
ising photons per second, and has aloso produced a radio-emitting jet which
has propagated to a distance of 1 kpc from the central source. Assuming that
the jet is surrounded by a photoionised medium with a density of 100 cm−3,
and that this layer absorbs all of the ionising photons from the central source,

a. At what frequency will the photoionised gas present a free-free optical
depth of unity to the radio emission from the jet?

b. Assuming that the jet radio emission has an intrinsic spectrum F (ν) =
F0 (ν/1.0GHz)−0.5 what is the shape of the spectrum we observe at earth?
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“I sit here on the perfect end of a star, watched light pour itself to-
wards me.

The light pours itself through a small hole in the sky.
I’m not very happy, but I can see how things are faraway”
— Richard Brautigan (The Pill versus the Springfield Mine Disaster)

In this chapter we examine how photoionisation theory can be, and has
been applied to the derivation of physical parameters and chemical abun-
dances in a wide variety of photoionised plasmas ranging from normal H ii
regions, plantary nebulae and nova shells to much more exotic objects such
as photoionising shocks in metal-rich supernova remnants or active galaxies.

10.1 Nebular Parameters

10.1.1 Nebular Temperature

A fundamental parameter for the derivation of all other physical and chemical
quantities in photoionised diffuse plasmas is the electron temperature, since
virtually all the observables are strong functions of the temperature.

We have already touched upon the most common means of estimating the
electron temperature in Section (3.2); using two emission lines of the same
element which have different thresholds for collisional excitation. Generally
speaking, in a temperature-sensitive ion with a well-separated triplet of fine-
structure terms, we would avoid using the ratio of the transitions from the
upper to lower level (3−1) and the middle to the lower level (2−1), since these
are usually quite widely separated in wavelength, making the flux calibration
and correction for dust absorption rather difficult. Instead, we usually take
the (3 − 2)/(2 − 1) ratio for which the two emission line tend to occur in
roughly the same region of the spectrum. For example, we would use the
[O iii]λλ4363/5007Å ratio in preference to the [O iii]λλ2315,21/5007Å ratio.
If the two lines are strong enough, then the [O iii]λλ2315,21/4363Å might
be used as a secondary reddening estimator, since the two transitions here
arise from a common upper level. Examples of some forbidden lines which
are commonly used for temperature determinations at optical wavelengths
are given in Table (3.1).
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The obvious observational problem involved with the use of such ratios
is that, when the atomic parameters have been factored in, the ratio of the
two transitions depends on the temperature. The exp[−E23/kTe] factor for
the [O iii]λλ4363/5007Å ratio is exp[−32980/Te] ; see Figure (??). Thus at
normal nebular temperatures (Te ∼ 104 K), the [O iii] λ4363Å line is only
a few percent as strong as the λ5007Å line, so that high quality spectra are
required to give an adequate signal to noise to measure the fainter line.

A more insidious problem was pointed out by Peimbert (1969) and still
has not been resolved to everyone’s satisfaction. Normal H ii regions are not
homogeneous, but contain temperature gradients, dense inclusions in which
collisional de-excitation of cooling lines leads to higher temperatures, as well
as colliding supersonic flows in which both density and electron temperatures
may be raised as a result of shocks. In all such regions of enhanced temper-
ature the emission line flux ratio is raised by the factor given above. This
would not be a problem except for the fact that the line emissivity is also
raised in such regions by a factor n2

e. Thus, the temperature estimate pro-
vided by the forbidden line ratio is dominated by the line ratio characterising
these overdense inclusions, rather than providing a measure of the electron
temperature of the nebula as a whole. The electron temperature is therefore
systematically overestimated. Photoionsation models by Gruenwald & Viegas
(1995) show that this effect can be particularly serious in planetary nebula
excited by hot central stars with temperatures in excess of 105 K. This can
have a serious effect on attempts to determine chemical abundances since the
ratio of the strengths of the emission lines of heavy elements to the hydrogen
recombination lines is a strong function of temperature. Overestimates of the
temperature lead to systematic underestimates of the abundances; see for
example Mathis, Torres-Peimbert & Peimbert (1998, and references therein).

A second technique is to use the ratio of a recombination line such as Hβ
to the nebular continuum. Since we cannot easily measure the absolute value
of the nebular continuum in the presence of contamination from scattered
stellar continuum, we measure instead the change in the contiuum across the
Balmer series limit (the Balmer jump). Since in recombination He++ also
produces a bound-free continuum with a jump at the Balmer series limit,
this must be taken into account. For a given source, if ∆FBL is the measured
size of the change in the continuum flux across the Balmer jump (erg cm−2

s−1 Hz−1), and FHβ is the Hβ flux from the nebula (erg cm−2 s−1), then, to
a good approximation:

FHβ

∆FBL
= 4.498 × 1013

(
1 +

N(He++)
N(H+)

)
T 0.645

4 Hz (10.1)

with T4 being the electron temperature in units of 104 K. Thus, at 104 K,
the difference in continuum flux measured on either side of the Balmer jump
extended over 199Å of spectrum would provide a total flux which is just equal
the Hβ flux.
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This technique has not been applied in a great number of nebulae, but see
Hua (1974), since it requires both good spectral resolution and high signal to
noise. Futhermore, the temperature sensitivity of the ratio is not very great.
Nonetheless, in principal, it provides one of the best and most direct means
of measuring the hydrogen recombination temperature that we have.

In principle, very direct means of estimating temperature is simply to
measure the brightness temperature of the H ii region in the radio continuum
at low frequencies where it is optically thick to free-free absorption. In these
circumstances (provided that the region is properly resolved by the radio
telescope being used), the brightness temperature is equal to the electron
temperature. However, the temperature that is being measured here is the
temperature of the “photosphere”, a thin layer at the nearside of the region,
which may not be representative of the volume of the H ii region as a whole.

Instead, at radio frequencies, the temperature is usually inferred from the
ratio of a radio recombination line to the flux in the adjacent radio continuum.
This requires the use of high-frequency data to ensure that the nebula is
optically thin and that impact broadening of the line is negligible (i.e. it has
a Gaussian line profile). With the further approximation that both the line
and the continuum are transferred under condition of LTE, the LTE electron
temperature, T ∗

e , can be obtained (Brown, 1988):

(T ∗
e )1.15 = 6350ν1.1 TC

∆νTL
(10.2)

where ν is the observing frequency in GHz, and ∆ν is the line width in
units of km s−1. Because of non-LTE effects, T ∗

e < Te in general, and in
practice a full non-LTE analysis is required. The classical study of Galactic
H ii regions by Shaver et al. (1983) gives the appropriate correction:

(
Te
T ∗
e

)1.15

∼ bn
{

1 +
1
Te

(
kTe
hν

∆b

bn
− 1

)
(TC/2 + TBB + TNT )

}
(10.3)

where TC is the brighness temperature of the radio continuum from the H ii
region, TBB is the brightness temperature of the cosmic microwave back-
ground, and TNT is the brightness temperature of any non-thermal back-
ground source which might be present.

Since the central stars of normal H ii regions have similar effective temper-
atures, then following the discussion of section (9.2.3) it is evident that their
electron temperature is then largely determined by the cooling rate, i.e. the
abundance of the heavy elements. The study of Shaver et al. (1983) provided
very clear and compelling evidence for the large-scale Galactic abundance
gradient simply by measuring the electron temperatures of the H ii regions
at radio frequencies as a function of Galactocentric distance; (see Figure
(10.1)).

The final technique for measuring temperature does not yield the electron
temperature but rather, the ionic temperature. The quantity that is observed



         

218 10. Parameters of Photoionised Regions

2.0 4.0 6.0 8.0 10.0 12.0

4000

6000

8000

10000

Galactocentric Distance (kpc)

E
le

ct
ro

n 
T

em
pe

ra
tu

re
 (

K
)

Fig. 10.1. Recombination line temperatures for Galactic H ii regions adapted from
Shaver et al. (1983), adjusted for a solar galactocentric distance of 8.5 kpc. The
strong gradient in electron temperature indicates the presence of a galactic loga-
rithmic abundance gradient in oxygen ∼0.07 dex kpc−1.

is the thermal Doppler motions along the line of sight. Consider that we
measure the full width at half maximum of the line profile, ∆νobs, in a line
at frequency ν0 belonging to a particular ion with mass mi. By themselves,
the line-of-sight thermal motions will generate a Gaussian line profile with a
shape function Φ (v) (such that

∫
Φ (v) dν = 1 ) given by (c.f. equation (4.2)):

Φ (v) =
(
mic

2

2πkTi

)1/2

exp

[
−mic

2 (ν − ν0)2
2kTiν2

0

]
(10.4)

and the Doppler line width (full width half maximum) is;

∆ν2
therm = 8 ln 2

kTe
mic2

ν2
0 (10.5)

Clearly, we require to observe a light element such as hydrogen or helium
in order to provide sufficient thermal width. The observed line width is the
resultant of this thermal broadening, the Doppler line width associated with
turbulent motions, ∆νturb, and any line width resulting from unresolved
fine-structure or hyperfine line splitting, ∆νFS . Assuming that these add
in quadrature:
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∆ν2
therm = ∆ν2

obs −∆ν2
turb −∆ν2

FS (10.6)

In order to derive the temperature therefore, we require an independent
determination of ∆νturb. This is provided by means of bright forbidden lines
(Dopita 1972, 1973), provided that they sample a sufficient fraction of the
ionised volume to provide a proper representation of the turbulence in this
volume. This technique has been little used at optical frequencies, since it
requires both high spectral and spatial resolution, and low turbulence in the
H ii region to provide sufficiently accurate results.

At radio frequencies, the He and H recombination line profiles may in
principal be used to derive the electron temperature, but non-LTE effects
must be taken into account. Although the C recombination lines are visible,
these cannot be used, since they arise largely in the photodissociation re-
gions beyond the ionisation fronts, and have completely different turbulent,
thermal, and collisional widths.

10.1.2 Ionised Masses & Densities

To determine the ionised mass requires that we know the distance to the
ionised volume. For extragalactic sources, we rely on the standard methods of
distance determination based on an assumed value of the Hubble’s constant,
with appropriate corrections for the local streaming motions. For Galactic
sources, the uncertainties are higher, and depend upon whether the distance
is determined from purely dynamical techniques, whether a foreground dust
extinction model has been used, or whether the distances of the exciting stars
themselves have been independently determined. However, it is not within the
scope of this book to review distance determination techniques, so we will
assume that the distance is known. In this case, the absolute flux in any
process which is driven by recombinations may be used to determine the
ionised mass and root mean square density. Take the Hβ line as an example.
The observed Hβ flux, corrected for extinction along the line of sight, FHβ ,
(erg cm−2 s−1) is simply the flux produced by all of the recombinations
occurring in the nebula diluted by the area over which they are spread at the
observed distance of the nebula D:

FHβ =
V

4πD2
hναeffHβ (Te)nH+ne (10.7)

where V is the ionised volume. The emissivity of Hβ εHβ = hναeffHβ (Te) can
be approximated in case B and in the temperature regime Te ≡ 104T4 K by
εHβ ∼ 1.235×10−25T−0.86

4 . Let us take the nebula to be a spherical shell with
inner angular radius θin and outer angular radius θout, then, taking nH+ ∼
nH and allowing for the electrons produced by ionised helium, equation (10.7)
gives the mean surface brightness over the whole nebula (with solid angle θ2out
sr):
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FHβ = 1.27 × 10−4T−0.86
4

〈
n2
H

〉 (
θ3out − θ3in

)
Y Dkpc

erg cm−2 s−1 st−1 (10.8)

with: Y = 1 +
N(He+)
N(H)

+ 2
N(He++)
N(H)

where Dkpc is the nebular distance (kpc). From this equation the root mean
square density,

〈
n2
H

〉1/2 and the mass of ionised hydrogen:

MH =
4πmH

3
(
θ3out − θ3in

)
D3

〈
n2
H

〉1/2
(10.9)

may be readily obtained.
In many cases, it may be more convenient to measure the free-free flux

at radio wavelengths where the nebula is optically thin, rather than the use
optical recombination line flux. The radio continuum flux has the advantage
that it is unaffected by dust obscuration along the line of sight, or within the
ionised volume itself. Provided that the radio telescope has sufficient spatial
resolution to measure the nebular angular size accurately, then the radio
continuum flux will usually provide a more accurate measurement. The radio
continuum flux measures the product Z2nine, where Z is the mean charge per
ion, rather than the hydrogen density, but since hydrogen produces most of
the electrons anyway, these recombination and the free-free continuum fluxes
are very closely related. From equation (9.60), we have, including the ionised
helium:

S(ν9) = 4.203 × 105ν−0.1
9 T−0.35

4

〈
n2
H

〉 (
θ3out − θ3in

) 〈
Z2
〉
Y 2Dkpc Jy (10.10)

where the flux density is expressed in Janskys (10−26 W m−2 Hz−1), and
the frequency ν9 is in GHz, and Dkpc is the nebular distance (kpc). Note the
weaker dependence on the electron temperature here, which means that, in
most cases simply taking T4 =1 would provide an adequate approximation
for the purposes of mass estimation. Note that the ratio of equations (10.8)
and (10.10) is particularly simple, and is useful for converting between optical
and radio flux units:

FHβ

S(ν9)
= 3.02 × 10−10

〈
Z2
〉−1

Y −1ν0.1
9 T−0.51

4 (10.11)

The nebular mass could also (in principle) be estimated from the size,
using the density derived from a density-sensitive line ratio such as [O ii]
λλ3726/3729Å or [S ii]λλ6731/6717Å, as described in Section (3.2.2). The
difficulty here is that the local density measured by such ratios is always
higher than the root mean square density measured by the nebular flux.
This applies to H ii regions, planetary nebulae, nova shells and to the narrow
line regions (NLR) of active galactic nuclei (AGN). The reason for this is
that there exist inclusions of high density gas with high emission measure in
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the ionised region. This dense material is either streaming off dense neutral
clouds or else is shock-compressed gas produced where supersonic gas streams
meet. The ratio of these two densities ne/

〈
n2
e

〉1/2 provides an estimate of the
volume filling factor of the ionised gas, which is an important parameter in
photoionisation modelling, since it directly affects the local ionisation param-
eter and hence the degree of ionisation of the plasma.

10.2 Ionising Source Parameters

10.2.1 UV Flux Distribution

The most obvious way to estimate the source temperature is simply to observe
the UV spectral energy distribution (SED) of the exciting source. However, as
in life, the most obvious path is not always the best, and there are a number
of problems with this approach. Suppose that the central source is a star with
a flux distribution approximated by the Black-Body Planck function as given
in equation (9.51). The apparent spectral energy distribution is therefore
νB (ν, T )Ω (erg cm−2 s−1) where Ω is the solid angle subtended by the
source at the observer. Most exciting stars of H ii regions have spectral energy
distributions which peak well into the FUV, in order that they are able to
produce an appreciable number of ionising photons. For these, the Rayleigh-
Jeans approximation holds in the UV and visible portions of the spectrum;
B (ν, T ) ∼ 2ν2kT/c2. This is unfortunate, because for hot central sources, the
UV flux distribution (νF (ν) ∝ ν3 ) tells us nothing about the temperature
of the central star. The absolute flux might be expected to tell us something
about the temperature, but this information cannot be usually be used since
we do not, a priori, know Ω. If we consider a set of sources having the same
luminosity and distance but different temperatures, then from the Stefan-
Boltzmann law, Ω ∝ T−4. For these, the absolute flux at any particular
frequency varies as T−3, making the hotter sources difficult to observe.

In summary, then, the UV flux distribution by itself can only be used to
establish the temperature of the central stars when broad spectral coverage
and high quality data are available, and where the central star temperature
does not exceed about 40000 K. For hotter stars, the UV flux distribution
in frequency becomes independent of temperature, and becomes much more
difficult to detect against the nebular continuum as the temperature is raised,
even if the luminosity remains constant. Figure (10.2) shows one of the rare
sucesses of this method, using high quality HST spectra and ground-based
data together.

10.2.2 Stellar Atmospheric Modelling

Although stellar atmospheric modelling is not the subject of this book, non-
theless we should deal with it briefly, since it provides by far the most ac-
curate and direct means of deriving the stellar parameters. The techniques
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Fig. 10.2. The spectral energy distribution of a low-excitation planetary nebula in
the LMC fitted by the theoretical model stellar + nebular continuum (after Dopita
et al. 1997). Such a fitting only provides useful data about the central star when
the effective temperature is less than about 40,000 K.

of detailed stellar atmospheric modelling, including the effects of winds and
the spherical extension of the atmospheres, solving the full non-LTE radia-
tive transfer was developed by Gabler et al. (1989). In a more restrictive
form (plane parallel, hydrostatic) non-LTE models were applied to planetary
nebular central stars by Méndez and his co-workers (Méndez et al. 1988,
and references therein; see also Herrero, Machado & Méndez, 1990). This
involves fitting many observed high-resolution line profiles of hydrogen and
helium with the theoretical profiles (including both the atmospheric emission
and absorption components) to provide a measurement of the effective tem-
perature, Teff , the surface gravity, log g, the helium abundance Y , and the
equatorial rotation velocity of the star.

The advantage of locating the central stars on the log Teff : log g plane
is that this plane can be considered as a distance-independent Hertzsprung-
Russell diagram. In addition, the central stars of planetary nebulae (PNe)
which Méndez et al. (1988) were fitting have unique tracks on this diagram
so that, in addition the core mass of the central star can also be derived,
and the theoretical flux at some frequency can also be compared with the
observed flux to derive the distance of the star to a high degree of precision.

The disadvantage of the stellar atmospheric modelling technique is that
it may only be used for nearby and relatively bright objects for which high
signal to noise spectrophotometry is available. However, the new generation
of 8-10 metre class telescopes at sites of good seeing now enables such analysis
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to be applied to the very large population of PNe in the Galactic bulge and
to the hot OB stars in the LMC.

10.2.3 Zanstra Temperatures

In Section (10.2.1) we showed how, by itself, the UV spectral energy distribu-
tion is not a very useful technique in estimating the stellar temperature. The
core of the problem is that the observations do not extend to short enough
wavelength. What we need is a means of probing into the EUV. Fortunately,
we have a means to do this. The nebula itself absorbs the A-band to C-band
ionising photons, producing H+, He+ and He++ zones in which H i, He i and
He ii recombination lines are produced. Thus, provided that the nebula can
absorb these photons (that is to say, that the nebula is optically thick to the
escape of the ionising radiation field), then the flux in the H i, He i and He ii
recombination lines provides a direct estimate of the fluxes in the band-A to
band-C ionising radiation field. If furthermore we measure the flux produced
in the stellar continuum at the same wavelength as the recombination lines,
and form the line to continuum flux ratio, we have a reddening and distance-
independent estimate of the shape of the ionising spectrum of the central
star.

This then is the essence of the Zanstra (1931) technique of measuring
effective temperatures, which its inventor was fond of describing as “a cheap
way to do space science”, since through observations in the optical we can
essentially accomplish EUV astronomy from the ground.

Now to the details. The Hβ flux has already been given in equation (10.7).
Using this to work out the total number of recombinations, and matching
these to the number of ionisations produced by the central star, S∗ :

FHβ =
V

4πD2
hνHβα

eff
Hβ (Te)nH+ne =

S∗
4πD2

hνHβ

(
αeffHβ (Te)

αBH (Te)

)
(10.12)

where αBH (Te) is the Case B recombination coefficient for hydrogen. However,
for a Black-Body distribution:

S∗ = 4πR2
∗

∞∫
ν0

B (ν, T )
hν

dν ∼ 4πR2
∗
σT 3

∗
3k

(10.13)

where for the approximation we have used the Stefan-Boltzmann law (with
constant σ), and have approximated the mean frequency to the peak of the
Black-Body flux distribution given by Wein’s displacement law. However, the
observed stellar flux at Hβ is:

F∗ =
R2

∗
D2
B (νHβ , T ) ∼ R2

∗
D2

2ν2
HβkT∗

c2
(10.14)
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where the approximation uses the Rayleigh-Jeans law.
Combining equations (10.12) to (10.14) we have:

T 2
∗ =

6k2νHβ

hc2σ

(
FHβ

F∗

)(
αBH

αeffHβ

)
(10.15)

From this it follows, to a first approximation, in an optically-thick nebula
the equivalent width of Hβ measured with respect to the stellar continuum
increases as the square of the stellar temperature. Similar expressions can be
derived for the He i and He ii equivalent width.

In applying the Zanstra method, we do not use approximations such as
(10.15), which are useful only insofar as they illustrate the basic physics
of the technique. Nor do we usually measure F∗ at the wavelength of the
recombination line, but instead we measure the V magnitude. Gabler et al.
(1992) give the following useful relationships for the hydrogen and helium
Zanstra Ratios, ZH and ZHe ii, defined as the logarithm of the ratio of the
number of ionising photons (cm−2s−1)to the stellar continuum at V (erg
cm−2 s−1 Hz−1). For hydrogen the number of ionising photons is the sum for
v > v0, while for He ii the is the sum over v > 4v0 :

ZH = 30.825 + logFHβ + 0.4V + 0.13c+ log
(
αBH/α

eff
Hβ

)
(10.16)

ZHe ii = 30.809 + logF4686 + 0.4V + 0.17c+ log
(
αBHe/α

eff
4686

)
(10.17)

where c is the logarithmic dust extinction at Hβ (see chapter on dust, below).
The value of the Zanstra ratio is a strong function of stellar temperature, and
is best determined from the stellar atmospheric theory.

If we approximate the stellar energy distribution by a Black-Body func-
tion, as was common a few years ago, then for planetary nebulae the Zanstra
temperature determined from the He ii lines, TZ (He ii) frequently turned out
to be much higher than the hydrogen Zanstra tempertature, TZ (H). This is
the famous Zanstra discrepancy ; see, for example, Kaler (1989). There are
two possible explanations for this, either the nebula is failing to absorb all
the H-ionising photons because it is optically-thin, or else the assumption of a
Black-Body distribution is wrong. While the first explanation is undoubtedly
correct in some cases, the second one must be invoked in others. Initially, the
continuum blanketing of LTE model atmospheres made the Zanstra discrep-
ancy even worse, and this was not improved by non-LTE atmospheres based
on the plane-parallel and hydrostatic assumptions. Because the He ii ionising
photons are produced high in the atmosphere, the “unified” non-LTE models
including spherical extension and stellar winds improved, but did not totally
eliminate the problem (Gabler, Kudristzki & Méndez, 1991). The likely ex-
planation is that the shocks in the stellar wind are producing the additional
hard UV photons which are required. As a consequence, the best compromise
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at present appears to be to use the “unified” non-LTE models to describe the
flux distribution down to the He ii limit ν < 4ν0, and then simply to assume a
Black-Body distribution at shorter wavelengths, with an effective temperture
equal to the effective temperature given by the non-LTE model.

The major observational difficulty in the application of the Zanstra tech-
nique is in measuring the optical flux from the central star. As equation
(10.15) shows, the ratio of the Hβ and the continuum flux varies as T 2

∗ ,
approximately. However, the nebular flux near Hβ is mostly hydrogenic free-
bound continuum with some two-photon contribution, and therefore scales
with the Hβ, approximately. Inevitably, therefore, as the temperature of the
central star increases, its optical flux becomes more and more difficult to de-
tect against the nebular background. This problem increases with increasing
distance, since the nebular surface brightness remains constant for as long
as it is resolved, while the flux from the central star decreases as the square
of the distance. In addition, we know that internal obscuration due to dust
can be important in both H ii regions around OB stars, or within planetary
nebulae shells. If we were unlucky, the central star might be obscured, or
partially obscured, by such a dust cloud, which would completely invalidate
attempts to derive Zanstra temperatures in these cases.

A different problem is that the nebula has to absorb all of the photons
emitted by the central star in order for the count of recombinations to provide
a proper measure of the number of ionising photons. That is to say, the
nebula must be optically thick to the ionising radiation in all directions.
This requirement may be relaxed somewhat if we are able to construct a
self-consistent photoionisation model for the nebular, which would provide a
theoretical estimate for the photon leakage in the various ionising wavebands.

10.2.4 Energy Balance (Stoy) Temperatures

The thermal balance condition for the ionised nebula was given in equation
(9.2);

.

Q=

νmax∫
ν0

(ν − ν0)
ν

I (ν)κνdν = Λ (Te)nne (10.18)

It is obvious, on inspection of this equation, that the “harder” the radiation
field, then (for a given opacity) the more energy is delivered per photoioni-
sation, and this has to be matched by an increase in the cooling rate Λ(Te),
produced by the sum of all the collisionally excited lines, continuum pro-
cesses etc. Note that this equation implies that, for a given set of chemical
abundances, nebulae excited by hotter stars have to have higher electron
temperatures in order to provide the greater cooling rate. This is consistent
with what we learnt in section (9.2.3), and conforms to what we observe in
practice.

If the ionised volume is V and the distance of the nebula D then the
observed flux (erg cm−3 s−1) in all the cooling processes is simply

.
q= V

.

Q
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/4πD2. However, in equilibrium, the number of ionising photons is matched
by the number of recombinations, and this quantity can be measured by the
flux in a recombination line such as Hβ. Thus, if we form the ratio

.
q /FHβ ,

this in essence measures the mean energy delivered by the photon field per
photoionisation, which is directly related to the effective source temperature.
Taking this idea a little futher, the observed Hβ flux is given by equation
(10.12), while

.
q is:

.
q=

S∗h (〈ν〉 − νI)
4πD2

(10.19)

where 〈ν〉 is the energy weighted mean frequency of the ionising field (∼
3kT∗/h according to the Wien law for a Black Body), and νI is the effective
mean ionisation potential of the ions which are absorbing this field (mostly
H and He in normal H ii regions), The effective mean ionisation potential
here is slightly larger than the mean ionisation potential appropriate to the
ionisation state of the plasma, since the emitted photoelectrons must have an
energy greater than the mean thermal energy of the particles in the plasma
to provide a net heating effect. It follows therefore that:

.
q

FHβ
=

(
αBH

αeffHβ

)
(〈ν〉 − νI)
νHβ

This is the physical essence of the Stoy (1933) energy balance technique,
generalised by Kaler (1976) and Preite-Martinez & Pottasch (1983). The
reader is referred to the Preite-Martinez & Pottasch paper where convenient
expressions for the application of the technique are given, for stars with both
Black-Body distributions, and for various model atmospheres applicable to
the central stars of planetary nebulae.

The Stoy energy balance technique provides a measurement of the colour
temperature of the exciting star or stars, and can be applied, with the appro-
priate expressions developed by Preite-Martinez & Pottasch, even to nebulae
which are optically-thin. It has the further advantage that only nebular data
are required, which means that, unlike the Zanstra method, it can be applied
to distant objects with hot central stars.

The major difficulty with the method is that we need to know the sum of
all of the collisionally-excited lines in the nebular spectrum, but only rarely
do we have the luxury of the multi-waveband data that would make this
measurement possible. Instead we have to develop techniques of correcting
for unobserved cooling lines using data obtained in a much more restricted
waveband; usually only the visible spectrum is used for this purpose.

10.3 Photoionisation Modelling

The fundamental purpose in constructing a photoionisation model for a par-
ticular object is not only to gain insight into the nature of the exciting source
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and the physical conditions in the surrounding nebula, but also to be able
to quantitatively determine the chemical abundances which characterise that
nebula. In “normal” H ii regions, these tell us about the chemical composition
of the interstellar medium as a function of position in a galaxy, and of type of
galaxy, and so lead us to an insight as to the way galaxies form and evolve. In
planetary nebulae, mass-loss bubbles, nova shells and photoionised portions
of supernova remnants, we learn about the specific processes of nucleosyn-
thesis which have occurred within individual stars prior to this nuclear-burnt
material being ejected back into the interstellar medium.

However, the number of photoionisation models which it is possible to
construct is infinite. This is true if we restrict ourselves to only considering
spherically-symmetric models. Even in choosing the spectral energy distri-
bution of the exciting star, we have an embarrasment of choice. Do we use
a simple Black-Body distribution or a model atmosphere. If the latter, then
which one? In addition, we must also choose the luminosity of the source. For
the nebula we have the density, the density distribution, the nature and de-
gree of clumping of matter and the geometry of the ionised gas with respect
to the ionising source. Finally, we have to choose the chemical abundance
set for as many as fifteen elements which are either significant or else trace
coolants within the gas. This leads to as many as twenty five parameters
which have to be fitted to the data.

In the light of this, it might be considered remarkable that any progress
has been made. However, the theory of photoionised regions tells us how to
reduce the free parameters to a more manageable number. First, we should
note that the spectral energy distribution (SED) of the central source is vital.
It largely determines the gross ionisation structure in hydrogen and helium,
to which the ionisation structure of the other elements is coupled. However,
the spectral energy distribution is not sufficient to determine the ionisation
structure. For example, a powerful source with a low temperature will produce
a low-excitation nebula. However, a weak source with a high temperature will
also produce a low-excitation nebula, albeit of a subtly different kind. In order
to determine the excitation, we need to know, in addition to the SED of the
central source, the mean ionisation parameter (U) in the ionised gas.

Provided that the nebula is optically-thick to the ionising radiation, it
turns out that, for a given abundance set, the ionisation parameter U and the
SED are sufficient to define an almost unique emission spectrum, regardless
of the detailed geometry of the gas with respect to the central source. For
example the gas could be in a uniform shell of large radius, or else clumped in
dense blobs within a smaller radius. Provided that the average hydrogen atom
sees the same mean ionisation parameter, the degree of ionisation and emitted
spectrum is the same. Of course, collisional de-excitation in denser plasmas
may change the spectrum somewhat by raising the local temperature, or by
collisionally suppressing some lines.
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The fact that objects with harder SEDs have higher forbidden line to
Balmer line ratios (section (10.2.4), above), and that the excitation of the
nebula is controlled by both U and the SED suggests that by plotting pairs
of emission line ratios, in particular, the ratio of a forbidden to a Balmer
line against an excitation-dependent ratio such as [O ii]/[O iii] we will be
able to separate different classes of photoionised nebulae. The utility of such
diagnostic diagrams has been amply demonstrated over the years, and we
will have more to say on the subject below. Baldwin, Phillips and Terlevich
(1981) were the first to demonstrate how this procedure could be used to
separate the various classes of active galactic nuclei. However, such diagrams
had been used for many years before this in the separation of H ii regions from
shock-excited plasmas, or for abundance diagnostics of emission nebulae (i.e.
Sabbadin, Minello and Bianchini, 1977, D’Odorico 1978, Dopita 1977, 1978).
Veilleux and Osterbrock (1987) and Osterbrock, Tran & Veilleux (1992) em-
phasised the importance of choosing line ratios which are as close together in
wavelength as possible to avoid errors due to reddening corrections or errors
in instrumental sensitivity calibrations.

10.3.1 Ionisation Correction Factors

In sections (9.2.1) and (9.2.2) we showed how the ionisation balance in the
nebula is controlled by the hydrogen and helium, while the ionisation state
of the heavier elements is closely locked to that of hydrogen and helium. This
division of the nebula into a set of “onion-skins”, each with a different (and
well-defined) ionisation state is the basis for the ionisation correction fac-
tor (ICF) method (Peimbert & Costero, 1969). This enables us to determine
nebular abundances, while avoiding the need to construct a particular pho-
toionisation model to fit the spectrum of each object and at the same time
attempting to take account of the un-observed ionisation stages of particular
elements. This procedure becomes necessary when a nebula is observed in
only, say, the optical lines it produces. In this case, the representation of the
various ionisation stages of the different elements in the spectrum is rather
patchy, as is the information that can be gleaned from a high signal to noise
spectrum.

For example, oxygen is particularly well catered for. Atomic oxygen
can be seen in the [O i]λλ6300,6363Ålines or the [O i]λ5577Ålines, and
the ratio of these is an excellent temperature diagnostic in most cases.
Singly ionised oxygen is observed through the [O ii]λλ3727,3729Å(which can
be used to determine the electron density, see Chapter 3) and the red
[O ii]λλ7318,7328Ålines, which when ratioed with the near-UV lines provide
a temperature diagnostic. Doubly ionised oxygen is represented by the very
intense [O iii]λλ4959,5007Ålines (which are often the principle coolant in pho-
toionised nebulae), and by the [O iii]λ4363Åline, which ratioed with either or
both of the other lines provides a temperature determination. Thus, for oxy-
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gen, both the ionisation structure and the physical parameters of the nebula
are rather well determined.

For the other elements, the situation is usually more difficult. For exam-
ple, atomic nitrogen is seen in the [N i]λλ5198,5200Ålines (which provide a
density diagnostic). The lines that could provide the temperature diagnostic
lie too far into the IR to be observed in most cases. Singly ionised nitro-
gen is also seen in the red [N ii]λλ6548,6584Ålines and the [N ii]λ5755Åline,
which provides a temperature diagnostic for the singly ionised zone. All the
other useful lines of these ionisation stages and of others are in the space IR
or UV region. The case of carbon is even worse. Here we only have the [C i]
λλ9823,9850Å, and very weak recombination lines in the visible, all the other
strong lines being found at the vacuum UV wavelengths (e.g. C ii λ2326Å,
C iii] λλ1907,9Å, or the C ivλλ1548,1550Ålines).

In the ICF method, we would attempt to construct empirical relation-
ships based upon consideration of the ionisation potentials, or semi-empirical
relationships based on more detailed photoionisation modelling to account
for the missing ionisation stages. For example a reasonable approximation
for nitrogen (although not necessarily the best one) in a nebula excited by an
O-type star would be to assume it has the same ionisation structure as the
oxygen ions. This would then allow us to determine the total nitrogen abun-
dance from only the [N ii] lines, with the help of the temperatures determined
in the other zones using [O i] and [O iii] line ratios:

N(N)
N(H)

∼ N(N+)
N(H+)

(
N(O0) +N(O+) +N(O++)

N(O+)

)

More sophisticated ICF schemes have been developed on the basis of de-
tailed photoionisation models (e.g. Peimbert & Torres-Peimbert, 1977; French
& Grandi, 1981; Stasinska 1978, 1981). Whilst these are still useful for obtain-
ing approximate abundances and physical conditions, the ready availability
of codes such as CLOUDY or MAPPINGS has made such procedures some-
what obsolete today. The 3-D modelling code of Gruenwald et al. (1997) has
recently been applied to the analysis of the nature and the size of the error
that such ICF methods would make when applied to observations which do
not integrate the line flux over the whole nebula, such as would be the case
for a long-slit spectrum of a resolved nebula. In some cases, these errors can
be large (Gruenwald & Viegas, 1998).

10.3.2 Self-Consistent Photoionisation Modelling

The availability of high-quality, broad waveband spectroscopy and imaging
is now making it possible to produce self-consistent photoionisation models
from which all the physical parameters can be derived. A self-consistent model
ideally uses a multi-zone approach to simulate the three-dimensional struc-
ture, which is particularly important for modelling bipolar structures. For
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example, Dopita et al. (1997, and references therein) use two-zone model for
planetary nebula modelling. This consists an isobaric, optically-thick model
to reproduce the dense equatorial ring where the ionisation fronts are located,
and a power-law density distribution with a lower inner density to simulate
the gas streaming away from these into the polar lobes. This distribution
may be either optically-thin or optically-thick. Recently, continuous 3-D pho-
toionisation models have now been produced and applied to real objects by
Gruenwald et al. (1997).

The goal of self-consistent photoionisation models is to match the ob-
served linear size and, if possible the 3-D morphology. The model must also
provide the same line-of-sight densities as observed from [O ii], [S ii] or the
UV lines, as well as successfully reproducing the reddening corrected Hβ flux
or the radio continuum flux from the nebula. The stellar and nebular pa-
rameters and chemical abundances of each element are adjusted until the
dispersion of the observed vs. the theoretical line intensities is minimised for
all ionisation stages of each element. In this procedure, the overall degree of
excitation is largely determined by the assumed effective temperature of the
central star.

The optical depth to the ionising continuum flux is an important parame-
ter, and some lines prove to be quite sensitive to this parameter. In particular,
The absence of an outer nebular zone is signalled by particularly weak low ex-
citation lines such as C ii], [N i], [N ii], [O i] and [O ii], unusually high electron
temperature, or else particularly strong high excitation lines such as He ii,
[Nv], [Nev] and [Ne iv]. All of these are symptomatic of an optically-thin
nebula. In this case, the effective temperature of the central source together
with the optical depth is defined by the excitation of H and He, combined
with such lines or line ratios which are sensitive to the optical depth. In the
case of an optically-thick nebula, the excitation state alone is sufficient to
define the effective temperature.

For cooler objects the central star is directly visible through its UV con-
tinuum. A comparison of the predicted nebular+ stellar continuum with that
which is observed always provides a “sanity check” of the model, and in some
cases may also allow us to obtain an independent estimate of the luminosity
of the central star, provided that we can assume that the temperature of
the central star has been accurately determined from the nebular model. An
attempt to directly determine the temperature from a variant of the classical
Zanstra method would often be invalidated in the optical thin cases.

Finally, the abundances can be determined by adjusting them until the
RMS scatter of the observed line strengths of each element with respect to,
say, Hβ is minimised. In this way, a formal error of about 10% in the chemical
abundances of most elements can be achieved. Real errors may be somewhat
larger, limited by the quality of the atomic data. If the modelling has been
done correctly, then the electron temperature indicated by temperature sen-
sitive line ratios should agree with observation, within differences that can
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be accounted for by the (unmodelled) temperature fluctuations in the ionised
plasma.

10.4 Abundances

All of the observational techniques described in the previous sections of this
chapter can be, and have been, applied to the analysis of observations of
the common classes of photoionised nebulae. A knowledge of the physical
and structural parameters of such nebulae is a necessary prerequisite to the
derivation of the chemical abundances which characterise them. In turn, these
chemical abundances can be used to infer details about the thermonuclear
reactions which occurred in the stars which gave rise to the nebula, or, in
the case of H ii regions, to discover details of the chemical evolution of the
interstellar medium in the host galaxy. Here we will briefly summarise some
of the results of this work for three major classes of photoionised nebulae.

10.4.1 Galactic Abundance Gradients from H ii Regions

When a hot, young star photoionises its placental cloud of interstellar gas,
it provides us with a means of studying the chemical composition of this
material. Because they are bright and their spectra can be readily analysed,
H ii regions have been extensively used to study abundance variations in the
interstellar media of external galaxies. Early photographic spectra showed
that, in disk galaxies, the H ii regions in the outer spiral arms displayed large
[O iii]/Hβ ratios, while in the inner regions the [N ii]/Hα ratios were rela-
tively large (i.e. Searle 1971). It was soon realised (e.g. Sanduleak, 1969)
that this was due to a global abundance gradient, which results from many
generations of stars gradually depleting the gas content of the interstellar
medium, and at the same time chemically polluting it by mixing their nucle-
osynthetic products back at the end of their lives. Because this star-gas cycle
works more completely in the inner regions of the galaxy, the abundances of
the heavy elements relative to hydrogen are higher there. A number of factors
tend to alter the size of these gradients. Mass infall may be an important pa-
rameter. Where strong stellar bars exist, radial mixing tends to flatten these
gradients, and in low mass systems, global mixing also reduces or eliminates
the gradient. In low mass systems, loss of the nucleosynthetic products in
galactic winds may also be important. Thus, both the extent and the magni-
tude of these gradients provides observational constraints on models of disk
evolution. For recent discussions, see Matteucci & Francois (1989), Götz &
Köppen (1992), Prantzos & Aubert (1995) and Friedli & Benz (1995).

The evidence of a gradient in our own Galaxy derived from radio recom-
bination line temperatures has already been mentioned. In fact, a number
of other techniques involving different classes of object have been used to
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establish the abundance gradient in oxygen, and these are now in quite good
agreement one with another. There are shown in Table (10.4.1). The loga-
rithmic oxygen abundance gradient d[O/H]/dr in the Galaxy is about -0.07
dex kpc−1.

Objects Used Technique
Gradient
(dex kpc−1) Ref

H ii regions
Recomb. line temperatures

& optical spectra
-0.07±0.02 1

H ii regions
Recomb. line temperatures

ultracompact H ii regions
-0.05±0.01 2

H ii regions far-IR fine structure lines -0.08±0.01 3

H ii regions
far-IR fine structure lines:

compact H ii regions
-0.064±0.009 4

PNe
Optical spectra of PNe:

photoionisation analysis
-0.06±0.01 5

Old SNR
Optical spectra of SNR:

radiative shock analysis
-0.07±0.02 6

B-Type stars
Stellar spectra:

non-LTE analysis
-0.07±0.01 7

(1)Shaver

et al. (1983) (2)Afflerbach et al. (1996) (3)Simpson et al. (1995), (4)Afflerbach,
Churchwell & Werner (1997) (5)Maciel & Köppen (1994) (6)Binette et al.
(1982) (for S rather than O) (7)Smartt & Rolleston (1997).

In an H ii region, the principal coolant is oxygen. Curiously enough, the
absolute oxygen abundance derived for H ii regions in the solar vicinity is
consistently lower than that measured in the sun. This is contrary to what
would be expected according to theories of chemical evolution. Since the sun
formed some 4 Gyr ago it would be expected to have been formed from a
less chemically-evolved interstellar medium. Depending on the importance
of temperature fluctuations, the O/H abundance of H ii regions in the solar
neighbourhood is N(O)/N(H) = 4 - 6×10−4 (Peimbert, Storey & Torres-
Peimbert, 1993) compared with 8.5 × 10−4 for the Sun (Anders & Grevesse,
1989). This result is not an artifact of the method. Chemical analysis of the B-
stars in the solar neighbourhood give similar results; N(O)/N(H) = 4.5×10−4

(references in Meyer, Jura & Cardelli, 1998). High resolution absorption line
studies of the local ISM using the GRHS instrument of the Hubble Space
Telescope yield a gas-phase abundance of 3.2× 10−4. When corrected for the
fraction of oxygen locked up in dust grains, the oxygen to hydrogen ratio
cannot much exceed N(O)/N(H) = 5 × 10−4(Meyer, Jura & Cardelli, 1998).

This ‘deficit’ problem is not confined to oxygen. Similar deficits are seen
for the noble gases such as Ne, Ar and Kr, which cannot be caught up in
the grains. We have to conclude therefore, that the sun was either born in a
region of enhanced metallicity, or that it was born nearer the centre of the
Galaxy, and has migrated to its present position by orbital diffusion (Weilen,
Fuchs & Dettbarn, 1996).
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Fig. 10.3. The abundance sequence for extragalactic H ii regions defined by ob-
servations of M101, NGC1365 and NGC1313. The scatter in the right hand plot
better reflects the intrinsic scatter between H ii regions, since on the left, variations
in stellar temperature do not change the positions of the points, while variations in
U tend to move points along the curve. The horizontal axis in the right-hand plot
is sensitive to temperature (data from Kennicutt & Garnett 1996, Roy and Walsh,
1997, and Walsh & Roy 1997).

Turning now to extragalactic H ii regions. The primary change in the
structure of an H ii region as the abundance is increased is that the electron
temperature becomes lower. This drives the principal changes in the optical
spectra. For example, consider a principal such as O iii. As the abundance
increases and the temperature decreases, the balance of cooling in the op-
tical forbidden lines [O iii] λλ4959,5007Å is shifted in favour of the far-IR
fine structure lines [O iii]λλ52µm, 88µm. Likewise the ratio of temperature
sensitive lines such as [O ii]λλ3727,9Å/7318,28Å decreases as the rate of col-
lisional excitation to the more excited state decreases. In fact, the decrease
in electron temperature makes many of the traditional temperature-sensitive
line ratios very difficult or impossible to measure. However, other pairs of
line ratios may be substituted provided that the ratios of the abundances of
different elements change in a systematic way with the oxygen abundance.
For example, the [N ii]/[O ii] ratio forms such an abundance-dependent (tem-
perature sensitive) diagnostic (Garnett & Shields, 1987) since the theshold
energy required to excite the [O ii] lies is so much higher than the threshold
for excitation of the [N ii] levels.

The result of this is that there is a well-defined extragalactic abundance
sequence when H ii region data is plotted on various diagnostic diagrams. We
show two of these in Figure (10.3).

The calibration of the extragalactic abundance sequence in terms of abso-
lute abundances is the central goal of the analysis. Pagel et al. (1979) used an
ionisation correction factor argument to suggest that the sum of the bright
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forbidden oxygen lines, R23 = ( [O iii] + [O ii] )/Hβ should represent a good
abundance sensitive ratio. Calibrations of this have been proposed by Ed-
munds & Pagel (1984), Mc Call et al. (1985) and Dopita & Evans (1986).
However, R23 is not the best ratio to use, because it becomes insensitive at
the high abundance end as a result of the fading of the [O ii] lines at low elec-
tron temperatures. Instead, temperature sensitive ratios such as [N ii]/[O ii]
or [S ii]/[O ii] probably offer better abundance calibrations. For a recent dis-
cussion, see Kennicutt & Garnett (1996).

10.4.2 Abundances in Planetary Nebulae (PNe)

Advanced Topic
Planetary nebulae (PNe) acquired their peculiar name because their

bright disks of ionised gas, typically a few seconds of arc across, were of-
ten mistaken for new planets by early telescope users. They are derived from
low-mass stars, below 6 - 8 M�, but more typically having masses in the
range 1 - 3 M�. Such stars evolve to the PNe stage at the end of their
nuclear-burning lifetime, when the unburnt envelope mass becomes so low
that it reveals the hot core of the star that remains. At this point, the star
is either burning hydrogen or helium under electron-degenerate conditions in
a thin shell, and the core, supported electron degeneracy pressure, will later
evolve to become a white dwarf. Because of their low mass, the lifetime of
the precursor star can be a considerable fraction of the age of a galaxy. From
the Vassiliadis and Wood (1993) models:

τ ∼ 11.0 (m/M�)−3.1 + 0.46 (m/M�)−4.6 Gyr (10.20)

where the initial stellar mass is m.
The ionised shell of gas in the PNe phase was thrown off from the central

star during a rapid phase of mass-loss which occurs during the asymptotic
giant branch (AGB) phase of evolution. This mass-loss is driven by the large
radiation pressure in the AGB phase. It is also assisted by the shell flashes
which result from burning helium under electron-degenerate conditions. As
a result, the mass-loss rate is a very steep function of mass. This serves to
channel a wide range of initial stellar masses (1 - 8M�) into a rather narrow
range of final (White Dwarf) stellar mass (0.55 - 1.4M�). According to the
mass-loss formulation adopted by Vassiliadis and Wood (1993) and Marigo,
Bressan and Chiosi (1996) the relationship between initial mass, m, and final
core mass, mcore, can be expressed as:

mcore/M� = 0.524 + 0.0438 (m/M�) + 0.0095 (m/M�)2 (10.21)

this formula agrees with recent observational data derived from observations
of white dwarf stars in clusters (Jeffries, 1997).
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These basic facts of stellar evolution theory immediately suggest a rea-
son to measure abundances in PNe. Since the central star does not proceed
beyond helium burning, and since much of the unburnt envelope is lost, the
PNe provide a time-capsule of ionised material which has been chemically
unchanged since the star formed, at least as far as the heavy elements are
concerned. In principle, PNe may be used to probe the history of chemical
enrichment in galaxies, although so far this has done very extensively (but
see Dopita et al. 1996).

For the lighter elements, and the heaviest elements, the material ejected
as a PN shell is not entirely pristine. A variety of convective phases dredge
up partially hydrogen-burnt material from the boundary of the core during
both the giant and asymptotic giant phases of evolution (Iben and Renzini,
1983; Renzini and Voli 1981). These processes are dependent upon both the
mass and initial metallicity of the star and may be summarised as follows:

• The first dredge-up, operating as the star becomes a red giant for the
first time, is produced by the penetration of the convective envelope into
regions which are partially CNO-burnt. The dredged-up material is mixed
throughout the envelope, with an enhancement of the 13C and 14N, and a
decrease in 12C abundance.

• The second dredge-up appears in the early AGB evolution of stars more
massive than m > 3−5M� when the hydrogen-burning shell extinguishes.
Once again the base of the convective envelope dips into burnt material.
This time envelope enhancements of 4He, 14N and 13C are produced.

• The third dredge-up occurs in the thermally-pulsing AGB phase where, af-
ter each He-burning shell flash, the convective envelope dips down, dredging
up nuclear processed material rich in 4He, 12C and the s−process elements.

• Finally, the so-called hot-bottom burning occurs in the more massive AGB
stars (m > 3M�) when convection in the stellar envelope cycles matter
through the hydrogen-burning shell during the inter-pulse phase, with re-
sultant partial CNO-cycling of the whole envelope. Significant 14N, and
possibly 4He production, may occur as a result.

Through these processes PNe affect the chemical evolution of the galaxy,
since they are significant sources of He, C, N and the heavy s−process ele-
ments. At the same time they return an appreciable mass fraction of almost
pristine low-metallicity gas back into the interstellar medium, ready to be
re-cycled to new stars.

To some extent, all the effects predicted by theory are observed in PNe.
However, the quantitative agreement is often poor, and it is clear that this
is an area where close contact between theoreticians and observationalists
could prove mutually profitable.

Let us first consider what has been learnt in a global sense by comparing
abundances of PNe in different galactic environments. At present, we can
compare several groups of PNe which are derived from stellar populations
with radically different star formation histories.
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In the Galactic halo are found PNe derived from stars formed during the
initial collapse of the galaxy. At that time the chemical enrichment of the
infalling gas was dominated by the massive young stars, which means that
the relative abundance of oxygen and the α− process elements compared to
iron was higher than it is today in the galactic disk. Since the majority of the
infall occurred 10 - 12 Gyr ago, the stars evolving today to the PNe phase
had initial masses of order 1M�.

PNe formed in the Dwarf Elliptical galaxies of the Local Group (and which
have been found in the Sagittarius dE and the Fornax dE) have a somewhat
different history. Here there are both old and intermediate age stellar popula-
tions. As a result, iron, which is formed later in Type I supernova explosions,
has a higher abundance than in the Galactic halo. However, at some point,
probably as a result of the energy input of these explosions, all of the gas was
stripped from these systems and star formation ceased. The progenitor stars
of the PNe seen today had masses in the range 1 − 1.5M�, roughly.

The solar neighbourhood has had a long and rich star-formation history,
with stars being formed throughout at least the last 10 Gyr. As a conse-
quence, the PNe in the galactic neighbourhood are derived from stars of up
to 6 − 8M�, although the majority come from a population having initial
masses in the range 1 − 2M�. The most massive population of PNe shows
the filamentary bipolar morphology and nitrogen enhancements which char-
acterise the Peimbert Type I objects.

The Galactic bulge PN observed most extensively by Ratag et al. (1997)
come from such a wide range of intitial masses and metallicities that they
cannot be treated as a single population, nonetheless they provide a record
of the chemical evolution of the bulge and as such deserve to be studied in
their own right.

Finally, the Magellanic Clouds present us with a population in which most
of the star formation has occurred relatively recently. In the LMC, the phase
of rapid star fomation started about 5 Gyr ago, although the oldest stellar
populations have ages similar to the oldest stars in the Galaxy. Currently,
most of the PNe are derived from stars with masses in the range 1.5−2.5M�,
although there is an important population of more massive nitrogen-rich Type
I objects. HST images reveal that these have bipolar morphologies, just like
their galactic counterparts. Chemical evolution of the LMC has proceeded
less far than in the galaxy, so that the current ISM abundances are about 0.3
dex lower than in the solar vicinity.

The SMC is similar to the LMC, but is even more extreme. The phase
of rapid star formation set in 2 - 4 Gyr ago, star formation is very active
today, and the youngest PN represent an even more important component.
The base metallicity remains much lower, about 0.6-0.7 dex lower than the
solar vicinity.

The results of all of this are evident in Table (10.4.2) which presents the
average abundances derived for each of these populations of PNe along with
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averages for the ISM, where it still exists. The abundances are expressed
in the usual way, as 12 + log[N(A)/N(H)], where A is the element being
considered.

Population: He C N O Ne S Ar
Halo PN(1) 11.00 7.85 7.51 7.98 6.44 6.06 5.17
dElliptical PN(2) 11.04 7.36 8.33 7.56 6.39 5.85
SMC PN(3,4) 11.06 7.14 8.05 7.24 6.44 6.01
SMC ISM(5) 10.91 7.73 6.63 8.03 7.27 6.59 5.81
LMC PN(6) 11.09 8.26 7.92 8.41 7.57 6.83 6.12
LMC ISM(5) 10.95 8.05 7.14 8.35 7.61 6.81 6.29
Galactic PN(7),(9) 11.05 8.39 8.14 8.69 8.10 6.91 6.38
Solar vic. ISM(5) 11.00 8.33 7.57 8.70 7.90 7.06 6.42
Sun(8) 11.00 8.60 8.00 8.93 8.09 7.21 6.56

(1)Howard,

Henry & McCartney (1997) (2)Walsh et al. (1997) (3)Dopita & Meathering-
ham (1991a) (4)Dopita & Meatheringham (1991b) (5)Russell & Dopita (1992)
(6)Dopita et al. (1997) (7)Kingsburgh & Barlow (1994) (8)Anders & Grevesse
(1989) (9)Kwitter & Henry (1998).

These mean abundances should not be taken too seriously because there is
a lot of scatter between objects, depending on the initial mass and age of the
particular PNe. Nonetheless it is clear that the PNe have similar abundances
in the α−process elements, O, Ne, S and Ar as their local ISM, whereas He
and N are strongly enhanced in the PNe shells (∼ 0.13 dex for He, and ∼ 0.6
dex for N). Carbon is also enhanced, but by a lesser amount.

Generally speaking, the carbon abundance obtained by observation of
C ii recombination lines such as C iiλ4267Å is always much higher than that
inferred from the UV lines such as C iii]λ1907,9Å lines (i.e. Kwitter & Henry,
1998). The reasons for this are not fully understood.

For the LMC PN Dopita et al. (1997) have been able to establish that the
ratio of C to N dredge-up is a strong function of stellar mass and metallicity.
The low mass, old stars with low initial metallicity appear to be much more
efficient at dredging up C. On the other hand, the Type I PNe produced
by young, massive stars, born from the chemically enriched ISM produce
copious amounts of N by hot-bottom burning. This trend is seen clearly in
Figure (10.4).

10.4.3 Nova Shells

Advanced Topic
Nova explosions result from the accretion of hydrogen-rich material de-

rived from a binary companion onto the surface of a White Dwarf star. When
enough gas has been accreted, thermonuclear hydrogen burning ignites once
more. However, if the accretion rate has been low enough, the accreted ma-
terial is strongly electron-degenerate. In these circumstances, the increase
in temperature produced by the thermonuclear burning produces almost no
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Fig. 10.4. The logarithmic C/N ratio (relative to the sun = 0) in the LMC plan-
etary nebulae plotted against the α/H abundance. From the data of Dopita et al.
(1997).

change in the pressure, which is dominated by the degeneracy pressure of
the electrons. A thermonuclear runaway therefore occurs until the thermal
pressure of the gas breaks the degeneracy, which means that the gas reaches
temperatures of up to 108 K. The enormous and sudden release of ther-
monuclear energy causes the star to briefly shine at a luminosity of more
than the Eddington value for the electron scattering opacity, and the radia-
tion pressure drives a shell of gas out at velocities of hundreds to thousands
of kilometers per second. During the ejection phase, the energy input from
β+−unstable nuclei such as 13N, 14O, 15 O, and 17F is important in powering
the luminosity and the outflow.

The nature of the explosion and the thermonuclear products produced
depend on the mass of the white dwarf. If this mass is high (> 1M�, approx-
imately), less mass can accumulate before thermonuclear runaway is initiated.
As a consequence, the ejected mass is low (of order 10−5M�), the velocity of
ejection is high (several thousand km s−1), and the variation in the emitted
light is rapid (days). Such fast novae eject material rich in O, Ne and Mg.
Low-mass white dwarfs produce slow novae, with light curves decaying over
months, lower ejection velocities (a thousand km s−1, or even less), and rel-
atively large ejected masses (of order 10−4M�). The ejected material is rich
in the products of partial hydrogen burning, in particular, of N. Novae only
produce about 10−3M� yr−1 of ejecta in the whole of the Galaxy, and are
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therefore unimportant in the chemical evolution of the interstellar medium,
with the exception of a few isotopic species of elements such as Al.

In the initial fireball phase, the nova shell is completely optically-thick
and produces a (very hot) featureless continuum spectrum, however, as shell
expands, the PdV work causes it to cool, and the peak of the emission shifts
into the UV-visible regions of the spectrum, producing a maximum in the
light curve. The more rapidly expanding outer portions of the fireball cool
more quickly and start to recombine.

In this phase the hydrogen Balmer and the helium recombination lines
are optically-thick and have a characteristic flat-topped appearance, with
a flux limited by the black-body value. P-Cygni absorption features may be
present on the blue wings of resonance lines, particularly in the UV, which are
produced by the more rapidly expanding optically-thin material in the outer
regions of the shell. During this phase, the very strong photon field at Lyβ
can excite the O i fluorescence mechanism described in section (4.2.2). Again
during this phase, dense clumps of recombined material may develop, possibly
as a result of chemical inhomogeneities in the ejecta, since regions of high
metallicity will cool and recombine more rapidly. Dust and molecules may also
form at this point, which in some nova leads to the appearance of CO bands
in the IR and a marked dimming at optical wavelengths. During this phase
too the radiation diffusion timescale of the ejecta becomes short compared
with the dynamical timescale of the expansion, so that from this point, the
luminosity of the fireball cannot exceed the central source luminosity.

Eventually the ejecta become optically-thin in both lines and the contin-
uum. This occurs first in lower density phase, and marks the transition to the
nebular phase in which the photoionised shell is visible. This is marked by the
appearance of PNe-like forbidden lines in the spectra. Initially, the density is
so high, 107 - 108 cm−3, that most species are strongly collisionally de-excited.
Lines which are less affected, such as [N ii]λ5755Å and [O iii]λ4363Å, are par-
ticularly strong at this point. During the early nebular phase, the shell is re-
ionised from within, so that the Hβ is constant. However when the ionisation
front reaches the outer boundary of the ejecta, the shell becomes optically-
thin, and the Balmer line flux falls according to what would be expected for
an expanding shell of constant mass; F (Hβ) ∝ t−3. Photodestruction of the
newly-formed dust may occur in this early nebular phase.

Eventually, the ionised shell becomes resolvable from earth, first in radio
VLBI and later in the visible using HST or ground-based telescopes. Char-
acteristically, the shell is elliptical and shows higher polar than equatorial
expansion velocities. In this phase, the knowledge of the expansion velocity
may be combined with the rate of angular expansion to derive a reliable
distance estimate, so that absolute luminosities may be derived. Nebular
photoionisation analysis shows this to be in the range 6× 1037 erg s−1 up to
2 × 1038 ergs s−1, comparable with the expected Eddington luminosity for
electron-scattering opacity.
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During the nebular phase and the final decline, the emission lines can be
used to derive the nebular abundances in the same way as is done with PNe.
Indeed, the abundances may also be estimated from the earlier optically-thick
phase spectra, but these require the full methodology of radiative transfer in
full non-LTE conditions in the intermediate density regime, which is diffi-
cult, and requires powerful supercomputers. The nebular optical spectra of
the fast O, Ne, Mg novae are dominated by lines such as [Nev]λλ3300,3344Å,
[Ne iii]λλ3868,3876Å, [O iii]λλ4363Å, [O iii]λλ4959,5007Å, [O ii]λλ7218,7328Å
and recombination lines of He ii and H. The slow novae have spectra much
more like those of PNe, although the nitrogen lines are much stronger. The
line profiles of both classes usually show the double-horn structure expected
for an expanding shell, but there is often a lot of sub-structure caused by
individual condensations.

The abundance analysis of nova shells has been led by Starrfield’s group
based at ASU. Since this group uses the same analysis technique, and com-
bines the results of both UV and optical spectra in the analysis, their
abundances are likely to be much better in a comparative sense, and are
probably more accurate in an absolute sense as well. Some of these re-
sults, chosen to illustrate the variety of chemical enrichments which may
occur, are summarised in Table (10.4.3). The references are (1) Schwarz et al.
(1997), (2)Vanlandingham et al. (1997), (3) Vanlandingham et al. (1996), and
(4)Vanlandingham et al. (1998). As can be seen by comparison with Table
(10.4.2), some of the elements are enriched in their abundance relative to
hydrogen by factors of a hundred or more!

The effective temperatures of the central stars are very high, 2 - 4 × 105

K. The nebula is also very compact, typically 1015 to 1016 cm across. Thus,
despite the high densities, the nebula is characterised by a high ionisation
parameter, which helps to keep the electron gas hot.

Occasionally coronal lines are seen such as [Fex]λ6374Å, or the [Sivii]
lines in the IR. These may be indicative of shocks driven by a fast wind from
the central star.

Element He C N O Ne Mg Al Si
Slow Nova:
PW Vul (1984)(1) 11.00 9.39 9.90 9.65 8.07 7.58 - -

Fast Novae:
V 693 CorAus (1981)(2) 11.11 8.95 10.09 10.02 10.46 8.48 8.25 8.89

Nova Her (1991)(2,3) 11.11 9.22 9.15 8.35 9.67 - - -

Fast Nova in LMC:
LMC 1990#1(4) 11.00 9.45 10.04 10.17 9.86 8.58 8.82 9.15

Over several years the surface of the white dwarf cools and fades, re-
moving the power source for maintaining the photoionisation of the shell.
The nebula therefore cools, and normally we would expect this to lead to
rapid recombination. However, thanks to these extraordinary abundances,
the cooling timescales in the plasma remain much shorter than the recom-
bination timescales, at least until the electron temperature has fallen to the
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point where the hyperfine line cooling starts to decrease, at a few hundred
degrees K. Major cooling transitions at this time are the [O iii]λ52,88µm, the
[N iii]λ57 µm and [N ii]λ122,205µm lines.

In the optical, old nova shells display a curious spectrum dominated by
hydrogen and helium recombination lines, as well as permitted lines of vari-
ous abundant heavy elements which also arise from recombination (Williams
et al. 1978; Williams, 1982). Weak [O ii] and [N ii] lines are visble, but these
probably arise in a separate component with more normal abundances. The
relative absence of the forbidden lines arises because the electron tempera-
ture is far too low to excite the visible forbidden lines. The Balmer contin-
uum decreases very rapidly above the Balmer limit, which is caused by the
exp [−hν/kTe] term. This has been used by Williams to measure the electron
temperature; of order 500 K for DQ Her and 800 K for CP Pup.

Because all the emission lines are the result of recombination, the ratio of
the heavy element lines to the Balmer lines can be used to obtain the abun-
dances, once the temperature is known. This needs low-temperature recom-
bination coefficients, which were calculated and tabulated by Smits (1991).
The calculation of absolute abundances would require a time-dependent pho-
toionisation model so that ionisation correction factors could be properly
calculated.

Notes on Chapter 10

• The non-LTE theoretical modelling of hot stellar atmospheres, including
self-consistent treatments of mass-loss and spherical atmospheres has been
developed over recent years by the Munich University group led by Ku-
dritzki (see, for example, Sellmaier, F. et al. 1993, A&A, 273, 533 and
references therein).

Exercises

Exercise 10.4.1. 1 A planetary nebula is excited by central star with a
temperature of 105K, and it has an optical depth of 0.5 to ionising photons
at the Lyman limit of hydrogen. Assuming that the central star has a Black-
Body spectral distribution, calculate the mean energy per photoionisation
of H, He, and He+. Determine also the equivalent width of the Hβ line with
respect to the stellar continuum at Hβ (assume that the nebular temperature
is 104K).





    

11. Photoionising Shocks

“He saw, but blasted by excess of light,
Closed his eyes in endless night”
— Thomas Gray

Up to this point, we have only considered stars as the sources of photoion-
ising photons. However, the cooling zones of shocks, and more especially, fast
shocks, produce copious amounts of EUV or soft X-ray photons which es-
cape both upstream and downstream to be absorbed in either a precursor
photoionised zone, or in a narrow photoionised zone adjacent to the recombi-
nation region of the shock. In very fast shocks, the photon spectrum may be
quite hard, so that the characteristics of the precursor photoionised region
become quite difficult to distinguish from regions photoionised by power-law
spectra, such are found close to active galactic nuclei (AGN). A necessary
condition for the development of these photoionised zones is that the shock
is fully radiative. For shocks with a velocities below 500 km s−1 in plasma of
solar composition, the cooling timescale is given by equation (8.36):[

τcool
yr

]
∼ 200

[ n

cm−3

]−1 [ vs
100 km s−1

]4.4
(11.1)

However, at higher velocities than this, the mean cooling efficiency decreases
as a result of magnetic support in the post-shock gas and as a result of the
loss of the most efficient coolants in the highly ionised post-shock region; see
Section (7.2), so that the cooling timescale becomes considerably longer, and
less dependent on the shock velocity:[

τcool
Myr

]
∼ 1.9

[ n

cm−3

]−1 [ vs
1000 km s−1

]2.9
(11.2)

According to these equations, supernova remnants (SNR) evolving in the
local interstellar medium (n ∼ 1 cm−3) will only become radiative when
they have achieved a radius of 20-40 pc, and shock velocities of order 300
- 400 km s−1. Many of the optical filaments seen in younger SNR are the
results of shocks travelling into much denser clouds (n >∼ 10 cm−3) with
shock velocities of only 100 - 150 km s−1, and the effects of photoionised
shock precursors are therefore generally small. In order for the precursors to
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be important, the supernova explosion must have occurred in an unusually
dense environment, and the remnant would have to be quite young. Such
conditions are encountered in starburst galaxies where the mean density of
the interstellar gas can be as high as n ∼ 1000 cm−3 and in which supernova
remnants enter their radiative phase with diameters as small as 1 pc (Huang
et al. 1994; Muxlow et al. 1994). For supernova remnants in unusually dense
environments in our Galaxy and in the Magellanic Clouds, the photoionised
precursors of fast shocks are occasionally seen (Shull, 1983; Dopita and Tuohy,
1984; Morse et al. 1996) and these provide a useful observational test of the
theory.

By contrast, the jets of fast material shot out by active galactic nuclei
(AGN) can persist over many millions of years, and the shocks that they
generate may pass through several kiloparsecs of galactic interstellar matter
before the jet escapes from the host galaxy into intergalactic space. In this
case, shocks with velocities of 500 km s−1 or even 1000 km s−1 may become
radiative, and their photoionising capability is considerable.

The idea that photoionising shocks might be important in the context
of “broad-line” regions (BLR) of active galactic nuclei (AGN) dates back
to Daltabuit & Cox (1972). Hybrid models of fast shocks and externally
imposed photoionisation fields have been developed for application to the
extended “narrow-line” emission regions (ENLR) of AGN in a series of pa-
pers by Viegas-Aldrovandi & Contini (1989, and references therein), but the
detailed theory of steady-flow photoionising shocks was developed by Suther-
land et al. (1993) and Dopita & Sutherland (1995,6) following an earlier
attempt by Binette et al. (1985).

When the chemical abundance of the ejected material far exceeds that of
the sun, the cooling timescales may be very much shorter, so that the shocks
become promptly radiative. This applies in the oxygen-rich filaments ejected
in Type II supernova explosions, which are seen when they are shock-heated
by reverse shocks in their young supernova remnants. However, in this case
the extreme abundances produce very peculiar photoionised regions, as we
will see later.

11.1 Radiative Properties of Fast Shocks

11.1.1 Production of Photoionised Shock Precursors

According to the discussion of Section(8.2.3), a radiative fast shock will radi-
ate essentially all of the kinetic energy flux across it, so that the total shock
luminosity per unit area, given by equation (8.32 ) is:

.

E=
ρ0v

3
s

2
(
1 −M−2

)
∼ µmHn0v

3
s

2
(11.3)



     

11.1 Radiative Properties of Fast Shocks 245

If the mean post-shock temperature in the cooling zone is T1 then, using
equation (8.24), the mean energy of the photons generated in the cooling
zone is:

〈hν〉 ∼ F (T1)kT1 =
3
16
f(vs)µmHv

2
s (11.4)

where F (T1) and f(vs) are dimensionless functions of the shock temperature
or shock velocity lying in the range 0 to 1. These functions are determined by
detailed non-equilibrium cooling computations. If the cooling is dominated
by collisional excitation line cooling in hydrogen and helium (and provided
that the post-shock temperature is high enough that these species are fully
ionised in the shock), F (T1) and f(vs) will decrease as T−1

1 (or v−2
s ), since the

mean energy of the collisionally excited cooling lines remains constant with
increasing shock velocity. On the other hand, in the limit that the cooling
is dominated by electron Bremsstrahlung cooling, F (T1) and f(vs) will be
constant, since the mean photon energy increases in proportion to the post-
shock temperature. When the line cooling of heavy elements is included,
the situation is intermediate between these two extremes, since the state of
ionisation in the post-shock gas increases with temperature, as does the mean
energy required to produce the collisionally excited lines. Since half of the
photons generated in the cooling zone travel upstream, and the other half
exit downstream, the total number of upstream photons produced per unit
area of shock is, therefore:

S ∼
.

E

〈hν〉 ∼ 4
3
n0f(vs)−1vs (11.5)

This equation shows that the ionisation parameter in the pre-shock gas, q =
S/n0, increases with shock velocity at a rate which lies between q ∝ vs and
q ∝ v3s . Detailed calculations by Dopita & Sutherland (1996) indicate that in
the velocity range 200 < vs < 500 km s−1, q ∝ v2.5s represents a good fit. This
means that not only does the ionisation parameter increase faster than the
shock velocity, but also that the ionising radiation becomes “harder” with
increasing shock velocity.

Recalling (equation (9.6) et seq.) that q can be interpreted simply as the
initial speed of advance of the ionisation front, it is clear that the condition for
the production of a substantial precursor H ii region is simply that q > vs. The
detailed calculations show that this is satisfied for shock velocities in excess
of about 170 km s−1, although the precise value depends on the abundance of
the heavy elements in the shock. The dimensionless ionisation parameter in
such precursor H ii regions U = q/c >∼ 10−3, sufficient to ensure both that the
precursor gas is fully ionised, and that the state of ionisation is quite high.
The Strömgren column of such H ii regions may be in excess of 1020 cm−2,
so that the precursor H ii region is of order a hundred times more spatially
extended than the cooling region of the shock.

When q < vs, but U >∼ 10−5 there is still a photoionised precursor. How-
ever, in this case the photoionised region is trapped in a thin ionisation front
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region located just in front of the shock front. The approaching atoms are
ionised as they pass through this region, and all of the ionising photons are
used up in producing new ionisations. The ionisation structure of such re-
gions was first computed by Raymond (1976) and Shull & McKee (1979) and
studied in detail by Cox & Raymond (1985). For a constant-velocity shock,
pre-ionisation of hydrogen is essentially complete by about 100 - 120 km s−1.
Shocks which do not produce pre-ionisation are easy to distinguish, because
the neutral hydrogen entering the high-temperature region behind the shock
is collisionally excited several times before being ionised, producing a very
strong hydrogenic two-photon continuum and a steep Balmer decrement (Do-
pita, Binette & Schwartz, 1982).

11.1.2 The Structure of Radiative Fast Shocks

Advanced Topic
The computed structure of a fast shock, including its photoionised pre-

cursor is shown in Fig (11.1). This figure shows that photoionisation effects in
the recombination zone of the shock are also important. Because fast shocks
generate quite a hard photon spectrum, both of these photoionised zones
show the effects of the penetrating soft X-ray photons, and their associated
Auger ionisation which increases the fraction of C iv and CV ions, c.f. Sec-
tions (5.3.1) and (9.3).

The ionisation parameter in the recombination region photoionised zone
is lower than the pre-shock ionisation parameter by a factor equal to the
compression factor in the shock. Generally speaking in the pre-shock gas,
the thermal and magnetic field pressures will be in equipartition, so that
the shock is supported by magnetic pressure in the recombination zone, and
the compression factor is given by equation (8.34); 21/2MA, where MA is
the Alfvén mach number of the shock, typically 15 - 50 for fast shocks with
photoionised precursors. Thus, the ionisation parameter, which may be as
large as U ∼ 0.01 in the pre-shock medium may only be of order U ∼ 10−4

in the post-shock recombination zone. This means that the photoinised zone
in the recombination region of the shock is of low excitation.

The luminosity of the photoionised zones in the shock may represent an
important fraction of the total shock luminosity in the IR, optical and far-UV
regions of the spectrum. This is because an appreciable fraction of the shock
luminosity in the EUV and soft X-ray regions of the spectrum is fluorescently
converted into lines or continuum in the UV to the IR. Provided that the EUV
photons are all absorbed in the shock structure, this fluorescence allows us to
estimate the total mechanical energy flux through the shock. For example, the
total luminosity in the [O iii]λ5007Å line is computed to be 2% of the total
mechanical energy flux. Other lines behave in a similar manner, although the
fluorescent efficiency may be itself a function of the shock velocity, depending
on how the overall spectrum evolves with shock velocity.
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Fig. 11.1. The ionisation, temperature, and density structure of a 400 km s−1

radiative shock, after Dopita & Sutherland (1996). The x-axis is a time axis, scaled
to be independent of density. This is better than a distance scale in making visible
each of the shock zones, the approximate extent of which which are indicated at
the top. The effects of Auger ionisation are evident in the C ionisation balance in
the X-ray ionised regions of both the precursor and the recombination zone.

The nature of the emergent spectrum depends on a number of factors
other than the Sonic and Alfvén Mach numbers of the shock. For example, the
geometry of the situation producing the shock is an important parameter. If
the shock arises in a geometrically thin disk of material, or if the shock results
from the collision of two small clouds, there may not be enough material
around to aborb the upstream ionising photons, so that the precursor H ii
region is truncated or incomplete. Because the ionisation parameter in the
pre-shock gas is high, this loss not only lowers the overall luminosity, but also
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tends to lower the excitation of the emergent spectrum. As limiting cases of
the geometry, Dopita & Sutherland (1995,6) computed so-called “shock only”
(cooling region and recombination region) spectra and complete “shock plus
precursor” spectra.

Another important effect is the effect of the cooling instabilities. All fast
shocks are thermally unstable, see Section (7.5), and this will tend to break
up the recombination zone into a series of small cloudlets, as well as encour-
aging the development of a set of secondary shocks. In this case, it is the
recombination region which fails to intercept the downstream photons, and
the shock becomes more dominated by its photoionised precursor. In a cylin-
drical or spherical shock geometry downstream ionising photons may even
cross the structure to be absorbed in the precursor of the shock on the other
side. These effects have not yet been properly computed.

11.1.3 Narrow Line Regions in Active Galaxies

Advanced Topic
The overall properties of active galactic nuclear spectra are nicely re-

viewed by Peterson (1997). All classes of active galaxies (AGN) show some
evidence of “narrow line region” (NLR) emission. Seyferts of Classes 1 and
2 (Khachikian and Weedman, 1974) display a rich spectrum of narrow lines,
as do the narrow line radio galaxies (NLRGs). In these objects, the NLR is
characterised by large [O iii]λ5007/Hβ ratio (∼7-20), high [O iii] electron
temperature (in those cases where it can be measured), the presence of He ii
and strong lines of [O i], [N ii] and [S ii]. In addition, coronal lines of highly
ionised species such as [Cav], [Fevii], [Fex] are often observed. Where such
regions can be resolved, they are seen to come from a distinct and more
restricted region close to the nucleus, rather than from the NLR as a whole.

As mentioned above, although the lines are termed “narrow”, this is some-
thing of a misnomer, since the typical line velocity widths are in the range
200 < FWHM < 500 km s−1, and in a few objects the velocity dispersion
even exceeds 1000 km s−1. In Seyferts, where the NLR is spatially resolved,
the emission is often, although not always, confined to a cone-shaped region
emanating from the nucleus. In all of these senses, the ionisation cones of
NGC 1068 represent the best-observed and brightest prototype of the high-
excitation, high line width Seyfert 2 galaxies.

A second class of AGN, the low-ionization nuclear emission-line regions
or LINERs, were first defined as a distinct class of AGN by Heckman
(1980). The emission line ratio criteria given by Heckman define a dis-
tinct (if somewhat arbitrary) region of excitation space. According to his
definition the [O ii]λλ3727, 3729 lines are stronger than [O iii]λ5007; the
[O i]λ6300/[O iii]λ5007 ratio is less than about 0.33; and the [N ii]λ6584/Hα
ratio is larger than about 0.6. A survey of “normal” elliptical galaxies by
Phillips et al. (1986) showed that low-level LINER activity is found in an
appreciable fraction of these. The work of Ho, Filippenko, & Sargent (1995)
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has shown that some low level LINER activity is even more ubiquitous than
had been previously suspected in both elliptical and spiral galactic nuclei.
However, some of these may not be true AGN. Indeed, all of the following
types of objects have occasionally been classified as LINERs:

1. Emission in dense accretion disks associated with AGNs.
2. Shocks in accretion flows approaching AGN.
3. Shocks in outflows associated with AGN.
4. Emission from cooling flows.
5. Emission associated with old starburst nuclei.
6. Mixtures of emission due to circum-nuclear starbursts and Seyfert-like

emission from AGN.

In the last twenty years, the hypothesis that all classes of narrow line
regions (NLRs) are excited by a hard power-law spectrum of UV photons
gained almost universal acceptance. In such a model, the Seyfert and QSO
NLRs would be excited by a fairly flat UV power law, or else a truncated
power law having an ionization parameter U ∼ 10−2 (Koski 1978; Stasinska
1984; Veilleux & Osterbrock 1987; Osterbrock, Tran, & Veilleux 1992). On
the other hand if LINERs are photoionized, the ionizing spectrum is similar
to the NLRs, but the ionization parameter is low, U ∼ 10−4 (Ferland &
Netzer 1983; Ho, Filippenko, & Sargent 1993). The source of these photons
is assumed to be the nucleus, but the exact means whereby the non-thermal
UV spectrum is generated by the AGN remains obscure. Generally what is
done is to simply join the observed soft X-ray to the observed EUV point, or
to extrapolate the EUV slope with an exponential cutoff to match the soft
X-ray. Neither of these procedures properly addresses the physical processes
producing the emission, and there frequently remains a serious shortfall in
the estimated number of ionizing photons based on an extrapolation of the
observed UV spectrum.

Given that high-velocity outflows are a common feature of AGN, and that
the NLR are dynamically rather active it is wise to consider the possibility
that these regions might be excited by high-velocity photoionising shocks.
This possibility was made more concrete by the models of Dopita & Suther-
land (1995,6). They computed so-called “shock only” (cooling region and
recombination region) spectra and complete “shock plus precursor” spectra
and found that the former look very like LINER (low-ionisation emission re-
gion) objects associated with active galactic nuclei, while the latter look like
Seyfert galaxy ENLR (extended narrow line region) spectra.

How may we distinguish emission regions photoionised by the AGN from
emission from fast photoionising shocks? The most direct way is to look
for differences in the emergent spectrum. In the optical, these differences
are rather subtle, since the optical spectrum simply depends on the hard-
ness of the ionising photon distribution and the value of the ionisation pa-
rameter. In the ultraviolet the lines become more sensitive to the existence
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or otherwise of a hot, collisionally excited region such as can only be pro-
duced in the shock cooling zone. Best of all are temperature sensitive ratios,
C iii λλ977Å/1907,9Åor the N iii ratio, λλ991Å/1750Åsuch as measured in
NGC 1068 by Kriss et al. (1992) using the Hopkins Ultraviolet Telescope.
However, other UV or near-UV lines provide diagnostics, as demonstrated
by Allen et al. (1998). Figure (11.2) provides an example of such a diagnostic
diagram.

Here, the theoretical “shock-only” and “shock + precursor” grids are given
for shock velocities in the range 200 - 500 km s−1, and for varying degrees
of magnetic support, here represented by the pre-shock magnetic parameter
B/n

1/2
0 (µG cm−3/2). Photoionisation models are marked for two values of

the slope of the (power-law) ionising spectrum, α = −1.0 and α = −1.4, two
values of the ambient density, 100 and 1000 cm−3, and a range of ionisation
parameters −3.5 < logU < 0.0. On this, and on other plots, the M87 obser-
vations fall unambiguously into the “shock-only” region, but either pure pho-
toionisation models or “shock + precursor” models can account for Seyfert
II spectra.

In general, LINERs present an easier target in distinguishing between the
excitation mechanisms, since the cooling zone of the shock, if present, directly
affects the observed spectrum. A photoionised region producing a spectrum
similar to a LINER must be characterised by low ionisation parameter. This
in turn requires that the electron temperature is low, about 8000K or even
less, and therefore UV lines have too high excitation energies to be excited
to any large degree. On the other hand, a shock must always have a hot UV-
emitting zone adjacent to the recombination zone. Thus, not only do spectra
covering both optical and UV wavelengths allow one to distinguish between
these excitation mechanisms (Dopita et al. 1997), but also the UV spectra
by themselves will reveal the continuum from any photoionising source, be it
either an AGN or hot stars.

In addition to direct spectral diagnostics, there are a number of indirect
methods of testing for shock excitation. These include:

• Correlations beween radio non-thermal and emission-line luminosity.
• Spatial correlations between radio non-thermal bubbles and emission-line

regions.
• Correlations between excitation and dynamics, and
• Correlations between emission line fluxes and velocity dispersion.

As in most scientific debates, the truth of the matter is probably that both
of the proposed mechanisms are important in exciting the extended emission
line regions of AGN and high redshift radio galaxies.

11.2 The Oxygen-Rich Supernova Remnants

Advanced Topic
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Fig. 11.2. An example of a diagnostic line ratio plot useful in distinguishing be-
tween photo-excitation from a central AGN, and excitation by fast shocks. The
three NGC objects represent the observations of Seyfert II galaxies, and position
of the LINER nucleus of M87 is also shown. (after Allen et al. , 1998

The young supernova remnants (SNRs) provide an important key to test
the theories of nucleosynthesis in massive stars, since only in these objects
do we find material from the stellar interiors exposed to direct investigation.
This small class of SNRs shows fast moving ( >1000 km s−1) knots of material
emitting in lines of oxygen, neon, and other heavy elements, but apparently
containing no trace of hydrogen or helium. This is consistent with their origin
from within the helium-burnt layers of a massive (> 12M�) progenitor star.
In our Galaxy, Cas A is the prototype of this class (see Chevalier and Kirshner
1979). The other members galactic objects are G292+1.8 and Puppis A (Goss
et al. 1979; Winkler and Kirshner 1985). In addition, three such remnants are
known in the Magellanic Clouds (Lasker 1978; Dopita et al. 1981; Kirshner
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et al. 1989), and two unresolved objects have been found in more distant
galaxies M83 and NGC 4449 (Long et al. 1981, Blair et al. 1983).

For a long time, a fundamental barrier to a quantitative interpretation
of the spectra from these objects was our inability to produce a plausible
model for the excitation of these knots. It is clear that they were formed by
a cooling instability in the supernova ejecta during the late fireball stage.
Clear evidence for such instabilities has been found in the case of SN 1987A
(DeKool, Li & McCray, 1998). The dense knots of oxygen-rich material so
formed travel outward ballistically, and are excited at the time that they
pass through the reverse shock which is propagated back into the low-density
phase of the ejecta as this interacts with the surrounding ISM.

Logically, therefore, the knots are excited by slow shocks running into
them which are driven by the increase in external pressure. However, the
structure of these shocks is quite different from those which occur in material
of normal composition. In particular, Itoh (1981a, b) and Dopita, Binette and
Tuohy (1984) demonstrated that the very high metallicity causes the cooling
time to remain shorter than the recombination time until the shocked plasma
has cooled to a few hundred degrees K. As a consequence, the ionisation state
becomes “frozen-in” the cooling plasma, and the emission lines of the lower
ionisation species are supressed; contrary to observation.

Itoh (1981b) argued that the powerful EUV field generated in the cool-
ing zone would escape upstream to produce an extensive warm photoionised
precursor region. However, this idea runs into the fundamental difficulty that
the extent of this region would have to be much greater than the observed
size of the knots. Furthermore, if oxygen rich, the temperature of this region
would high enough to excite optical forbidden lines only if it was composed
of pure oxygen. The efficient cooling in the fine-structure lines of any other
elements such as carbon produces a photoionisation equilibrium temperature
of order 300 K, suppressing the cooling in the optical lines.

For the photoionised precursors in the oxygen-rich material, Dopita (1987)
suggested a non-equilibrium solution. The buildup of the strong precursor ra-
diation field occurs over the cooling timescale of the shocked plasma, allowing
an ionisation front to be propagated into the cloud. For an R− Type ioni-
sation front driven by a strong photoionising field, the heating effect of the
photon field dominates at the leading edge of the front, and the gas is strongly
superheated, producing optical forbidden lines of a range of ionisation states.

This idea was fully developed by Sutherland and Dopita (1995b) who
showed that the cloud shock by itself could drive the R−Type ionisation
front, rather than the bow-shock emission which had been invoked by Dopita
(1987). The buildup of the EUV emission from the cooling zone of the cloud
shock is sufficiently rapid to allow an R−Type ionisation front to be detached
from the shock front in roughly one tenth of the cooling timescale; about 3/n0

years, where n0 is the pre-shock density in units of cm−3. As this ionisation
front initially starts to ionise the pre-shock plasma, the electron temperature
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rises very quickly, since the energy input per photoionisation is large, but
the absence of electrons ensures that the rate of cooling is relatively low.
However, in such a heavy-element rich plasma, as the degree of ionisation
increases the cooling rate increases at an even faster rate, which lowers the
electron temperature again. Eventually the electron temperature falls back
to its equilibrium level, about 300K, and only IR photons are produced.
As a result, the optical emission is generated in a brief period during or
immediately after the cloud shock becomes radiative, as the thin superheated
zone close to the ionisation front sweeps through the cloud.

The ionisation front will pass through the cloudlet in a timescale compa-
rable with the dynamical timescale, the time need for the cloud to fully enter
the reverse shock. The dynamical timescale is itself a few times shorter than
the cloud crushing and shredding timescale. For this reason, the radiative
lifetime of an individual knot is short. For cloud densities ∼ 100cm−3, it is
comparable with the 25 year e−folding lifetimes observed for the Cas A knots
by Kamper and van den Bergh (1976).

The combination of a (steady-flow) cloud shock of 100-200 km s−1 and its
R−Type precursor gives a good description to the various ratios that can be
formed from the [O i] λ6300Å, the [O ii] λ3727,9Å and λ7316,24Å, and the
[O iii] λ4363Å and λ5007Å lines. However, UV diagnostics from observations
such as those by Blair et al. (1989) are required in order to obtain useful
abundance data, especially for elements such as C, Mg and Si.

Notes on Chapter 11

• The field of active galactic nuclei is nicely reviewed in Peterson, B.M. 1997,
”An Introduction to Active Galactic Nuclei”, CUP:Cambridge, ISBN 0-
521-47911-8.

Exercises

Exercise 11.2.1. 1





   

12. Interstellar Dust

“The dust of exploded beliefs may make a fine sunset”
— Geoffrey Madan

It takes only an informed glance at the Milky Way on a dark and clear
night to realise that interstellar dust exists. The luminous disk and bulge of
faint Galactic stars is everywhere crossed by dark lanes, filaments and clouds
of dense dusty gas made visible in projection. Because the dust grains are
very small, typically less than a micron in diameter, their absorption charac-
teristics are very wavelength dependent, and blue or ultraviolet photons are
blocked and scattered much more easily than photons of longer wavelengths.
The light from stars lying behind dusty interstellar clouds is therefore both
attenuated and reddened in much the same way as smoke or industrial pol-
lution causes the sun to appear red. The scattered light tend to be bluer
than the illuminating star. In addition, anisotropic grains may be aligned,
either by magnetic fields or some other agency, to produce an directional-
dependent extinction which polarises the light in transmission or scattering.

Dust grains absorb the visible and UV light. Because they are cool, typi-
cally a few tens of degrees K, they re-emit this absorbed energy at far-infrared
wavelengths. Thus, the Galactic distribution of dust can be mapped out using
space-IR observations such as those by the IRAS and COBE satellites.

In external galaxies, the far-IR emission produced by grains is also very
readily detected. Indeed some galaxies, identified by the IRAS satellite,
which are undergoing violent and rapid bursts of dust-enshrouded star-
formation may emit as much as 90% of their total energy output in the
10 - 300µmwaveband.

In dark clouds, the dust grains lock up an appreciable fraction of the ele-
ments having high condensation temperatures (see Figure 4.2). By adsorbing
atoms, ions, and molecules onto their surfaces, they also provide ideal sites for
facilitating complex interstellar chemical reactions which would never hap-
pen, or else happen only very slowly, in the gas phase.

The atomic bonds in the dust grains have characteristic frequencies for
bending or stretching, depending on the atoms involved. These produce char-
acteristic absorption or emission features in the mid-IR which have been suc-
cessfully used to probe the nature and the chemical composition of the grains.
One of the great successes of this technique has been the identification of an
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abundant class of carbon-rich grains containing complex linked benzene rings.
Nonetheless, many uncertainties remain in such analyses, and many questions
on the details of the nature, size distribution and composition of the grains
remain unanswered.

With this very short overview of the subject, let us now address the basic
question of where the initial seeds of the grains we see in interstellar space
were formed.

12.1 Stardust Formation

In principle, dust may be formed by direct condensation out of the gaseous
phase whenever the kinetic temperature of the gas falls below the critical
value which allows solids to form, and when a sufficient supersaturation in the
gas phase exists for a timescale which is long enough. In practice, conditions
for grain formation are realised in a variety of astronomical environments:

• In the wind around cool giant stars, either on the Giant Branch or on the
Asymptotic Giant Branch (AGB) phase of evolution,

• In supermassive stars undergoing massive mass-loss episodes, such as in
the star η Car,

• In nova envelopes, before the ejected shell becomes optically-thin to the
escape of radiation, and

• In supernova ejecta when the diffusion timescale for the escape of stored
radioactive energy becomes short compared with the expansion timescale
of the fireball, allowing the ejecta to cool below 2000 K.

In all these cases, we have a gas which is slowly cooling from higher tem-
peratures and in which the pressure is high enough to allow both nucleation
and grain growth. However, in none of these cases are we likely to have a state
of thermodynamic equilibrium in the gas which is forming the dust, and shock
heating and cooling are often both important. Therefore, equilibrium chemi-
cal reaction networks for molecule and grain formation are inapplicable. We
have to use instead a detailed time-dependent description of the chemical
reactions, usually referred to as a kinetic model.

The gas-phase chemistry which occurs in these cases is vey complex, and
the details are still uncertain (see, for example the review by Omont, 1991).
However, our understanding of the broad features of grain formation appear
to be secure. Two major paths to grain formation can be distinguished, de-
pending on whether the outflow is carbon rich (in which case complex organic
soots are created) or oxygen rich (in which case silicate grain types are dom-
inant). These are discussed in more detail in the following sections.

Once a nucleation centre has formed, grains may grow by capturing fur-
ther atoms or molecules from the gaseous phase. If the species being captured
has a mass m, and is present at a density n, then the rate of increase in grain
mass, mg, is given by:
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dmg

dt
= 4πa2ρg

da

dt
= πa2

(
8kT
πm

)1/2

Smn (12.1)

where the thermal speed of the colliding species is v = (8kT/πm)1/2, and
the sticking probability per collision is S (see Draine 1978). This integrates
to give the grain radius as a function of time:

a = a0 +
Sn

ρg

(
mkT

2π

)1/2

(12.2)

The sticking probability is itself a function of temperature. According to
the quantum mechanical theory worked out by Leitch-Devlin and Williams
(1985), the approaching atom (adatom) is captured to the surface of the
solid in a free-bound transition with the excitation of a lattice phonon (an
excited vibrational state of the lattice). At low temperature, the gas atom
has insufficient energy for phonon excitation, while at high temperatures,
the energy of the phonon excited is insufficient to bind the adatom to the
surface. The sticking probability therefore rises from zero at low temperature,
reaches a maximum of around 0.2 - 0.8 when the mean thermal energy of the
adatoms is about equal to the phonon energy, and then falls away at high
temperatures. In practice, real grains present rough and irregular surfaces,
which tends to enhance the sticking probability.

After being adsorbed to the surface, Hollenbach & Salpeter (1970) showed
that the adatom migrates around the surface and progressively loses energy
in a series of thermal hops or quantum-mechanical tunnelling events. The
timescale for thermal hopping, τhop, is:

τhop = ν−1 exp
[
∆Ebarr
kT

]
(12.3)

where ν is the frequency for classical oscillation parallel to the surface, and
∆Ebarr is the energy of the barrier that must be overcome to move on the
surface. Thermal hopping will occur more readily the lighter the species, and
for the lightest species, the quantum mechanical tunnelling rate can exceed
the thermal hopping rate at low temperatures. For a rectangular barrier of
width a, the tunnelling timescale, τtun, is given approximately by (Tielens &
Allamandola, 1987):

τtun = ν−1 exp
[(

2a
h

)
(2m∆Ebarr)

1/2

]
(12.4)

This migration of species around the surface causes different adatom
species to make encounters and so facilitates chemical interactions on the
grain surfaces.

Because of the physics of the condensation process, and the interaction
between the grains formed in the flow and the radiation field of the star,
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there is a complex relationship between the nature of the grains, their size
distribution and the terminal velocity of the outflow. Kozasa & Sogawa (1997)
showed that the grain size increases as the mass-loss rate increases, since the
size of the grain produced by condensation depends upon the gas density in
the wind where a strong supersaturation exists in the gaseous phase and upon
the period during which the condensation timescale is much shorter than the
dynamical expansion timescale . On the other hand, radiation pressure acting
upon the grains accelerates the stellar mass-loss flow (thereby arresting the
condensation process). This has been seen observationally by Loup et al.
(1993) and explained theoretically by Habing et al. (1994). The expansion
velocities of the carbon rich objects are larger than those of the oxygen rich
AGB stars, and radiation pressure induced expansion of the atmosphere may
limit the size of the typical carbon-bearing grain to ∼ 50Å, similar to that
which is needed to explain the 2175Å bump in the interstellar extinction
curve (see below).

The grain types that are likely to arise in oxygen-rich stellar atmospheres
are discussed in the following section. In summary, the smaller grains may
be of the aluminium oxide or calcium/aluminium silicate types, with the
magnesuim silicates being confined to the larger grain population.

Both the oxygen rich and and carbon rich grain types will undergo further
processing in the reaches of interstellar space through the various grain de-
struction processes, chemical photolysis by the UV radiation field, or mantle
growth in dense interstellar clouds. We will discuss these processes in more
detail later in this Chapter.

12.1.1 Grain Condensation in Oxygen-Rich Atmospheres

Advanced Topic
The pathways for grain formation in oxygen-rich atmospheres are very

complex (see discussion by Tielens, 1990). Even the initial condensation pro-
cess presents something of a problem. The first solid to condense directly
from the gas phase is expected to be corundum, Al2O3. This occurs through
the reaction:

2Al + 3H2O→ Al2O3 + 3H2; T <∼ 1760 K.
This is a rather improbable reaction thanks to the low gas-phase abun-

dances (or partial pressures) of both of these species, and in particular, of
the Al monomer. This reaction will have to occur close to the star, at about
3 stellar radii, since the effective surface temperature of the star is about
3000K. However, the actual condensation appears to occur in a region which
is cooler than the critical condensation temperature of 1760 K by several hun-
dred degrees. This lower temperature is necessary because clusters of several
tens of monomers need first to form in order to get the stable solid seed about
which further condensation can occur.
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At slighly lower temperatures other rare-earth oxides such as CaO and
TiO are expected to condense, and the TiO is converted to perovskite,
CaTiO3 .

If the equilibrium condensation sequence were to be followed, which is ap-
propriate to high-pressure environments with long dynamical timescales, gas-
solid reactions are expected to produce the first silicate, gehlenite or melilite:
Ca2Al2SiO7. This reacts with gaseous Mg to produce diopside, CaMgSi2O6

and the Al released along with the remaining corundum is converted to spinel,
MgAl2O4. Some of this reacts with the excess spinel in a solid-solid reaction
to form the feldspar, anorthite, CaAl2Si2O8 and the alkali metals are in-
corporated at lower temperatures still to form the alkali alumino-silicates:
NaAlSi3O8.

In the dynamic conditions of red-giant atmospheres, this reaction sequence
will “freeze out” at various stages, depending on the pressure, density, and
dynamics of the wind. For example, a rapid drop in density will give rise
to only high-temperature oxides, such as corundum, Al2O3 and perovskite,
CaTiO3. If the density remains high further out this will allow the formation
of the magnesium silicates, forsterite Mg2SiO4 and enstatite, MgSiO3 as thick
mantles to the oxide grains. Iron may be incorporated into these mantles
through gas-solid reactions with FeO to form the olivine, fayalite, Fe2SiO4,
or else pyroxene, FeSiO3. However, this will only occur if iron is still in the
gaseous phase, and if the density is high enough in the region where these can
survive. The formation of anorthite is unlikely, since the solid-solid reaction
freezes out at very high temperature.

In conclusion, the theoretical composition of the smaller silicate grains
(a ∼ 30Å) in red-giant or AGB winds is likely to be Ca2Al2SiO7 or
CaMgSi2O6 while the larger grains (a ∼ 2000Å or more) may consist of man-
tles of Mg2SiO4 and MgSiO3 with some Fe2SiO4, or FeSiO3 around cores
made of Al2O3 or Ca2Al2SiO7.

There is growing observational evidence that at least some part of this
picture is correct. For example, amorphous silicates produce broad features at
9.7µmand 18µmwhich have been long known and observed in many objects.
Recently, Waters et al. (1996) have used the short wavelength spectrometer
(SWS) on the ISO satellite to identify a number of narrow features in super-
giant, AGB and PNn spectra which are ascribable to crystalline silicates, in
particular to pyroxenes (40.5µm), olivine (33.5µm, with additional features
seen at 11.3µmand 23.5µm) or forsterite (32.8µm). These features are more
prominent in the objects with cooler dust shells, suggesting that crystalline
silicate formation is preferred in dense winds and high mass-loss rates, where
the dust temperature is held above the glassification temperature for a long
enough timescale to allow grain atoms to migrate into a crystalline matrix. In
addition, the dense winds assist the incorporation of the iron into the silicate
mantle.
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12.1.2 Grain Condensation in Carbon-Rich Atmospheres

Advanced Topic
In a carbon-rich red giant or proto-planetary nebula atmosphere, the

major carbon-bearing chemical that is initially formed is acetylene, C2H2,
rather than the carbon monomer, thanks to the ready availability of hydro-
gen. Chemical nucleation from this precursor then leads to the formation of
complex organic compounds. Léger & Puget (1984) were first to show that
large planar molecules of polycyclic aromatic hydrodrocarbons (PAHs) were
good candidates for the small grains produced in these C-rich outflows. PAH
are linked series of aromatic benzene rings. These include members such as
naphthalene C10H8 (two linked benzene rings), tetracene C18H12 (a linear
string of four benzene rings), coronene C24H12 (a ring of six benzene ele-
ments around a central core), or ovalene C32H14 (eight benzene elements
around two core elements). Such compounds have characteristic frequencies
of absorption. They can, in principle, explain the characteristic emission fea-
tures at 3.3µm, 6.2µm, 7.7µm, 8.6µm, and 11.3µmwhich are seen in all C-rich
proto-planetary nebulae and planetary nebula envelopes (i.e. Aitken & Roche
1984, Cohen et al. 1986;1989). For example, the 3.3µmfeature corresponds to
C–H stretch modes in aromatic compounds, while the 6.2µmband is caused
by the C=C stretch mode in aromatic rings (see Section (12.6.4) and Léger
et al. 1991 for a more detailed discussion). However, no one type of PAH
molecule provides a good fit to all of the IR features observed, suggesting
that, although aromatic compounds are abundant in the carbon-rich grain
species, their actual chemical makeup is rather complex.

The most likely chemical pathway which can convert acetylene to the
first of the polycyclic aromatic hydrodrocarbons, naphthalene, is illustrated
in Figure (12.1). The initial step is a three-body collision of acetylene form-
ing propargyl radicals, which act to form the phenyl radical (benzene with
a missing hydrogen atom). From this seed, alternating steps of hydrogen ab-
straction and acetylene addition produces napthalene, and can continue to
produce yet more complex PAHs.

The emission features which can be ascribed to PAH-like molecules are
observed to be ubiquitous in C-rich outflows. Indeed, these are the most
abundant grain type in the interstellar medium, accounting for several per-
cent of the carbon. This implies that the growth of PAHs must occur in a
dynamical way, since otherwise the theoretical temperature range over which
PAHs may form (1100-900K) is far too narrow to accommodate the growth
which undoubtedly occurs.

The larger PAH molecules form flat plates that tend to agglomerate into
a layered cluster structure. These finally become cross linked and clustered
to form a quasi-spherical soot particle. For planar PAHs, the relationship
between size, a, and number of C atoms they contain, NC , is approxi-
mately a ∼ 0.9N1/2

C Å, while the larger clusters tend to the spherical relation,
a ∼ 1.3N1/3

C Å. When the PAHs have grown to more than about 500 C atoms
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Fig. 12.1. The formation of PAHs in C-rich stellar outflows occurs first by the
formation of the phenyl radical, from acetylene, followed by alternating steps of
abstraction of H and the addition of acetylene (after Frenklach & Feigelson, 1989).

(〈a〉 ∼ 10-20Å), the force of radiation pressure is expected to become signifi-
cant. Eventually this becomes large enough to drive an outflow, bringing the
growth phase to an end (Cherneff et al. 1992).

12.2 Optical Properties of Dust

The presence of dust grains in the interstellar gas is inferred by the effect
they have on the transmission of electromagnetic waves through interstellar
space. Grains absorb, scatter, polarise and re-emit radiation, are heated and
photoelectrically charged by energetic photons, and are accelerated and (pos-
sibly) aligned by radiation pressure forces. Each of these processes is strongly
dependent on the nature of the grain material, and upon the wavelength of
the absorption or re-emission. In the following sections, we will see how each
of these processes operates.

12.2.1 Extinction : Definitions

As a beam of light from a distant star passes through a column of dusty gas,
light is removed from the beam. The optical depth for interstellar extinction
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at any wavelength is defined by the fraction of the incoming flux that remains
in the beam:

I(λ, τ) = I0 (λ) exp [−τext] (12.5)

Light has been removed from the beam in two ways, either by direct
absorption onto the dust grain surface, or by scattering out of the beam. The
extinction optical depth is therefore the sum of these two components:

τext = τabs + τsca (12.6)

To proceed further, we now have to introduce a set of definitions which
are used in the definition of the wavelength-dependent absorption properties
of dust. Regrettably, astronomers do not use physical units and still insist on
measuring the brightness of stars in terms of magnitudes, units historically
related to the sensitivity of the human eye to detect differences in brightness.
Thus a Ptolemy (or indeed, a current-day observer) would just be able to
distinguish between two stars differing by 1/10 of a magnitude, or roughly
10% difference in terms of their flux. The magnitude system is therefore a
logarithmic scale, and one magnitude change has now been (precisely) de-
fined as a difference of 100.4 in flux. The zero of the magnitude scale at all
wavelengths is defined to be the brightness of the star Vega (α Lyr), and
fainter stars have positive apparent magnitudes. Because the intrinsic spec-
tral energy distribution of this reference star is not flat in energy units, the
magnitude system also does not measure absolute energy – another factor to
be regretted!

The absolute magnitude, M (λ), of a star is defined as the magnitude that
the star would have if placed at a distance of ten parsecs from the earth.
Assume that the total (wavelength- dependent) absorption due to dust is
A (λ) magnitudes. From the above definition of the magnitude scale, this
is related to the extinction optical depth by A (λ) = 0.4−1 log10 [e] τext or
A (λ) = 1.086 τext. The apparent magnitude, m (λ) of a star with distance D
parsecs from the earth is then:

m (λ) = M (λ) +A (λ) + 5 logD − 5 (12.7)

By observing at only one wavelength, we clearly cannot sort out how
much of the apparent magnitude is the result of the absolute magnitude of
the star, how much is the result of distance, and how much is the result of
dust absorption. However we can use the spectroscopic signature (the depth,
ratios and widths of the absorption lines) to determine the stellar spectral
type, which gives both its absolute magnitude and its intrinsic colour. By
observing at two different wavelengths, we can then use the fact that the
dust extinction is highly wavelength dependent to isolate the distance and
the extinction-dependent terms in equation (12.7). We then have a measure
of the colour excess:
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Fig. 12.2. The mean dust extinction curves for the Galaxy, the LMC and the
SMC, drawn from the references cited in the bibilography. Within any galaxy, the
intrinsic variability of the extinction curve is at least as great as the differences
between these curves.

Eλ1 − Eλ2 = A (λ1) −A (λ2) (12.8)

Normally for stars the visual, V , and the blue, B, magnitudes on the
Cousins photometric system are known. These correspond to effective wave-
lengths of 5470Å and 4340Å, respectively. We therefore normalise the mea-
sured colour excess with respect to these:

Eλ−V
EB−V

=
A (λ1) −A (V )
A (B) −A (V )

(12.9)

The ratio of the total to selective absorption, R, can then be defined by:

R =
A (V )
EB−V

= −
[
Eλ−V
EB−V

]
λ→∞

(12.10)

In the optical region of the spectrum, the extinction varies as λ−1, ap-
proximately, so it is common practice to plot the extinction function defined
by equation (12.9) in terms of inverse λunits (µm−1). This is called the red-
dening law (appropriate to that particular line of sight). Typically, both the
reddening law and the derived value of R are dependent on the environmental
conditions along that line of sight, since they depend upon the chemical mix,
physical composition and size distribution of the grains. Typically, R ∼ 3.1
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in the Galaxy, but it can vary between 2.7 and about 4.5. In general, regions
with flatter extinction laws in the UV are characterised by larger R values.

The variability between the mean extinction laws for the Galaxy, the
Large Magellanic Cloud and the Small Magellanic cloud is shown in Figure
(11.2). However, within each galaxy, wide variations in the local extinction are
observed (see Prévot et al. 1984, Rodrigues et al. 1997, SMC; Fitzpatrick,
1986 and Schwering & Israel 1991, LMC; and Fitzpatrick & Massa, 1990,
the Galaxy). The sense of main variation in the extinction law is that the
UV extinction law becomes steeper and the broad 2175Å absorption peak
becomes weaker as we go to regions of lower density and of lower metallicity.
Even the galaxy M31 appears to conform to this behaviour (Bianchi et al.
1996). A simple but accurate parametric fitting of the UV extinction law was
developed by Fitzpatrick & Massa (1988, 1990):

Eλ−V
EB−V

= c1 + c2x+ c3D (x : γ, x0) + c4G(x) : x ≥ 3.3µm−1 (12.11)

x = λ−1 : D (x : γ, x0) =
x2

[(x2 − x2
0) + x2γ2]

G(x) = 0.5392 (x− 5.9)2 + 0.05644 (x− 5.9)3 : x ≥ 5.9µm−1

= 0 : x < 5.9µm−1

The term D (x : γ, x0) may be recognised as a Drude resonance profile,
closely related to the Lorentzian resonance profile; c.f. Equation (4.1), but
applicable when the width of the profile becomes an important fraction of
the resonant frequency. Indeed, this is what the 2175Å absorption feature
appears to be: a surface charge resonance on very small carbon grains with
radii ∼ 200Å. The c1 and the c2x factors describe the absorption produced by
the larger grain population, while the c4G(x) factor results from a population
of very small dielectric grains. The difference between the SMC, LMC and
Galactic curves may therefore be described in terms of a relative absence of
the type of carbon grains that are carriers of the 2175Å feature, along with
an underabundance of larger grain types in the LMC and (even more so) in
the SMC. It is not yet clear how much of this variability in the extinction
curve is due to differences in chemical makeup, how much due to differences
in the grain condensation processes, and how much is due to differences in the
environment (UV radiation fields, grain destruction rates etc. ). Certainly, the
LMC is deficient in heavy elements by about 0.3 dex with respect to the local
interstellar medium, and the SMC is even more deficient; by about 0.6 dex.
As a result, the dust extinction per unit mass of gas is lower. This is shown by
the relative values of the (somewhat inaccurately named) gas-to-dust ratio;

N(H)
EB−V

∼ 5.9x1021cm−2 mag−1 : Galaxy
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∼ 2.4x1022cm−2 mag−1 : LMC
∼ (0.7 − 4)x1022cm−2 mag−1 : SMC

where the values for each galaxy have been estimated by Bohlin et al.
1978, Fitzpatrick, 1986 and Rodrigues et al. 1997).

The value of the reddening constant,R, and the various factors in equation
(12.11) tend to be correlated, to greater or lesser extent. For example, regions
with flat UV extinction (low c4) are seen to have larger values of R, and such
regions occur in lines of sight passing through denser clouds. Regions with
steep UV extinction laws tend to have wider 2175Å features (Fitzpatrick &
Massa, 1986).

In the measurement of nebular emission-line spectra, it is not convenient
to normalise the spectrum to the V band, and it makes a good deal more sense
to reference the spectrum to the intensity of a Balmer line when de-reddening
the observed spectra. Therefore, for this purpose we use an extinction law
referenced to the logarithmic reddening constant defined at the wavelength
of Hβ, c. If F (λ, τ) is the flux of a line of wavelength λ, and F0 (λ) is its
reddening-corrected flux, referenced to Hβ, then;

F (λ) = F0 (λ) 10−cf(λ) (12.12)

With a standard Galactic reddening law, f (V ) = 0.8643, so that A (V ) =
0.8643 × 100.4c = 2.161c.

12.2.2 Optical Efficiency Factors

The extinction and scattering due to grains, and its wavelength dependence
provide a fundamental diagnostic tool to examine the grain composition and
size distribution. Suppose that light of a particular wavenumber, k = 2π/λ,
and of intensity I0 is scattered by a dust particle. The intensity of the light,
I, at a distance r from the scattering particle, and at angle θ with respect to
the incident direction, and at azimuthal angle φ is then:

I (k) = I0 (k)
f (θ, φ)
k2r2

(12.13)

where f (θ, φ) /k2 is the angular scattering distribution. The total scattering
cross - section of the particle is then the integral of this distribution over all
solid angles:

Csca =
1
k2

∫
f (θ, φ) dω (12.14)

It is convenient to compare this cross - section with the geometrical cross
- section of the scattering particle; πa2, where a is the radius, assuming a
spherical particle (or, if elliptical, πab). We then have the scattering efficiency
of the particle defined as:
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Qsca =
Csca
πa2

(12.15)

In a similar way we can define the absorption efficiency Qabs from which it
follows that the extinction efficiency is:

Qext = Qabs +Qsca (12.16)

This is simply related to the optical depth for extinction defined in the pre-
vious section:

τext =

amax∫
amin

Qextn(a)πa2da (12.17)

The albedo of a particle is defined as = Csca/Cext = Qsca/Qext.
The mean scattering angle, or asymmetry factor

〈cos θ〉 =
1

Cscak2

∫
f (θ, φ) cos θdω (12.18)

determines the momentum transfer imparted to the grain (dpg) by the inci-
dent radiation field of intensity I(k) :

dpg
dt

=
1
c

∫
k

I(k) [Cabs + (1 − 〈cos θ〉)Csca] dk (12.19)

The scattering efficiencies are calculated through the Mie theory of small-
particle scattering. This is given in detail in van der Hulst (1957). Here we
will only consider two useful limits; when the particle is much smaller than
the wavelength of the incident light, and when it is large in comparison with
this limit.

The larger particles have scattering cross - sections which are exactly twice
the geometrical cross sections; Qsca = 2. This factor arises because of the
effect of the Fraunhofer diffraction by the grain, which adds to the geometrical
cross - section. Fraunhofer diffraction applies in the far field limit: r/a� a/λ,
where the geometrical shadow cast by the grain has been overwhelmed by
diffraction effects.

For a � λ, we can regard the particle as sitting in a time-dependent
but, from the particle’s viewpoint, spatially uniform electric field, E, of the
incident plane-polarised radiation. This field then induces a dipole moment in
the particle, p = αE, where α is the polarisability. This dipole moment then
varies in step with the electric field of the passing electromagnetic wave, and
radiates according to classical theory. For a uniform sphere, the polarisability
is given by

α =
(
m2 − 1
m2 + 2

)
a3 : m = n− iκ (12.20)
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where m is the complex index of refraction of the grain material at that
particular wavelength. In this case the scattering efficiency is:

Qsca =
8π
3
k4 |α| 2

πa2

=
8π
3

(
2πa
λ

)4 ∣∣∣∣m2 − 1
m2 + 2

∣∣∣∣
2

(12.21)

Ifm is real (zero absorption), the extinction efficiency reduces to the Rayleigh
Scattering (small particle) limit. If m is complex, we have an absorption
efficiency:

Qabs = −4
(

2πa
λ

)
Im

[
m2 − 1
m2 + 2

]
(12.22)

which, because it varies as λ−1 rather than as λ−4 for the scattering, will
dominate the extinction at sufficiently long wavelengths.

For a single grain, therefore, the scattering efficiency rises from a small
value at long wavelengths, reaches a maximum in the vicinity of λ ∼ 2πa,
and, as the wavelength of the incident light continues to increase, oscillates
with decreasing amplitude about Qsca ∼ 2.

At sufficiently short wavelengths, (X-ray wavelengths) the radiation in-
teracts with the individual atoms in the grain, rather than with the grain
material in bulk, so that the opacity of the grains reduces to the photoelec-
tric X-ray opacity; see Section (5.3.2). This means that X-ray absorption
measurements of un-ionised dark dust-containing clouds can be used to es-
tablish the column density of gas in those clouds, once we think we know the
relative abundance of the heavy elements. Such X-ray shadowing measure-
ments can be used, for example, to indirectly study the total (atomic plus
molecular) hydrogen fraction of such clouds.

12.2.3 Polarisation by Dust

If the light incident on a grain, I (λ) is originally unpolarised, then it can be
resolved into two incoherent beams polarised at right angles, and each with
the same intensity I1 (λ) = I2 (λ) = I (λ) /2. If the grains are prefentially
aligned along one of these directions, then the two beams will undergo differ-
ent attenuations. Assume that the attenuation of the second polarised beam
is larger than the first. Then, analysis of the transmitted light with a linear
polariser will then give a maximum intensity, Imax and a minimum intensity
Imin given by:

Imax = I1 (λ) exp [−τ1 (λ)] (12.23)
Imin = I2 (λ) exp [−τ2 (λ)]
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The degree of polarisation is defined by p = (Imax − Imin) / (Imax + Imin),
so it follows that the measured degree of polarisation is:

p (λ) =
exp [−τ1 (λ)] − exp [−τ2 (λ)]
exp [−τ1 (λ)] + exp [−τ2 (λ)]

=
1 − exp [−∆τ (λ)]
1 + exp [−∆τ (λ)]

(12.24)

where ∆τ (λ) is the difference in the optical depths of dust as seen by the two
beams. This difference is simply related to the efficiency factors for extinction
in the electric field plane and the magnetic field plane, E and B, respectively:

∆τ (λ)
τ (λ)

=
|Qext (E, λ) −Qext ( B, λ)|
Qext (E, λ) +Qext (B, λ)

=
p (λ)

2.172A (λ)
(12.25)

Equation (12.25) emphasises the very close relationship between the extinc-
tion produced by a given grain, and the polarisation which results. It is clear
for example that, for an elongated grain, the polarisation reaches a maximum
when the difference betwen the extinction in the long axis direction and the
short axis direction also reaches a maximum, which will occur near the middle
of the rapidly-rising section of the extinction curve. This behaviour is shown
schematically in Figure (12.3).

When the integral is taken over the grain-size distribution, the wiggles
caused by interference effect disappear, and the polarisation curve becomes
a smooth function of wavelength. An empirical fit to the wavelength depen-
dence of interstellar polarisation is provided by Serkowski relationship, which
in the modified form provided by Whittet et al. (1992) is:

p(λ) = pmax exp
[
−K (λmax) ln2

(
λmax

λ

)]
(12.26)

K (λmax) = 1.66λmax

where λmax is the wavelength µm, where the polarisation reaches its maxi-
mum value, pmax. Because the shape of the polarisation curve and the wave-
length of the maximum is determined by the size distribution of the grains,
(in particular, by the largest grain population present) it is therefore not
surprising that the wavelength of maximum is related to ratio of the total
to selective extinction, R; see equation (12.10). Whittet & van Breda (1978)
find R = 5.6 ± 0.3λmax.

In the ultraviolet, the absorption of the graphite grains producing the
2175Å resonance absorption feature must be taken into account. This has
been done using the discrete dipole array (DDA) method of calculation for
electromagnetic scattering developed by Draine (1988). This produces an
additional bump in the polarisation around the 2175Å feature. The DDA
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Fig. 12.3. A typical absorption efficiency curve for an aligned interstellar grain. The
polarisation resulting from the difference of the E and the B absorption efficiencies
is scaled arbritarily for clarity. The wiggles are the result of interference effects, and
are smoothed out when there is a distribution of grain sizes present.

method is a much more powerful technique than the traditional Mie scattering
theory, since it can readily deal with grains of arbritary shape, or complex
fractal structure which are much more like the real grains found in interstellar
space.

12.3 Grain Photoheating

Interstellar grains are heated by photons or by atomic collisions and re-radiate
this heat at infrared wavelengths. Let us first consider only the heating by
the ambient radiation field. Suppose that this interstellar radiation field has a
uniform energy density U (erg cm−3) then the flux of energy, dF , intercepted
by an elementary area of the grain ds is:

dF =
c

4π
Uds

π/2∫
0

2π sin θ cos θdθ =
c

4
Uds (12.27)

where θ is the angle of the local normal to the grain. Note that any element of
the surface can only see half of the sky. Thus the net energy transport to the
grain, dEg/dt, is the integral of this over the surface of the grain, multiplied
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by the fraction of the radiation which is absorbed, which for a spherical grain
of radius a is:

dEg
dt

= πca2 〈Qabs〉U (12.28)

where 〈Qabs〉 is the mean (frequency weighted) absorption efficiency.
The grains are heated to a temperature at which they are able to re-

radiate this energy, so in thermal balance:

πca2 〈Qabs〉U = 4πa2

∞∫
0

Qem (a, λ)B (λ, Tg) dλ (12.29)

where B (λ, Tg) is the Black-body function appropriate to the bulk grain
temperature Tg, and Qem (a, λ) is the emission efficiency of the grain, which
we can take equal to the absorption efficiency. Since most of the radiation is
emitted in the IR where n ∼ 1 and κ� 1, then equation (12.22) reduces to:

Qem (a, λ) ∼ 16πaκ
3λ

(12.30)

A rough idea of the typical grain temperature can be got by evaluating
the average 〈Qem〉 at the peak of the Black body distribution (〈Qem〉 ∼
8πaκTg/3), and taking it out of the integral. We also take 〈Qabs〉 ∼ 1, since
the local stellar radiation field is essentially diffuse starlight, and has a colour
temperature of about 10000K, so that we have:

Tg ∼ 0.4
(
cU

aκσ

)1/5

(12.31)

where σ is the Stefan’s constant. The local interstellar radiation field has
cU ∼ 2 × 10−2 ergs cm−2 s−1 (Mathis, Mezger & Panagia 1983), and there-
fore a grain with a ∼ 2 × 10−5 cm will reach a temperature of about 20K.
Note that this temperature is only very weakly dependent on grain size. The
grain temperature depends on both the nature of the grain and upon the
local radiation field. In ionised plasmas in starburst regions the dominant
contribution to the local radiation field is the nebular Lyα, or, nearer to
the exciting stars, the stellar radiation field due to hot stars. In such high
radiation field densities the mean grain temperature may approach 100K.

12.3.1 Quantum Heating

In very small grains, the quantum heating due to the absorption of individual
photons may cause the grain temperature to fluctuate, with large excursions
above the mean temperature predicted by an equation such as (12.31). This
occurs when the photon energy becomes comparable with the mean internal
lattice energy of the grain carried in its vibrational modes, as was first shown
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by Duley (1973) and by Purcell (1976). More recent calculations by Draine
& Anderson (1985), Desert et al. (1986) and Guhathakurta & Draine (1989)
have quantified both the size of the fluctuations and their effect on the IR
emission from dust. If the lattice contains N atoms, then the absorption of
each photon can excite (3N − 6) or (1 − 2/N) vibrational modes. Following
an absorption of a photon of energy hν therefore, the grain is heated to a
maximum temperature Tmax, and the internal energy of the grain, U , is:

U (Tmax) = (1 − 2/N)V

Tmax∫
0

CV (T ) dT ∼ hν (12.32)

where CV (T ) is the heat capacity at constant volume of the bulk material.
The grain will cool on a characteristic timescale:

τcool(Tg) =
U (Tg)

4πa2Qem (Tg)σT 4
g

(12.33)

Because of the T 4
g term and the decreasing emission efficiency of the grain as

a function of temperature, the cooling timescale is initially short, but rapidly
increases as the grain cools. The temperature fluctuations have therefore a
very “spiky” characteristic as a function of time. Hot small grains contribute
very strongly to the total IR emission due to dust in the ∼5 - 25 µmwavelength
region.

If the photon energy is large enough, Tmax may approach the sublimation
temperature of the grain. Indeed as soon as the vapour pressure of the grain
materials becomes an appreciable fraction of the gas pressure, the grain will
be destroyed on a fairly rapid timescale.

12.4 Grain Charging

Advanced Topic
First, let us consider charging through collisional processes only. The net

electric charge in the ISM is constrained to be zero. Additionally, at most
parts of the ISM we can consider that thermal equipartition is satisfied. This
implies that the electrons move faster than the ions in the velocity ratio
ve/vi = (mi/me)

1/2, where mi is the mass of the ions present. Thus, an
initially uncharged grain will collide with electrons at a greater rate than
with the ions, and will tend to pick up a net negative charge. The Coulomb
barrier imposed by this charge will then tend to decrease the collision rate
with electrons relative to the ions, until a current balance; a balance between
the rate of accumulation of negative and positive charge is achieved:

∞∫
0

σe (ve)nef (ve) vedve =

∞∫
0

σi (vi)nif (vi) vidvi (12.34)
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where f (v) is the Maxwellian distribution in velocity at the gas temperature
T , and σe (ve), σi (vi) are the effecive grain cross - section to collisions with
electrons and ions, respectively, taking into account the Coulomb interactions
due to the grain charge -Ze:

σe (ve) = πa2

[
1 − 2Ze2

amev2e

]

σi (vi) = πa2

[
1 +

2Ze2

amiv2i

]
(12.35)

These two equations have the solution:

1 − y =
(
mi

me

)1/2

exp [y] with:y =
Ze2

akT
(12.36)

In an ionised region, where the temperature is around 10000K and the ions
are mostly protons, the collisional grain charge would be about 400e− while
in an H i region where temperature is only ∼ 100K and the dominant ion is
C ii, the charge is only about 6e−.

When a sufficiently strong UV photon field is present, the photoelectric
emission is the dominant grain charging process, and the grain charge is then
positive. Photoelectrons produced by grains contribute to the photoelectric
heating of ionised nebulae. Because at a given point in an H ii or H i pho-
todissociation region, the mean grain potential is often less than the mean
ionisation potential of the ionic species present, this photoelectric heating
effect can be quite important in determining the local electron temperature.

Considered purely as an absorber of EUV radiation, dust would act more
as a cooling agent in ionised plasma, since the rather grey opacity of the grains
at these wavelengths tends to produce a softening of the radiation field, and a
lowering of the electron temperature (Petrosian et al. , 1972; Sarazin, 1977).
However, when grain photoelectric heating is taken into account, dust acts as
a powerful energy source in both H i regions (Draine 1978) and H ii regions
(Maciel & Pottasch 1982; Oliveira & Maciel, 1986).

As shown by Draine (1978), one of the important parameters governing
the effective grain heating is the photoelectric yield as a function of the photon
energy. This yield is characterised by two parameters, the limiting yield Y∞
(∼ 0.1−0.5), and the threshold for photoelectron production, Emin, typically
5 - 8 eV for most grain materials. As a function of photon energy hν:

Y (ν) = Y∞(1 − Emin/hν) (12.37)

In laboratory experiments, a peaked energy distribution function of the
emitted photoelectrons spectrum is obtained as a function of photon en-
ergy (hν). A reasonable approximation to this energy distribution function,
f(e, hν), is a triangular distribution:
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e < (hν − Emin)/2 : f(e, hν) = βe/(hν − Emin)
e ≥ (hν − Emin)/2 : f(e, hν) = β(1 − e/(hν − Emin)) (12.38)

where β = 4/(hν − Emin).
In equilibrium, the collisional and photoelectric grain currents must bal-

ance (see Draine (1978). The photoelectric current, jν , due to the ambient
UV radiation field, U(ν), is determined from the following integral:

jν = πa2

∫ ∞

Emin

[∫ hν−Emin

Max(Eg,0)

f(e, ν)de

]
Qabs.(ν)Y (ν)U(ν)dν, (12.39)

where Eg is the grain potential, andQabs.(ν) is the grain absorption efficiency.
This photoelectric current must be integrated numerically.

12.5 The Life Cycle of Grains

After being born as stardust, the interstellar grain population does not remain
static with time. In dense interstellar clouds, dust grows volatile icy mantles
consisting of water (H2O), methanol (CH3OH), carbon monoxide (CO), car-
bon dioxide (CO2) or methane CH4, many of which have been observed in
the dense molecular gas towards the Galactic Centre. These ices may form
more complex species through surface reactions, while other more refractory
elements are captured and incorporated into the mantles. In the presence of
a UV photon field, the volatile ices are photolysed into more stable organic
grain materials (Greenberg, 1982), and in cool molecular regions, grains will
coagulate together to form larger complexes of mixed composition.

Grain growth by atomic sticking has already been described in section
(12.1). The characteristic timescale for significant loss of heavy atoms from
the gas phase (the condensation timescale, τcond) is τcond ∼ 1010n−1 yr. Thus
the heavy elements are depleted from the gas phase in a timescale of 106 or
107 yr in a typical molecular cloud. This process may be limited to some
extent by desorption effects such as grain heating by cosmic rays and photo-
and chemi- desorption.

In low density regions, grain destruction processes dominate the life cycle
of grains. Supernova shocks, or shocks driven by the stellar winds of hot
stars sweep through the low density gas, sputtering the grains if the velocity
is high enough (Dwek et al. 1996), or shattering the grains at lower velocity
(Jones et al. 1996). Close to hot stars, grain heating destroys mantles by
sublimation, and the grains may even become charged to such a degree that
the electrostatic repulsion exceeds the strength of the inter-atomic bonds and
the grain is destroyed by cold field emission.
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Very little of the current interstellar grain population can be the original
stardust. For one thing, the sources of stardust are inadequate. In cool star
winds, only the production of carbon is adequate to account for the current
interstellar abundance. Other refractory elements such as Si, Mg and Fe must
have been mostly made in supernova explosions. Although such explosions
may produce dust in the fireball, this would have been almost completely
destroyed during the passage through the reverse shock front. The mean
timescale for destruction of dust by processing through shocks in the inter-
stellar medium is only about 5×108 yr near the sun. The very high depletion
factors which are observed for refractory elements (even along the lower-
density lines of sight) require that the dust is re-formed on a timescale which
is considerably shorter than this.

The evolution of the original stardust grain population and the new dust
population formed in dense interstellar clouds is therefore a dynamic balance
of all of these growth, destruction, structural and chemical modification pro-
cesses, described in more detail in Section (14.3.5). Along any line of sight
all these environmental factors determine the grain composition, the size dis-
tribution, the extinction law and the chemical depletion factors that will be
observed.

12.5.1 Thermal Sputtering of Grains

Advanced Topic
Interstellar shocks from supernova remnants, or from fast winds of hot

stars, are the most effective means of destroying interstellar grains. However,
the dominant mode of destruction depends on the shock velocity. If the shock
velocity is high enough (>∼ 400 kms−1), then sputtering by fast grain-ion
collisions will dominate, while at lower velocities grain-grain collisions will
lead to grain shattering (see next section).

A grain will enter the shock moving at 3/4 of the shock velocity with
respect to the ions. Whether the grain survives the initial shock (assumed
to be non-radiative because it is so fast) will depend on whether the grain
can be slowed down by the drag forces of the surrounding gas before it is
sublimated. In a medium of number density n, the drag force, F , acting on
a grain of radius a and density ρg and moving with relative velocity vg is;

F =
4
3
πa3ρg

dvg
dt

= πa2µmHnv
2
g (12.40)

where µ is the molecular weight andmH is the mass of the hydrogen atom. In-
tegrating this equation of motion from the point of entry of the grain into the
shock until it slows to the characteristic thermal velocity of the surrounding
medium gives the grain stopping timescale, τstop :

τstop =
4aρg

3µmHn

(
1
vth

− 4
3vs

)
(12.41)
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this is of order 106a−5v
−1
500n

−1 years where a−5 is the grain radius in units of
10−5 cm and v500 is the shock velocity in units of 500 kms−1. This stopping
time will be modified somewhat by the effects of grain charging, and coupling
of the grain to the magnetic field in the shock.

During the braking process the grain is heated by gas-grain collisions
(see Dwek & Arendt, 1992). The smaller ( a <∼ 0.05µm ) grains will suffer
subtantial temperature fluctuations, analogous to the quantum fluctuations
discussed above (Draine & Anderson, 1985), and so the dust in the shock is
an enhanced source of IR emission, particularly in the near IR.

The sputtering rate is a rather complex function of temperature, and
threshold energy; given by Draine & Salpeter (1979). However, the results of
Dwek et al. (1996) can be rather well fitted by an equation of the form:

da

dt
= AnT

−1/4
6 exp

[
−BT−1/2

6

]
(12.42)

where T6 is the gas temperature in units of 106K and A and B are constants.
For graphite, A = 6 × 10−6µm yr−1 and B = 3.7 while for silicate A =
1.8×10−5µm yr−1 and B = 4. The sputtering lifetime for average size grains
(a ∼ 0.1µm) is of order 105 years in fast shocks. This is comfortably shorter
than the grain braking timescale, so that only the very largest grains can
survive.

In fast shocks, the effect of the magnetic field can be important. Since
the magnetic field is compressed in the cooling gas behind the shock front,
charged grains are accelerated around the field lines in a “betatron accel-
eration” to produce gas-grain relative velocities comparable with the shock
velocity (Spitzer, 1976). This is the main mechanism for grain destruction
for J-shocks in the velocity range 50-200 km s−1 (Jones et al. 1994, and
references therein). In C-shocks, it is the drift between the weakly-coupled
ions and neutrals that provides large non-thermal streaming motions. Since
the grains are charged, they tend to follow the motion of the ions, and the
collisions between grains and neutrals produce non-thermal sputtering. This
was computed by Pineau des Forêts & Flower (1997), who also calculate the
sputtering yields.

12.5.2 Grain-Grain Collisions

Advanced Topic
Grain-grain collisions play a major role in determining the grain size dis-

tribution function. The effect of these collisions depends upon the impact ve-
locity. At very high velocities, grain-grain collisions will drive a strong shock
into each of the colliding particles, compressing them to high pressures and
melting them. After the shock has passed through the grain and the pressure
is relieved, the grains will vaporise.

At lower velocities when the velocity of impact is somewhat not too much
greater than the typical sound speed in the grain (of order 5 km s−1), the
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shock wave transmitted into each grain has enough energy to shatter the
rather brittle grains, producing many more smaller grains. At still lower ve-
locities, below about 1 km s−1, the grains will simply bounce off one another,
and at the lowest energies, grain coagulation will occur.

The process of grain shattering in intermediate-velocity shocks has re-
cently been investigated Jones et al. (1996). In essence, small fragments are
formed as a result of cratering during the grain-grain impact. Matter ejected
at different distances from the impact centre is ejected at different velocities,
producing stresses in the ejecta which lead to fragmentation. The character-
istic size of the ejected fragments is determined by matching these stresses
to the shear strength of the grain material. The size distribution of the frag-
ments is therefore determined by the shape of the cratering velocity field,
and the ratio of the maximum to minimum fragment sizes is determined by
the ratio of the pressure at impact compared to the pressure at which the
flow ceases to be plastic. A somewhat different kind of fragmentation occurs
when the shock remains strong in passage through the grain, as will tend
to occur in the collision of two equal-sized grains and at higher velocities of
impact. Here the compressive shock wave is reflected on the far side of the
grain as a tensile wave, leading to failure under tensile stresses (spallation).
This produces a shower of small fragments, and may result in the complete
break-up of the grain. For typical grain materials, the onset of fragmentation
by cratering is of order 2 km s−1 and catastrophic spallation occurs at 75 km
s−1 for amorphous carbon, and at 175 km s−1 for silicates.

This shattering process leads naturally to a power-law size distribution of
grains; dn/da = ca−α with α ∼ 3.3, observationally indistinguishable from
that adopted by Mathis, Rumpl, & Nordsieck (1977); α ∼ 3.5. Essentially,
any shattering model in which the size of the fragments is related to the
pressure experienced in the collision will lead to a power-law distribution
with a slope somewhat greater than 3.

Thus, lower-velocity shocks are a copious source of small grains, and may
even provide the main source of the small aromatic grains and molecules need
to explain the PAH features seen in the infra-red between 6 and 12µm.

During a collision, the surfaces of the grains elastically deform and store
the energy needed to cause the particles to bounce off one another. However,
during a low energy collision, some of this energy is lost by the excitation
of lattice phonons, and the collision is not perfectly elastic. When the inter-
nal energy stored as phonons is comparable with the grain-grain collisional
energy, the particles will stick together. In a sense, therefore, this process of
grain coagulation is similar to the process of atomic sticking, discussed in
section (12.1). The maximum velocity for coagulation, vcoag, (typically in the
range 102−104 cm s−1) is given by (Tielens, 1989):

vcoag =
(
Eint
Y ared

)5/6

cg
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where Eint is the interface energy, Y the Young’s Modulus of the grain mate-
rial with sound speed cg, and ared is the reduced radius of the colliding grains;
ared = a1a2/ (a1 + a2). Grain coagulation is therefore assisted in small grains,
and in grain materials with low Y which are easily deformable, such as ices. In
dense molecular clouds, the low temperatures and the formation of icy man-
tles will assist coagulation. Since the grain-grain collision timescale is also
considerably shorter than the cloud lifetime, large complexes of coagulated
grains may be built up.

12.6 Spectral Signatures of Grain Materials

Molecular bonds have characteristic frequencies for stretching, bending, or
scissoring modes. When incorporated into grain materials, these character-
istic frequencies are shifted somewhat and broadened by the effects of the
lattice. Nonetheless, there are many prominent absorption or emission fea-
tures, particularly in the far-IR which have enabled us to obtain unamiguous
identifications of a variety of interstellar grain types.

Combining data from satellites such as IRAS (Infra-Red Astronomical
Satellite), COBE (Cosmic Background Explorer) and ISO (Infrared Space
Observatory) with ground-based data and data obtained in the UV from IUE
(International Ultraviolet Explorer) and the Hubble Space Telecope it has
been possible to cover the whole dust spectrum. This provides new powerful
observational constraints on the nature, composition and size distribution of
the various dust grain species.

Research in this field is also assisted by the study of interplanetary dust
particles. These can be collected from the earth’s stratosphere using high-
flying aircraft. Provided that the particle is small enough, it can be slowed by
dynamical drag in the outer reaches of the earth’s atmosphere without being
melted, and subsequently gently drifts down and settles out. Such particles
provide a useful source of dust materials which may be truly representative
of interstellar dust types.

In the following subsections, we briefly review the key identifications which
have been made in this field.

12.6.1 Constraints from the Spectral Energy Distribution

A successful grain model should be able to describe both the extinction and
emission properties of the dust from the Lyman limit at 0.0912µmall the
way up to 1000µm. The visible and ultraviolet absorption properties were
discussed above. These constrain the size distribution of the grains, which is
usually described by a power-law distribution dn/da = ca−α. The power-law
index adopted is usually that of Mathis, Rumpl, & Nordsieck; α ∼ 3.5. The
2175Å bump demands the presence of small carbon grains in the form of
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graphite with a size of about 0.02µm. However, as we have seen, this bump
is variable in width, from about 350 to 600Å, and is correlated with the rise
in the far-UV extinction and the value of R, showing that in dense clouds
grain coagulation and mantle growth combine to change the size distribution,
particularly at the small particle end.

A number of recent attempts have been made to model both the extinc-
tion and the continuum spectral energy distribution (SED) of dust emission in
the IR (see Dwek et al. 1997, and references therein). The SED has a broad
maximum at around 100-200µm, which can be ascribed to the larger silicate
grains which are responsible for much of the optical extinction. The SED
falls much less steeply than a black-body distribution towards shorter wave-
lengths. This requires a population of small grains, either of small organic
grains (SOGs) or of small silicate grains. In addition, the 3 - 12µmregion is
dominated by both line and continuum emission from the ubiquitous popu-
lation of the polycyclic aromatic hydrocarbon (PAH) grain materials.

12.6.2 Silicates

Advanced Topic
The characteristic interstellar absorption features due to silicates are

found at 9.7µmand at 18µm. These features are rather broad, the 9.7µmfeature
ranging from a wavelengthof roughly 8µmup to 12.5µm. The 18µmfeature is
shallower, and ranges from 15–22µm, approximately. These features have
been seen in emission in the spectra of comets, such as Halley and Kohoutek
or in the circumstellar material around the star β Pictoris.

The ubiquitous 10µmfeature arises from the Si–O stretching mode, and
the 18µmfrom the Si–O–Si bending mode. These are prominent in olivine, but
have a more complex structure in pyroxenes, because of the greater compo-
sitional complexity that is possible in these. Crystalline lattice-layer silicates
additionally show bands at 3.1µmand 6µm. These are due to the O–H stretch-
ing and H–O–H bending modes caused by adsorbed and absorbed water. In
addition, features at 6.9µmand 11.4µm are due respectively to the stretching
and scissoring modes of carbonates (Sandford, 1989).

The emission spectrum of comets can be fit by a combination of these
types; about 55% olivine, 35% pyroxene and 10% of lattice-layer silicates
(Bregman et al. 1987). The best fit to the observed spectra is obtained if the
grains are assumed to be coated in a carbon-based material.

12.6.3 Icy Grain Mantles

Advanced Topic
The 2-20µmspectra of objects lying behind dense molecular clouds fre-

quently show deep absorption features at 3.08µm4.67µm, 6.0µm and 6.85µmalong
with the well-known 10µmfeature due to silicates. In addition, high signal to
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noise spectra taken with ISO reveal a number of weaker features in this wave-
length region. Many of these features are due to interstellar ice mantles on
grain surfaces, and their identifications have recently been reviewed by Tie-
lens & Whittet (1997). In particular, ices due to CO2 H2O CH4 and CH3OH
have been definitely identified, as well as an unidentified nitrile or isonitrile
compound dubbed XCN.

The 3.08µmis caused by the O–H stretching mode in water ices. The broad
6.0µmfeature is due to water ices, a result of the O–H bending mode (Tielens
et al. 1984). This is confirmed by the existence in ISO spectra of a weak H2O
absorption on the long wavelength side of the strong 10µmsilicate band.

The strong and narrow 4.67µmfeature is the signature of solid CO (Lacy
et al. 1984). The central wavelength and shape of this feature depend on
the nature and composition of the surrounding matrix. In the source W33,
a strong satellite band is seen at 4.62µm, which may be the result of the
C≡N stretching mode in nitriles or isonitriles produced by photolysis. An
alternative explanation, that it is the Si–H stretching vibration in organic-
silicon compounds (Nuth & Moore, 1988). If so, these too would have to be
the result of UV photolysis in icy mantles containing silicon compounds such
as SiH4.

The identification of the 6.85µmfeature is plausibly the result of the C–H
and O–H deformation mode in CH3OH. However, methanol ices are certainly
detected through their C–H stretching mode at 3.54µmand an overtone band
at 2.4µm.

12.6.4 Polycyclic Aromatic Hydrocarbons (PAHs)

Advanced Topic
The recently obtained ISO spectra show that the emission features at-

tributed to PAHs are ubiquitous in the interstellar medium, provided the
line of sight probed is not too dense, or too highly excited. PAHs or other or-
ganic compounds containing aromatic ring molecules produce characteristic
emission features at 3.28µm, 6.2µm, 7.6-8.0µm, 8.6µmand 11.3µm. Each of
these features has been identified with a specific excitation mode of aromatic
compounds. The 3.28µmfeature is the fundamental aromatic C–H stretch-
ing mode, the 6.2µmband is the aromatic C–C stretching mode, while the
7.6-8.0µmband is a complex blend of several excited aromatic C–C stretch-
ing bands. The longer wavelength features are due to lower-energy bending
modes; the 8.6µmband results from aromatic C–H in-plane bending mode,
and the 11.3µmband is caused by the aromatic C–H out–of-plane bending
mode for non-adjacent peripheral H atoms (Allamandola et al. 1989).

Along different sight lines the carbonaceous grain types may be either
predominantly aliphatic, with high concentrations of O and H or aromatic
with low H and O concentrations, as evidenced by the detailed structure of
the spectrum in in the 3.2 - 3.6µm region (Sauvage, 1998). The Galactic
Centre source, Sag A, shows predominantly aliphatic carbon types, with a



    

280 12. Interstellar Dust

primary carbon absorption peak at 3.4µm, the emission spectra of post-AGB
stars show a mixture of types, and the reflection nebula NGC2023 shows
mainly the 3.28µm PAH feature.

It is likely that UV photolysis will cause an evolution from PAH-like grains
to graphitic types, as small PAH molecules are likely to lose their peripheral
hydrogen atoms if sufficiently excited, leaving their carbon skeletons more
or less intact. UV excitation of small PAHs (∼ 60 atoms) is also though to
produce the red and near IR fluorescent features seen in reflection nebulae
(Sellgren et al. 1985), and a dissociation continuum (d’Hendecourt et al.
1989). In addition, IR emission in the > 20µm region can be induced by the
excitation of C–C –C out-of-plane bending modes in the aromatic rings. The
intensity of the IR emission is greatly assisted by the quantum heating effects
described in section (12.3.1), which heats these molecules to temperatures of
order 600K.

Additional constraints on the carbon grain types can be obtained by con-
sidering the total carbon abundance budget (Sauvage, 1998). In the ISM,
there is about 200 parts per million (ppM) of carbon which is available to
form dust. Of this, at least 80 ppM is required to fit the 2175Å bump. Most
models cannot produce enough absorption and emission with what is left, as
they require anywhere between 240 and 500 ppM of carbon, depending on the
model. Although “fluffy” grain models can work within the carbon budget,
these have problems fitting the absorption and IR emission constraints. This
carbon problem is not yet fully resolved.

12.6.5 The Diffuse Interstellar Bands (DIBs).

Advanced Topic
We have known about the problem of diffuse band absorption in the

spectrum of stars for over 50 years. Although we are confident that they have
an interstellar origin (since they all correlate to some extent with the line of
sight reddening), we still have only vague ideas about their origin.

The first band to be discovered was the band at 4430Å, but now nearly
200 bands are known between 4200Å and 8700Å (Jenniskens & Désert, 1995).
The equivalent widths of the detected features (measured for E(B − V ) = 1
) range from a few Å down to about 0.01Å. In general, the broader the fea-
ture, the greater its equivalent width, although many more narrow bands are
currently known because these show better contrast against the backround
continuum source. Generally, the bands seem to fit into three loose “families”
with representative members being the 5797Å, 5870Å and 4430Å bands (i.e.
Kreblowski & Walker 1987). Within these families, the lines show better cor-
relations with one another. However, only the 5780Å and the 6284Å features
show such a close correlation that we can be confident that they arise in the
same carrier. Many of the features appear to be associated with the diffuse
interstellar gas, rather than with dense clouds, since their correlation with
the line of sight E(B − V ) is better than their correlation with molecular



     

12.6 Spectral Signatures of Grain Materials 281

hydrogen column density. Furthermore, except for the 4430Å feature, they
become relatively weaker as the cloud density rises.

It now seems much more likely that they arise from a complex molecular
species, rather than from the solid phase. This idea gathers support from the
observations of the “red rectangle” by Miles et al. (1995). They found a num-
ber of bands in emission, including the 5797Å feature. The regular interval
between the features, the blue asymmetry and shift of the peak wavelength as
a function of emission strength all suggest that a series of vibrational states of
a complex molecule is being observed. Additionally, very high resolution ob-
servations of the 6614Å feature by Hibbins et al. (1995) shows some evidence
for a Q, P and returning R branch of an unknown molecule.

Two intriguing ideas for the origin of these features have been pro-
posed. One suggestion is that they arise in PAH+ ions which originate from
grain fragmentation in shocks. Another proposal holds that they come from
fullerene “bucky-balls” of carbon (C 50, C60, C70 etc.) with hydrogen atoms
bonded to their outer surfaces, thus converting them to fulleranes. A com-
plete solution to the problem of the diffuse interstellar bands still seems to
be a long way off.

Notes on Chapter 11

• A fuller account of a number of the topics covered in this chapter is given
in Spitzer, L., Jr., 1977 Physical Processes in the Interstellar Medium (Wi-
ley:New York), ISBN 0-471-02232-2, now republished in the Wiley Classics
Library Series, Wiley:NY.

• An excellent description of the formation of dust, and dust chemistry can
be found in Dust and Chemistry in Astronomy, eds T.J. Millar and D.A.
Williams, in The Graduate Series in Astronomy, Series Editors R.J. Tayler
and R.E. White, Institute of Physics Publishing:Bristol and Philadelphia,
ISBN 0 7503 0271 2.

• For an up to date account of the diffuse interstellar bands, see The Diffuse
Interstellar Bands, eds. A.G.G.M. Tielens & T.P. Snow Klwer: Dordrecht,
1995. ISBN 0-7923-3629-1.

• A fine general review of circumstellar chemistry is by A. Omont, 1991, in
Chemistry in Space, eds. J.M. Greenberg & V. Pirronello, Kluwer: Dor-
drecht, p171.

Exercises

Exercise 12.6.1. The following table gives the (absolute) relative abun-
dances of the elements in the sun (log10 by number of atoms with respect to
hydrogen). Assuming that the end-products of silicate condensation are, in
order of condensation, melilite, Ca2Al2SiO7 and diopside: CaMgSi2O6 and
the alkali alumino-silicates: NaAlSi3O8 and, for the excess Mg and Fe, en-
statite MgSiO3 and olivine (Mg,Fe)2SiO4.
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(a) Assuming that helium has an abundance 1/10th that of hydrogen, cal-
culate the maximum mass fraction of silicate grains that can be formed, and
the gas-phase depletion of oxygen expected when these grains have condensed
out

(b) In order to explain the optical extinction curve, we would require a
silicate mass fraction of 9×10−3. Is the value you calculated in (a) sufficient,
and if not, what other grain types can you suggest may be responsible, and
why?

C -3.44 Ne -3.91 Al -5.53 Ca -5.64
N -3.95 Mg -4.42 Si -4.45 Fe -4.33
O -3.07 Na S -4.79 Ni -5.75

Exercise 12.6.2. Prove equation (12.36).
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‘If you open that Pandora’s Box, you never know
what Trojan horses will jump out!”
— Ernest Bevin

At first sight, the interstellar medium presents a very hostile environment
to the formation and survival of complex molecules. As we have seen, it is
criss-crossed by violent shocks and pervaded by intense UV and X-ray radia-
tion fields, which can easily tear apart the delicate molecular bonds. Even the
composition of the interstellar medium presents a problem to the formation
of complex molecules, since the gas is mostly hydrogen and helium. Reactive
species are simply trace elements, and direct collisions between them rare.
Nonetheless, astrochemistry turns out to be a rich and complex field. In cool
regions in the tails of shocks gas phase reactions can occur on interestingly
short timescales. Within dense clouds, UV photons and cosmic rays help
moderate a whole series of chemical reactions. On the surfaces of grains, mi-
grating molecules can meet and react together, and very complex molecular
species can be built up. In this Chapter, we will simply get a taste for these
phenomena. To find out more the recent book by Emma Bakes (1997), and
the reviews by Dalgarno (1987) and Genzel (1992) are strongly recommended
(see notes on this chapter).

13.1 Molecular Formation and Destruction

13.1.1 Neutral Gas-Phase Reactions

The simplest type of reaction that we can think of is simply a “sticking” col-
lision between a pair of neutral species. This is called the two-body radiative
association:

A + B → AB + hν (13.1)

For such a reaction to proceed, the radiative processes have to be very fast,
as the interaction lasts only for a collisional timescale τcoll ∼ 10−8/ 〈vtherm〉
s, where 〈vtherm〉 is the mean thermal velocity. For favourable conditions (in a
dense cloud with temperature ∼ 10 K), this is less than 10−12 s. However, as
we have seen, an allowed dipole transition may have a transition probability
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of order 108 s−1. Thus, only about one collision in 104 to 105 will induce a
reaction, and radiative association is therefore very rare.

Chemical reactions between neutral particles may also occur. These usu-
ally have an activation energy barrier to overcome, so that the association
reaction is endothermic. Such neutral-neutral reactions are therefore very un-
likely at the low temperatures of molecular clouds. However, there are some
exceptions, such as the reaction: O + OH→ O2 + H, in which the approach
can take place along a potential energy surface with a deep potential well.

If the gas is warmed by an external means, neutral-neutral reactions may
overcome the energy barrier, and these can then become important coolants
for the gas. Examples of such warm environments include protostellar or
evolved star winds, the warm regions of a C-shock, or the zone following the
recombination region in a faster J-type shock. The types of neutral reactions
that are most important are:

A + H2 ⇀↽ AH + H (13.2)

and:
AH + B → AB + H (13.3)

where A,B are O, C. N, S or Si. The rate coefficients of such reactions can
be fitted as a function of temperature by an expression of the form:

R = αT β100 exp [−γ/T ] cm3 s−1 (13.4)

where α is a constant, T100 is the temperature in units of 100K, and γ is
the activation temperature of the reaction (K). Rate coefficients of these and
several thousand other reactions are maintained in the UMIST database for
astrochemistry (Millar et al. 1997) which represents the major source of such
data (see notes).

The relatively small energy barrier (3940K) for the O + H2 → OH +
H reaction coupled with the large oxygen abundance ensures that OH is by
far the most abundant hydride produced by reactions of the type (13.2). The
corresponding reaction with C has a much higher energy barrier (14100K), so
is less likely to occur. The OH and CH which are formed by these endothermic
reactions can be transformed to O2, CO and C2 by neutral reactions with O
or C atoms.

13.1.2 Ion-Molecule Chemistry

When molecular ions can be formed by cosmic ray ionisation or by photoion-
isation in an interstellar cloud, a large number of ion-molecule reactions can
be activated. Unlike the neutral-neutral reactions these remain fast at low
temperatures, and so come to dominate the chemistry at low temperatures.
The ion in its approach to the neutral polarises the charge cloud around the
neutral to produce an attractive potential. Because the interaction timescale
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is long at the low temperatures appropriate to molecular clouds, the reac-
tion rates are then limited by the Langevin rate coefficient appropriate to
adiabatic collisions (c.f. Section (5.4)):

R = 2πe
(
α

µ

)1/2

∼ 10−9cm3 s−1 (13.5)

where α is the polarisability and µ the reduced mass of the reactants. For typ-
ical molecular clouds, the reaction timescales will be typically a few thousand
to a few million years, depending on the ionic concentration.

For longer-range collisions involving heteronuclear molecules, in addition
to the polarisation attraction, there is also an attractive force caused by the
permanent dipole of the heteronuclear molecule. Depending on orientation
of the collision, the reaction probability may be increased. This can lead
to a total reaction rate and collision frequency which actually increase with
decreasing temperature.

At very low temperatures, the relative populations in the fine structure
levels change. For example in reactions involving atomic oxygen, the atoms
are restricted to the 3P2 level at sufficiently low temperatures, resulting in
quite large changes in reaction rates.

While radiative association reactions are usually slow for neutrals, they
are important in ion-molecule reactions. For example, in photodissociation
and cosmic-ray ionised regions, the carbon chemistry is initiated by the ra-
diative association reaction:

C+ + H2 → CH+
2 + hν (13.6)

and quite large molecules can be formed in this way, for example;

CH+
3 + H2O → CH3OHH+ + hν (13.7)

Complex neutral species can be built up by a series of hydrogen abstraction
reactions of the type:

AH+
n−1 + H2 → AH+

n + H (13.8)

followed by a dissociative recombination:

AH+
n + e→ AHn−1 + H (13.9)

13.1.3 Dust-Grain Moderated Chemistry

In cool clouds the dust grains form excellent sites for chemical reactions
because reactive molecular or atomic species may be first adsorbed onto the
grain surface and then migrate around the surface (see Section (12.1)), until
they meet other species with which they can combine in order to form a
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new molecule. Depending on how exothermic the chemical reaction is, the
species that is produced in this way may either be desorbed from the surface,
or remain to be chemically incorporated into the icy mantle of the grain.
Because the timescale of the encounter on the dust grain surface is very long,
even reactions which are most unlikely to occur in the gas phase are enabled.
In this sense, grain surfaces act as a catalyst for such reactions.

The reactivity of carbon surfaces is enhanced by their microcrystallinity.
This produces chemically active sites due to unoccupied states in the outer-
most atoms which are available to bond with other atoms or molecules. Such
sites are called dangling bonds or unsaturated valencies.

If the probability (or yield) Y , of species A being adsorbed following a
collision with a grain, migrating and reacting with species B to form the
molecule AB, then the rate of this molecular formation reaction would be:

RAB = Y σAvAnAngrcm−3 s−1 (13.10)

here, nA and ngr are the number densities of the species A and the grains,
respectively. The thermal speed of the species A is vA = (8kT/πmA)1/2

and σA is the effective cross - section of the grain, taking into account the
effect of the charge on the species A (if any) and the grain charge, according
to equation (12.35). Since the grains tend to have a net negative charge in
dense clouds due to collisional charging, and the ions have positive charge,
the collision rate will tend to be enhanced over that estimated by taking only
the geometrical considerations into account. The effective yield can be quite
high, 0.4 < Y < 0.8 ; see Section (12.1). The reaction timescale is therefore:

τ ∼ 2.6x107 µ
1/2
A

Z (A)Y T 1/2
10 a−6

n−1
H yr (13.11)

where nH is the hydrogen number density of the cloud, µA is the molecular
or atomic weight of species A, Z (A) is its abundance by number relative
to molecular hydrogen, a−6 is the mean effective grain radius, normalised to
10−6 cm, and T10 is the cloud temperature in units of 10K.

One of the major species that must be formed on the surfaces of grains is
molecular hydrogen, since possible gas-phase reactions proceed far too slowly
to explain its abundance. For this species, Hollenbach & Salpeter (1971)
estimate that the yield is large, and if this is the case then dust grain surface
reactions can form this species within a small fraction of the lifetime of a
typical molecular cloud (τcloud <∼ 107 yr). The exact mechanism of formation
remains uncertain, however. These processes are reviewed by Williams (1987).

Other molecular species are formed on longer timescales, and heavy atoms
can be depleted down to a level of about Z (A) ∼ 5x107τ−1

cloudn
−1
H in the cloud

lifetime, unless molecules are returned to the gas phase by other processes
such as chemical desorption, through internal molecular cloud shocks (which
induce thermal desorption and/or sputtering), or by desorption induced by
photons (Boland & de Jong, 1982) or by cosmic rays (Lëger et al. 1985).
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Photons may also assist the formation of molecules on grain surfaces. For
example H2CO and CO2 can both be formed by photon-moderated grain
surface reactions at a rate coefficient of about 5 × 10−12 cm3 s−1;

CO + H2O + hν → CO2 + 2H
→ H2CO + O (13.12)

In the reaches of interstellar space, the icy mantles of grains remain cool,
and the bombardment of far-UV photons creates radicals which are stable at
such low temperatures. When the grain enters a hotter environment, these
radicals react to create complex organic molecules such as HNC3 or C9N.
Even more complex non-volatile materials can be created by photolytic re-
actions, including such species as complex polymers, glycine or amino acids
- the very stuff of life!

The photolytic reactions induced by UV photons store energy in the man-
tles of grains in the form of chemical bonds. In shocks, chemically-induced
grain mantle explosions can occur when a grain-grain collision heats the
mantle to a sufficient temperature to suddenly release all this stored energy
(d’Hendecourt et al. , 1982).

13.1.4 Molecular Destruction Processes

It may seem obvious, but is worth stating explicitly, that molecules can be
destroyed wherever there exists a process to input more energy than the
chemical energy associated with the molecular bond. This requires either
heat input (through energetic thermal particle impact - usually electrons or
through cosmic ray impact) or energy input by light in the form of UV pho-
tons. Let us consider photon-induced reactions. A typical photodissociating
reaction is:

AB + hν → A + B (13.13)

Because the scattering function of grains is strongly peaked in the forward
direction, this field may be considerably stronger deep within the cloud than
would be naively expected on the basis of extinction optical depth estimates.

A very important photodissociation reaction applies to CO. In this par-
ticular case the photon first excites discrete predissociating bound states:

CO + hν → CO∗ → C + O (13.14)

There are about 44 bands due to pre-dissociated states in the 912-1100Å
range (Viala et al. 1988; van Dishoeck & Black 1988). Since UV photons in
these bands are used up by each excitation into a pre-dissociating state, this
implies that CO can be self-shielding (Lee et al. 1996 and references therein).
That is to say, if there is enough of a CO column density between the source of
UV photons and the CO molecule considered, the absorption of the UV field
by photoexcitation into these states will decrease the flux at these frequencies
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sufficient to protect the CO molecule from photodissociation. The decrease
in UV photons through self-shielding is much more important than the dust
extinction in determining the photodissociation rates.

For radio observations of CO clouds, when both the 12CO and 13CO lines
are optically-thick, the emission line flux ratio from an external galaxy simply
depends on the ratio of the areas of optically-thick emission presented to the
observer, since the total flux is the area times the linewidth times the Black-
body function at the frequency concerned, see section (4.1.3). Where there
is a strong UV-field, the 13CO will be photodissociated to greater depth in
the molecular cloud than the 12CO as a result of this self-shielding. This
probably explains why the 13CO/12CO emission line ratio is observed to be
systematically lower in the most luminous starburst galaxies (Taniguchi &
Ohyama, 1998).

The photodissociation of molecular hydrogen is also controlled by self-
shielding. Far-UV photons are absorbed to excite the Lyman and Werner
transitions in the 912-1100Å range. Photodissociation results from fluores-
cence to the vibrational continuum of the ground electronic state with a
probability of about 0.1-0.15 per transition. Self-shielding becomes impor-
tant once the H2 column exceeds about 1014 cm−2. Since self-shielding is
much more effective in this abundant species, H2 is much less likely than
CO to be photodissociated by UV photons below the Lyman limit, so an
absence of CO within a molecular cloud should not be construed as implying
an absence of H2, as was clearly demonstrated by Maloney & Black (1988).
The importance of self-shielding in controlling the CO abundance at low C
and O abundance is graphically illustrated in the case of the Large Magel-
lanic Cloud (LMC). Although the oxygen abundance is only a factor of two
lower than in the interstellar medium in the solar vicinity, the observed in-
tensity ratio ICO(1−0)/I[C ii] is a factor of 20 times weaker in the LMC than
in the solar vicinity (Mochizuki et al. 1994). Since (see Section (4.1.3)) for
the optically-thick transition such as CO (1-0), the line flux is proportional
to product of the black-body function at this wavelength, the line width and
the surface area of the clouds containing CO, this result shows that a much
greater proportion of the molecular clouds are occupied by photodissociation
regions in the LMC.

Photons may also induce dissociative photoionisation reactions of the
form:

AB + hν → A + B+ + e− (13.15)

or else simple photoionisation reactions:

AB + hν → AB+ + e− (13.16)

Both of these input free electrons into the plasma. Electrons may also be gen-
erated in predominantly neutral gas through comic-ray induced ionisations:

AB CR→ AB+ + e− (13.17)
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such reactions mostly ionise H2 to H+
2 in molecular clouds, since this is by

far the most abundant molecule. The H+
2 ion then reacts with a second H2

molecule to form the H+
3 ion, which is the key ion moderating dense cloud

chemistry.
Free electrons provide cooling to molecular regions by exciting the elec-

tronic, rotational and vibrational states of molecules. However, they can also
provide an important vehicle for destroying molecules. The simplest such
reaction is collisional dissociation:

AB + e− → A + B∗ + e− (13.18)

Electrons may also produce dissociative ionisation:

AB + e− → A + B− + 2e− (13.19)

or (less likely) dissociative attachment reactions:

AB + e− → A + B− (13.20)

However, they are more likely to destroy positive ions produced by photoion-
isation or cosmic ray ionisation reactions and the subsequent ion-molecule
chemistry through dissociative recombination reactions of the form:

AB+ + e− → A + B (13.21)

13.2 Chemistry of Particular Regions

13.2.1 Cold Molecular Clouds

Cold clouds such as the Taurus Molecular Cloud 1 (TMC-1) are very rich in
complex linear unsaturated molecules. They have temperatures of order 10K,
are very dense, n (H2) ∼ 104 cm−3, and have very large dust optical depths;
AV ∼ 10 mag. In such dense clouds the effects of photon-induced chemical
reactions can be neglected. The primary source of ionisation is through cos-
mic rays; see (13.17) which provide ∼ 10−17 ionisations per H atom per
second, sufficient to maintain a fractional ionisation of about ∼ 10−8. Cloud
heating is from both cosmic rays and from turbulence, often associated with
the formation of low-mass stars. Modern quantitative models for interstellar
chemistry involve computation of reaction networks containing of order one
thousand coupled, time-dependent, non-linear kinetic equations. Clearly, this
is far beyond the scope of this book, so here we will consider only a few of
the most important reactions that are involved.

The key molecular ion for interstellar chemistry is the production of the
H+

3 ion by cosmic ray induced ionisation of H2, as was first shown by Herbst
& Klemperer (1973). This is important right down to the hearts of even
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the densest molecular clouds, since the stopping column for energetic cosmic
rays is much greater than the cloud column density and the main energy loss
mechanism is through knock-on ionisations along the cosmic ray track. The
molecular ion H+

2 is produced by the initial cosmic ray ionisation, but this
quickly reacts through the ion-molecule process:

H+
2 + H2 → H+

3 + H (13.22)

which opens the way for a rich chemistry involving proton transfer reactions
of the type:

H+
3 + A → AH+ + H2 (13.23)

Although the H+
3 ion is of pivotal importance in molecular cloud chem-

istry, it sucessfully eluded detection for many years. Howerver, recently it
has been finally identified by Geballe & Oka (1996) through a transition at
3.668µmat a telative abundance H+

3 /H2 ∼ 2× 10−9, which is consistent with
the hypothesis that it is produced by cosmic ray ionisation.

An illustrative example of the way in which the H+
3 ion helps form the

very abundant molecules in dense molecular clouds is provided by the OHn

chain reactions, which dominate at cloud densities less than about 100cm−3:

H+
3 + O → OH+ + H2

OH+ + H2 → OH+
2 + H

OH+
2 + H2 → OH+

3 + H (13.24)
OH+

3 + C → H2CO+ + H
H2CO+ + e→ CO + 2H

Here the final product is CO. Alternatively, the OH+
3 ion may make a disso-

ciative recombination to form OH:

OH+
3 + e→ OH + 2H (13.25)

Carbon monoxide can also be made the corresponding CHn chain reac-
tions, which dominate at cloud densities above a few hundred cm−3:

H+
3 + C → CH+ + H2

CH+ + H2 → CH+
2 + H

CH+
2 + H2 → CH+

3 + H (13.26)
CH+

3 + O → H2CO+ + H
H2CO+ + e→ CO + 2H

Here, the CH+
3 ion can also undergo dissociative recombination to produce

CH:
CH+

3 + e→ CH + 2H (13.27)
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Depending on the relative abundances of the corresponding atomic species,
the CH+

3 ion that is formed in the CHn chain may react instead with C to
form C2:

CH+
3 + C → C2H+

2 + H
C2H+

2 + e→ C2 + 2H (13.28)

or with N to form CN:

CH+
3 + N → HCN+ + 2H

HCN+ + e→ CN + H (13.29)

A more direct way of making C2 is through the ion molecule reaction:

CH + C+ → C+
2 + H (13.30)

followed by the charge-exchange reaction:

C+
2 + C → C2 + C+ (13.31)

Alternatively the C+
2 ion passes through the ion-molecule reaction:

C+
2 + H2 → C2H+ + H (13.32)

followed by dissociative recombination:

C2H+ + e→ C2 + H (13.33)

13.2.2 Photodissociation Regions

Beyond the ionisation fronts of H ii regions in the region where all the photons
with energies above the Lyman limit have been used up in photoionisation,
there is still a very strong UV radiation field below the Lyman limit which
provides the dominant heating source for the gas. Initially, the photon field
is absorbed by the atomic species with ionisation potentials below 13.6 eV;
C+,S+,Si+,Mg+ and Fe+ are the dominant ionic species here, and the main
atomic cooling process occurs through the O i fine structure line at 63µmand
the C ii fine structure line at 158µm. However, dust is an important source
of opacity for these UV photons, and photoelectric heating of the gas may be
the dominant heating term, depending on the nature and size distribution of
the dust grains; see Section (12.4). This heating is dominated by the smallest
grains present.

Deeper within the cloud, molecules can be found. Since the ionisation
front is evolving towards this molecular gas and the far-UV radiation field
is therefore increasing with time, the molecules are being destroyed as they
move through this photodissociation region. The structure of such regions
was worked out in detail by Tielens & Hollenbach (1985), and the field was



         

292 13. Introduction to Astrochemistry

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

-6.0

-5.0

-4.0

-3.0

AV (mag)

lo
g 

[n
i /

 n
 ]

H2

H2*

e-

e-

S+

Mg+
C+

C+

C

CO

Fig. 13.1. The structure of a photodissociation region in the H, C, H2 and CO
ions. Note that most of the electrons come from the singly ionised atomic species.
The electron temperature is of order 1000K out to AV ∼ 2 but falls to less than
100K for AV > 4 as CO becomes the dominant coolant. After Tielens & Hollenbach
(1985).

recently reviewed by Hollenbach & Tielens (1997, see notes). Since the rate
of passage of molecular species through the photodissociation zone is slow
compared with the various reaction rates, and in particular, the timescale
for fomation of molecular hydrogen on grains (∼ 109/n yr), a stationary
(time-independent) solution of the chemistry can be used instead of the more
complex kinetic solution. With the time-independent model, the temperature,
ionisation state and molecular composition becomes a unique function of dust
extinction optical depth or of hydrogen column density for any assumed set
of parameters.

The chemistry of the photodissocation region takes place at a pressure
which is equal to the sum of the pressure in the ionised gas and the pressure
due to the recoil momentum of the gas streaming off the ionisation front
which lies on the inner edge of the photodissociation region facing the exciting
stars. This pressure is a factor of order 100 times higher than the pressure of
the undisturbed molecular cloud. The photodissociation region is therefore
terminated by a shock deep within the molecular cloud (A V > 10 mag). This
will usually be a C-type shock.

Thanks to its self-shielding, molecular hydrogen is the last molecular
species to be destroyed; at about AV ∼ 2. At lower exctinction optical depths
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than this, the gas is atomic and is heated by photoelectric emission from dust
to a temperature of several thousand degrees K. Such regions are the prin-
cipal region of emission of the HI 21 cm line, which is the line most used in
tracing the dynamical structure of galaxies.

In the region where molecular hydrogen may first form, the gas is still
heated about 1000 K. Because here the far-UV pumping rate is high, col-
lisional and radiative excitation of vibrational and rotational levels makes
excited molecular hydrogen (H∗

2) an important coolant in the outer bound-
ary of the molecular zone. With increasing optical depth into the cloud the
decrease in the far-UV pumping rate leads to a decreasing fraction of the
molecular hydrogen in vibrationally excited states.

The vibrational excitation of molecular hydrogen can be sufficient to over-
come the activation energy of neutral-neutral reactions, so that chemical re-
actions such as

H∗
2 + C → CH + H

H∗
2 + C+ → CH+ + H (13.34)

and

H∗
2 + O → OH + H

H∗
2 + OH → H2O + H (13.35)

can proceed rapidly in this zone.
Deeper within the molecular cloud, CO can survive, and it rapidly be-

comes the main coolant, lowering the electron temperature to less than 100K.
In this region, the CHn and the OHn chain reactions that dominate in dense
cosmic-ray ionised clouds are again important. However, photodissociation
reactions and dissociative recombination reactions enable additional chemi-
cal routes. For example, where there are sufficient electrons present, the OH+

3

ion produced in the OHn chain may itself make a dissociative recombination
to produce OH or (less likely) H2O:

OH+
3 + e→ OH + H2

→ H2O + H (13.36)

The H2O and OH produced in this way may then be photodissociated,
H2O to OH and OH to O. This route is countered by the neutral-neutral
reactions involving excited molecular hydrogen (13.35). In a similar way, the
CH+

3 ion produced in this chain may also make a dissociative recombination
with an electron to produce CH or CH2:

OH+
3 + e→ CH + H2

→ CH2 + H (13.37)
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Chemical fractionation of isotopes may be important either in photodis-
sociation regions, or in dense cloud regions. This results from significant dif-
ferences in the zero-point vibrational energies. For CO the reaction:

13C+ + 12CO → 12C+ + 13CO +∆E (13.38)

is exothermic, generating an energy ∆E/k = 35K. Although this could, in
principle lead to fractionation of CO near the surfaces of clouds, this is su-
pressed at the high temperatures, and is more than compensated for by se-
lective photodissociation by the far-UV field (van Dishoeck & Black, 1988;
Keene et al. 1998). More important is the fractionation of deuterium in dense
clouds (Dalgarno & Lepp, 1984). At low temperatures this proceeds through
the reaction:

H+
3 + HD → H2D+ + H2 +∆E (13.39)

where ∆E/k = 200K, and at higher temperature reactions such as:

CH+
3 + HD → CH2D+ + H2 +∆E (13.40)

C2H+
2 + HD → C2HD+ + H2 +∆E (13.41)

become more important and lead to significant fractionation even at temper-
atures as high as 70K. The complete fractionation chemistry is described in
Millar, Bennett & Herbst (1989).

Despite its very low relative abundance (∼ 2 × 10−5) the HD molecule
can, in principle, be detected through its IR fluorescence in photodissociation
regions. Although the H2 molecule can also fluoresce in this waveband, unlike
HD it lacks a permanent dipole moment, so it fluoresces with an efficiency a
thousand times lower (Sternberg, 1990).

Apart from occurring around hot young stars, photodissociation regions
may also be found in the molecular material in the shells of planetary nebulae,
and in the hot torii surrounding active galaxies. The active galaxy sources
are interesting because in these, the photodissociation regions are illuminated
by a very hard and penetrating photon spectrum. As a consequence, the
molecular gas is kept warm to greater distance, allowing water vapour to
form by the reaction (13.35). The formation of a high H2O column density
which is kept warm by the X-ray photon heating provides ideal conditions
for pumping the H2O megamasers associated with active nuclei (Maloney,
1997); see Section (4.3.2).

In X-ray ionised photodissociation regions, the increased ionisation rate
accelerates the formation of molecules, but ultimately the X-rays play a
more destructive than constructive role as far as molecule formation is con-
cerned (Lepp & Dalgarno, 1996; Sternberg et al. 1997). However, the diatomic
molecules, particularly the hydrides, are very resistant to destruction by X-
ray radiation and are therefore abundant in such zones.
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13.2.3 Shock Chemistry

Fast shocks with velocities above ∼ 50 km s−1 destroy the molecules which
enter them. Shocks with velocities above ∼ 100 km s−1 will fully ionise the
gas passing through them. At first sight, therefore, such shocks represent
unpromising sites for interstellar chemistry. However, this turns out not to be
the case. On the contrary, as shown by Neufeld & Dalgarno (1989), the warm
(several thousand degrees K), dense and compressed (n (H2) ∼ 104−6 cm−3)
layer of gas that follows the recombination zone in such fast radiative shocks
creates ideal conditions to form molecules, since the temperature of the gas is
high enough to overcome the activation energies of a number of reactions. In
addition, this region is pervaded by a far-UV field generated by the cooling
plasma, so many of the chemical reactions seen in photodissociation regions
are operative. In particular, rotationally and vibrationally excited molecular
hydrogen plays an important role in the chemistry.

Unlike the case of photodissociation regions, in which molecules formed
in dense and cool regions find themselves in progressively hotter regions and
stronger far-UV radiation fields, the molecules in fast radiative shocks have
to be formed in the flow, and move progressively to lower temperature regions
with weaker far-UV fields. Since molecular hydrogen is the key to the sub-
sequent chemistry, its formation in the warm (8000-1000K) gas within and
following the recombination zone of the shock is essential, since gas phase
reactions would proceed to slowly at lower temperature. Under these con-
ditions, molecular hydrogen formation is moderated by the H− ion formed
through the reaction:

H + e→ H− + hν (13.42)

which then permits the formation of molecular hydrogen directly through the
associative detachment reaction:

H− + H → H2 + e (13.43)

the efficiency of this transformation is limited (Dalgarno & McCray, 1972)
by the neutralisation of the H− ion:

H− + H+ → 2H (13.44)

Molecular hydrogen is also destroyed at high temperatures by collisional dis-
sociation,

H2 + H → 3H (13.45)

and, in its v = 2 state, by the (strongly exothermic) dissociative charge
transfer reaction with helium:

H2 + He → H + H+ + He (13.46)

Molecular hydrogen may also be transformed to the H+
2 ion through the

charge exchange reaction
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H2 + H+ → H+
2 + H (13.47)

which then opens the way to the formation of the H+
3 ion through the reaction

given in equation (13.22). Although this may then go on to form the OH+ or
CH+ ion, the appreciable ionisation fraction in the warm gas means that the
hydrogen abstraction reactions such as those given in equations (13.34) and
(13.35) will form these ions more rapidly

O+ + H∗
2 → OH+ + H

C+ + H∗
2 → CH+ + H (13.48)

in this respect, and in the activation of the OHn and CHn chains, with the
electron-induced dissociative recombinations (13.36) and (13.37), the carbon
and oxygen chemistry of fast shocks is very similar to that of photodissocia-
tion regions.

In, and immediately behind, the recombination region of the shock, atomic
cooling dominates (Dalgarno & McCray, 1972), and the temperature falls
slowly until at about 4000K. At this point, enough molecular hydrogen has
been formed to allow the fractional OH abundance build up to ∼ 10−6

through the first of the reactions of equation (13.35). Rotational excitation
of OH is then the dominant coolant, and the temperature falls rapidly to
about 1000K. What happens next depends upon whether the grains have, or
have not been, destroyed in the shock; see Sections (12.5.1) and (12.5.2).
If the shock is faster than about 400 km s−1, then sputtering will have de-
stroyed the grains, the far-UV radiation field will be strong, and the gas
will continue to cool with a low fractional abundance of molecular hydrogen.
At lower velocities, however, the grains will have been shattered and will
present a large surface area to encourage the surface formation of molecular
hydrogen. This generates heat of formation, which counters the cooling due
to OH rotational excitation to form a plateau at about 400K in the temper-
ature structure, where the formation of the H2O molecule proceeds rapidly
through the hydrogen abstraction reaction (13.35) :

H∗
2 + OH → H2O + H

This region of the shock provides high column densities with a low velocity
gradient (Elitzur, Hollenbach & McKee, 1989); ideal conditions for pumping
the H2O masers seen around young stars; see Section (4.3.2).

Shocks with grain-surface moderated chemistry are capable of building
up a richer and more complex set of molecular species, especially complex
hydrocarbons such as C2H2, C2H+

3 and C3H2.
The shock chemistry in C-shocks, see Section (8.4) is somewhat different.

Here the degree of ionisation is initially low and in the early part of the shock,
nearly all of the oxygen which is not locked into CO is transformed into water
by the hydrogen abstraction reactions (13.35). However, as the gas cools, this
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water is gradually transformed into OH in reactions with ions, which is in
turn dissociated by further reactions with ions.

Silicon is released into the gas phase in such C-shocks through non-
thermal sputtering of grains (Pineau de Forets & Flower, 1997), and is rapidly
oxidised and transformed into SiO through the neutral-neutral reactions in
the warm post-shock gas:

Si + O2 → SiO + O
Si + OH → SiO + H (13.49)

This explains the high column density of this species 1013-1014 cm−2 which
is seen in such shocked molecular outflows (Zhang et al. 1995). The SiO
subsequently reacts with OH to form SiO2 :

SiO + OH → SiO2 + H (13.50)

which is eventually readsorbed onto the grains in the cool post-shock region.
The column density of SiO in fast J-shocks remains much lower than in C-

shocks, because silicon and carbon are largely photoionised in the molecular
formation region. As a result of this, much of the silicon forms instead the
SiO+ ion, which is rapidly destroyed by dissociative recombination, and what
SiO is formed is destroyed by C+ to form the more strongly bound CO
molecule:

SiO + C+ → CO + Si+ (13.51)

13.2.4 Hot Molecular Cores

Hot molecular cores (HMCs) are the cores of molecular clouds caught just
before, or in the early stages of the collapse of the cloud to form a new,
frequently massive, star. The most famous examples are the Orion KL region
the W51 region and the source Sgr B2(N) in the Galactic Centre region.
The observations, physics and astrochemistry have recently been reviewed
by Millar (1997) and by Ohishi (1997).

HMCs are seen to be associated with regions of massive star formation,
and are very small (<∼ 0.1 pc), dense (106 <∼ n(H2) <∼ 108 cm−3) and optically-
thick (AV ∼ 103 mag), corresponding to hydrogen column densities in ex-
cess of 1023 cm−2. Their molecular gas is quite warm; 100 - 300K, and they
are heated either from the conversion of gravitational potential energy to
heat energy, or from shocks. In such dense regions cosmic ray ionisation be-
comes ineffective as either an ionisation or heating process, and the complex
molecules seen in the gas phase have been liberated from the grain mantles by
thermal processes in a dense, essentially un-ionised gas. Molecules observed in
HMC regions include long-chain species such as HC7 N and saturated organic
molecules such as H2O NH3, and (dust) “grain” alcohols such as CH3OH and
CH3CH2OH.
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In the temperature regime appropriate to the hot molecular cores, chem-
ical fractionation effects (see Section (13.2.2)) should be small (Millar,
Bennett & Herbst, 1989). However, Gensheimer et al. (1996) observe the
HDO/H2O ratio to be enhanced in these regions by factors of ten or more
over the cosmic ratio of D/H of 1.6×10−5 ; see Section (4.1.2). This is direct
observational evidence that the HDO and H2O were originally formed as ices
on cold grain surfaces in the dense pre-collapse cloud (T ∼ 10 K). Other ices
formed at this time included C2H2, CH4 and NH3.

After evaporation from the grain surfaces these stable molecules can sur-
vive unchanged for at least 104 yr. Eventually some of these species react
in neutral-neutral reactions to form (possibly even more complex) daughter
products. The abundance of these increases with time according to the chemi-
cal models described by Millar (1997). For example, the vibrationally-excited
HC3N seen in many sources is formed via the reaction:

C2H2 + CN → HC3N + H

Notes on Chapter 13

• The book by Emma L.O. Bakes, The Astrochemical Evolution of the In-
terstellar Medium, (Twin Press:Vledder), ISBN 90-5598-002-1 (hardback)
or ISBN 90-5598-003-X (paper) provides an excellent introduction to the
field.

• For recent reviews in astrochemistry, see: Dalgarno, A. 1987, in NATO
ASI Series, Physical Processes in Interstellar Clouds, eds. G.E. Morfill &
M. Scholer, (Reidel:Dordrecht), ISBN 90-277-2563-2, p219 and also Gen-
zel, R. 1992 in The Galactic Interstellar Medium the lecture notes of
the 21st. Saas-Fee Advanced Course, eds. D. Pfenniger & P. Bartholdi,
(Springer:Berlin), ISBN 0-3711-55805-5.

• Th key source of rate coefficient data for astrochemical reactions is that
maintained by UMIST (Millar, T.J., Farquhar, P.R.A. & Willacy, K.
1997, A&ASuppl.Ser., 121, 139). This may be accessed electronically via:
http://saturn.phy.umist.ac.uk/. Molecular excitation rates for some
intersting species are to be found at http://www.giss.nasa.gov/data/mcrates/.

• Photodissociation regions were recently reviewed by Hollenbach, D.J. &
Tielens, A.G.G.M. 1997, Ann. Rev. A&A, 35, 179.

• The observations physics and astrochemistry of hot molecular cores has
been reviewed by Ohishi, M and by Millar, T.J. 1997, in IAU Symp. #178,
Molecules in Astrophysics: Probes & Processes, ed. E.F. van Dishoeck,
(Kluwer:Dordrecht), ISBN 0-7923-4538-8 (hardback) or ISBN 0-7923-4538-
X (paper).

Exercises



     

14. Thermal Phases of Diffuse Matter

“Double, double toil and trouble,
Fire burn and cauldron bubble”
— Shakespeare (Macbeth, Act 4).

The interstellar medium is a restless place. Heated by supernova shocks
and violent stellar winds; cooling and collapsing into dense molecular clouds
which form new stars, new winds, and new supernovae in their turn, it is
roiled, churned, and compressed to produce a ramified skein of cooler atomic
or molecular gas embedded in hotter ionised phases. The spatial structure
these various thermal phases is driven by the interstellar gas seeking to attain
a pressure balance and a dynamic balance between heating and cooling. Many
of these phases are in a stochastic pressure balance with one another.

For our Galaxy the average thermal pressure in the local disk is P/k =
nT ∼ 2000 – 6000 cm−3K (Jenkins, Jura & Loewenstein, 1983). However, the
pressure due to the magnetic field is probably of the same order of magnitude,
since turbulence will tend to produce equipartition between the magnetic
and thermal pressures. The interstellar gas may find itself in any one of five
thermal phases. From coolest to hottest these are:

• The Molecular Medium (MM). The temperature of this phase is typically
only about 20K. Although this phase occupies only a very small fraction
of the total volume, of order 1%, it nevertheless accounts for a substantial
fraction (∼ 30 - 60%) of the total mass contained in the Galactic ISM,
since the density of molecular clouds exceeds 103 cm−3. As we have seen
in the previous chapter, AV must exceed about 10 in the vicinity of hot
young stars to provide full self-shielding against photodissociation. Many
of these molecular clouds are bound by their self-gravity, and their dense
cores may be in gravitational collapse, forming new generations of stars.

• The Cold Neutral Medium (CNM). This material is distributed in dense
sheets or filaments occupying 1-4% of the total volume, and is most readily
studied by absorption line observations. This material, with a temperature
of about 100K is not gravitationally bound, but is in approximate pressure
balance with the other components of the ISM. The density of the CNM
clouds is therefore 20 - 60 cm−3.

• The Warm Neutral Medium (WNM). This phase is traced by H i 21cm
emission, and occupies a substantial fraction of the total volume (∼ 30 -
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60%) of the gas in the disk of our own, and of other galaxies. It is located
mainly in photodissociation regions. In regions distant from young stars,
it has T ∼ 6000K and n ∼ 0.3 cm−3, but in photodissociation regions
surrounding H ii regions the density may be much higher. The heating re-
quirements of this phase are considerable, and it provides a major radiative
energy sink for the ISM.

• The Warm Ionised Medium (WIM). This phase is most clearly associated
with H ii regions where it is photoionised by hot young stars. These regions
occupy only about 2-4% of the total volume, they have a density greater
than 1.0 cm−3, and a temperature is 6000 - 12000K, depending on the
gas-phase abundances and on the temperatures of the exciting stars. A
WIM has also been detected in regions distant from star-forming regions
in both our own Galaxy (Reynolds, 1980, 84) and in external galaxies.
This material, sometimes called the Reynolds Layer in our galaxy, has
T ∼ 6000K and n ∼ 0.3 cm−3, and occupies at least 15% of the total
volume. Like the WNM, the heating requirements for this material are
considerable, but the nature of the heating source remains uncertain. Near
the midplane of disk galaxies, photoionisation seems to dominate, but shock
heating or suprathermal particle heating probably become more important
as we move out of the galactic plane.

• The Hot Ionised Medium (HIM). This phase is heated by strong shocks
resulting from supernova explosions or violent stellar winds, and has T >
106K and n < 10−2 cm−3. As a consequence of its long cooling time,
it can come to occupy a large fraction of the ISM. Near the midplane
of galaxies, it has a relatively small filling factor, and is largely confined
within giant shell H ii regions. Here, it becomes detectable in its diffuse
soft X-ray emission, thanks to its relatively high pressure in these regions.
Above and below the galactic plane, its buoyancy encourages it to bubble
up or flow out through galactic chimneys in the denser phase of the ISM,
so that it comes to occupy a much larger fraction of the available volume.
Here it may be additionally heated by Type I supernova explosions, which
originate in an old population of stars with a large scale height. In the halo,
the HIM may be detected in absorption against distant stars or galaxies
in the highly-ionised species such as Nv or O iii in regions, provided that
it can cool. Eventually this phase merges into the hot halo, with a scale
height of 2 - 5 kpc in our galaxy; see Section (7.6.3).

In this chapter, we will investigate how the various heating and cooling
processes set up and maintain the phase structure of the interstellar gas in
galaxies.
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14.1 Phase Stability

Within any unit mass of diffuse matter, there will be both a flux of heat in
from external sources such as stars, shocks and cosmic rays while at the same
time, this same parcel of gas will be losing energy by the various radiative
processes described in this book. Both the heat input and the heat output, as
we have seen, depends upon the (hydrogen) number density, the temperature,
and the state of ionisation, xi. At densities where collisional de-excitation
can be neglected, the loss rate varies primarily on the square of the density,
so that the heat loss per unit volume can be written n2Λ (T, xi). However,
most heating processes (photoionisation, cosmic rays etc.) depend on the first
power of the density, so that the heat gain can be written nΓ (T, xi). Thus,
the condition for thermal balance is that the net cooling rate

.

Q is identically
equal to zero:

.

Q= n2Λ− nΓ ≡ 0 (14.1)

If we consider the P, V diagram for a unit mass of material, then in
general, the thermal equilibria represented by this equation will form a line
separating regions in which nΛ > Γ from those in which nΛ < Γ .

Not all these equilibria will be thermally stable, see Section (7.5.1). In
particular, the gas will be unstable to isobaric (constant pressure) perturba-
tions if the Field (1965) criterion, equation (7.42 ), is not satisfied, so that:[

∂
.

Q

∂T

]
P

< 0 (14.2)

while the gas will be thermally unstable to isochoric (constant density) per-
turbations if the Parker (1963) criterion equation (7.41), is not satisfied, so
that: [

∂
.

Q

∂T

]
V

< 0 (14.3)

The various classes of thermal equilibria which may exist in interstellar
gas are shown on the P, V plane in Figure (14.01). Here the line of thermal
balance for the plasma is shown in bold. Below this curve and to the left, the
cooling rate is less than the heating rate, and above the line and to the right
cooling dominates. A number of relevant isotherms are also shown. In panel
(a), the gas is everywhere thermally stable. In the region between points A
and B, a cold phase with temperature T1 exists. Below a minimum pressure,
Pmin the gas becomes warmer as the pressure or density decreases.

In panel (b), there are two thermally stable phases with temperature T1 in
the cold phase and T2 in the warm. These two phases can co-exist with each
other in the pressure range between Pmin and Pmax. In the region between
the points C and D, the gas is thermally unstable to isobaric perturbations,
since equation (14.2) is satisfied for such perturbations. How this leads to
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Fig. 14.1. The different types of thermal equilibria which may exist in the inter-
stellar medium. In (a) there is one stable phase, which has constant temperature
for P > Pmin. In (b), there are two stable phases separated by a region of instabil-
ity. In (c) there are also two stable phases, but the region in between can be both
isobarically and isochorically unstable. In (d) we have a case like (b), except that
there is a further unstable phase at low density. For this phase, when T > Tmax,
the temperature above which the cooling timescale is long in comparison to the
evolution timescale, the hot phase can exist in its own right.

thermal instability is very easy to understand. Any small perturbation at
constant pressure towards the left will put the gas in a region where the
cooling exceeds the heating, and so consequently the gas will continue to
cool until finally it comes into equilibrium on the curve A-B. On the other
hand, if perturbed towards the right, it will fall into a region where heating
exceeds cooling, and so will continue to warm up and move towards the right
until it comes into equilibrium on the segment E-F.

In panel (c), there are also two thermally stable phases with temperature
T1 in the cold phase and T2 in the warm. These two phases can co-exist
with each other in the pressure range between Pmin and Pmax. However, in
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this case the gas is not only thermally unstable to isobaric perturbations in
the region between C and F, but, since equation (14.3) is satisfied, it is also
unstable to isochoric perturbations (which are vertical perturbations on this
diagram) between the points marked D and E.

Finally, in panel (d) we have two stable phases in the region A-B and
E-F, and two regions of instability to isobaric perturbations in segments C-
D and F-G-E. In the segment F-G-E the density progressively decreases as
the temperature increases. In this case the cooling timescale becomes long
at high temperature. Above a certain temperature, say, Tmax, the cooling
timescale becomes longer than any timescale of interest. This may be either
the dynamical evolution timescale, the re-heating timescale, or even the age of
the universe. Thus, the region between G and H, although formally unstable,
is sufficiently long-lived that it could be regarded as defining a third hot
phase. If this phase can exist in the pressure regime between Pmin and Pmax

then it is possible to have a three-phase equilibrium consisting of cold, warm,
and hot phases.

Under the appropriate conditions, all of these types of phase diagram may
be found in real interstellar plasmas. The first two-phase equilibrium to be
discussed was by Field, Goldsmith & Habing (1969) for neutral gas heated
by cosmic rays. Since that time many other examples have been discussed in
the literature, and these are summarised in the following sections.

14.2 Thermal Phases of Galactic Interstellar Gas

14.2.1 Giant Molecular Clouds

The molecular medium of the galaxy is largely concentrated into the giant
molecular clouds (GMCs), studied principally through their CO emission. In
our solar neighbourhood these typically have masses ∼105M� , are about 45
pc in diameter, and have a surface density in molecular hydrogen of about
1022 cm−2. These entities are self-gravitating, so that they are coupled to
the stochastic pressure in the interstellar medium only at their surfaces, as a
boundary condition. Although individual molecular cloud masses may range
from ∼104M� up to about ∼ 2 × 106M� (Solomon et al. 1987) they have
remarkable constant surface densities. In the Galactic disk, the molecular
clouds have a relatively small scale thickness, about 120 pc (full width half
maximum; Stark, 1984; Bronfman et al. 1988), and they are the birthplace
of both the massive and the low-mass stars. Indeed, star formation is found
to be so ubiquitous within them, that star-formation could be taken as one
of the defining characteristics of a GMC (Dame et al. 1986; Maddelena &
Thaddeus, 1986).

Molecular clouds contain very large point-to-point density contrasts and
appreciable internal turbulence. The observed relationship between the one
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dimensional velocity width, ∆V , (FWHM) and the cloud radius, R (Dame
et al. 1986; Solomon et al. 1987; Scoville et al. 1987) can be represented by:[

∆V

kms−1

]
= 0.7 ± 0.4

[
R

pc

]0.5

(14.4)

It is generally accepted that the GMCs are self-gravitating entities, and that
it is this turbulence that is preventing them from undergoing rapid gravi-
tational collapse. The origin of the turbulence in GMCs is probably to be
found in the outflows from young, low mass stars which give rise to the bipo-
lar molecular flows and to the Herbig-Haro objects. These outflows produce
magnetic-field limited compression and vorticity which is dissipated in a self-
similar way. In the Orion south molecular cloud (Fukui et al. 1986), and the
Mon OB1 GMC (Lada, 1988) the turbulent energy input supplied by the CO
outflows is sufficient to balance the cloud provided that the turbulent dissi-
pation timescale is an order of magnitude longer than the free-fall timescale.
These processes are reviewed by Falgarone (1995). If the clouds are in virial
equilibrium (where the turbulence supports the cloud against its self-gravity),
then:

∆V 2 = α
GM

R
(14.5)

where M is the mass of the GMC, and α is a constant depending upon the
internal mass distribution of the cloud. Equation (14.4) then implies that
M ∝ R2, and that the mean surface density of all the GMCs are similar.
This must be telling us something about how the GMCs regulate themselves.
Chièze (1987) argues that this scaling relation is exactly what would be ex-
pected if GMCs are on the edge of gravitational instability in a constant
pressure environment, with sub-condensations forming a virialised N-body
system. In this case,[

M

M�

]
∼ 160

[
P/k

5000cm−3K

]1/2 [
R

pc

]2

(14.6)

where P is the pressure external to the cloud. An alternative viewpoint has
been advocated by McKee (1989), who notes that the mean surface density
is just what is needed to fully absorb the UV stellar radiation field, and
who therefore suggests that the star formation in GMCs is essentially photo-
regulated.

The evidence for large density contrasts comes from multiline CO studies,
observations of the 13CO (1-0) line, which tends to be optically thin, and
analysis of IRAS observations. These suggest (i.e. Falgarone & Puget, 1986;
Devereux et al. 1994) that of order, or even more than, 90% of the mass of the
GMCs resides in the clumps, and that these clumps have H2 densities ∼ 103

cm−3; compared with the inter-clump density of only ∼ 3 − 10 cm−3. Such
a large density contrast suggests that individual GMCs may be themselves
regarded as constituting a two-phase medium (McKee, 1995; see notes on
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this chapter). Here, the inter-clump medium is composed mainly of warm
atomic gas heated by the stellar radiation field. The clumps are moving in this
medium, and are gravitationally bound together as an ensemble (although
the self-gravity of each clump may not be very important in setting the
physical conditions within it). Certainly in this case the thermal pressure
in the interclump medium must increase towards the centre to provide the
required hydrostatic support against gravity. In a cloud with a density profile
ρ ∝ r−1 the relationship between the central pressure, Pc, and the pressure
at the surface, Po; the local thermal pressure of the substrate interstellar
medium is (McKee, 1989):

Pc
Po

= exp
[
φ

c21

]
(14.7)

where φ is the depth of the central gravitational potential well, and c1 is
the isothermal sound speed in the interclump medium. For most GMCs,
the pressure at the cloud centre is at most a factor two higher than at the
surface. The pressure in the clumps would then match the local pressure in
the interclump medium, provided that the clumps are not dominated by their
own self-gravity, which implies a clump density of ∼ 103 cm−3 for a clump
temperature of 10K; figures which are entirely compatible with observation.

14.2.2 The Atomic ISM

Advanced Section
The atomic phases of the interstellar medium of our Galaxy comprise, in

the terminology originated by McKee and Ostriker (1977) the cold neutral
medium (CNM) and the warm neutral medium (WNM). Much of the mass
resides in the CNM, which has a density of ∼ 20 cm−3, a spin temperature
of ∼ 100 K, and is seen in H i absorption. This phase has only a small filling
factor. The WNM is observed in H i emission and has a density of ∼ 0.3−1.0
cm−3, a spin temperature of ∼ 6000 K and fills a substantial fraction of the
available volume. These two phases exist in stochastic pressure balance with
one another, which, as we have seen from Section (14.1) is a necessary con-
dition for the existence of a two-phase medium. A theoretical understanding
of these phases was given by Field, Goldsmith & Habing (1969), following
on the classical work of Field (1965) on thermal instability. According to
them, both phases are primarily heated by cosmic rays, a phase diagram
similar to Figure (14.1.b) applies, and the pressure regime lies in the range
Pmin > P > Pmax so that a two-phase equilibrium is possible. In practice, the
ionisation rate they assumed, ζ = 4× 10−16 s−1, is considerably higher than
what is acceptable today, so the source of the heating is probably not soft X-
rays. Nonetheless, regardless of the source of the heat input, the conclusions
they reached about the phase structure are secure.

The energy requirements for heating the atomic ISM are considerable.
The primary coolant of the CNM is the [C ii] 2P0

3/2− 2P0
1/2 transition at
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157.74µm. Wright et al. (1991) estimate that the luminosity of the galaxy in
this line alone is 2 × 1041 erg s−1, or about 108L�. This is equal to about
10% of the kinetic energy deposited into the interstellar medium by all the
supernova explosions in the galaxy. Only three energy sources can provide
sufficient energy to heat the CNM and WNM; supernova explosions, starlight
or viscous tapping of the rotational energy of the galactic interstellar gas.

Supernova explosions cannot directly heat these phases, since much of
the energy deposited by a supernova into its local ISM is frittered away in
adiabatic losses and radiative processes. However, the energy given out in the
form of soft X-rays and cosmic rays is sufficiently penetrating to be available
to heat the neutral phases of the ISM. The soft X-rays have an energy density
of only 10−5 eV cm−3, which is totally insufficient to provide the required
heating. They can therefore be safely ignored in their effect on the phase
structure, but they are important in maintaining the ionisation, since each
X-ray absorbed may produce many secondary ionisations; see Section (5.3.2).

Cosmic rays are produced by Fermi acceleration is supernova shocks, and
may carry away a substantial fraction of the shock energy. In the interstellar
medium, these have a high energy density, about 1.0 eV cm−3. However, much
of this energy density is in the form of energetic cosmic rays which are very
penetrating, and which are therefore ineffective in heating the neutral phase.
On the other hand the low energy cosmic rays are effective in heating, but
have a short stopping length, and their diffusion is much more dependent
on the magnetic field configuration. Integrating over the energy spectrum,
cosmic rays produce an ionisation rate of ζ ∼ 2 × 10−17 s−1 (van Dishoeck
& Black, 1986), which is far less than was assumed by Field, Goldsmith &
Habing (1969). Such an ionisation rate is insufficient to account for the energy
budget of the neutral phases.

The interstellar turbulence and the magnetic field, which is ultimately
derived from this turbulence, can provide sufficient heating, in principle. The
turbulent velocity dispersion of the H i layer in the galaxy (about 12 km s−1)
is equivalent to an energy density of about 4 eV cm−3, and the magnetic
energy density is about 1.0 eV cm−3, which is about equal to the thermal
energy density in the WNM. If the turbulence generated by stellar winds and
supernova explosions can be effectively coupled to the WNM, then here we
have an adequate heating source. However, this will only work if the filling
factor of the hot medium is large as advocated in the McKee & Ostriker (1977)
paper. Tapping the interstellar magnetic field energy is more difficult. Two
alternatives have been suggested, magnetic reconnection (Raymond 1992),
and hydromagnetic wave heating (Ferriere, Zweibel & Shull, 1988).

By far the most promising heat source is starlight. The local energy den-
sity is also about 1.0 eV cm−3, and a considerable fraction of the energy
in starlight is absorbed by dust located in the atomic phase. In the solar
neighbourhood Mathis, Mezger & Panagia (1983) estimate that the stellar
radiation field carries an energy flux of 2.2×10−2 erg cm−2 s−1 or 54L� pc−2.
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The proportion of this that is absorbed, mostly in the 912 - 3600Å waveband,
directly heats the dust which re-emits in the IR. From IRAS data, Boulanger
& Perault (1988) estimate that dust in atomic gas re-emits 9L� pc−2, so that
at least 17% of the stellar radiation field is being absorbed in this component.
The main heating source for the atomic gas is by photoelectric emission from
small grains; see Section (12.4), since the large grains are relatively ineffective
in this regard (Wolfire et al. 1995).

(Ralph: INSERT your discussion of the phase equilibrium (your poster
paper with Mike Shull) here!)

14.2.3 The Warm Ionised Phases

The ionised gas in disk galaxies exists in two locations, within obvious H ii
regions and in a more diffuse and extended low ionisation layer, which nev-
ertheless shows a rough spatial correlation with the H ii regions, and which
provides a significant fraction, 20-40% of the total galactic Hα luminosity.

Clearly the H ii regions themselves must be photoionised by their hot
central star. For these, the balance of heating and cooling is as shown in
Figure (9.5), from which it is clear that only a single equilibrium temperature
is possible. H ii regions cannot therefore display a multi-phase equilibrium,
although for these more complex acoustic or thermoreactive instabilities may
exist (see Ferrara & Corbelli, 1995).

The nature of the more extensive WIM remains more controversial. The
energy it requires to maintain it is about equal to all of the mechanical energy
put into the ISM by supernovae or stellar winds, about a third of the ionising
photon energy put out by young OB stars, or a few percent of the energy
carried by starlight. The size of the measured [N ii]/Hα ratio measured at
high z-heights in external edge-on galaxies is difficult to account for with
normal photoionisation models. A mechanical source of energy or energy in
some other form is probably needed to account for the excitation of this
material. For the rest, photoionisation by OB stars is the most likely energy
source.

Recent observations of the DIM in both normal and starburst galaxies
by Wang et al. (1998) have revealed a striking correlation between the exci-
tation, as measured by the [S ii]λλ6717+6731Å/Hα ratio and the local Hα
surface brightness relative to the mean value in the galaxy, ΣHα/ 〈ΣHα〉.
They show that this relation is a natural outcome of a model in which the
DIM is photoionised gas that has a mean pressure P that is proportional to
the mean star formation per unit area, dΣ∗/dt. Such a scaling may either
arise either because the massive stars pressurise the ISM directly, or because
feedback processes in the galactic disk lead to the star formation rate being
determined, or limited by the mean gas pressure. This point will be discussed
in more detail below.

A true multi-phase equilibrium can exist in the dense gas found in the
vicinity of energetic active galactic nuclei where Compton heating is impor-
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tant. Here the radiation pressure carried by the ionising radiation field at
radius r from the central source, Prad = L/4πr2c can become as large as,
or even larger than, the gas pressure. If F (r) is the local flux in the radia-
tion field (erg cm−2 s−1), then it is convenient to define the local ionisation
parameter in terms of this pressure ratio; see equation (9.8):

Ξ =
(
Prad
Pgas

)
=
F (r)
cknT

=
L

4πr2cknT
(14.8)

where n is the total particle (electron + ion) density.
The energy balance can be split up into terms of the energy loss due

to collisional processes, the energy gain from photoionisation heating, the
energy loss due to the inverse Compton process, and the energy gain due to
Compton heating, respectively:

.
qnet= Λ− Γ

n
+ ΛC − ΓC

n
(14.9)

Considering only the Compton heating and cooling, the net cooling rate in
the nonrelativistic scattering case is:

.
qC= ΛC − ΓC

n
=
σTF (r)ne
m2
ec

2n2
[4kT − 〈ε〉] (14.10)

where σT is the Thompson scattering cross section, and the mean photon
energy 〈ε〉 is:

〈ε〉 =
1

F (r)

∫
F (r, E)EdE (14.11)

When Ξ is very high, the Compton terms dominate the thermal balance,
and the plasma comes into equilibrium at the Compton temperature, TC ;

TC =
〈ε〉
4k

(14.12)

The exact value of the Compton temperature depends on the shape and
maximum energy of the ionising spectrum, but is somewhere between 3×106

K and 108 K.
At low ionisation parameter, Ξ, the plasma achieves a photoionisation

balance such as discussed in Chapter (9), with the plasma at a temperature
TP at which the photoionisation heating and the radiative cooling balance:

Λ (TP ) =
Γ (TP )
n

(14.13)

Now, let us see how a parcel of gas in a fixed radiation field S (r) can
achieve a multi-phase equilibrium under these conditions. At very high pres-
sure, the ionisation parameter Ξ may be so low that the gas is mostly atomic.
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Nonetheless, the X-ray heating may be great enough to maintain the temper-
ature near 104 K. As the pressure decreases, the gas becomes fully ionised. In
the approximate range −4 < logΞ < 1, the ionisation state increases as the
ionisation parameter increases. Since the heat input through photoionisations
increases, the temperature also increases so that the cooling rate can match
the heating rate. This state of affairs cannot continue indifinately, since even-
tually the cooling rate will decrease as the main coolants are depleted from
the plasma; c.f. Figure (7.1). Thus when the temperature is of order 105 K, at
a pressure Pmin, and ionisation parameter Ξmax, heating overwhelms cooling,
a stable equilibrium is no longer possible, and the temperature runs away up
to the Compton temperature.

At low pressure, the ionisation parameter is very high, so that the gas
is at its Compton temperature. As the pressure increases, free-free (thermal
Bremsstrahlung) cooling becomes significant, and the equilibrium tempera-
ture decreases somewhat. Eventually, at temperatures of order 107 K, X-ray
line and continuum cooling kick in. Eventually, the increase in cooling rate
at the temperature decreases is sufficient to render the plasma unstable to
isobaric perturbations, and, provided that the cooling timescale is shorter
than the dynamical evolution timescale, the gas cools catastrophically back
down to the photoionisation equilibrium temperature, at a pressure Pmax,
and ionisation parameter Ξmin, of order 0 − 10.

It is clear therefore, that a phase diagram similar to Figure (14.1b) or
(14.1c) applies, and that between Ξmax and Ξmin, a stable two-phase medium
can exist, with clouds in photoionisation equilibrium between 104 and 105 K,
embedded in an intercloud medium at its Compton temperature at 107 to
108 K. A discussion of the trajectories of such a plasma on the P − V plane
is given by Begelman & McKee (1990). What is not yet certain however,
is whether these physical conditions can be actually realised by gas in the
vicinity of AGN.

14.2.4 The Hot Ionised Component

Based solely on cooling arguments, the hot phase of the interstellar medium
cannot be thermally stable. It derives its existence from the fact that, because
its density is so low, its cooling timescale is longer than the timescale over
which it is re-heated by supernova shocks. The sun sits in such a hot phase,
in a bubble of plasma with a temperature of order 106 K, and a hydrogen
density ∼ 5× 10−3 cm−3. According to the McKee & Ostriker (1977) model,
supernova remnants preferentially evolve in this low density phase because
there, the low density gas leads to a high shock velocity. The probability per
unit time of a shock passing through a given parcel of gas, P (t) is:

P (t) =
1

τSNR
exp

[
− t

τSNR

]
(14.14)
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where τSNR is the mean interval between supernova remnant shocks. This is
about 5 × 105 yr, locally. The hot medium sweeps over clouds in the cooler
phases, shredding them, and heating the remnants by thermal conduction.
To a first approximation, therefore, in the evaporative limit the equilibrium
temperature of the hot phase is determined by the energy balance between
the input shock energy and the conductive losses. Cloud shredding, ablation
and thermal conduction provide the means of transporting matter from to
cooler to the hotter phase, while radiative cooling in locally overdense regions
allows mass transport in the opposite sense.

Thermal conduction serves to stabilise the hot medium against thermal
instability. This can easily be seen by considering the evaporative cooling
function, Λev, expressed in terms of the conductivity, κ, and the cloud area
per unit volume AC :

Λev (T ) =
8π
5
AC

(
κT

n2

)
(14.15)

Because the conductivity is such a steeply rising function of temperature;
T 5/2, see equation (7.21), the effective cooling rate provided by the thermal
conduction thermally stabilises the plasma.

Because the sound speed of the hot medium is so great (> 100 km s−1), the
hot medium communicates the background pressure to the other phases of the
galactic medium. This communication may occur via the halo as local regions
of overpressure are vented through galactic chimneys into the extended hot
halo of the galaxy.

The key parameter is the so-called porosity, which is the filling factor of
this medium. If this is much less than unity, the regions of hot plama remain
mostly isolated from one another, like the holes in a Swiss cheese. However,
when the filling factor exceeds about 0.5, the hot bubbles become connected,
and the cooler phases are compressed into a ramified network of blobs and
filaments. This appears the case which most closely corresponds to what we
see in our solar neighbourhood, or in the Magellanic Clouds. Finally, as the
filling factor of the hot phase approaches unity, the cooler phases are confined
to a set of isolated clouds. This is the situation which most likely applies in
our hot galactic halo.

14.3 Feedback & Mass Exchange

14.3.1 Shells, Supershells & Interstellar Froth

In earlier sections, we have considered the evolution of bubbles of hot plasma
formed in the interstellar medium by supernova explosions or mass-loss from
massive stars. In regions of OB associations, these bubbles collide with one
another, run together and merge to form larger structures. Indeed, observa-
tions in the EUV and absorption line observations have revealed that our
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Sun itself is sitting in one such bubble, the Local Hot Bubble (LHB) a cavity
with a redius of order 100pc, filled with hot tenuous plasma at a temperature
of order 106 K, and a hydrogen density ∼ 5 × 10−3 cm−3. Egger (1995) fur-
ther suggests that the so-called North Polar Spur, a looped enhancement of
radio nonthermal and X-rays extending to high galactic latitudes, and which
is part of the Galactic Loop I represents the region of shock collision between
LHB and the bubble blown by the Scorpius-Centaurus OB association.

Here we modify somewhat the nomenclature introduced by Meaburn
(1980). Let us first define H i or H ii giant shells as regions having a radius
less than the scale height of the H i gas, which are therefore confined within
the main H i layer in the LMC. In larger regions than this, the shape of the
bubble will be very strongly modified by the density gradient, being flattened
on the side nearest the galactic plane, and extended out of the plane.

Supergiant shells would then be those regions whose extent above the
plane is so much larger than the H i scale height that the hot gas produced
within the shell has broken out of the plane and is either draining out or has
drained out its hot X-ray emitting gas into the hot halo gas around the LMC.
Such regions form galactic chimneys or worm-holes orientated perpendicular
to the disk plane. When it is drained of the overpressure which is driving
the expansion of the H i shell, it has reached a momentum-conserving phase,
and its expansion velocity in the galactic plane will reduce as more and more
disk gas is swept up into the expanding H i shell. Unless it is powered by
secondary star formation around its periphery, it will lose its identity either
when the expansion velocity falls below the random turbulent velocity of the
disk gas, or else when the differential velocity shear due to rotation becomes
larger than the expansion velocity.

This provides a simple and physically meaningful distinction between the
various shell classes. Let us now attempt to quantify this distinction. For an
isothermal disk, the scale height, z is related to the velocity dispersion at the
mid-plane, v, and the surface density of matter, ΣT :

z =
〈v2〉
πGΣT

(14.16)

In the van der Kruit & Searle (1981a,b; 1982) disk model, the solution
to the Poisson equation gives a vertical density profile ρ(h) of the form
ρ(h) = ρ(0)sech2(h/z). At large height, this distribution is indistinguishable
from an exponential. However, in a real galaxy the matter is not isothermal,
since we have both gaseous and stellar components which, in general, have
quite different velocity dispersions. Since the velocity dispersion of the gas
component, vg, is much smaller than the stellar component, v∗, the scale
height of the gaseous component, zg, is also much less than for the stars, z∗.
In the particular case that the disk matter has an exponential distribution,
and where the gas can be regarded as a sub-population in the same potential,
but with different scale height, then, provided that magnetic pressure sup-
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Table 14.1. Classification of Shell Structures

Central Stars Shell Type dE/dt (erg s-1) E (erg) R (pc)

Individual OB/W-R Bubble/Ring Nebula 1036−37 1050−51 1-30

OB Association Giant Shell 1037−39 1051−53 50-180
Multiple OB Assns. Supergiant Shell > 1038 > 1053 >180

port can be neglected, the mid-plane velocity dispersion of the gas is given
(exactly) by (Dopita and Ryder 1994):

v2g =
2πGΣT z

2
g

(zg + z∗)
(14.17)

For the Galaxy, the scale height of the stars z∗ ∼ 350 pc and the scale-
height of the gas layer, zg ∼ 150 pc), while for the LMC, the the numbers
are not very different; z∗ ∼ 550 pc and zg ∼ 190 pc (Kim et al. 1998b).
We therefore set the division between shells and supershells at a diameter
between 300 and 400 pc. With this definition, the nature of the shells, their
energy requirements, and the appropriate shell sizes are listed in Table (14.1).

The LMC is an ideal system in which to study the collective effects of star
formation and bubble development, since it is seen nearly face-on, and both
the H i and the H ii have been surveyed at comparable (∼ 15 pc) resolution
Kim et al. (1998a, b).

The expansion velocity of the H i shells shows a very clear correlation
with the radius. For the giant shells, the expansion velocity increases from
about 15 km s−1 for the smallest up to about 20-35 km s−1 showing that
these are being accelerated by the energy input from the stars within them.
The trend of velocity with radius is not an evolutionary one, since it is quite
unlike that predicted by the standard Weaver et al. (1977) theory given in
Section (8.3.2). In fact, the relationship arises from the intrinsic differences
in mechanical energy input and ISM density in the giant shells of different
sizes.

On the other hand, the supergiant shells show no trend with radius. The
break in the expansion velocity versus radius relation occurs at boundary
between the two shell classes at D = 380 pc, and is consistent with the
supergiant shells having exceeded their blowout diameter which we had es-
timated on the basis of the scale height of the matter in the disk of the
LMC.

A high proportion of the giant and supergiant H i shells are colliding with
one another. Many of them are interlocking, especially near the 30 Dor com-
plex, where very active star formation has been occurring simultaneously in
many different centres. The fact that the H i velocity structure in both the
LMC and the SMC is dominated by a series of interlocking and interacting
bubbles shows graphically that these are providing a fundamental control of
the phase structure of the interstellar medium in these galaxies. This sup-
ports the model advocated by Oey & Clarke (1997), who assumed that shell
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expansion is initially adiabatic, but stalls when the pressure in the bubble
becomes comparable with the background pressure in the ISM. For a con-
stant birthrate and a mechanical luminosity function φ(L) ∝ L−β , this gives
a predicted size distribution N(R) ∝ R1−2β . The slopes predicted by this
theory, using the observed luminosity distribution of the H ii regions are in
excellent accord with those derived directly from observation for both the
SMC (Staveley-Smith et al. 1997) and the LMC (Kim et al. 1998b).

Where H i shells are associated with H ii regions, the H i structure is sys-
tematically larger than the H ii structure in projection. This is to be expected
since the H ii region is confined in a thin layer between the ionisation front at
the inner boundary of the H i shell and the hot shocked stellar wind material
ejected by the central stars. In addition, we find that compact H ii regions
are preferentially located in, or on the boundaries of, dense H i filaments, as
would be expected since star formation will naturally take place in the dense
regions.

In general, however, there is only a weak correlation between the H i
shells and the ionised gas traced out by the H ii regions and H ii shells. This
is shown graphically in Figure (14.2), where the H i is shown in white tones,
and the H ii as dark tones. Since we believe that massive star formation is
the ultimate causal factor of both the H i shells and supershells, this shows
that either the lifetime of the H i shells is typically longer than the lifetime of
the OB stars which input the energy required to drive the expansion of the
H i shells, or that the pressure falls in the ionised regions sufficiently to lower
the emission measure of the H ii region below the threshold of observability.
This very faint ionised meterial constitutes the WIM in galaxies.

14.3.2 Self-Propagating Star Formation

Advanced Section
In the LMC at least, it is clear that a number of the smaller shells have

been formed on the rims of supergiant shells. Such data provides clear obser-
vational support for the idea of self-propagating star formation, according to
which gravitational instabilities in the swept-up material of the supergiant
shell caused fragmentation and a new round of star formation (Dopita et al.
1985; McCray and Kafatos 1987; Elmegreen 1998; Efremov & Elmegreen,
1998). The best example of such self-propagating star formation in a su-
pergiant shell is the LMC4 / Constellation III complex. This region in the
northern part of the LMC appears as a large loop with associated H ii re-
gions in the upper left hand quadrant of Figure (14.02). It is nearly 1.4 kpc
across and seems to have been initially triggered some ∼ 30 Myr ago. This
age is based on the existence of a central cluster of A-type supergiant stars
(Efremov & Elmegreen, 1998), and this region seems to have passed through
at least two episodes of triggered star-formation up to the present day, which
first led to the formation of a great arc of stars ∼ 10−18 Myr ago, and finally
to the set of H ii regions and H i giant shells and supernova remnants (with
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Fig. 14.2. A comparison of the H i map of the LMC (white tones) with the Hα
image. Note the very bubbly structure in the H i image, and the manner in which
the star forming regions tend to be embedded in dense H i filaments.

ages of ∼ 1 − 10 Myr) which are currently located on the inner side of the
H i supergiant ring.

Although the LMC4 / Constellation III region is the best-known example,
the 30 Dor region, the brightest H ii complex in Figure (14.2), is also a fine
example of the phenomenon. The associated supergiant shell LMC-2, located
just to the east of 30 Dor has been studied by Wang & Helfand (1991) and
Caulet & Newell (1996).

Self-propagating star formation is a phenomenon which extends down to
the scale of giant H ii shells, provided they occur in dense enough regions and
provided that the local star-formation rate has been high enough. Examples
in the LMC include the DEM 34 or N11 region (Walborn & Parker, 1992;
Rosado et al. 1996) and the DEM 192/ N51D region (Oey & Smedley 1998).
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A particularly fine example of a giant shell displaying self-propagating star
formation is provided by the complex N44 (Oey & Massey 1995), recently
studied by Kim, Chu, Staveley-Smith & Smith (1998). This region contains
three OB associations, and a number of single-star H ii regions around the
rim. The central association LH 47 is clearly older, since it contains a number
of red supergiants. There is also a supernova remnant nearby. N44 is filled
with diffuse X-ray emission from hot plasma, which has already blown a pair
of prominent H i shells. Both the H i and the H ii regions are expanding at
velocities between 30 and 60 kms−1.

For most giant shells there is a longstanding problem (Oey & Massey,
1995) that the apparent kinetic energy of the expansion is less than is ex-
pected by application of the Weaver et al. (1977) theory of pressure-driven
bubbles. The probable solution to this is that a great deal of the energy of
the expansion is stored in the motions of the molecular component which we
cannot easily measure.

14.3.3 Self-Regulated Star Formation

In disk galaxies, the most compelling evidence that the star formation rate is
self-regulating is the existence of a connection between the local star forma-
tion rate in the disk, and the local disk properties. This is usually expressed
in terms of a Schmidt (1959) relationship connecting the star formation rate
per unit area of disk, ΣSFR, with the surface density of gas, Σg:

ΣSFR = AΣN
g (14.18)

with the power law index being determined observationally; 0.9 < N < 1.8.
How are the quantities in this equation measured? The star formation

rate has been generally derived from Hα surface photometry. Since this mea-
sures the rate of production of ionising UV photons, it is proportional to the
luminosity of the OB stars (i.e. the number of OB stars times their area),
which is in turn proportional to an product of the birthrate of such stars
multiplied by their lifetime, weighted in the appropriate way across the ini-
tial mass function. A surface brightness of 1.0 L� pc−2 in Hα is equivalent
to a birthrate of massive stars (M > 10M�) of ∼3.0 M� pc−2 Gyr−1, which
corresponds to about 20 M� pc−2 Gyr−1 when the integral is taken over the
whole of the initial mass function (Kennicutt, 1983; Dopita & Ryder 1994).
More recently Kennicutt (1998) has used the far-infrared (FIR) luminosities
of galaxies, to allow the calibration to be extended to dusty starburst systems
in which much of the Hα may be absorbed internally to the galaxy (when
ΣH

>∼ 50M� pc−2). This FIR calibration relies upon the fact that the IR
emission is largely due to the absorption of the UV starlight and the Lyα pho-
tons produced in the ionised gas by the surrounding dusty gas. Since both of
these depend on the luminosity of the OB stars, then like the Hα luminosity,
the FIR luminosity measures the stellar birthrate. A surface luminosity of
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1.0 L� pc−2 in the FIR is equivalent to a total birthrate of ∼5.8 M� pc−2

Gyr−1 for starbursts lasting at least 107 − 108 yr in which the star formation
can be regarded as continuous.

The most direct way of measuring the gas is through the H i. However, as
we have seen, H i is located in the photodissociation regions, while much of
the mass in the ISM may be concentrated in the molecular clouds. The CO
may be used as a tracer of this component, but this depends upon the highly
uncertain X−factor, the conversion ratio between CO surface luminosity and
molecular hydrogen column density, which we have already alluded to more
than once in this volume.

With these caveats, Kennicutt (1998) has determined the best-fit Schmidt
law for both spirals and starburst galaxies. Within the star-forming disk:

[
ΣSFR

M� pc−2 Gyr−1

]
= (0.25 ± 0.7)

[
Σg

M� pc−2

]1.4±0.15

(14.19)

At the edge of the star-forming disk, the star formation rate drops very
rapidly, as the gas in the disk falls below the threshold density Σcrit for the
self-gravitational instablility to operate (Quirk, 1972; Kennicutt, 1989);

Σcrit = α
κ 〈v〉
πG

(14.20)

where κ is the epicylic frequency of the gas in orbit in the galaxy, 〈v〉 is its
mean velocity dispersion, and α is a constant of order unity.

Equation (14.19) implies that, if it were not for the fact that stars recycle
their gas back into the interstellar medium, the disks would be depleted of
their gas in less than a Hubble time, and in timescales as short as 108 years
in the case of the luminous starburst galaxies. Clearly then, the starburst
condition is not one that can last too long.

What is the physical meaning of the Schmidt Law? The simplest theo-
retical scenario is one in which the star formation rate is presumed to scale
with the growth rate of gravitational perturbations within the disk. In this
case, the local star formation rate (per unit volume) will scale as the local
gas density divided by the growth timescale, ρSFR ∝ ρg/ (Gρg)

−1/2 ∝ ρ
3/2
g .

The scaling to surface quantities depends upon the local scale-height of the
gas layer, but it is plausible that this may produce an N in the right range.

An alternative viewpoint is that all the star formation in the disk is self-
propagated, with supernova explosions serving to compress dense clouds and
trigger the formation of new stars in their vicinity. This picture is closer to
the self-regulation model that the observations of the LMC suggest. Sleath
& Alexander (1995) have built a computer simulation in which the molecular
cloud mass distribution is taken to be a power-law, and the probability of
stimulated star formation is assumed to increase proportionally to the mass.
They find that this reproduces a Schmidt Law with index = 1.65.
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The Schmidt law, expressed in the form given above may however not be
unique, or the only physical reasonable form, even if it does serve to provide a
good fit to the observations. For example, a number of authors (Larson, 1988;
Wyse 1986; Silk 1997 and Elmegreen 1997) have suggested that, rather, the
star formation may scale with a power the gas density divided by the local
dynamical (orbital or infall) timescale. For a disk galaxy;

ΣSFR ∝
ΣN
g

τdyn
∝ ΩΣN

g (14.21)

where Ω is the local angular rotation speed. Both from theoretical (Silk 1997
and Elmegreen 1997) arguments and from observational data, N ∼ 1, and
Kennicutt (1998) finds that

ΣSFR = 0.017ΩΣN
g (14.22)

provides just as good a fit to the observational data as the simple Schmidt
Law.

Finally Dopita & Ryder (1994) argue that the rate of star formation
reflects the cloud-cloud collision timescale in the disk, since this determines
the growth timescale of the molecular clouds from which the stars are formed:

ΣSFR ∝ Σg

τcc
(14.23)

In addition we must also take into account the depth of the local disk grav-
itational potential, since this determines the maximum pressure that star
formation processes can maintain in the disk before the hot phase is vented
up galactic chimneys into the halo, and which in turn determines the physical
state of the molecular clouds. This leads to a Schmidt-like law involving both
the gas surface density, and the total matter surface density, ΣT :

ΣSFR = A
ΣTΣ

5/3
g

(z∗ + zg)
1/3
v
2/3
esc

(14.24)

This provides an excellent fit to the observations of normal disk galaxies
in which the surface density is estimated using I-band photometry (Ryder &
Dopita, 1994).

Clearly, all these formulations of the star formation rates in galaxies can-
not be correct. However, they serve to illustrate that there must be a complex
feedback between the rate of star formation and the thermal phases of the
interstellar medium. One controls the other, which in turn controls the one.
We do not yet have a complete understanding of all of the essential physics
of this process, but it is clear that it is there, waiting to be elucidated.



    

318 14. Thermal Phases of Diffuse Matter

14.3.4 Mass Exchange

Mass exchange between the various phases of the interstellar medium and
between the interstellar medium and the stars drives the physical and chem-
ical evolution of galaxies. The schematics of this mass exchange is shown
in Figure (14.03). The sense of the process is that material from the inter-
stellar medium is constantly being incorporated into low mass stars with
M < 0.8 − 0.9M�, which live for longer than a Hubble time, or into stellar
remnants; white dwarf stars (M < 1.4M�), neutron stars (M ∼ 1.4M�) and
black holes (M > 1.4M�). Stellar nucleosynthetic process convert hydrogen
and helium into heavier elements, and stellar mass-loss and supernova explo-
sions return some of these heavier elements to the interstellar medium. The
initial stellar mass determines both the chemical makeup of this material and
the timescale over which it is returned to the diffuse phase.

The massive stars burn their nuclear fuel in a profligate manner, and
therefore live only a very short time. Initially they burn hydrogen in their
core. A useful approximation to the stellar lifetime in the hydrogen-burning
phase is: [

τ

Myr

]
∼ 4.5

[
M

40M�

]−0.97

;M ≤ 40M�[
τ

Myr

]
∼ 4.5

[
M

40M�

]−0.43

;M > 40M� (14.25)

After these stars have exhausted their hydrogen, they burn helium for a little
less than 106 yr, then they start on the heavier elements, through α−process
burning reactions until the core has become an inert mass composed of the
iron-peak elements. This contracts, the temperature increases, until the iron
is photodissociated, all pressure support is lost and the core collapses to a
neutron star or black hole, producing a Type II supernova explosion.

The matter ejected by such explosions is rich in He and the α−process
elements including O and Si, and the r−process elements formed by neutron
capture under explosive conditions, but contains only small amounts of Fe and
the iron-peak elements. To all intents and purposes this material is returned
promptly to the interstellar medium, since the lifetime of the massive stars
is a negligible fraction of a galactic evolutionary timescale.

Low mass stars cannot proceed beyond helium burning, and end their
lives as mass-losing red giants which then pass through the planetary nebula
phase to finally produce a white dwarf. The lifetime of stars is much greater,
and is given by equation (10.20):[

τ

Gyr

]
∼ 11

[
M

M�

]−3.1

+ 0.46
[
M

M�

]−4.6

(14.26)

As we discussed in Section (10.4.2), these stars produce an important frac-
tion of the He, 12C, 14N and 22Ne which chemically enriches the interstellar
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medium. They also produce the heavy s−process elements formed by neutron
capture under non-explosive conditions.

If stars of this mass range are found in close binary systems, then mass-
exchange between the binary partners in the late phases of stellar evolution
can push a degenerate core of one of the stars over the Chandrasekar sta-
bility limit of about M ∼ 1.4M�, resulting in a thermonuclear supernova, a
supernova of Type I, which burns much of the star up to nuclear statistical
equilibrium conditions at a temperature in excess of 108 K. Such stars pro-
duce most of the Fe and Ni found in interstellar gas. However, they do this
after a considerable time delay; of order 109 yr, which is an important fraction
of the gas depletion timescale due to star formation in galaxies. Much more
detail about these chemical evolution aspects of the interstellar medium can
be found in Pagel (1997).

14.3.5 Dust Evolution in a Multi-Phase Medium

Advanced Topic
We discussed in Section (12.5) how the life-cycle of dust grains in the

interstellar medium must, in large measure, represent a balance between grain
destruction and shattering in the fast shocks found in the HIM, WIM and
WNM phases, and the processes which build up grains in the CNM and in
the dense molecular clouds. Dust evolution therefore depends upon the mass
transport between these various phases.

Consider, following Dwek & Scalo (1980) and McKee (1989b), the evo-
lutionary equations which describe these processes. Let M is the mass of
an element, produced by star-formation and evolution process which can be
potentially locked up into a grain material in a given phase of the interstel-
lar medium. Suppose a fraction δ of this is actually locked up into dust in
the interstellar medium. The evolution of M will depend on the rate of loss
from the ISM due to star formation, occurring over a characteristic timescale
τsfr and the rate of injection to the ISM from evolved stars, occuring over
a timescale τin . Ignoring the rate of mass transport between the various
phases:

dM

dt
= − M

τsfr
+
M

τin
(14.27)

The fraction of this mass locked into dust will depend upon the fraction
α destroyed or manufactured (α < 1) in star-forming regions and the rate
of star formation. It will also depend on the injection rate, and the rate at
which dust is destroyed by supernova shocks, occurring over a characteristic
timescale τSNR:

d (Mδ)
dt

= −αMδ
τsfr

+
Mδin
τin

− Mδ

τSNR
(14.28)

From these two equations the dust fraction evolves as:
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dδ

dt
= − (α− 1) δ

τsfr
+

(δin − δ)
τin

− δ

τSNR
(14.29)

and will eventually reach an equilibrium value:

δeq = δin

[
1 +

τin
τSNR

+ (α− 1)
τin
τsfr

]−1

(14.30)

In this case the equilibrium logarithmic depletion factor for the element con-
cerned is log [1 − δeq]. In the hot ISM, τSNR � τin, so the depletion factors
will be small, while material that has been incorporated into dense clouds will
display a depletion factor which increases with time towards the equilibrium
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value at a rate which depends on the cloud density. This is precisely what is
seen in EUV absorption line measurements using the Copernicus satellite by
Jenkins (1987; 1989).

If we allow for mass transport for a simplified two-phase medium con-
sisting of a dense cold and a tenuous hot medium, we can assume that the
timescale to destroy the dust though supernova shocks in the dense phase
is much longer than the time needed to destroy the dust by shocks in the
low-density phase. If we also set α = 1 then the equilibrium dust fraction in
the cold and in the hot phases, δC and δH , respectively, are given by:

δC − δH
δC

=
1/τSNR

(1/τC→H + 1/τC→H + 1/τin + 1/τSNR)
∼ τC→H

τSNR
(14.31)

In other words, the difference in the dust fractions between the two phases is
simply the ratio of the time taken for the dust to escape into the hot phase
to the time taken to destroy it in the hot phase.

Notes on Chapter 14

• Much of the physics of the multiphase interstellar medium described in this
chapter is drawn from the reviews of McKee, C.F. 1995, in The Physics of
the Interstellar & Intergalactic Medium, eds. A. Ferrara, C.F. McKee, C.
Heiles & P.R. Shapiro, ASP Conf. Ser. 80, 292 and of Begelman, M.C. 1990,
in The Interstellar Medium in Galaxies, eds H.R. Thronson & J.M. Shull,
Kluwer:Dordrecht, p287 (ISBN 0-7923-0759-3). See also, the seminal papers
by McKee, C.F. and Ostriker, J.P. 1977, ApJ, 218, 148 and by Begelman,
M.C. & McKee, C.F. 1990, ApJ, 358, 375.
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