ARNOWITT-DESER-MISNER FORMALISM

In the Arnowitt—Deser—Misner formalism the four dimensional metric
9w 1s parametrized by the three-metric ii;; and the lapse and shift func-
tions NV and N*, which describe the evolution of time-like hypersurfaces,

goo = —N*+RYN;N;, goi = gio = Ni, gij = hij. (1)

The action for the inflaton scalar field with potential V' (¢) in the ADM
formalism has the form

S-— /&m/_[ R 500 = V(o)

= [d'a i ( R+ KiK' - K2>+%[(H¢)2—¢|¢¢W—V(¢)},
(2)

where k? = 81 G = 8m/M3 is the gravitational coupling defining the
Planck mass and I1? is the scalar-field’s conjugate momentum

= (0 Ngy). 3)

Vertical bars denote three-space-covariant derivatives with connections

derived from h;j; )R is the three-space curvature associated with the
metric h;;, and Kj;; is the extrinsic curvature three-tensor

K = Nyj; + Njji — hij)a (4)

1
ot
where a dot denotes differentiation with respect to the time coordinate.
The traceless part of a tensor is denoted by an overbar. In particular,

1 |

The trace K is a generalization of the Hubble parameter, as will be shown
below. Variation of the action with respect to NV and N yields the energy
and momentum constraint equations respectively

Kij = Kij —

9
—(3)R‘|'KinU — §K2+2li2p: 0,
(6)

K/
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§K‘i + K2 H(b@i =0.
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equations, which can be separated into the trace and traceless parts

3 1

K—N@'KZ-_—NHLN( <>R+4KUK”+ SKT 4 T) (7)

i Nk P _ Nl kg0
K, — N K]-‘k,+N|kK N‘ K. = Ny + 3N| 0; )
+ N (YR, + KK, - &°T)) .
Variation with respect to ¢ gives the scalar-field’s equation of motion
1 1 : .oV
— (11 — NI KM — —N,;o' — ¢, + — = 0. 9
o - i = o+ G )

The energy density on a constant-time hypersurface is

1 .
p=35 |17 + gudl’| + V(9), (10)
and the stress three-tensor

Ty = ouoy+ by |5 [P o] = Vi) ()

It is extremely difficult to solve these highly nonlinear coupled equa-
tions in a cosmological scenario without making some approximations.
The usual approach is to assume homogeneity of the fields to give a
background solution and then linearize the equations to study deviations
from spatial uniformity. The smallness of cosmic microwave background
anisotropies gives some justification for this perturbative approach at
least in our local part of the Universe. However, there is no reason to
believe it will be valid on much larger scales. In fact, the stochastic ap-
proach to inflation suggests that the Universe is extremely inhomogeneous
on very large scales. Fortunately, in this framework one can coarse-grain
over a horizon distance and separate the short- from the long-distance
behavior of the fields, where the former communicates with the latter
through stochastic forces. The equations for the long-wavelength back-
ground fields are obtained by neglecting large-scale gradients, leading to
a self-consistent set of equations, as we will discuss in the next section.



SPATIAL GRADIENT EXPANSION

It is reasonable to expand in spatial gradients whenever the forces aris-
ing from time variations of the fields are much larger than forces from
spatial gradients. In linear perturbation theory one solves the perturba-
tion equations for evolution outside of the horizon: a typical time scale
is the Hubble time H !, which is assumed to exceed the gradient scale
a/k, where k is the comoving wave number of the perturbation. Since
we are interested in structures on scales larger than the horizon, it is
reasonable to expand in k/(aH). In particular, for inflation this is an
appropriate parameter of expansion since spatial gradients become ex-
ponentially negligible after a few e-folds of expansion beyond horizon
crossing, k = aH.

It is therefore useful to split the field ¢ into coarse-grained long-
wavelength background fields ¢(¢, 27) and residual short-wavelength fluc-
tuating fields (¢, x7). There is a preferred timelike hypersurface within
the stochastic inflation approach in which the splitting can be made con-
sistently, but the definition of the background field will depend on the
choice of hypersurface, 7.e. the smoothing is not gauge invariant. For
stochastic inflation the natural smoothing scale is the comoving Hubble
length (aH)~! and the natural hypersurfaces are those on which aH is
constant. In that case a fundamental difference between between ¢ and
0¢ is that the short-wavelength components are essentially uncorrelated
at different times, while long-wavelength components are deterministi-
cally correlated through the equations of motion.

In order to solve the equations for the background fields, we will have
to make suitable approximations. The idea is to expand in the spatial
gradients of ¢ and to treat the terms that depend on the fluctuating fields
as stochastic forces describing the connection between short- and long-
wavelength components. In this Section we will neglect the stochastic
forces due to quantum fluctuations of the scalar fields and will derive the
approximate equation of motion for the background fields. We retain only
those terms that are at most first order in spatial gradients, neglecting

such terms as qﬁ‘i‘i, ¢|,L.¢|’i7 GR, BRI and TY.



evolution during inflation this is a consequence of the rapid expansion,
more than a gauge choice]. The evolution equation (8) for the traceless
part of the extrinsic curvature is then K'; = NK K; Using NK =
—0;Invh from (5), we find the solution K o h=12 where h is the

3 with a the overall

determinant of A;;. During inflation 1?2 =g
expansion factor, therefore f(} decays extremely rapidly and can be set
to zero in the approximate equations. The most general form of the

three-metric with vanishing K7 is
hy = (6,2 (@), altoh) = expla(t,a®)],  (12)

where the time-dependent conformal factor is interpreted as a space-
dependent expansion factor. The time-independent three-metric ;;, of
unit determinant, describes the three-geometry of the conformally trans-
formed space. Since a(t, z%) is interpreted as a scale factor, we can sub-
stitute the trace K of the extrinsic curvature for the Hubble parameter

: 1 . 1 ,
H(t,z") = — a(t,x') = —=K(t,2"). 13
() = Sy 6lta) = —pKea) (13
The energy and momentum constraint equations (6) can now be writ-
ten as
5 k271 e
H* = — |57+ V(g)| , (14)
2
H, = -, (15
together with the evolution equation (7)
.3 K> K>
——H=-H+—_T=—(I 16

where T' = 3 (3(119)? — V(¢)).

In general, H is a function of the scalar field and time, H(t,z") =
H(¢(t,z"),t). From the momentum constraint (15) we find that the
scalar-field’s momentum must obey

19 = —% (?;)t . (17)



(18)

we find (8_1{) = 0.
ot )

In fact, we should not be surprised since this is actually a consequence
of the general covariance of the theory.

On the other hand, the scalar field’s equation (9) can be written to
first order in spatial gradients as

1 oV
—T1® + 3HTI? + — . 1
N +3 + 9 —0 (19)

We can also show that the conjugate momentum I1? does not depend
explicitly on time, its only dependence comes through ¢. For this, differ-
entiate Eq. (14) w.r.t. ¢ to obtain

8H¢ 6?‘/
¢ o

and compare with (19), where
o11?
L
ot ),

which implies (



AAMILTON-JACOBI FORMALISM

We can now summarise what we have learned. The evolution of a
general foliation of space-time in the presence of a scalar field fluid can
be described solely in terms of the rate of expansion, which is a function
of the scalar field only, H = H(¢(t, ")), satisfying the Hamiltonian
constraint equation:

2 (OH\?
3H*(¢) = = (—) % 21
@)= (55) +Vie). 21
together with the momentum constraint and the evolution of the scale
factor,
1 - k? (OH
Y S (il B § (¢ 22
N T T (6?<b) (22)
1
o = H), 23
as well as the dynamical gravitational and scalar field evolution equations
1 2 (OH\* K
~H = —5 || =—=77? 24
v = —alas) - 50 2
1 .
~ 1 = —3HII —V'(¢). (25)

Therefore, H(¢) is all you need to specify (to second order in field
gradients) the evolution of the scale factor and the scalar field during
inflation.

These equations are still too complicated to solve for arbitrary po-
tentials V' (¢). In the next section we will find solutions to them in the
slow-roll approximation.



SLOW-ROLL APPROXIMATION AND ATTRACTOR

Given the complete set of constraints and evolution equations (21) -
(25), we can construct the following parameters,

. / 5
C _EZE H'(¢) :_alnH7 (26)
H? k2 \ H(o) dlna
o 2 (H"(¢) Oln H'
0 = ——— = — = — 2
H¢ mQ(H(gb) dlna ’ (27)
in terms of which we can define the number of e-folds N, as
2
Qend end ¢end H(¢)d¢
N, =1 H . 2
Sy =4 = =5 L g 2

In order for inflation to be predictive, you need to ensure that inflation
is independent of initial conditions. That is, one should ensure that there
is an attractor solution to the dynamics, such that differences between
solutions corresponding to different initial conditions rapidly vanish.

Let Hy(¢) be an exact, particular, solution of the constraint equation
(21), either inflationary or not. Add to it a homogeneous linear pertur-
bation § H(¢), and substitute into (21). The linear perturbation equation
reads H)\(¢) dH'(¢) = (3x*/2) Hyd H, whose general solution is

3K% o H0(¢)d¢)

2 o; H()(Qb) (qbl) GXp( SAN) Y

(29)
where AN = N; — N > 0, and we have used (28) with the particular
solution Hy(¢). This means that very quickly any deviation from the

SH(6) = 6H(6,) exp(

attractor dies away. This ensures that we can effectively reduce our two-
dimensional space (¢, I1?) to just a single trajectory in phase space.

As a consequence, regardless of the initial condition, the attractor
behaviour implies that late-time solutions are the same up to a constant
time shift, which cannot be measured.



AN EXAMPLE: POWER-LAW INFLATION

An exponential potential is a particular case where the attractor can
be found explicitly and one can study the approach to it, for an arbitrary
initial condition.

Consider the inflationary potential

V(g) =Vye 7, (30)

with 3 < 1 for inflation to proceed. A particular solution to the Hamil-
tonian constraint equation (21) is

H.i(¢) = Hy 6_%5'@7 (31)
2 2\ 1
H? = %VO (1—%) . (32)

This model corresponds to an inflationary universe with a scale factor
that grows like

a(t) ~ ¥ p=%>>1. (33)

The slow-roll parameters are both constant,

_ 2 (H'9))_p 1
b= H(¢)) =, <L (35)

All trajectories tend to the attractor (31), while we can also write down
the solution corresponding to the slow-roll approximation, e = ¢ = 0,

2
K —PK
Hep(¢) = gvoe e, (36)

which differs from the actual attractor by a tiny constant factor, 3p/(3p—
1) ~ 1, responsible for a constant time-shift which cannot be measured.



HOMOGENEOUS SCALAR FIELD DYNAMICS

Singlet minimally coupled scalar field ¢, with effective potential V' (¢)
1

Sinf - / d433 —g Einf; Einf - _§ g'uya,ugbal/gb - V(Qb) . (1)
[ts evolution equation in a Friedmann-Robertson-Walker metric:
-1 .
0= 5V'6+3H+V(9) =0, 2)
together with the Einstein equations,
K271 1
g2 o= Fotgrg 2
L5855 (VP V(9] 3
2
H = _? ¢27 (4)

where k? = 87G. The inflation dynamics described as a perfect fluid
with a time-dependent pressure and energy density given by

p = —¢ ( 0 +V(9), (5)

1-2

p = —@w) V(o). )

The field evolution equation (2) implies the energy conservation equation,

p+3H(p+p)=0. (7)

If the potential energy density.of the scalar field dominates the kinetic
and gradient energy, V(¢) > ¢?, a%(qu)Q, then

p~—p = p~const. = H(¢p)~ const., (8)
which leads to the solution

a(t) ~ exp(Ht) = 50 accelerated expansion . (9)
a

Definition: number of e-folds,

N =1In(a/a;) =  a(N)=a;exp(N)



THE SLOW-ROLL APPROXIMATION

During inflation, the scalar field evolves very slowly down its effective
potential. We can then define the slow-roll parameters,

B H 2 ¢2
6__§:?ﬁ<<1 (10)
5= -2 <« (11)

Ho
The condition which characterizes inflation is

a
e<l <= —->0, (12)

a

i.e. horizon distance dyg ~ H~! grows more slowly than scale factor a.
The number of e-folds during inflation:

rdo

. Qend e e
N = In o = h Hdt = /¢ eg) (13)
The evolution equations (2) and (3) become
2
. S .
3H (1—5) ~ 3H) = —V'(6). (15)
Phase space reduction for single-field inflation, H(¢, ¢) — H(¢).
L (V@)
= 1
C T W (V(gb)) <5
1 V(o)
S 1
TRV S
V(¢)do

2 [Pe
V=



GAUGE INVARIANT LINEAR PERTURBATION THEORY

The unperturbed (background) FRW metric can be described by a
scale factor a(t) and a homogeneous scalar field ¢(t),

ds* = a*(n)[—dn* + i; dz'da’] (16)
¢ = o(n), (17)

dt
where 7 is the conformal time 7 = / —
a(?)
and the background equations of motion can be written as

2 _ ,{_2 1 12 2
= el (1)
2
H —H? = %dﬁ, (19)
¢ +2H¢ + a*V'(¢) =0, (20)

where H = aH and ¢/ = ao.

During inflation, the quantum fluctuations of the scalar field will in-
duce metric perturbations which will backreact on the scalar field.

The most general line element, in linear perturbation theory, with
both scalar and tensor metric perturbations [inflation cannot generate,
to linear order, a vector perturbation], is given by

ds* = a*(n) [—(1 +2A)dn® + 2Bjdx'dn
+{(1+2R)v; + 2E);; + 2hi; }da'da’| (21)

¢ = o(n)+06(n,x'). (22)

The indices {i,j} label the three-dimensional spatial coordinates with
metric 7;;, and the |i denotes covariant derivative with respect to that
metric. The gauge-invariant tensor perturbation h;; corresponds to a
transverse traceless gravitational wave, V'h;; = hi = 0.



GAUGE INVARIANT GRAVITATIONAL POTENTIALS

The four scalar metric perturbations (A, B, R, F/) and the field per-
turbation d¢ are all gauge dependent functions of (n, xz"). The tensor
perturbation h;; is gauge independent.

Under a general coordinate (gauge) transformation

= +7¢;n ), (24)

with arbitrary functions (€%, €), the scalar and tensor perturbations trans-
form, to linear order, as

A=A—¢"—H, B=B+¢-¢, (25)
R =R —HE, E=E—¢, (26)

(where primes denote derivatives with respect to conformal time).
Possible to construct two gauge-invariant gravitational potentials,

d=A+(B-E)Y+H(B-FE, (28)
UV=R+H(B-FE), (29)

which are related through the perturbed Einstein equations,
¢ = -V, (30)
—VU = 47 G dp, (Poisson) (31)

where dp is the gauge-invariant density perturbation corresponding to
the scalar field.



Consider the action (1) with line element
ds* = a(n)? {—(1 +2®)dn* + (1 — QCD)dXQ}

in the Longitudinal gauge, where ® is the gauge-invariant gravitational
potential (28). Then the gauge-invariant equations for the perturbations
on comoving hypersurfaces (constant energy density hypersurfaces) are

2

O+ 3HO + (M + H)® = " [550/ — a®V(9)d0], (32)
2
—V2P + 3HY + (H + H)D = —%[qs’agb’ +a?V(9)8¢],  (33)
2
P+ HO = %¢’5¢, (34)

6¢" + 2HOP — V26 = 4¢'D — 2a*V'(¢)D — a*V"(4)d0 .

This system of equations seem too difficult to solve at first sight.
However, there is a gauge invariant combination of Mukhanov variables

u=adp—+ 2P,
zzaﬂl.
H

for which the above equations simplify enormously,

Z”

' — Vi — =0,
2
o K2 H
Vb = ?—Q(ZU/ — 2'u),
a
(aQQD)/ K
— | = —zu.
H 2

From these, we can find a solution u(z), which can be integrated to give
®(z), and together allow us to obtain d¢(z).



QUANTUM FIELD THEORY IN CURVED SPACE-TIME

We should consider the perturbations ® and d¢ as quantum field fluc-
tuations. Note that the perturbed action for the scalar mode u can be

written as . ,
65 = 5 [ dn |()? = (Vu)? + %u2 . (35)
Quantize the field u in the curved background: write the operator
~ d3k ~ z k-x At —ikx
i) = [ (5 g [ e i ae ] (30
with
g, aly] = 0°(k — k'), ax0) = 0. (37)
Each mode ug(n) decouples in linear perturbation theory,
7
UZ-F (kQ—Z)uk_O
2z
This is a Schrodinger-like equation with potential U(n) = 2"/z.
We will use the slow-roll parameters (10),
/ 2.2
ezl—%-%%fvconst <1, (38)
¢// Z/
5:1—H¢/—1—|—6—@N00nst < 1. (39)

In terms of these parameters, the conformal time and the effective po-
tential for the u; mode can be written as

-1 1

Hl—¢€
i 1 1 —0 1
Z—:—<V——>, where V:%—FQ. (41)

n= (40)



EXACT SOLUTIONS

In the slow-roll approximation, the effective potential is 2" /z ~ 2H?.
The exact solutions are (Hankel: H ?()1/)2(33) = —e\2/7x(1 +1i/x)),

\/7_T i(v+3)

ug(n) = S ¢ 2 (=)' HY (—kn), (42)
De Sitter Event horizon H ! sets the physical scale,
1 »
up=——=—¢€ " k>aH, Minkowsky vacuum
up = Ch 2 k< aH. (superhorizon modes)

In the superhorizon limit k1 — 0, the solution becomes

g | ~ \/127{ (J;j)ﬁ_y, for €5 <1. (43)
i (k) (1 ~ ann) +02(/<)Zf (44)
0 = (k) /a2d77 _ Gk : (45)

2
a
where C1(k) = growing solution, Cy(k) = decaying solution.

For adiabatic perturbations, we can find a gauge invariant quantity
that is also constant for superhorizon modes,

1
(=4 — (O +H) =~ ~ R, for k< aH
eH 2z

R. = gauge-invariant curvature perturbation on comoving hypersurfaces.

Can evaluate ®; when perturbation reenters the horizon during radi-
ation/matter eras in terms of the curvature perturbation Ry when it left
the Hubble scale during inflation,

3+ 3w %Rk radiation era
Ry =

O+ 3w ng matter era .

@k:<1——/adn> Ry =



GRAVITATIONAL WAVE PERTURBATIONS

The action for the tensor perturbation h;; as quantum field

1 a?
68 = 5 [ dxdn o [(hiy) = (Vhiy)?] (46)
7 dSk ~ 1k-x
hij (777 X) - / (27_‘_)3/2 )\221:2 [hk(n) eij (ka )‘) CLk’)\ € + hC} ) (47)

where e;;(k, \) are the two symmetric e;; = ej;, transverse k'e;; = 0, and
traceless e; = 0 polarization tensors, e;;(—k, A) = ef;(k, ), satisfying
sy ej;(k, A)e”(k, A) = 4. Redefine the gauge invariant tensor mode,

a

Uk:(n) — \/Qli hk(n) ) (48)

satisfying decoupled evolution equations, in linear perturbation theory,

a//
vy + (kQ—a) v =0. (49)

For constant slow-roll parameters, the potential becomes

a” € 1 1 1 1
CE I ) B WS
a 2 n? o H i

We can solve equation (49) exactly in terms of the Hankel function (42)

with v — pu. In the two asymptotic regimes,
1

_ —ikn :
v = e k> aH , Minkowsky vacuum
k ok ( Y )
v, =Ca k<aH. (superhorizon modes)

In the superhorizon limit k1 — 0, the solution becomes

- (B 50)

Since h; is constant on superhorizon scales, we can evaluate the tensor
metric perturbation when it reentered during the radiation/matter eras
directly in terms of its value during inflation.



POWER SPECTRA OF SCALAR AND TENSOR METRIC
PERTURBATIONS

Let us consider first the scalar (density) metric perturbations Ry,
which enter the horizon at a = k/H. Its two-point correlation func-
tion is given by

\ k] s n_ Pr(E) o \3 3 ,
k3 ‘uk‘Q ’{2 H 2 L 3—2v o L n—1
P =g i =5 o) ) =4 (ag) O

This equation determines the power spectrum in terms of its amplitude
at horizon-crossing, Ag, and a tilt,

0 — 2¢

— €

:3—2V:2( ) ~ 219 — Ge, (53)

It is possible, in principle, to obtain from inflation a scalar tilt which is
either positive (n > 1) or negative (n < 1). Furthermore, depending
on the particular inflationary model, we can have significant departures
from scale invariance.

Let us consider now the tensor (gravitational wave) metric perturba-
tion, which enter the horizon at a = k/H,

. 8K* n_ Py(k) ,
%;«NhkAh%@ﬂO> ::_gngkﬁa3a<-k):: 4ik3<2ﬂq353a<—-k)(54)
H 2 L 3—2u L \"T
— 2 - - pr— 2 [
Pylk) = 8k (27r> (aH) =Ar (aH) ' (55)

Therefore, the power spectrum can be approximated by a power-law
expression, with amplitude Ar and tilt

_dInPy(k) B 2€
"TETmE _2“__(1—6

which is always negative. In the slow-roll approximation, € < 1, the

):—26<0, (56)

tensor power spectrum is approximately scale invariant.



MASSLESS MINIMALLY COUPLED SCALAR FIELD
FLUCTUATIONS DURING INFLATION

The fluctuations of a massless minimally-coupled scalar field ¢ during
inflation (quasi de Sitter) are quantum fields in a curved background. We
will redefine y(x,t) = a(t) d¢(x,t), whose action is

a//

= % | d’xdn [(y’)2 — (Vy)* + — Y (1)

where primes denote derivatives w.r.t. conformal time 7 = / dt/a(t) =

— 1/(aH), with H the constant rate of expansion during inflation.

Integrating by parts and defining the conjugate momentum as p = g_y.c/ =

Yy — %y, we can write the action and the corresponding Hamiltonian as

1
S = 5 [ dxdn p*— (Vy)*|. (2)
/
H:—/d3 P’ + (Vy)? +2‘;py]. (3)
We can now Fourier transform all the fields and momenta as:
d*x —ixk
d(k,n) :/ 2n )7 d(x,m)e

Since the scalar field is assumed real, we have: y(k,n) = y'(—k,n) and
p(k,n) = p'(—k,n). The Hamiltonian becomes

H = % [ @k [p(k, ) pl(k,m) + K y(k,n) y'(k, ) (4)
+ % (y(k,m) p'(k,m) + p(k, ) ' (k, M |

As we will see later, it is the last term which is responsible for squeezing.
The Euler-Lagrange equations for this field can be written in terms of
the field eigenmodes as a series of uncoupled oscillator equations:

a//

o)+ (1= ) gl =0, g



AEISENBERG PICTURE: THE FIELD OPERATORS

We can now treat each mode as a quantum oscillator, and introduce
the corresponding creation and annihilation operators:

ofln) = 5 vlkon) +i o pllcn) ©)
(ko) = | Syl — i (k). )
which can be inverted to give
i) = <o falln) +af(—km)] 5)
pllen) = i [alkn) —al(~kn)] 9)

The usual equal-time commutation relations for fields (h = 1 here and
throughout),
[y(x,m), p(x',n)] = id°(x — ), (10)
becomes a commutation relation for the creation and annihilation oper-
ators,

[y(k7 77)7 pT(k/7 77)] - 253(1{ - k/) = [a(ka 77)? aT(kla 77)] - 53(1{ - k(/) )
11

In terms of these operators, the Hamiltonian becomes:

M= [ &% [klalkn)a!(k.n)+ !k 5) a(k,n)

+ i “al(k, n) a'(k, n) + alk, n) a(k, n)]|

a

(12)

It is the last (non-diagonal) term which is responsible for squeezing.
The evolution equation can be written as

(k) —ik 2\ (a(k)
&Wem)_( . MJ(MPH>’ )



whose general solution is, in terms of the initial conditions a(k, ),

a(k,n) = ur(n) a(k, m) + vi(n) a'(=k, np) . (14)
aT(_k7 77) = U’Z(”) aT(_ka 770> + vlf:(”) a(k7 770) ) (15>

which correspond to a Bogoliubov transformation of the creation and
annihilation operators, and characterizes the time evolution of the system
of harmonic oscillators in the Heisenberg representation.

The commutation relation (11) is preserved under the unitary evolu-
tion if

ue(m)]” = o(n)]* = 1. (16)

which gives a normalization condition for these functions.

We can write the quantum fields y and p in terms of these as,

y(k7 77) - fk(n) a(k7 770) + fl?;(”) CLT(—k, 770) 9 (17>
pk,n) = —i |gi(n) a(k, o) — gi(n) a'(—k, no)] . (18)
where the functions
Rl = 7 funl) + i), (19
() = | & [s(m) — i), 20

are the field and momentum modes, respectively, satisfying the following
equations and initial conditions,

E T (k2—2> fi =10, felm) = 7z » (21)
ao=i [f-28) . am =5, 2)

as well as the Wronskian condition,

i(fofi—fe f) =g fi + i fr=1. (23)



SQUEEZING PARAMETERS

Since we have 2 complex functions, fi and g, plus a constraint (23), we
can write these in terms of 3 real functions in the standard parametriza-
tion for squeezed states,

ug(n) e %) cosh ry(n), (24)
vp(n) = el O +2i k() ginp ri(n) , (25)

where r;. is the squeezing parameter, ¢ the squeezing angle, and ;. the
phase.

We can also write its relation to the usual Bogoliubov formalism in
terms of the functions {ay, Ok},

up = a ek vy = B et (26)

which is useful for the adiabatic expansion, and allows one to write the
average number of particles and other quantities,

1 :
ng = |6k = [onl* = oF 195 = k fol” = sinh® 7y, (27)
or = 2Re (Oﬁiﬁk 62”‘”7) = 2Re (u vy) = cos 2¢y, sinh 2r;,  (28)
7, = 2Im (a,fﬂk 62“”7> = 2Im (uy v;) = —sin 2¢y sinh 2r; . (29)

We can invert these expressions to give (r, 0, ¢r) as a function of

ur and vy,
sinhr, = \/Rev,% +Imvi,  coshry = \/Reu% + Imuj , (30)
Imuy, ImvipReuy + ImuipRevy
tanf, = — tan 20y, = . (31
Ik Reuy an 2¢1 ReviReur — ImuyImuy (31)

We can now write Eqs. (17) and (18) in terms of the initial values,

y(k,n) = V2k fi(n) y(k,m) ( fra(n (32)
pk,n) = ﬁgm@?)p(k, o) + V2k gra(n) y(k, m0) . (33)

where subindices 1 and 2 correspond to real and imaginary parts, fi1 =
Re fr and fro = Im f3, and similarly for the momentum mode gy.



SCHRODINGER PICTURE: THE VACUUM WAVE
FUNCTION

Let us go now from the Heisenger to the Schrodinger picture, and
compute the initial state vacuum eigenfunction Wy(n = ng). The initial
vacuum state [0, 79) is defined through the condition

k 1
_/\ '7/\ 0 :O
\ka(n0)+z f%pk(no) 0,70) =0,
{ 1 0

. . k002
y2+kayg*] o (g 9k o) =0 = o (4,90, mo) = No e 241(34)

Vka &<k7 770)‘07770> =

where we have used the position representation, gn(no) = v, Pr(n0) =
—1 %}j*’ and Ny gives the corresponding normalization.

We will now study the time evolution of this initial wave function using
the unitary evolution operator S = S(n,ny), i.e. the state evolves in the

Schrodinger picture as |0, 7) = S|0,m9). Now, inverting (17) and (18)

a(k,mo) = gr(n) y(k,n) + i fr(n) pk,n), (35)

which, acting on the initial state becomes, Vk , Vn,

s [@(k, )+idt gg bl n>] 51510, mo) = 0

= {Qk(ﬁo) +1 g’g((z)) ﬁk(ﬁo)] 0,m7) =0,

1 v (n)

= Wy (ylgv yl(i*v 77) - ﬁ ’fk‘(n)‘ 3 (36>

where

; ¥ — 1 — 2t F
gk(”) I Up — Vg _ [ k(”) ’ (37>

M i~ e T AR
Fr(n) = Im(f; gr) = Im(ugvp) = 5 sin 2¢, sinh2r,.  (38)

We see that the unitary evolution preserves the Gaussian form of the
wave functional. The wave function (36) is called a 2-mode squeezed
state.



The normalized probability distribution,

1 ly(k, mo)|*
PO (y<k7 770)7 y(_ka 770)7 77) eXPp ( ) (39>

| fe(n)? Q\fk( )7
is a Gaussian distribution, with dispersion given by |f|?.
In fact, we can compute the vacum expectation values,

(Ay(k,n) Ay'(K',n)) = AyP(k) 8 (k — K') = [ fi*6*(k — k'), (40)
(Ap(k,n) Ap'(K'. n)) = Ap*(k) & (k — K') = |g]* 0°(k — k'), (41)

and therefore the Heisenberg uncertainty principle reads

1

Ay (k) Ap(K) = 1 £l |oel® = FEm) + -
1 1

— 1 sin? 20y sinh? 211 + 1 . (42>

It is clear that for n = ng, Yx(no) = k and Fj(ny) = 0, and thus we
have initially a minimum wave packet, Ay Ap = l However, through its
unitary evolution the function F} grows exponentlally, see (38), and we
find Ay Ap > 1 5, corresponding to the semiclassical regime, as we will

Soon demonstrate rigorously.



THE SQUEEZING FORMALISM

Let us now use the squeezing formalism to describe the evolution of
the wave function. The equations of motion for the squeezing parameters
follow from those of the field and momentum modes,

/

T, = % cos 20y , (43)
/
o, = —k— % coth 27y, sin 2¢y, , (44)
/
0., = k +% tanh 27, sin 2¢y, . (45)

As we will see, the evolution is driven towards large r, o« N > 1, the
number of e-folds during inflation. Thus, in that limit,
a’ sin 2
O+ 61 = L2020 .

a sinh 2r;.

and therefore 6 + ¢ — const. We can always choose this constant
to be zero, so that the real and imaginary components of the field and
momentum modes become

1 1 .
fr1 = NGT: et cos @y, fro = NGT: e "k sin ¢y, , (46)

k k
gr1 = \Eer’f Ccos ¢y o = J;e’"k sin ¢y . (47)

It is clear that, in the limit of large squeezing (1, — 00), the field mode
fr becomes purely real, while the momentum mode g; becomes pure

imaginary.
This means that the field (32) and momentum (33) operators become,
in that limit,

g(k,n) — V2k fir(n) 9(k, no)
ﬁ<k777) — mgkﬂ(”) g(ka 770)




As a consequence of this squeezing, information about the initial mo-
mentum py distribution is lost, and the positions (or field amplitudes) at
different times commute,

A A 1,
[y(ka 771)7 y(k7 772)} = 56 Tk COSZ ¢k ~ 0. (49)

This result defines what is known as a quantum non-demolition (QND)
variable, which means that one can perform succesive measurements of
this variable with arbitrary precision without modifying the wave func-
tion. Note that y = ad¢ is the amplitude of fluctuations produced during
inflation, so what we have found is: first, that the amplitude is distributed
as a classical Gaussian random field with probability (39); and second
that we can measure its amplitude at any time, and as much as we like,
without modifying the distribution function.

In a sense, this problem is similar to that of a free non-relativistic quan-
tum particle, described initially by a minimum wave packet, with initial
expectation values (z)y = xo and (p)y = py, which becomes broader by
its unitary evolution, and at late times (¢t > mx/pg) this Gaussian state
becomes an exact WKDB state,

U(z) = Q5" exp(—Qa?/2),

with Im€ > Re{2 (i.e. high squeezing limit). In that limit, [z, p] = 0,
and we have lost information about the initial position x (instead of the
initial momentum like in the inflationary case), z(t) >~ p(t)t/m =
pot/m and p(t) = py. Therefore, not only [p(t1), p(t2)] = 0, but also,
at late times, [2(t1), z(t2)] =~ 0.



THE WIGNER FUNCTION

The Wigner function is the best candidate for a probability density
of a quantum mechanical system in phase-space. Of course, we know
from QM that such a probability distribution function cannot exist, but
the Wigner function is just a good approximation to that distribution.
Furthermore, for a Gaussian state, this function is in fact positive definite.

Consider a quantum state described by a density matrix p. Then the
Wigner function can be written as

d:l?l dZCQ T z
Wl oo ) =[] 1 a1+pa 72) <y——ﬂ7‘ ‘y+ ,77>

If we substitute for the state our vacuum initial condition p = [Wo) (W],
with Wy given by (36), we can perform the integration explicitly to obtain

C o1 Ty? Fe [
WO(ylgnyl?: 7p27p2 ) = eXp( ‘f ‘2 ‘f ‘2
= (I)<y17 pl) q)<y27 p?) (50>

o p) = Tenl-(Loranrg)l. o
_ Fy,

P1 = P1— 7775 Y1
| fie]?

In general, W), describes an asymmetric Gaussian in phase space,
whose 20 contours satisty

2

Sl AP0 <1 (52)
| fi]
For instance, at time n = 1y, we have ) = = | fr(no)| \[ =
1/2| fr.(no)|, and E}.(my) = 0, so that p = p}, and the 20 contours become
2 2
sl
yir Pi

which is a circle in phase space.



On the other hand, for time n > n,, we have
1

fi] — NG e~y growing mode, (53)
1 k —Tk 0_—N :
SIAl = g€ e decaying mode, (54)

so that the ellipse (52) becomes highly “squeezed”.

Note that Liouville’s theorem implies that the volume of phase space is
conserved under Hamiltonian (unitary) evolution, so that the area within
the ellipse should be conserved. As the probability distribution com-
presses (squeezes) along the p-direction, it expands along the y-direction.
At late times, the Wigner function is highly concentrated around the re-
gion ,

2 Iy 1 —2N
D —<p—wy) <4!fk\2N€ < 1. (55)

We can thus take the above squeezing limit in the Wigner function (50)
and write the exponential term as a Dirac delta function,

oo 1 \y\Q} ( Fy, )
Woly, p) "= — ex {—5 L 56
0(y,p) 2 O\ TR O P T Y (56)
In this limit we have
X Fi. . gr2(n) .
= — ~ : 57
pr(n) | fk’29k<77) Foln) Yk(n) (57)

so we recover the previous result (48). This explains why we can treat the
system as a classical Gaussian random field: the amplitude of the field y
is uncertain with probability distribution (39), but once a measurement
of y is performed, we can automatically asign to it a definite value of the
momentum, according to (48).



Note that the condition F? > 1 is actually a condition between oper-
ators and their commutators/anticommutators. The Heisenberg uncer-
tainty principle states that

1
AyAAyB > 5 |(W[[A, BJ|V)|,

for any two hermitian operators (observables) in the Hilbert space of the
wave function W. In our case, and in Fourier space, this corresponds to
(42)

Ay (E) S () = FE )+ 2 10, LI, (59)

4

with [W) = |0,7n) the evolved wave function.
On the other hand, the phase F} can be written as

9 gr\
5 ( il — ’fk\QI;k)

= 2 (Wlp( ) (O ) + y(le. ) ) 0) (59)

and we have used that, in the semiclassical limit, we can write

(Ullye(m)P10) = | fil?, as well as p(k, n) = — i % y(k, ), see (48).
The above relation just indicates that, for any state W, the condition
of classicality (F) > 1) is satisfied whenever, for that state,

{yi(), pL)} > [ye(n), ph()],

which is an interesting condition.

F, = _E(gkfk; frar) = %
y(k,



MASSLESS SCALAR FIELD FLUCTUATIONS: TENSOR
METRIC PERTURBATIONS

The gauge invariant tensor fluctuations (gravitational waves) act as a
minimally-coupled massless scalar field during inflation, so we will study
here the generation of its fluctuations during quasi de Sitter.

Let us consider here the exact solutions to the equation of motion of a
minimally-coupled massless scalar field during inflation or quasi de Sitter,
with scale factor a = —1/Hn,

fo= e (1= (60

gk = (fk;_fk) —@ e M, (61)

which satisfy the Wronskian condition, gx fi+¢5 fr = 1. The eigenmodes
become

up = e M (1 — ﬁ) — e 7M1=k coghry, (62)
vp = e ﬁ — 1% ginh g (63)

which comparing with (24) and (25) provides the squeezing parameter,
the angle and the phase, as inflation proceeds towards kn — 07,

1

inhr, =tand, = —— 64
sinh rp, = tan dy o — —00, (64)
1 1 1
O, = kn+ arctan% —g, O = Z — éarctan% g ,(65)
while the imaginary part of the phase of the wave function becomes
1 1
Fr(n) = 5 sin 2¢y, sinh 2r;, = % — —00. (66)

The number of scalar field particles produced during inflation grow ex-
ponentially, nj, = |B|> = sinh®r, = (2kn)~? — oo.

Thus, through unitary evolution, the fluctuations will very soon enter
the semiclasical regime due to a highly squeezed wave function. The
question which remains is when do fluctuations become classical?



HUBLE CROSSING: SUPERHORIZON MODES

As we will see, the field fluctuation modes will become semiclassical
as their wavelength becomes larger than the only physical scale in the
problem, the de Sitter horizon scale, Appys = 2ma/k > H 1.

Therefore, let us consider the general solution to Eq. (21) for the su-
perhorizon modes (k < aH),

feln) = Ci(k)a+ Co(k)a [" dny = Cy(k)a—C (k)i

k1) = L1 2 CL2(77')_ 1 2\F) 5y
We can always choose Ci(k) to be real, while Cy(k) will be complex
in general. The first term corresponds to the growing mode, while the

(67)

second term is the decaying mode.
Integrating out g from (22), one finds

9un) =i Colk) - —i CL(R) K [ o d =i Oo(k) L —i Cu(h) o

where we have added a k? term for completeness. To second order in k2,

68)

the Wronskian becomes
]{2
a?H?

Comparing with the exact solutions (60), we find, to first order,

Hy, i k32
Ci(k) = : Co(k) = — : 70
where Hj, is the Hubble rate at horizon crossing, kn = —1, i.e. when the

perturbation’s physical wavelength becomes of the same order as the de
Sitter horizon size.



We are now prepared to answer the question of classicality of the
modes. Let us compute the wave function phase shift
k%a 1

|Fy| = [Im(f; gr)| = |Ci(k) o T \02(]6)’2@ (71)

— Ci(k) ReCh(k) (1+ ul ) (1)

a’H?

Since only the first term remains after kn — 0, we see that |Fj| > 1
whenever

2
Ci(k) = % > /cTHa = Aphys = 27r7a > e = %T (73)
Therefore, we confirm that modes that start as Minkowsky vacuum well
inside the de Sitter horizon are stretched by the expansion and become
semiclassical soon after horizon crossing, and their amplitude can be
described as a classical Gaussian random variable.

Furthermore, the fact that the momentum is immediately defined once
the amplitude for a given wavelength is known, implies that there is a
fixed temporal phase coherence for all perturbations with the same wave-
length. As we know, this implies that inflationary perturbations will in-
duce coherent acoustic oscillations in the plasma just before decoupling,
which should be seen in the microwave background anisotropies as acous-

tic peaks in the angular power spectrum.



ANISOTROPIES OF THE MICROWAVE BACKGROUND

The Universe just before recombination is a very tightly coupled fluid,
due to the large electromagnetic Thomson cross section. Photons scat-
ter off charged particles (protons and electrons), and carry energy, so
they feel the gravitational potential associated with the perturbations
imprinted in the metric during inflation. An overdensity of baryons (pro-
tons and neutrons) does not collapse under the effect of gravity until it
enters the causal Hubble radius. The perturbation continues to grow until
radiation pressure opposes gravity and sets up acoustic oscillations in the
plasma. Since overdensities of the same size will enter the Hubble radius
at the same time, they will oscillate in phase. Moreover, since photons
scatter off these baryons, the acoustic oscillations occur also in the pho-
ton field and induces a pattern of peaks in the temperature anisotropies
in the sky, at different angular scales.

Three different effects determine the temperature anisotropies we ob-
serve in the microwave background:

Gravity: photons fall in and escape off gravitational potential wells,
characterized by ® in the comoving gauge, and as a consequence their
frequency is gravitationally blue- or red-shifted, v /v = ®. If the gravi-
tational potential is not constant, the photons will escape from a larger
or smaller potential well than they fell in, so their frequency is also blue-
or red-shifted, a phenomenon known as the Rees-Sciama effect.

Pressure: photons scatter off baryons which fall into gravitational
potential wells, and radiation pressure creates a restoring force inducing
acoustic waves of compression and rarefaction.

Velocity: baryons accelerate as they fall into potential wells. They
have minimum velocity at maximum compression and rarefaction. That
is, their velocity wave is exactly 90° off-phase with the acoustic compres-
sion waves. These waves induce a Doppler effect on the frequency of the
photons.



4 11Cv UUllllJCl avul v O/lllDUblUle 111U uv v Uj LI1IUOUL Llll UL U1l1UUULO 1o uvlilul UliuUl L

given by
0T to 1op r-v
?(r) = (I)(I', tdec) + 2 /tdec @(I’, t)dt + 5?(1‘, tdec) — 76 . (1)

Metric perturbations of different wavelengths enter the horizon at differ-
ent times. The largest wavelengths, of size comparable to our present
horizon, are entering now. There are perturbations with wavelengths
comparable to the size of the horizon at the time of last scattering, of
projected size about 1° in the sky today, which entered precisely at de-
coupling. And there are perturbations with wavelengths much smaller
than the size of the horizon at last scattering, that entered much earlier
than decoupling, during the radiation era, which have gone through sev-
eral acoustic oscillations before last scattering. All these perturbations
of different wavelengths leave their imprint in the CMB anisotropies.

The baryons at the time of decoupling do not feel the gravitational
attraction of perturbations with wavelength greater than the size of the
horizon at last scattering, because of causality. Perturbations with ex-
actly that wavelength are undergoing their first contraction, or acoustic
compression, at decoupling. Those perturbations induce a large peak in
the temperature anisotropies power spectrum. Perturbations with wave-
lengths smaller than these will have gone, after they entered the Hubble
scale, through a series of acoustic compressions and rarefactions, which
can be seen as secondary peaks in the power spectrum. Since the surface
of last scattering is not a sharp discontinuity, but a region of Az ~ 100,
there will be scales for which photons, travelling from one energy con-
centration to another, will erase the perturbation on that scale, similarly
to what neutrinos or HDM do for structure on small scales. That is
the reason why we don’t see all the acoustic oscillations with the same
amplitude, but in fact they decay exponentialy towards smaller angular
scales, an effect known as Silk damping, due to photon diffusion.



THE SACHS-WOLFE EFFECT

The anisotropies corresponding to large angular scales are only gen-
erated via gravitational red-shift and density perturbations through the
Einstein equations, dp/p = —2® (for adiabatic perturbations); we can
ignore the Doppler contribution, since the perturbation is non-causal. In
that case, the temperature anisotropy in the sky today is given by

or 1

T (0,9) = 5@(%8) Q(10,0,¢) + 2/777:; dr ®'(ng — ) Q(r,0,0), (2)

where 1y is the coordinate distance to the surface of last scattering,
i.e. the present conformal time, while g ~ 0 determines its comoving
hypersurface. The Sachs-Wolfe effect (2) contains two parts, the intrinsic
and the Integrated Sachs-Wolfe (ISW) effect, due to the integration along
the line of sight of time variations in the gravitational potential.

In linear perturbation theory, the scalar metric perturbations can be
separated into ®(n, x) = ®(n) Q(x), where Q(x) are the scalar harmon-
ics, eigenfunctions of the Laplacian in three dimensions,

V2lem(7“, (97 ¢) — _kQ lem(T, 87 ¢)

These functions have the general form

Qrim(r, 0, ¢) = U (r) Yin (0, 6) (3)

where Y},,,(0, ¢) are the usual spherical harmonics, and the radial parts
can be written (in a flat Universe) in terms of spherical Bessel functions,
[ (r) = \/% k 5;(kr). On the other hand, the time evolution of the metric
perturbation during the matter era is given by

" +3HD +a’NDP —2KD=0. (4)

In the case of a flat universe (K = 0) without cosmological constant,
the Newtonian potential ® remains constant during the matter era and
only the intrinsic SW effect contributes to d7/T. In case of a non-
vanishing A, since its contribution is negligible in the past, most of the
photon’s trajectory towards us is unperturbed. We will consider here the
approximation ® ~ constant during the matter era.
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Hubble scale during inflation contributes to the temperature anisotropies
on large scales as

0T 1

T0.6) = SP9)Q = TRQUMO.Y) = 3 X anYin(0.9),
[=2m=—I (5)

where we have used the fact that, at horizon reentry during the matter
era, the gauge-invariant Newtonian potential & = %R is related to the
curvature perturbation R at Hubble-crossing during inflation.

We can now compute the two-point correlation function or angular
power spectrum, C(6), of the CMB anisotropies on large scales; defined
as an expansion in multipole number,

or*,  oT

C(h) = <? (n)?(n/)>n.n/:m€ _ E ZZ (2 4+1)C, P(cosh), (6)

where Py(z) are the Legendre polynomials, and we have averaged over
different universe realizations. Since the coefficients a;,, are isotropic (to
first order), we can compute the C; = (|ag,|*) as

47'(' o0 dk .
25 7 PR(k) JZQ(kUO) : (7)

In the case of scalar metric perturbation produced during inflation, the

) _

scalar power spectrum at reentry is given by Pr(k) = A%(kno)" !, in
the power-law approximation. In that case, one can integrate (7) to give

I3 F[l — 2+ 5]
i = 25 5 STE — Il +2 - 2517 ®

L+ 10 A%
om 25

This last expression corresponds to what is known as the Sachs-Wolfe

= constant,  for n=1. (9)

plateau, and is the reason why the coefficients C; are always plotted
multiplied by I(l + 1).



THE TENSOR PERTURBATION SACHS-WOLFE EFFECT

Tensor metric perturbations also contribute with an approximately
constant angular power spectrum, [(I + 1)C). The Sachs-Wolfe effect for
a gauge-invariant tensor perturbation is given by

—(0.0) = [\ dr W (no = 1) Qui(r, 6, 6), (10)

where @), is the rr-component of the tensor harmonic along the line of
sight. The tensor perturbation hy(n) during the matter era satisfies

"+ 3H A, A (K* 4+ 2K) by, =0, (11)

which depends on the wavenumber k, contrary to what happens with the
scalar modes, see Eq. (4). For a flat (K = 0) universe, the solution to
this equation is hi(n) = h Gi(n), where h is the constant tensor metric
perturbation at horizon crossing and G(n) = 3 j1(kn)/kn, normalized
so that G(0) = 1 at the surface of last scattering. The radial part of the
tensor harmonic (), in a flat universe can be written as

- (L= DI+ 1)1 +2)] ju(kr)
() = 5 .

2 (12)

The tensor angular power spectrum can finally be expressed as

T i+ )0+ 2) “d]f

w0 g Jo(wo — x)ji1(2)
o (xg — x)x?

o) = Pk I5,  (13)

Iy = (14)
where z = kn, and Py(k) is the primordial tensor spectrum. For a scale
invariant spectrum, ny = 0, we can integrate (13) to give

Ty T 4872

[(1+1)C %(1 + e

with B; = (1.1184,0.8789,...,1.00) for [ = 2,3,...,30. Therefore,
[(I+1) CZ(T) also becomes constant for large [. Beyond [ ~ 30, the Sachs-
Wolfe expression is not a good approximation and the tensor angular

— ) A% B, (15)

power spectrum decays very quickly at large [.



THE CONSISTENCY CONDITION

In spite of the success of inflation in predicting a homogeneous and
isotropic background on which to imprint a scale-invariant spectrum of
inhomogeneities, it is difficult to test the idea of inflation. Before the
1980s anyone would have argued that ad hoc initial conditions could
have been at the origin of the homogeneity and flatness of the universe
on large scales, while most cosmologists would have agreed with Harri-
son and Zel'dovich that the most natural spectrum needed to explain
the formation of structure was a scale-invariant spectrum. The surprise
was that inflation incorporated an understanding of both the globally ho-
mogeneous and spatially flat background, and the approximately scale-
invariant spectrum of perturbations in the same formalism. But that
could have been a coincidence.

What is unique to inflation is the fact that inflation determines not just
one but two primordial spectra, corresponding to the scalar (density) and
tensor (gravitational waves) metric perturbations, from a single continu-
ous function, the inflaton potential V' (¢). In the slow-roll approximation,
one determines, from V' (¢), two continuous functions, Pr (k) and P,(k),
that in the power-law approximation reduces to two amplitudes, Ag and
Ap, and two tilts, n and np. It is clear that there must be a relation
between the four parameters. Indeed, one can see from Eqs. (15) and (9)
that the ratio of the tensor to scalar contribution to the angular power
spectrum is proportional to the tensor tilt,

ci" 25 48w

——)2e >~ =2 : 16
1 = g\ ggg )2 2w (16)

This is a unique prediction of inflation, which could not have been pos-
tulated a priori. If we finally observe a tensor spectrum of anisotropies in
the CMB, or a stochastic gravitational wave background in laser interfer-
ometers like LIGO or VIRGO, with sufficient accuracy to determine their
spectral tilt, one might have some chance to test the idea of inflation, via
the consistency relation (16).



4 U1 UllLo LllUllL\/llU’ VKVl VOLUL1LU1Y Ul Uldlyu 1111uUl UVVOUYV o U(AJ\/L\&LU[J.LLU LLLIV VUL U

pies suggest that the Sachs-Wolfe plateau exists, but it is still premature
to determine the tensor contribution. Perhaps in the near future, from
the analysis of polarization as well as temperature anisotropies, with the
CMB satellites MAP and Planck, we might have a chance of determining
the validity of the consistency relation.

Assuming that the scalar contribution dominates over the tensor on
large scales, i.e. R < 1, one can actually give a measure of the amplitude
of the scalar metric perturbation from the observations of the Sachs-Wolfe
plateau in the angular power spectrum,

0+ 191" A
l = 2 = (1.0340.07) x 107, (17)

2T 3
n = 1.02+0.12. (18)

These measurements can be used to normalize the primordial spectrum
and determine the parameters of the model of inflation. In the near
future these parameters will be determined with much better accuracy.



THE ACOUSTIC PEAKS

Before decoupling, the photons and the baryons are tightly coupled
via Thomson scattering. The dynamis of the photon-baryon fluid is
described by a forced and damped harmonic oscillator equation for the
baryon density contrast,

5g+HHiR5; + Kk o = F(dy), (19)
where R = 3pp/4p, is the baryon-to-photon ratio, ¢? = ¢*/3(1 + R)
is the sound speed of the plasma, and F(®y) is the external force due
to the gravitational effect of dark matter and neutrinos. Baryons tend
to collapse due to self-gravitation, while radiation pressure provides the
restoring force, setting up acoustic oscillations in the plasma. Because of
tight coupling, 0, = 30¢(k,n), and the baryon oscillations give rise to
oscillations in the temperature fluctuations ©y. The higher the baryon
fraction R, the higher the amplitude of the oscillations. The external
gravitational force displaces the zero-point of oscillations, which makes
higher the amplitude of compressions versus rarefactions.
At decoupling there is a freeze out of the oscillations. The microwave
background is like a snapshot of the instant of last scattering, where each
mode k is at a different stage of oscillation,

®1(0) cos kry adiabatic,

20
Si(0) sin kr isocurvature , (20)

Oo(k,m) oc (1+ R)~/1 {
where ry = [ cydn ~ ¢4 Nqee i the sound horizon at decoupling. These
fluctuations induce acoustic peaks in the Angular Power Spectrum that
correspond to maxima and minima of oscillations. For adiabatic and
isocurvature perturbations, the harmonic peaks appear at wavenumber
/@(;4) = N /CsMNdec and I%(LI ) = (n 4 1/2)7/cNdec, respectively. In particu-

lar, the angle subtended by the sound horizon at decoupling, 8, = rs/d 4,
corresponds to a multipole number (e.g. for adiabatic perturbations)

nwt  nm (QM )1/2 , dec (1 + zgee) 21|V 2d 2
0, 2c, \[Qk| O Qa4 Qu(l + 2)3 + Qi (1 + 2)2H?



INFLATIONARY MODEL BUILDING

For the moment, observations of the microwave background anisotro-
pies suggest that the Sachs-Wolfe plateau exists, but it is still premature
to determine the tensor contribution. Perhaps in the near future, from
the analysis of polarization as well as temperature anisotropies, with the
CMB satellites MAP and Planck, we might have a chance of determining
the validity of the consistency relation. Assuming that the scalar con-
tribution dominates over the tensor on large scales, i.e. r < 1, one can
actually give a measure of the amplitude of the scalar metric perturbation
from the observations of the Sachs-Wolfe plateau in the angular power

spectrum,
1/2
[(1+1)C" A
DG A5 34 0.07) x 107, (1)
27 i)
n = 0.964 0.05. (2)

These measurements can be used to normalize the primordial spectrum
and determine the parameters of a particular model of inflation. In the
near future these parameters will be determined with much better accu-
racy, to less than a percent.

In the next sections we will consider specific models of inflation. The
formulae we will be using are

1 (V'Y 1 (V"
€_M<V) ”—Rz(v) 3)
¢ Kdo
N - ¢end \/ 26 (4)

together with the formula for the amplitude and tilt of scalar and tensor

anisotropies
k H
Ag = —(——, n =1+ 2n — Ge 5
$ T Vo L )
2
Ap = \/_HH, nr = —2¢, r==2rnr  (6)

al



POWER-LAW INFLATION

V(p)=Voe P B <1 for inflation

2 (OH\*
SH0) = = (55 ) +#V()
H(p) = Hoye 259 = é%;[ = — %6/{ = const

K 3 1
H = —V, (1 — ) where V= M*

3 6
2 (H'\* 1,
= —|—=| ==0<1
¢ K2 H) 26
2 (H"\* 1
b = —|—| ==-p*°<1
K2 H) 25
H 1 =1 2
62—ﬁ2562 = a o tP —/?p:@
€ =0 = — = const
p

_ [Pend @ _ Kk N
N _/qb \/276 — 6<¢end gb) = 065

k H
Ag= —— " =5x%x107° =N M ~1073M
S \/2€ 2T P
65— 2 2
n—1:2< 6):——
1—e p—1

In — 1| < 0.05 = p>4l

(10)

(1)
(12)
(13
(14
(15
(16)
(1)

(18)

(19)



122 2N’f_2 2 42
V(p)=-m"¢" = H* ~—m
2 6
1 (V2 Mp  Mp
= — =] =—=—=1 = ¢ ~
2/@2<V) K27 Pend 2y 3.5
rvnyo2 1
 Rk2\V /<;2qb2_€_2N
¢ 212
o rdg (w)? K¢
_ M (2 = = 6.4M
/(Zsend 26 2 Qbend 4 ¢65 g
Kkm K2¢? 4 m
Ag=——~—~—" =N |——=5x107" =
S V6 4m 3m Mp
m = 1.2 x 107°Mp = 1.4 x 10" GeV
2
=142 —6e = 1 ——~0097
n + 21 € N
4 H i
Ap = —— <1079
LT Mp
1
np = =2 = =5~ —0.016
ct 25 487 2
= L 1+ | 2%~ 2tnp =" ~0.1
e 9( 385) €T TN

CHAOTIC INFLATION (m~¢~)

(29)



CHAOTIC INFLATION (A¢?)

V(p) = 1A¢4 = H?’~ ”—2 Yok
4 12

L ls L, Me Mp
o2\ V] T R2? T w18
LV _ 12 s 3
w2V ) K22 2 2N
¢ 2 192
o Kdo (w)? K2
— Mk Y s ~o T o — 45M
¢end\/27€ 8 Qbend 8 ¢65 g
A\ 343 )\8N3/2
AS:('W _ ABNT 0 =
3 167 3 167
A = 13x10713
3

=14+2n—6e = 1 —-—=~=0.95
n + 27 € N

4 H

Ap = — — < 107°
T /T Mp
2
= 2= ——~—0.03
nr € N
ct 25 487 41
T 9(+385)€ TN



NATURAL INFLATION

V(g) = M* f* (1 - COS?) = 2M?* f* sinQQi
1 1 M?
= M 01+ O)
€= ol = 52«1
2622\ 1 — cos? 22 f2
1 COS;ZC5 1 1
o K2f2 1 cosf_E_W<<
Tend 2f .
1/2
Gend _ [ 267f°
== —] <1
6 - 2f 1+ 2k%f?
Q2 2 1/2 N
COSE = Ii—f e 2022
2f 1+ 2K2 f2

— 1 :zNyz - 1

€65 22 f2 e —1 < 2 f?
= 1 1

7765 €65 2/{,2]['2 = n 1 1{2 5

2 kM . N
As = @ o (262 f?) sinh TIE

If f=Mp = M=9x10""Mp=10"GeV

1
= 1 ——=0.96
" 1

LA M
r = —27'(' 'n,T e K/Qf’Q (e,‘i fé 1) ~ 002

(40)

(41)

(42)



S TAROBINSKI INFLATION

1 2 1 NG

R;w éguu R=k <Tuu>ren — m ( )Hw/ + Fg( )H;w ) (53>
(1) 2 1 2

H, =2V,V,—g.,V )R+2RR,, — §gWR (54)

2 1 - 1
®H,, = R}R\ — S Ry = 9w R Ry + 1gWR2 (55)

Substituting FRW metric and using the Slow Roll Approximation,
: M? H?

=—|1—-——==]. b6
o[- o

At first stage: HZ > M? = —H < M?/6 < H} = H ~ Hy =
const. However, H grows and becomes unstable. When H ~ M inflation
ends. Alternatively, one can study the evolution in the effective action
formalism, including higher derivatives,

S, ] dovTg g (R i) = [ dav=a 5 1R 67

which gives rise to Eq. (54). One can then write this action as the usual
Einstein-Hilbert action plus a scalar field, making use of the conformal

transformation
gw = F(R) gW:ea“(bgW = \/—gzemw\/—g (58)
- QK
Ry = Ry —— (9w V°0 +2V,V,0) (59)

R = e [R — 3ak Vi — §a2m2(8q§)2 (60)

The scalar field ¢ will have canonical kinetic term for a® = 2/3. From
the equations of motion one finds the relationship F(R) = f'(R), and
therefore the effective scalar potential becomes

1 f(R)—=Rf(R) R’ R \?
o2k (f(R)?  12k2M?2 (“W) (61)

V(o) =



V(g) = S (1- e—a“¢)2 = %M%Q (1+akp+...) (62

42
2002 \/gMP 2 Mp
= =1 = Gma= In(1 + o~
(e0rd — 1)2 Gend 4/ n{ \/§> 5.33
202(2 — e ® 3M M
_ a‘(2—e ):0 = 4= fPlQ_ < und
(e — 1P R
aKg __ ¢ 3
_ ¢ arg ~ e = e = 1.09Mp (63)
2&2 ¢end 4
1 1
~ Y —— 64
€65 22 N? M6 QN (64)
M M
akQg, = 4.46>1 = V(¢65> ~ 90?2 = Hgy ~ 7 (65)
alN 5 —6
Ag = 2—/<;H—5><10 = M ~24x10"Mp (66)
s
2
= 1 - —~097 67
n=1- (67)
V2 H 2 M
Ar = = —=2.7x107° 68
g T Mp ﬁMp s ( )
3 —4

r=—2rny~ 107" (70)



HYBRID INFLATION

A 1 1
V(g x) = (" = v") + 507" + om’¢’ (1)
The effective Higgs mass in the false vacuum (x = 0):
0*V _ M Vi

2 __ 242 2 _
X:a—><2—g¢—)\’0 =0 = ch g g

For large values of the inflaton, the Higgs has a large mass and sits at its

m (72)

minimum, and therefore the ffective potential during inflation is

1
Vig) = W+ §m2¢2 = Vy(1+ &) ~ V}, = const. (73)
27 Mo
Hy ~ |—— 74
’ 3 Mp (74)
m? m? 2m>

€ /@2\/05 < 7 2V = n +7/<;2V0 > (75)

Vo N
N = Wln% = ¢:¢C€n (76)

Inflation ends not because of the end of slow-roll (¢ = 1) but because
of symmetry breaking by the Higgs

H? H
Ag = == 97 N 55107 = (77)
2r¢p 2t M
3 M
g = | n-1)104 L ey (78)
8 v
Negligible gravitational waves:
r=—2nnp=4re K 2w (n—1) (79)

Many possibilities of scales of inflation: e.g. GUT scale,

= 10°Mp, A=0.1, ¢g=0.01, = n—1=0.035, (80)
M = 4x10°GeV, m=13x10%GeV, r=5x10"*  (81)

Q



RADIATIVE CORRECTIONS

Coleman-Weinberg potential

2
Lo Cfpt (32)

‘/1—100p - G472 - A2

Supergravity hybrid model (units kK = 1)
W = VADB(ET — v?) (83)
A
V = Moo — o2 + ol + o) + D —term (84

where ¢ = /2 ® is the canonically normalized field. The absolute mini-
mum appears at ¢ =0, 0 = o = v. For ¢ > ¢, = v/2v, the fields o, ¢
have a positive mass squared and stay at the origin. Inflation takes place
along that “flat” direction, which is lifted by radiative corrections. The
masses of bosons are m% = $A(¢? £ 2v?), while that of the fermion is
m3. = 1)\qz52 The loop corrected potential along the flat direction is

\? P2
Vico(9) = g5 |(¢° =20 In <¢A2v)

+ (¢*+20%)% In (¢2 X22U2>—2¢4 (¢2)] (85)

A
S V(g) ~ A <1+1n$> 6> 6. (36)
A2 A A 1
€T 1282 T 327N N="geg - oy &0
4 2 12
- j -5 (58)
Ag = (1675“0 " = v=56x10"GeV (89)
A
n:1———098 r=-—2mnp=4me=——<1 (90)
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e Basics of inflation

e Particle creation in classical backgrounds
o General Theory
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* Parametric resonance

* Parabolic cylinder functions
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o Gravitational particle creation in expanding
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» Efficiency of particle creation as function of
coupling and mass. Hartree approximation.

e Stochastic resonance

e Transition to classical regime.

o General Theory.




Lattice results.
» Efficiency of particle creation

o Non-thermal phase transitions.
Thermalization. Turbulence.
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o Particle creation during inflation.




QFT intime-dependent background
Lagrangian

L= 50,00"0 — s’
Hamiltonian

H=1¢—L=—[r*+(Ve)? +m?¢?] ,

DO | —

where

and
p(x, 1), 7m(y, )] =id(x—y). (1)

With

P(x,t) = (2i)3 / APk (t)e™

equation of motion reduces to
q.gk + wl%qbk =0 )

where

wi =k*+m?.



Constraintpy = ¢* . can be solved explicitly by

(27)3/2
\ ka
Now we want to substitute the pajp, 7} by the pair

{a,a’}. Decomposition forr which complements (2)
IS

Pk (1)

(ak(t) +al k(t)) . ®

) dSk’ WEk ikx
wet) =i [ G/ - a0, @

and canonical commuitation relations (1) will be satis-
fied if
[ax(t), af, ()] = 6(k — p).

The Hamiltonian in terms of the, and aL operators
becomes

1
H = 5 /d3kwk(alak + axal) .

This can be written a&l = H,.,t + Hyac(t), Where

Hport = /d3kwkaf{ak,

_ Vv 37, Wk
Hyao(t) = POE /d l-c?.



The Fock space

Let us introduce the vacuum stdatg) which has the
property

ax(t)|0;) =0,
and(0;|0;) = 1. Heret is some specified (but arbitrary

at this point) moment of time.
The state

) = (a)™*|0;)

can be interpreted as a state which contaipgarti-
cles, each with energy;.. Indeed

Hport|ng) = npwi|ng) -
and
N: /d3pa};ap

counts the number of particled]|ny) = ng|ng).
In the vacuum stateY), ), the energy takes its lowest
possible value at this moment of time

Hyac(t) = (04| H|Oy) .

All this procedure goes through evenuifis time
dependent.



Equations of motion

dak o (904{ )
dt — 81& +Z[H,a,k]. (4)

Let us invert relations (2) and (3)

72/ e (Vo)

e f/%w ka(rgbﬂﬁ)'

The original canonical variabld®, 7} do not have ex-
plicit time dependence&l¢/0t = dx /0t = 0, but the
wp. can be time-dependent. We find

ax =

day 1 wy,
E = —’I,u)kak + iw—k CLT k- (5)

We see that the solution of the equations of motion
for operators can be parametrized as

ak(t) = op(t)ax(0) + Bu(t)a’ . (0),
Lt = ap(t)al(0)+ Bi(Ha_x(0), (6)

ay(
with the initial conditionsw; (0) = 1, 8¢ (0) = 0. The
commutation relations should be satisfied at any mo-
ment of time, therefore. and 3 obey the constraint

agl? — Bk =1. (7)



An immediate consequence of the relations (6) is
that the system which was in vacuum initialty,(0)|0) =
0%, will not remain in vacuum as the time goes by

ax(1)|0) = Br(t)al , (0)[0) # 0

In particular, the number density of particles cre-
ated from the vacuum is

t) = HOIND) = 75

To find these quantities explicitly, we need to know
the functionssy (¢). To get this function we need only
to substitute Eg. (6) into Eq. (5), which gives

[ @Hsr. @

: 1w
ap = —iwpQg + ——k 5k :
. 1 wk %
By = —iwglr+ 5 on Q. 9)

With intial conditionsay(0) = 1, B, (0) = 0 and the
functionwy (t) being given explicitly, one can directly
solve this system of four ordinary differential equations
(say on the computer).

This is it for the general theory !

Ln situations like this, when the initial state of the systess
specified to be the vacuum, | omit corresponding subscripthe
vacuum vector, i.el0) = |0+=0).



Adiabaticity condition

The number of particles created during the time
At ~w; tis

1 (i \°
AlBul* | <= = | .
amf < (%)
The particle number is conserved approximately if

“k
2

< 1. (10)
W

Such approximately conserved quantities are called adi-
abatic invariants.



|n and out states

One can do field decomposition over time independent
operators as well

o(x,t) = / (2?‘_)];/2 (gk: () ax(0) ekx h.C.) :

Equation of motion for the mode functions
Jr + w,%gk =0.

Comparing to decomposition @f(x,t) over a(t) we
find immideately

k \/m ’

Wk + 19k (11)

\/2wk

A —

This gives in particular

.12 2 2
gk|” + Wi |9k 1

2w




Diagonalization of the Hamiltonian

H= / P (1) (af (0)asc(0) + ax(0)aL (0) )

+Fy(t)ax(0)a_x (0) + Fy (t)aj (0)a_(0)'],
where 0
Ey(t) = 5 (19%]? + wilgrl®)

L,
Fi(t) = 5 (9 + wigr) -

Bogolyubov’s transformation:
akx = apbk + ﬂkbik :

aL = oz}';bL + Brb_k .

QEk; — Wk

2wk (13)

Bk|? =



Examples. Parametric resonance.

1
Vvint(qﬁv Qp) — 592902¢2 )

©(t) = po cos(Mt),
1 1
wi(t) =K +m* + Sg*g( + 5 g% cos(2M1)

Equation for the mode functions can be reduced to
the standard form of the Mathieu equation

gﬂ + [Ar — 2gcos2z|gk =0, (14)
where ) o
g = 9 %o
4AM?Z
k2 + m?
A = e + 2q.

A>2q (15)



Examples.
Parabolic Cylinder Functions.

Analytical solutions of a large class of problems of par-
ticle creation in time varying background can be ex-
pressed in terms of the well studied parabolic cylinder
functions. These are solutions of the equation
d2y 1
0. 16
(3 Tl vy = (16)

0.1 Particle creation during “short” non-
adiabatic interval.

Assumew(t) goes through a minimum.

1
wi(t) = wilts) + 5w (L) (E = 1) + ..

Let us change the time variable to
= [202(8)]7 (£ —t.).
Equation for mode functions reduces to Eg. (16) with
wi (L)

\/2w2 7 *

Vi =

The answer:

|ﬁk|2 — e—27r1/k .



0.2 Gravitational particle production in
an expanding Friedmann Universe

In conformal reference frame
ds® = a*(t)(dr? — dx?)
¢ =x/a

the frequency is

/!

wi = k* + m?a® — %(1—65),

where is coupling to curvature%{Rgb.

In radiation dominated univers€ = 0 anda(n) =
Hyt (assumingi(7g) = 1). We again obtain equation
for Parabolic Cylinder Functions with

k2
2mH0 .

Ve =

Therefore

o

mHO)
a3
The adiabatic regime starts at= 7, = 1/v/mH,.

Therefore, particles are created whén> m. In gen-
eral,

n=1.495 x 1073 (

3

m
a



Schroedinger picture of
the evolution

FindU(t) such that
ar(t) = UT(t)ar(0)U(t).
Solution of the Schroedinger equations of motion

[¥(t)) = U(#)[4(0)) .

(Note, |y (t)) is called Squeezed state.)
Clearly, vacuum at timeis given by

0:) = UT(1)[0)

Schroedinger picture of the evolution

Since we knowu(t), we can also find
Uar(0)UT = o ax(0) — Bra’ (0).

This product annihilateg)(¢)). Substitutinga for the
field and the conjugate momenta gives

(o — Br)wr i + i(af + Br)mi
V ka .

(note: ¢ andmy, should be taken at the initial moment
of time.)

Uai,(0)UT =



(t)) satisfies Schroedinger equation

(e + imic) [ (1)) =

where iy
0, = k
g Oék + ﬁk
and
Tk = —1 0
k — 8¢—k ’

This equation is easy to solve
¢(¢k,t) — o 2kP_xPx _ e—Qk|¢k|2 .

In particular, this gives for the probability distribution
of field values

P, t) = [0(d, t)|? = o oxl*/lgrl®



Fermions

Heisenberg equations of motion give

, , N km 5
A — — MWL —5
202"k
: km
. %k
By = —twifBr — —5 0 -
Qw% k

In terms of mode functions:
Us + (w2 +im)Us =0.
we have

wi £m+ImULUL)

Bk|? =

2wk



Examples. Coupling to the classical
scalar field.

Ly = gpip.
The effective mass of the fermion field
Megt () = my + go(t) -

Since creation occurs ai.g = mx + go(n) = 0, we
can disregard details of evolution and write

Meff = ggb*/ n
Equation for mode function reduces to
w4+ (p*—i+1mHu=0

wherep = k/+\/gd.., T =n+/g¢., and’ =d/dr.

Solutions are Parabolic Cylinder functions. Using its
properties we find

n(k) = exp (—7k*/g¢,)

E.g., for harmonic oscillations in flat space-time this
gives




o1 b
10-2 % é
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< o}
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¢

Figure 1: Solid line: numerical integration of complete
problem withg = 10%, mx /m, = 100. Dotted line:
analytical approximation based on Parabolic Cylinder
functions.




REHEATING AFTER INFLATION

One of the fundamental quests of cosmology is to understand the ori-
gin of all the matter and radiation present in the universe today. We
have seen how inflation produces a homogeneous and flat background
space-time, and imprints on top of it a set of scalar and tensor quan-
tum fluctuations that become classical Gaussian random fields outside
the horizon, with an approximately scale invariant spectrum.

Inflation also dilutes any relic species left from a hypothetical earlier
period of the universe, such that at the end of inflation there remains only
a homogeneous zero mode of the inflaton field with tiny fluctuations on
the homogeneous metric. That is, the universe is empty and very cold:
the entropy of the universe is exponentially small and the temperature
can be taken to be zero, S =T = 0.

Therefore we are left with the puzzle: How does the large entropy and
energy of our present horizon, S ~ 10%° and M ~ 10%M,, arise from
such a cold and empty universe? The answer seems to lie in the pro-
cess by which the large potential energy density present during inflation
gets converted into radiation at the end of inflation, a process known as
reheating of the universe.

This process was studied soon after the first models of inflation were
proposed and considered the perturbative decay of the inflaton field into
quanta of other fields to which it coupled, e.g. fermions, gauge fields, and
other scalars. Such couplings exist during inflation but play no role (ex-
cept for inducing radiative corrections, as we will discuss later), because
even if those particles were produced during inflation the exponential
expansion would dilute them almost instantaneously, and nothing would
be left at the end of inflation.

Let us write down the most general Lagrangian with couplings of the
inflaton to other fields and among themselves,

1 1,

L = %(@@)2 —Vi(p) + 5(8,»()2 — meXQ + %fXQR

+ (v 0, — my)p — hdiprp — %92¢2><2 —godx®, (1)



where g, h, £, etc. are small couplings (to avoid large radiative corrections
during inflation); o is the possibly finite vev of the inflaton, and we have
shifted the inflaton potential by ¢ — 0 — ¢, such that the minimum is
at ¢ = 0 and the potential can be expanded around the minimum as

V(g) = g+ 04", 2)

where m is the mass of the inflaton at the minimum. In chaotic inflation
of the type m2¢? or \¢*, this mass and self-coupling are bounded by
observations of the CMB to be

m~10° GeV, AS1071. (3)

We will consider this mass to be much larger than that of the other
fields to which it couples: m? > mi,m?p > g?0¢, ho. Also, the end
of inflation occurs in these models when H ~ m, and subsequently, the
rate of expansion decays as H ~ 1/t < m.

Let us compute the evolution of the inflaton after inflation, whose
amplitude satisfies the equation (we are neglecting here the couplings to
other fields, but we will consider them later)

6+ 3H(t)p +m’p =0, (4)
whose solution is oscillatory,

o(t) = P(t) sin mt, (5)

3/2

, as we will

with the amplitude of oscillations decaying like & ~ a~
prove now. Consider the average energy density and pressure of the

homogeneous inflaton field over one period of oscillations,

() = J(#) +om* (@) = mP (1) (o’ mit) + (sin’ma)), (6)

L, - 1 1
(1) = £(6%) — m?(6?) = smB (1) (cos’ mt) — (sin®mt)) =0 (7)
where we have neglected the change in ®(¢) due to the condition m > H

during reheating. The fact that an oscillating homogeneous scalar field
behaves like a pressureless fluid means that the universe during that



period expands like a matter dominated universe,

: 1

p+3H(p+p) =0 =  p=m®@t)~a”, ()
and therefore ® ~ a=3/2 ~ ¢t~1. That is, a homogeneous scalar field os-
cillating with frequency equal to its mass can be considered as a coherent
wave of ¢ particles with zero momenta and particle density

1
Ng = Pp/Mm = §m<I>2 ~a?, (9)

oscillating coherently with the same phase.

Until now we have considered only the effects of expansion, and ignored
the effects due to the production of particles from the inflaton. This can
be accounted for by including, in the equation of motion, the denominator
of the QFT propagator,

¢+ 3H(t)d + (m? +TI(w))p =0, (10)

where II(w) is the Minkowski space polarization operator for ¢ with
four-momentum k* = (w,0,0,0), where w = m. The real part of
the polarization operator can be neglected (due to the small couplings),
Rell(w) < m? However, due to phase space, if the frequency of os-
cillations satisfies w > min(2m,, 2my), then the polarization operator
acquires an imaginary part,

ImII(m) =mTy, (11)

where I'y is the total decay rate of the inflaton, and we have used the
optical theorem (i.e. unitarity) to relate both quantities at the physical
pole, w = m.

The total decay rate can be written as a sum over partial decays,

Ly =3T(¢ = xixi) + ZT(d — dinhi) , (12)
49)2 _ B2
T(¢ — xixi) = 89;17)71 o Do = hihy) = é:z : (13)
2 4,2
ro="0"em,  Wp=s@+%%)

8 z m?2



The evolution of the inflaton during the period of oscillations after infla-
tion can be described through the phenomenological equation

¢+ 3H(t)p+Tyd+m2¢p =0, (15)

which includes the decay rate I'y as a friction term giving rise to the
damping of the oscillations due to inflaton particle decay. It assumes the
inflaton condensate (the homogeneous zero mode) is composed of very
many inflaton particles, each of these decaying into other particles to
which it couples. The solution to this equation is given by (5) with

D(t) = bpe b/ 3H gttt B0 ryr. (16)
t

where we have used H = 2/3t.
We can now compute the evolution of the energy and number density
of the inflaton field under the effect of particle production,

d

@(Pcpa?’) = =Ty pga’, (17)
d
7(nga’) = —Tynga’, (18)

which simply states the usual exponential decay law for particles with
decay rate I'. Initially, the total decay rate is much smaller than the rate
of expansion, I'; < 3H = 2/t < m, and the total comoving energy and
total number of inflaton particles is conserved, their energy and number
densities decaying like a matter fluid, p, ~ mmng ~ a™>.

Eventually, the universe expands sufficiently (this may take many
many inflaton oscillations) that the decay rate becomes larger than the
rate of expansion, or alternatively, the inflaton life-time, 74 = Fgl, be-
comes smaller than the age of the universe, 75 < ty = H~!, and the
inflaton decays suddenly (in less than one Hubble time), releasing all its
energy density py into relativistic particles y and v, in an exponential
burst of energy. Subsequently, the produced particles interact among
themselves and soon thermalize to a common temperature. This process
is responsible for the present abundance of matter and radiation energy,

and could be associated with the Big Bang of the “old” cosmology.



At first sight it may seem paradoxical that the universe may have to
“wait” until it is old enough for the inflaton to decay, because we are
accustomed to very rapid decays in our particle physics detectors, where
life-times of order 10~'7s are possible, while our universe is 10*!7s old!
However, if inflation took place at energy densities of order the GUT
scale, the Hubble time of a causal domain at the end of inflation would
be of order 10*°s, which is many orders of magnitude smaller than even
the fastest decays of the inflaton, ~ 107%°s. So the probability that the
inflaton decays in such a short Hubble time is negligible, and the universe
has to wait until it is old enough that there is any probability of decay of
a single inflaton particle. Eventually, of course, once the universe is older
than the inflaton life-time, it (the inflaton) will decay exponentially fast
due to its constant decay rate I'y.

Let us now compute the reheating temperature of the universe that
arises from the thermalization of the products of decay of the inflaton.
Note that the process of reheating, once possible, is essentially instanta-
neous and therefore the energy density at reheating can be estimated as
that corresponding to a rate of expansion H = I'y. Since all that energy
density will be quickly converted into a plasma of relativistic particles,
we can estimate

3202 g2
R e L Y 19
p(tm) o 309( h) T s (19)
= T4 ~ 0.1 Fngp , (20)

where we have assumed g(T},) ~ 10*> — 103, Let us estimate this tem-
perature. If we substitute I'y = higm /87 with m ~ 10'* GeV, we find

Ton ~ 2 x 10" heg GeV S 101 GeV, (21)

where we have imposed the constraint heg S 1073 from radiative cor-
rections in chaotic type models. Let us estimate it: if we consider the
quantum loop corrections to the inflaton potential due to its coupling to
other fields like in the Lagrangian described above, we find

3q* 3q* h4
1674\ 16m4\ 1674

V(g) = %mzqﬁ (1+ ) + %b“ (1+ )+... (22



Therefore, the couplings of the inflaton to other fields cannot be very
large otherwise they would modify the amplitude of CMB anisotropies.
If we impose that the mass and self-coupling of the inflaton satisfy (3),
then the other couplings are bound to

3g°,h* < 167°X =  ¢g,h S 1077, (23)

For completeness, let us mention that in theories with only gravitational
interactions, like e.g. in Starobinsky model, the decay of the inflaton is
induced via gravity only and

m3

Tgray ~ ~—5 ~ 107 Mp = Ty, ~10° GeV. (24)
My

All this indicates that, although the energy density at the end of infla-
tion may be large, the final reheating temperature 7}, may not be higher
than 102 GeV, and thus the usually assumed thermal phase transition
at Grand Unification, which was the basis for most of the early universe
phenomenology, like production of topological defects, GUT baryogene-
sis, etc., could not have taken place.

We will see shortly that such phenomenology may be resucitated in
the context of preheating and non-thermal phase transitions, but for
the moment let us focus our attention onto two well differentiated and
concrete cases of ordinary reheating:

Reheating in chaotic inflation models

Consider a m?¢? model of inflation, for which the value of the inflaton
at the end of inflation is ¢enq = Mp/2+/7, and the corresponding energy
density

3m2 M3
167
On the other hand, CMB anisotropies require

Pend = ;V(gbend) — — (6.5 x 10" GeV)*. (25)

4
Ag=N |— —5x10° = mol4x108GeV, (26)
37TMP

while radiative corrections impose the constraint heg S 1073,



We are thus left with three time scales:

fose ~ ML ~ 10730
texp Z e_nil ~ 10_35 S (= lose K texp < td607 (27)
taee ~ Tl ~ 10755

so there are several oscillations per Hubble time, and we also expect many
oscillations of the inflaton field before it decays. This result is typical of
most high-scale models of inflation.

Reheating in low-scale hybrid inflation models

In this case, reheating occurs in very different circumstances. Most mod-
els of inflation occur at scales of order the GUT scale, because their
parameters are fixed by the amplitude of CMB anisotropies, dT /T ~
m/Mp ~ 107°. However, in models of hybrid inflation, which end due
to the symmetry breaking of a field coupled to the inflaton, and not
because of the end of slow-roll, it is possible to decouple the amplitude
of CMB fluctuations from the scale of inflation. For instance, consider
a hybrid model at the electroweak scale, where the symmetry breaking
field is the SM Higgs field, with a vev v = 246 GeV, a relatively strong
coupling to the inflaton, ¢ = 0.4, and a Higgs self-coupling A = 0.12,
giving rise to the following masses in the true vacuum

Mint = g ~ 100 GeV , my = V2 v ~ 120 GeV (28)

which are much larger than the rate of expansion at the end of inflation

m™m.,v
Hena = |5 i
T7N3 Mp

and therefore we can neglect it during the oscillations of the inflaton and
Higgs fields around the minimum of their potential.

~2x 107 eV < my (29)

The energy density at the end of inflation is

1
Pend = ém;?ﬂ ~ (102 GGV)4, (30)

which is very low indeed.



The couplings of the Higgs to matter could be large, e.g. the top quark
Yukawa h; ~ 1, although for such a low mass Higgs there is no phase
space for top perturbative production. On the other hand, the inflaton
may couple to other particles, so it is expected that their decay widths
be similar and both of order I' ~ 1 GeV. Naively, using (20), one would
thus expect that the reheating temperature be Ty, ~ 10° GeV, but that
is impossible because it would correspond to an energy density during
inflation much above the actual false vacuum energy, penq ~ (102 GeV)*.

Actually, since the rate of expansion is so low compared with the
other scales, we can ignore the decay in energy due to the expansion of
the universe, which was so important during chaotic inflation, and use
energy conservation to estimate

vt

en:—:—*T4 = Tr 2(
Pend A 309 rh h

15
272 g,

1/4
) v~42 GeV, (31)

where we have used g, = 106.75 as the effective number of degrees of
freedom of the SM particles. Note that this temperature is rather low, but
in fact we have no observational evidence that the universe has actually
gone through a thermal period with a temperature above this.

We are thus left with three time scales:

tose ~ mgl ~ 107%s
lexp ™ H1~1070g } = lose K tdee K texp (32)
tdec ~ F_l ~ 10_238

so there are many oscillations per Hubble time, but contrary to the case
of chaotic inflation models, here the decay time is much smaller than the
expansion time, because the universe is already quite old, so once the
inflaton and Higgs start oscillating they decay very soon via their usual
perturbative decay.



PREHEATING

The previous discussion falls under the name of perturbative reheat-
ing, because it assumes that the coherently oscillating inflaton will decay
as if it were composed on individual inflaton quanta, each one decaying
as described by ordinary QFT, with the perturbative decay rate com-
puted above. This was the standard lore during at least a decade since
it was first proposed in 1982. However, it was soon realized that the
inflaton at the end of inflation is actually a coherent wave, a zero mode,
a condensate made out of many inflaton quanta, all oscillating with the
same phase, and non-perturbative effects associated with this condensate
were bound to be important for the problem of reheating. In fact, a few
years ago, in a seminal paper, Linde, Kofman and Starobinsky proposed
a new picture of reheating, which has become known as preheating. I will
describe these new developments in the following sections. They make
use of the well studied problem of particle production in the presence of
strong background fields, whose formalism we have already encountered
for the analysis of the generation of metric fluctuations during inflation.
In this case, instead of a quantum field evolving in a rapidly changing
gravitational field (like during inflation), we have a field coupled to the
inflaton, which has a rapidly changing frequency or mass due to the in-
flaton oscillations.

We will first describe the Bogolyubov formalism for a single scalar
field with a time-dependent mass and then particularize to the case of
the inflaton oscillations after inflation. Later on, we will also extended
the formalism to fermions, which can also be produced at preheating.

Consider a massive scalar field ¢ with Lagrangian density

= —cb - —(V¢) - —m K (33)
: : : : oL .
which gives a canonically conjugate momentum m = 5o ¢, and the
Hamiltonian
- 1
H=nmp—-L = —qﬁ + - (ng) m2e? . (34)

2



We can treat the fields as quantum fields and define the usual equal
time commutation relation

(p(x,1), m(x",t)] =i6®(x —x), (35)
as well as expand in Fourier components,
ox.0) = | i (0 . 36)
The field mode ¢y(t) satisfies the harmonic oscillator equation
O+ wi dr =0, (37)
wi(t) = k% +mA(t), (38)

where the time dependence of the oscillation frequency comes through
that of the mass. We will assume that the field is real, so we should impose
the constraint ¢y (t) = ¢*,(t). Following the quantization condition
(35), we can write the field and momentum operators in terms of time-
dependent creation and annihilation operators,

bult) = \/21@ (ax(t) +al 4 (1)),

(39)

w

m(t) = —ig (ak<t) + aT—k@)) )

satisfying the usual commutation relation, Vt,
ax(t), af()] = 6@ (k - K),
and in terms of which the Hamiltonian becomes
H = % [ &k [merl + wi pudi]
— %/d?’k Wi (aLak + akaL) = Hpart + Hyac(), (40)
where

Hoyat = /d?’kwka;r{ak, (41)
Vv 3 Wi
Hoaolt) = (2 )? /d ke (42)




We can then define a number operator for these fields

N = [ d®k alax, (43)
and a Fock space with vacuum state defined as
ax(t)[0;) = (0¢0) =1, (44)
and particle states |ny) o (a})"[0,) satisfying
Hyare|ne) = npwp|ng) = Eglng) , (45)
Nlng) = ngng) . (46)

In the vacuum state |0;), the energy takes its lowest possible value,
Hyoo(t) = (0| H|0y).
We can compute the equations of motion as usual with

—QK = —+'é[H,ak]

where we can invert the relations (39)

D=L onlt) + —s=milt),
— \I;qﬁk - wk(t). o

In the Heisenberg picture, the original canonical operators { ¢, 7 } may

have no explicit time-dependence, but wy is indeed time-dependent, so
d W 4

%ak = —lwkax + Q—ka k- (48)

The solution to the equations of motion is

ax(t) uk(t) vi(t ax(0)
(’r ):(*() *U)(t (49)
aly(t) vi(t) wi(t) )\ aly(0)
The unitary evolution preserves the commutation relation (35) iff

Juel” — o[ =1, (50)

with initial condition :  |ug|* =1,  |u[*=0. (51)



If the initial state is the vacuum, |0) = |0;—), then
a0)|0) =0 = a(t)|0) = v(t) a4 (0)|0) 0 (52)

In particular, the number density of particles created from the vacuum
is
1 d’k
t) = —(0|N|0) = 2(t). 53
nlt) = 3 OIN10) = [ (555 () (53
In order to find the function n(t) explictly, we have to solve for uj and
v as a solution of

) —iwk ﬁ U
(uka)) B ( k<t>) -
0E(?) ﬁ iwp |\ vk(t)

It is customary to write the mode functions u; and vy is terms of the
usual Bogolyubov coefficients, {ax, Ok},

t t
Up = 6—2/ wkdt7 'UZ _ 6[{; e-H/ wdt (55)

Y

then the evolution equations (54) become

. ) t
d{k _ Zw_uf?k /Bk €+22/ wkdt’
T 50

- —Qi/ wkdt
Br = — ape

ka ’

which can be integrated in the adiabatic approximation, to give

nlt) = [ s ) = [ 5 18 (57

the number density of particles produced due to the time-dependent back-

ground field.



Alternatively, one can introduce the |in) and |out) states, and make
the field decomposition over time-independent creation and annihilation
operators {ax, aT_k},

d*k

px.t) = /( )3/2[fk() e+ h.c)
. d’Z/2 (fel)ax + Fr(t)aly) e, (58)
n(x,t) = [ (;T;/Q(gk(t) ax +gi(t)aly) e, (59)

where the mode functions f;(t) and gx(t) depend only on the modulus
k = |k|, thanks to the homogeneity and isotropy of the background fields.
These functions satisfy the equations of motion

fritwlfi=0, g=ify. (60)

Comparing with the former decomposition (39), we find the relation

1
Uk =7 (wr fr + gr)
1k (61)
v = (wrfr — gr)
k 2wk )
and viceversa
fi = —o—(ug + v})
k — k ’
ka k (62)
Wi «
gk = E(Uk’ - Uk) )
which gives for the occupation number
1 : Wk 1
)= B> = =—1fil* + | fil* — = 63

where we have used the Wronskian

i(fufi — fifi) =2Re(figr) =1 < |wl—|ul>=1. (64)



DIAGONALIZATION OF THE HAMILTONIAN
With the above decomposition, we can write the Hamiltonian as

H = [d°k [Ey(t)(af ax + ax af)

+Fy(t) axax + F(t) aga’y] (65)
where
Lo 20 £ 12 1
Er(t) = S(fel” + wil ful”) = wr [ne+5 ) (66)
1 .
R(t) = M+ uifd), (67
2 ) Wi
Ep(t) — B =" (68)
Let us now introduce a canonical Bogolyubov transformation
ax Uy, t Vg t bk
(T)( (t) ())(T) 69)
a_x vi(t) ui(?) b_y
Then
2B —w
9 k k
— = —— 70
B = =, (70
UL 2EL + wy
— = 71
Vi ZFI: ’ ( )
and the Hamiltonian becomes diagonal
H= /d3 5 (bh by + b b (72)

which can be decomposed into Hpm and Hy,, as before, see (41).



THE SCHRODINGER PICTURE

We can define the unitary evolution operator UT(t) = U~!(t), where
ih 0,U(t) = H U(t), such that time evolution determines

ax(t) = UT (1) ax (0)U(2) . (73)

The solution of the Schrodinger equation is the squeezed state

[9(t)) = U#)[(0)) - (74)
The vacuum at time ¢ is given by [0;) = UT(¢)[0). Let |1/(0)) be the
initial vacuum state |0). Then the operator
bi(t) = U#)ax(0)UT(t) = ut ay (0) — vy a' 1 (0) (75)
annihilates the state |¢(t)). Now let us use (47) to evaluate

( ¢r(0 7(0), (76)

and substitute into by (t)[1(t)) =

1 . % _
\/m [(uk — vk)wk qbk(O) + Z(Uk + Uk) Wk(o)] W}(t» -

Therefore, the evolved state satisfies the Schrodinger equation

Q2:(2) ¢ (0) + 1mr(0)]](2)) = 0, (77)
o up—wvy gp 11— 2iF()

Qp(t) = wy—~ Ik — , 78
R TR TT AT 7
where we have used g} fr = Re(g;fx) — iIm (figr) = 5 — i Re (f} ).
Using the operator definition 7, = —i5 f o= 62*’ we ﬁnd the solution
P(Gr, G 1) ~ e, (79)

) ) — |0k
Pk, 6, 1) = [9(on, 67, 1) ~ e TOP T (80)

The phase Fi(t) = Re(fifi) > 1 quickly becomes very large during
preheating, which ensures that the state becomes a squeezed state, with
large occupation numbers, described by the Gaussian distribution (80).



PARAMETRIC RESONANCE

We will consider here the case of a scalar field x coupled to the inflaton
¢ with Couphng ¢*¢*x?, which induces an oscillating mass term

m’(t) = m’ + g*¢°(t). (81)

The inflaton is assumed to oscillate like (5) with a frequency given by its
mass m, not necessarily much larger than the “bare” mass of the field y.
In that case, the frequency can be written as

wi(t) = k% + m} + g°®*(t) sin® mt (82)

and the mode equation (60) can be written as a Mathieu equation, where
z = mt, and primes denote differentiation w.r.t. z,

7+ (Ap — 2q cos 22) fr. =0, (83)
k2 +m? 292(t

Ay =—5%+2q, ¢="7 ) (84)
m2 4m?

The Mathieu equation is part of a large class of Hill equations (which
includes also the Lamé equation and many others) that present unstable
solutions for certain values of the momenta for a given set of parameters
{Ay, q}, with A > 2q. These solutions fall into bands of instability that
are narrow for small values of the resonant parameter ¢ < 1, but can be
very broad for larger values of q.

The solutions to the Mathieu eq. have the form fi(2) = e/ p(2),
with uj the Floquet index, characterizing the exponential instability, and
typically much smaller than one, although it could be as large as pimax =
0.28055; and where p(z) is a periodic function of z. The occupation
number can then be computed to be

ny(t) ~ e (85)

which can grow significantly in a few oscillations, if the growth index
is not totally negligible.

The effect of parametric resonance is similar to the lasing effect (or
light amplification by stimulated emission of radiation), where a large
population of particles is produced from oscillations of a coherent source.



NARROW RESONANCE

Let us consider first the case where m,, g® < m, or ¢ < 1. Then
the Mathieu equation instability chart shows that the resonance occurs
only in some narrow bands around Ay, ~ 12, [ = 1,2, ..., with widths in
momentum space of order Ak ~ m ¢; so, for ¢ < 1, the most important
band is the first one, Ay ~ 1+ g, centered around k = m /2.

The growth factor uy for the first instability band is given by

= (0 - ()’ 0

The resonance occurs for k£ within the range (1 £ §). The index uy

vanishes at the edges of the resonance band and takes its maximum value
pr = 4 at k = 3. The corresponding modes grow at a maximal rate
Xr ~ exp(gz/2). This leads to a growth of the occupation numbers (85)
as ny ~ exp(qgmt).

We can interpret this as follows. In the limit ¢ < 1, the effective mass
of the y particles is much smaller than m, and each decaying ¢ particle
creates two x particles with momentum k& ~ m/2. The difference with
respect to the perturbative decay ['(¢ — xx) is that, in the regime of
parametric resonance, the rate of production of y particles is propor-
tional to the number of particles produced earlier (which gives rise to an
exponential growth in time). This is a non-perturbative effect, as we will
discuss later, and we could not have obtained it by using the methods
described in the previous section, at any finite order of perturbation the-
ory with respect to the interaction term ¢?®?sin? mt. It is by solving the
mode equation (83) ezactly that we have found this result.

Note that only a very narrow range of modes grow exponentially with
time, so the spectrum of particles is dominated by these modes, while
the rest are still in the vacuum, produced only through the ordinary
perturbative decay process. Of course, the exponential production does
not last for ever: the universe expansion is going to affect the resonant
production of particles in two ways, leading to the end of the narrow
resonance regime.



First, the time-dependent amplitude of oscillations ®(t), which deter-
mines ¢, see (84), not only decays (~ t™1) due to the expansion of the
universe, but also due to the perturbative decay of the inflaton field,
P(t) ~ exp(I'yt/2). Therefore, the narrow resonance will end when the
usual perturbative decay becomes important, i.e. when gm < I'y.

Second, in the evolution equation (83), the momenta k are actually
physical momenta, which redshift with the scale factor as kpnys = £/a,
and therefore, even if a given mode is initially within the narrow band,
Ak ~ gm, it will very quickly redshift away from it, within the time
scale At ~ q H™!, preventing its occupation numbers (85) from growing
exponentially. Thus, the narrow resonance will end when ¢*>m < H.

Therefore, if the amplitude of inflaton oscillations decays like  ~ 1/t,
there will always be a time (typically a dozen oscillations) for which one
of the two conditions above will hold and the narrow resonance will end.

BROAD RESONANCE

If the initial amplitude of oscillations is very large, like in models of
chaotic inflation, in which ®; ~ Mp/10 and m ~ 107%Mp, then the
initial g-parameter could be very large,

252
g (I)o 21010 < 4
= ~ 1077 5 107, 7

where we have used the constraint due to radiative corrections (23). In

this case, the y particle production due to stimulated emission by the
oscillating inflaton field can be very efficient as it enters into the broad
resonance regime.
Particles are produced only at the instances of maximum acceleration
of the inflaton field, when ¢(¢) ~ 0, and
W
2

1 88
2> (88)

a relation known as the non-adiabaticity condition. When it holds, we
cannot define a proper Fock space for the y particles, and the occupation
numbers of those particles grow very quickly. We thus associate (88) with
particle production.



We will now describe how to compute the growth of modes and the
Floquet index in this regime, using the formalism developed above. We
can expand the quantum field x in Fourier components f; satisfying
the mode equation (60) with time-dependent frequency (82) and initial
conditions

11(0) = ﬂ%ke‘“kt, 0(0) = ifi(0) = we fu(0),  (89)

whose evolution in terms of the Bogolyubov coefficients is

ar(t) —i [t N Br(t) ot ot

t) = 90

=2, ¢ V2 ’ 0

ap(0) =1, Br(0) =0. (91)

And the occupation numbers are
1 . w 1
2 2 k 2
= = R 2 = = 2
ny(t) = | Br(t)] 2wk|fk| +5 | fi] 5 (92)

The inflaton field has maximum acceleration at ¢t = t; = jn/m, such
that sin mt; = 0. Between ¢; and ¢;4, the amplitude ¢(t) ~ ¢y = const,
so that the frequency wy(t) is approximately constant between succesive
zeros of the inflaton, and we can properly define a Fock space for x. At ¢;,
the amplitude changes rapidly, such that (88) is satisfied and we cannot
define an adiabatic invariant like the occupation number (92). Therefore,
let us study the behaviour of the modes x precisely at those instances
t =t;. We can expand the time-dependent frequency (82) around those
points (where the frequency has a minimum) as

1

wi(t) = wi(t;) + §w/3”(tj)(t — )"+ (93)
and make the change of variables
r= 2 ()] - ), (94)
o wity) KP4+ mi  Ay—2g

(95)

=
Il
I

w?'(t;)  2gm® 4,/q



The mode equation (60) around ¢ = ¢, then becomes

2 2
C;TJ;’“+(K2+Z)J”/€O, (96)
which can be interpreted as a Schrodinger equation for a wave function
scattering in an inverted parabolic potential. The exact solutions are
parabolic cylinder functions, W (—k?, 47), whose asymptotic expressions
are well known. Thus we have substituted the problem of parametric
resonance after chaotic inflation with that of partial waves scattering oft
successive inverted parabolic potentials.

Let the wave fi(t) have the form of the adiabatic solution (90) before
scattering at ¢;,

] aj —i|w ﬂj 1w
fé(t)=\/2’“7ke Jont . \/Q%ke*/’“dt, (97)

where the coefficients {a, 8]} are constant, for t,_; < t < t;.
After scattering off the potential at ¢;, the wave fj(¢) takes the form

41 al™! / dt A / dt
() = = =T (98)
ka Zwk
where the coefficients {a{fl, ,Z;H} are again constant, for ¢; <t < t;4,.

These are essentially the asymptotic expressions for the incoming and
the outgoing waves, scattered at ¢;. Therefore, the outgoing amplitudes
{ozf:rl, ,ZH} can be expressed in terms of the incoming amplitudes
{ai, ﬁﬁ} with the help of the reflection R; and transmission D, coeffi-

cients of scattering at ¢;,

J+1 il 1 Ry j —igd
R I R | (99)
J+1 i) By 1 J_+ig)
Oy ek D, Di )\ Bre™"k

where 6] = Otj w(t)dt, and

Ry =—ie ™ [1+ 627”"2]_1/2 ,
[Rel* +[Del* =1.  (100)
Dy = e~k [1 4+ 6—27”;2]—1/2 :



The k-dependent angle of scattering is

1
¢ = Arg F[§ + ik + k* (1 — Ink?). (101)
Simplifying (99), we find
a?jl 1+ 6_27"’2]1/2675"5/6 i o TR +2ib) ai
= | (102)
IJ€+1 —3 e—7m2—2i0k [1 4 6—27m2]1/26—iq5k 5]3{;

and therefore, using nj = |81|? and |od|?|BL? = ni.(n), + 1), we have
niﬂ _ 2kt (1+ 9p— 2K’ )ni
— 2™ 14 2| 20 (n] + 1)]Y/? sin 6], (103)
where 07, = 201 — ¢r. + Arg B — Argad,.
This expression is very enlightening. Let us describe its properties:

e Step-like. The number of created particles is a step-like function
of time. The occupation number between successive scatterings is
constant. In the first scattering (when n} = 0), we have

—27k?2 —W—kZ
ng=e =e ¥ < 1. (104)

e Non-perturbative. The occupation number (104) cannot be ex-
panded perturbatively, for small coupling, because the function e /9
is non-analytical at ¢ = 0. This is the form that most non-perturba-
tive effects take in quantum field theory.

e Infrared effect. For large momenta, the occupation number de-
cays exponentially, so even if there are bands at low momenta, i.e.
in the IR region, the high momentum modes will not be populated,

-1 J+1

2>t = nlenl~0. (105)

e Non-linear. For small momenta one may have production of par-
ticles with mass greater than that of the inflaton:
, K +m}

K™= m X St = nylarge if m? < mi < gmPy (106)



e Exponential boson production. In the case of bosons (we will
discuss the fermionic case later), the occupation number can grow
exponentially due to Bose-Einstein statistics, ny ~ exp(2uiz) > 1,

nl ™~ (1 + 26_27”“2) — 26_7”“2[1 + 6_2”“2]1/2 sin 6 | nj = &>V ]
which allows one to estimate the Floquet index py.

e Resonant production. Valid only for periodic sources. If scat-
tering occurs in phase, the incoming and outgoing waves add up
constructively, and we can have resonant effects. This occurs when
eg'ot is a semi-integer multiple of 7. In that case, it is possible that,
for some modes, nfl > n% This gives rise to a particular band
structure.

e Stochastic preheating. It may happen that the phase a mode
has acquired in a given scattering exactly compensates for the uni-
verse expansion in that interval and the phases destructively inter-
fere, decreasing the number of particles in that mode. This gives
rise to a stochastic growth of particles, where approximately 3/4 of
the time the particle number increases.

e Band structure. Different models of inflation give rise to different
evolution laws for the amplitude of inflaton oscillations, and therefore
to different mode equations (60). The corresponding Hill equations
(linear second order differential equations with periodic coefficients)
can have quite different band structures, e.g. those of Mathieu or
Lamé equations.

Even if we compute the complete band structure of the Mathieu or Lamé
equation and we determine the growth factors u; with great accuracy;,
the universe expansion will shift any given mode from one band to the
next, as the mode redshifts and the amplitude of inflaton oscillations
decreases: A mode startsin a given band, its occupation numbers increase
exponentially through several oscillations, and suddenly it falls out of the
band, until the expansion makes it fall into the next band, and so on until
it reaches the narrow resonance regime described above.



FERMIONIC PREHEATING

Not only bosons can be produced from the coherent oscillations of
the inflaton field. Although their occupation numbers cannot grow very
large because of the Pauli exclusion principle, the resonant production
of fermions at preheating can nevertheless create a wide spectrum of
particles with occupation number n; < 1 but a wide range Ak > m. We
will describe here the formalism of fermion production during preheating.
Consider a fermionic particle ¢ with mass

my = my + ho(t), (107)
satisfying the Dirac equation, in conformal time dn = dt/a,
_ i 3ad
(V= mp)p = |~ 0+ iy —my | =0, (108)

where v# are the Dirac matrices in Minkowsky spacetime.
Let us now redefine ¥ = a*?%1) to obtain the familiar form (m = m,)

(470, —am)¥ =0. (109)
We can then expand in Fourier components,

U(z) = | (;frf/ [t (k) 0, () + v (k, ) BE(—K)) €% (110)

r

where the sum is over spin components, and v.(k) = Cal(—k) for
the antiparticle amplitude. We can then impose canonical equal time
anticommutator relations,

{a,(k), al(k)} = {b,(k), bl(K)} = 6,56® (k — K, (111)

together with a fermionic vacuum defined by a,(k)|0) = b,(k)|0) = 0.
The spinors are normalized such that

ul (k) us(k, m) = ol(k, n) vs(k,m) = 26,5, (112)
ul(k, n) vs(k,m) =0, (113)

is preserved by the unitary evolution.



In the representation in which

]1 0 0 ]1 UL
0 — .= . and u = . (114
! (O —]1) ! (—]l O) U_ (114)

the equation of motion (109) becomes

wl + [wi £i(am)us(k) =0, (115)
wi = k* + a’*m?, (116)
kus =iu, Famuy, (117)

where we have chosen k along the third axis.
We can then write the Hamiltonian as

Hin) = [ de Wiagt = [ 3 [Bin)(al()a. 00) — b, (b} (k)

+ Fi(n)b(—k)a (k) + Ff (n)al(k)bl(—k)] , (118)

Ey = kRe(uiu-) —am(l —uluy) = —Im(uiul) —am  (119)
F, = g(ui —u?) —amuyu_ = Qllf(uJr + wiu?) (120)
E? + |Fi)? = wi. (121)

To provide the “quasi-particle” interpretation, we have to diagonalize
the Hamiltonian with a time-dependent canonical transformation, and
redefine new creation and annihilation operators,

a(k,n) = ax(n) a(k) + Br(n) b'(~k),
bl (k,n) = —Bi(n) a(k) + ai(n) bT(—k).
Imposing canonical anticommutation relations on @ and b, we find

| F.|? wy — By,

(122)

2
_ pu— 3 123
|Bk| ka(wk + Ek) 2Wp ( )
E —F
L (124)
B F; Ej — wy

o + [6k|* =1, (125)



The initial conditions

ue(0) = 1i%, (126)

u' (0) = —ikux(0) Fiamus(0), (127)

correspond to F}, = wy, F), = 0, and therefore to the no-particle vacuum.
With the Bogolyubov transformation (122), the (diagonal) normal-
ordered Hamiltonian becomes

Ho) = [ S w) [0 000 +5005K] . (129

We can define the “quasi-particle” vacuum by a(k)|0,) = b(k)|0,) = 0,
and then the number density of produced particles becomes

neln) = 1 (OIN]0) =

2m2a3

1 00 2 2
(77)/0 dk k* |Bi|* . (129)

We will now use this formalism to study fermion production at pre-
heating.

PARAMETRIC PREHEATING OF FERMIONS

Consider the case of fermions v coupled to the inflaton field at the
end of inflation, in which the fermion mass (107) changes with time
due to the inflaton oscillations (5). Let us parametrise these oscillations
as ¢(t) = ¢g f(t), where f is a periodic function. Then, defining the
resonance parameter /g = h¢o/m, we find

uj + [wi —iy/q flup =0, (130)
wi = k> + (my + /a4 ), (131)

where m,, = my/m, primes denote derivatives w.r.t. z = mt, and the
momentum £k is actually k/m, i.e. in units of the inflaton mass m.

This equation is very similar to that of the scalar field modes, except
that it has an imaginary potential. In fact, we can study the parametric
resonance regime here too by analysing the scattering of partial waves on
complex parabolic potentials.



Let us expand the frequency w; around the zeros of the inflaton oscil-
lation, i.e. at ¢;, as in Eq. (93), and make the change of variables

= (2 ()] (= t), (132)
5 k2 : Rty
ma sign f'(¢;) = (—1). (133)

The equation of motion then becomes

=
1l

L (=1 g = 134
dT2+(/<;—|—4 2( ))uk 0, (134)

whose solutions are parabolic cylinder functions with complex argument,
W (—k? + 4(—1)/,£7). The analysis of the scattering amplitudes per-
formed for the scalar particles can be used here by simply analytically

continuing .
K> — R’ = K* — %(—1)7 : (135)
with which the scattering matrix (99) becomes
a{fl [1 . 6—27m2]1/2€i¢k (_1)j+1 6—7m2+27l0k ai
= | (136)
l]c—H (_1)] e Tk —220k [1 L 6—27r/$2]1/2€—i¢k B]Jc
where the scattering angle is given by
1
b = ArgT[s + ik + R*(1 —InR?), (137)
and therefore, using nj = |82 and |o|?|BL2 = ni(n) — 1), we find

1 — 2 — ]
n,}?ﬂ'ﬁ‘ — e 2TK _|_(1_2€ 2 K2 ),,,L_l]€
2

= 21 e ™1 = e ™ i (n] — 1]V sin6f,,  (138)

where | | |
0l = 20] — g + Arg ] — Argod
Note from (138) that the occupation numbers cannot be larger than 1,

although in the first scattering, the occupation number jumps exactly by

_ 2
the same amount as the bosons, n; = e~ 2™".
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