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AN INTRODUCTION TO MATHEMATICAL
COSMOLOGY

This book provides a concise introduction to the mathematical
aspects of the origin, structure and evolution of the universe. The
book begins with a brief overview of observational and
theoretical cosmology, along with a short introduction to general
relativity. It then goes on to discuss Friedmann models, the
Hubble constant and deceleration parameter, singularities, the
early universe, inflation, quantum cosmology and the distant
future of the universe. This new edition contains a rigorous
derivation of the Robertson–Walker metric. It also discusses the
limits to the parameter space through various theoretical and
observational constraints, and presents a new inflationary
solution for a sixth degree potential.

This book is suitable as a textbook for advanced undergradu-
ates and beginning graduate students. It will also be of interest to
cosmologists, astrophysicists, applied mathematicians and
mathematical physicists.
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University of Cambridge. In 1984 he became Professor of
Mathematics at the University of Chittagong, Bangladesh, and is
currently Director of the Research Centre for Mathematical and
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quantum field theory, general relativity and cosmology. He has
also written and contributed to several books.
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Preface to the first edition

Ever since I wrote my semi-popular book The Ultimate Fate of the
Universe I have been meaning to write a technical version of it. There are
of course many good books on cosmology and it seemed doubtful to me
whether the inclusion of a chapter on the distant future of the universe
would itself justify another book. However, in recent years there have been
two interesting developments in cosmology, namely inflationary models
and quantum cosmology, with their connection with particle physics and
quantum mechanics, and I believe the time is ripe for a book containing
these topics. Accordingly, this book has a chapter each on inflationary
models, quantum cosmology and the distant future of the universe (as well
as a chapter on singularities not usually contained in the standard texts).

This is essentially an introductory book. None of the topics dealt with
have been treated exhaustively. However, I have tried to include enough
introductory material and references so that the reader can pursue the
topic of his interest further.

A knowledge of general relativity is helpful; I have included a brief
exposition of it in Chapter 2 for those who are not familiar with it. This
material is very standard; the form given here is taken essentially from my
book Rotating Fields in General Relativity.

In the process of writing this book, I discovered two exact cosmological
solutions, one connecting radiation and matter dominated eras and the
other representing an inflationary model for a sixth degree potential.
These have been included in Sections 4.5 and 9.4 respectively as I believe
they are new and have some physical relevance.

I am grateful to J. V. Narlikar and M. J. Rees for providing some useful
references. I am indebted to a Cambridge University Press reader for
helpful comments; the portion on observational cosmology has I believe
improved considerably as a result of these comments. I am grateful to
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F. J. Dyson for his ideas included in the last chapter. I thank Maureen
Storey of Cambridge University Press for her efficient and constructive
subediting.

I am grateful to my wife Suraiya and daughters Nargis and Sadaf and
my son-in-law Kamel for support and encouragement during the period
this book was written. I have discussed plans for my books with Mrs Mary
Wraith, who kindly typed the manuscript for my first book. For more than
three decades she has been friend, philosopher and mentor for me and my
wife and in recent years a very affectionate godmother (‘Goddy’) to my
daughters. This book is fondly dedicated to this remarkable person.

Jamal Nazrul Islam
Chittagong, 1991
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Preface to the second edition

The material in the earlier edition, to which there appears to have been a
favourable response, has been kept intact as far as possible in this new
edition except for minor changes. A number of new additions have been
made. Some standard topics have been added to the introduction to
general relativity, such as Killing vectors. Not all these topics are used later
in the book, but some may be of use to the beginning student for mathe-
matical aspects of cosmological studies. Observational aspects have been
brought up to date in an extended chapter on the cosmological constant.
As this is a book on mathematical cosmology, the treatment of observa-
tions is not definitive or exhaustive by any means, but hopefully it is ade-
quate. To clarify the role of the cosmological constant, much discussed in
recent years, an exact, somewhat unusual solution with cosmological con-
stant is included. Whether the solution is new is not clear: it is meant to
provide a ‘comprehension exercise’. One reviewer of the earlier edition
wondered why the Hubble constant and the deceleration parameter were
chosen for a separate chapter. I believe these two parameters are among
the most important in cosmology; adequate understanding of these helps
to assess observations generally. Within the last year or two, through anal-
yses of supernovae in distant galaxies, evidence seems to be emerging that
the universe may be accelerating, or at least the deceleration may be not as
much as was supposed earlier. If indeed the universe is accelerating, the
nomenclature ‘deceleration parameter’ may be called into question. In any
case, much more work has to be done, both observational and theoretical,
to clarify the situation and it is probably better to retain the term, and
refer to a possible acceleration as due to a ‘negative deceleration parame-
ter’ (in case one has to revert back to ‘deceleration’!). I believe it makes
sense, in most if not all subjects, constantly to refer back to earlier work,
observational, experimental or practical, as well as theoretical aspects, for
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this helps to point to new directions and to assess new developments.
Some of the material retained from the first edition could be viewed in this
way.

A new exact inflationary solution for a sixth degree potential has been
added to the chapter on the very early universe. The chapter on quantum
cosmology is extended to include a discussion on functional differential
equations, material which is not readily available. This topic is relevant for
an understanding of the Wheeler–De Witt equation. Some additional
topics and comments are considered in the Appendix at the end of the
book. Needless to say, in the limited size and scope of the book an exhaus-
tive treatment of any topic is not possible, but we hope enough ground has
been covered for the serious student of cosmology to benefit from it.

As this book was going to press, Fred Hoyle passed away. Notwith-
standing the controversies he was involved in, I believe Hoyle was one of
the greatest contributors to cosmology in the twentieth century. The con-
troversies, more often than not, led to important advances. Hoyle’s predic-
tion of a certain energy level of the carbon nucleus, revealed through his
studies of nucleosynthesis, confirmed later in the laboratory, was an out-
standing scientific achievement. A significant part of my knowledge of
cosmology, for what it is worth, was acquired through my association with
the then Institute of Theoretical Astronomy at Cambridge, of which the
Founder-Director was Hoyle, who was kind enough to give me an appoint-
ment for some years. I shall always remember this with gratitude.

I am grateful to Clare Hall, Cambridge, for providing facilities where
the manuscript and proofs were completed.

I am grateful for helpful comments by various CUP readers and refer-
ees, although it has not been possible to incorporate all their suggestions. I
thank the various reviewers of the earlier edition for useful comments. I
am grateful to Simon Mitton, Rufus Neal, Adam Black and Tamsin van
Essen for cooperation and help at various stages in the preparation of this
edition. I thank ‘the three women in my life’ (Suraiya, Sadaf and Nargis)
and my son-in-law Kamel for support and encouragement.

Jamal Nazrul Islam
Chittagong, November 2000
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IN MEMORIAM
Mary Wraith (1908–1995)
in affection, admiration and gratitude
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1

Some basic concepts and an overview of
cosmology

In this chapter we present an elementary discussion of some basic con-
cepts in cosmology. Although the mathematical formalism is essential,
some of the main ideas underlying the formalism are simple and it helps to
have an intuitive and qualitative notion of these ideas.

Cosmology is the study of the large-scale structure and behaviour of the
universe, that is, of the universe taken as a whole. The term ‘as a whole’
applied to the universe needs a precise definition, which will emerge in the
course of this book. It will be sufficient for the present to note that one of
the points that has emerged from cosmological studies in the last few
decades is that the universe is not simply a random collection of irregu-
larly distributed matter, but it is a single entity, all parts of which are in
some sense in unison with all other parts. This, at any rate, is the view
taken in the ‘standard models’ which will be our main concern. We may
have to modify these assertions when considering the inflationary models
in a later chapter.

When considering the large-scale structure of the universe, the basic
constituents can be taken to be galaxies, which are congregations of about
1011 stars bound together by their mutual gravitational attraction.
Galaxies tend to occur in groups called clusters, each cluster containing
anything from a few to a few thousand galaxies. There is some evidence for
the existence of clusters of clusters, but not much evidence of clusters of
clusters of clusters or higher hierarchies. ‘Superclusters’ and voids (empty
regions) have received much attention (see Chapter 5). Observations indi-
cate that on the average galaxies are spread uniformly throughout the uni-
verse at any given time. This means that if we consider a portion of the
universe which is large compared to the distance between typical nearest
galaxies (this is of the order of a million light years), then the number of
galaxies in that portion is roughly the same as the number in another
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portion with the same volume at any given time. This proviso ‘at any given
time’ about the uniform distribution of galaxies is important because, as
we shall see, the universe is in a dynamic state and so the number of galax-
ies in any given volume changes with time. The distribution of galaxies
also appears to be isotropic about us, that is, it is the same, on the average,
in all directions from us. If we make the assumption that we do not occupy
a special position amongst the galaxies, we conclude that the distribution
of galaxies is isotropic about any galaxy. It can be shown that if the distri-
bution of galaxies is isotropic about every galaxy, then it is necessarily true
that galaxies are spread uniformly throughout the universe.

We adopt here a working definition of the universe as the totality of gal-
axies causally connected to the galaxies that we observe. We assume that
observers in the furthest-known galaxies would see distributions of galax-
ies around them similar to ours, and the furthest galaxies in their field of
vision in the opposite direction to us would have similar distributions of
galaxies around them, and so on. The totality of galaxies connected in this
manner could be defined to be the universe.

E. P. Hubble discovered around 1930 (see, for example, Hubble (1929,
1936)) that the distant galaxies are moving away from us. The velocity of
recession follows Hubble’s law, according to which the velocity is propor-
tional to distance. This rule is approximate because it does not hold for
galaxies which are very near nor for those which are very far, for the fol-
lowing reasons. In addition to the systematic motion of recession every
galaxy has a component of random motion. For nearby galaxies this
random motion may be comparable to the systematic motion of recession
and so nearby galaxies do not obey Hubble’s law. The very distant galax-
ies also show departures from Hubble’s law partly because light from the
very distant galaxies was emitted billions of years ago and the systematic
motion of galaxies in those epochs may have been significantly different
from that of the present epoch. In fact by studying the departure from
Hubble’s law of the very distant galaxies one can get useful information
about the overall structure and evolution of the universe, as we shall see.

Hubble discovered the velocity of recession of distant galaxies by study-
ing their red-shifts, which will be described quantitatively later. The red-
shift can be caused by other processes than the velocity of recession of the
source. For example, if light is emitted by a source in a strong gravitational
field and received by an observer in a weak gravitational field, the observer
will see a red-shift. However, it seems unlikely that the red-shift of distant
galaxies is gravitational in origin; for one thing these red-shifts are rather
large for them to be gravitational and, secondly, it is difficult to understand
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the systematic increase with faintness on the basis of a gravitational
origin. Thus the present consensus is that the red-shift is due to velocity of
recession, but an alternative explanation of at least a part of these red-
shifts on the basis of either gravitation or some hitherto unknown physical
process cannot be completely ruled out.

The universe, as we have seen, appears to be homogeneous and isotropic
as far as we can detect. These properties lead us to make an assumption
about the model universe that we shall be studying, called the
Cosmological Principle. According to this principle the universe is homo-
geneous everywhere and isotropic about every point in it. This is really an
extrapolation from observation. This assumption is very important, and it
is remarkable that the universe seems to obey it. This principle asserts
what we have mentioned before, that the universe is not a random collec-
tion of galaxies, but it is a single entity.

The Cosmological Principle simplifies considerably the study of the
large-scale structure of the universe. It implies, amongst other things, that
the distance between any two typical galaxies has a universal factor, the
same for any pair of galaxies (we will derive this in detail later). Consider
any two galaxies A and B which are taking part in the general motion of
expansion of the universe. The distance between these galaxies can be
written as fABR, where fAB is independent of time and R is a function of
time. The constant fAB depends on the galaxies A and B. Similarly, the dis-
tance between galaxies C and D is fCDR, where the constant fCD depends
on the galaxies C and D. Thus if the distance between A and B changes by
a certain factor in a definite period of time then the distance between C
and D also changes by the same factor in that period of time. The large-
scale structure and behaviour of the universe can be described by the
single function R of time. One of the major current problems of cosmol-
ogy is to determine the exact form of R(t). The function R(t) is called the
scale factor or the radius of the universe. The latter term is somewhat mis-
leading because, as we shall see, the universe may be infinite in its spatial
extent in which case it will not have a finite radius. However, in some
models the universe has finite spatial extent, in which case R is related to
the maximum distance between two points in the universe.

It is helpful to consider the analogy of a spherical balloon which is
expanding and which is uniformly covered on its surface with dots. The
dots can be considered to correspond to ‘galaxies’ in a two-dimensional
universe. As the balloon expands, all dots move away from each other and
from any given dot all dots appear to move away with speeds which at any
given time are proportional to the distance (along the surface). Let the
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radius of the balloon at time t be denoted by R�(t). Consider two dots
which subtend an angle �AB at the centre, the dots being denoted by A and
B (Fig. 1.1). The distance dAB between the dots on a great circle is given by

dAB��ABR�(t). (1.1)

The speed �AB with which A and B are moving relative to each other is
given by

�AB�dAB��ABR��dAB(R�/R�), R�� , etc. (1.2)

Thus the relative speed of A and B around a great circle is proportional to
the distance around the great circle, the factor of proportionality being
R�/R�, which is the same for any pair of dots. The distance around a great
circle between any pair of dots has the same form, for example, �CDR�,
where �CD is the angle subtended at the centre by dots C and D. Because
the expansion of the balloon is uniform, the angles �AB, �CD, etc., remain
the same for all t. We thus have a close analogy between the model of an
expanding universe and the expansion of a uniformly dotted spherical
balloon. In the case of galaxies Hubble’s law is approximate but for dots
on a balloon the corresponding relation is strictly true. From (1.1) it
follows that if the distance between A and B changes by a certain factor in
any period of time, the distance between any pair of dots changes by the
same factor in that period of time.

From the rate at which galaxies are receding from each other, it can be
deduced that all galaxies must have been very close to each other at the
same time in the past. Considering again the analogy of the balloon, it is

dR�

dt

4 Some basic concepts
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Fig. 1.1. Diagram to illustrate Equation (1.1).
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like saying that the balloon must have started with zero radius and at this
initial time all dots must have been on top of each other. For the universe it
is believed that at this initial moment (some time between 10 and 20 billion
years ago) there was a universal explosion, at every point of the universe, in
which matter was thrown asunder violently. This was the ‘big bang’. The
explosion could have been at every point of an infinite or a finite universe.
In the latter case the universe would have started from zero volume. An infi-
nite universe remains infinite in spatial extent all the time down to the initial
moment; as in the case of the finite universe, the matter becomes more and
more dense and hot as one traces the history of the universe to the initial
moment, which is a ‘space-time singularity’ about which we will learn more
later. The universe is expanding now because of the initial explosion. There
is not necessarily any force propelling the galaxies apart, but their motion
can be explained as a remnant of the initial impetus. The recession is
slowing down because of the gravitational attraction of different parts of
the universe to each other, at least in the simpler models. This is not neces-
sarily true in models with a cosmological constant, as we shall see later.

The expansion of the universe may continue forever, as in the ‘open’
models, or the expansion may halt at some future time and contraction set
in, as in the ‘closed’ models, in which case the universe will collapse at a
finite time later into a space-time singularity with infinite or near infinite
density. These possibilities are illustrated in Fig. 1.2. In the Friedmann
models the open universes have infinite spatial extent whereas the closed
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models are finite. This is not necessarily the case for the Lemaître models.
Both the Friedmann and Lemaître models will be discussed in detail in
later chapters.

There is an important piece of evidence apart from the recession of the
galaxies that the contents of the universe in the past must have been in a
highly compressed form. This is the ‘cosmic background radiation’, which
was discovered by Penzias and Wilson in 1965 and confirmed by many
observations later. The existence of this radiation can be explained as
follows. As we trace the history of the universe backwards to higher den-
sities, at some stage galaxies could not have had a separate existence, but
must have been merged together to form one great continuous mass. Due
to the compression the temperature of the matter must have been very
high. There is reason to believe, as we shall see, that there must also have
been present a great deal of electromagnetic radiation, which at some stage
was in equilibrium with the matter. The spectrum of the radiation would
thus correspond to a black body of high temperature. There should be a
remnant of this radiation, still with black-body spectrum, but correspond-
ing to a much lower temperature. The cosmic background radiation dis-
covered by Penzias, Wilson and others indeed does have a black-body
spectrum (Fig. 1.3) with a temperature of about 2.7 K.

Hubble’s law implies arbitrarily large velocities of the galaxies as the dis-
tance increases indefinitely. There is thus an apparent contradiction with
special relativity which can be resolved as follows. The red-shift z is defined
as z� (�r��i)/�i, where �i is the original wavelength of the radiation given
off by the galaxy and �r is the wavelength of this radiation when received

6 Some basic concepts

Fig. 1.3. Graph of intensity versus wavelength for black-body radiation.
For the cosmic background radiation �0 is just under 0.1 cm.
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by us. As the velocity of the galaxy approaches that of light, z tends
towards infinity (Fig. 1.4), so it is not possible to observe higher velocities
than that of light. The distance at which the red-shift of a galaxy becomes
infinite is called the horizon. Galaxies beyond the horizon are indicated by
Hubble’s law to have higher velocities than light, but this does not violate
special relativity because the presence of gravitation radically alters the
nature of space and time according to general relativity. It is not as if a
material particle is going past an observer at a velocity greater than that of
light, but it is space which is in some sense expanding faster than the speed
of light. This will become clear when we derive the expressions for the
velocity, red-shift, etc., analytically later.

As mentioned earlier, in the open model the universe will expand forever
whereas in the closed model there will be contraction and collapse in the
future. It is not known at present whether the universe is open or closed.
There are several interconnecting ways by which this could be determined.
One way is to measure the present average density of the universe and
compare it with a certain critical density. If the density is above the critical
density, the attractive force of different parts of the universe towards each
other will be enough to halt the recession eventually and to pull the galaxies
together. If the density is below the critical density, the attractive force is

Some basic concepts 7

Fig. 1.4. This graph shows the relation between the red-shift (z) and the
speed of recession. As z tends to infinity, the speed of recession tends to
the speed of light.
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insufficient and the expansion will continue forever. The critical density at
any time (this will be derived in detail later) is given by

�c�3H 2/8�G, H�R/R. (1.3)

Here G is Newton’s gravitational constant and R is the scale factor which is
a function of time; it corresponds to R�(t) of (1.1) and represents the ‘size’
of the universe in a sense which will become clear later. If t0 denotes the
present time, then the present value of H, denoted by H0, is called
Hubble’s constant. That is, H0�H(t0). For galaxies which are not too near
nor too far, the velocity � is related to the distance d by Hubble’s constant:

� �H0d. (1.4)

(Compare (1.2), (1.3) and (1.4).) The present value of the critical density is
thus 3H0

2/8�G, and is dependent on the value of Hubble’s constant. There
are some uncertainties in the value of the latter, the likely value being
between 50 km s�1 and 100 km s�1 per million parsecs. That is, a galaxy
which is 100 million parsecs distant has a velocity away from us of
5000–10000 km s�1. For a value of Hubble’s constant given by 50 km s�1

per million parsecs, the critical density equals about 5	10�30 g cm�3, or
about three hydrogen atoms per thousand litres of space.

There are several other related ways of determining if the universe will
expand forever. One of these is to measure the rate at which the expansion
of the universe is slowing down. This is measured by the deceleration
parameter, about which there are also uncertainties. Theoretically in the
simpler models, in suitable units, the deceleration parameter is half the
ratio of the actual density to the critical density. This ratio is usually
denoted by 
. Thus if 
�1, the density is subcritical and the universe will
expand forever, the opposite being the case if 
�1. The present observed
value of 
 is somewhere between 0.1 and 2 (the lower limit could be less).
In the simpler models the deceleration parameter, usually denoted by q0, is
thus 
, so that the universe expands forever in these models if q0� , the
opposite being the case if q0� .

Another way to find out if the universe will expand forever is to deter-
mine the precise age of the universe and compare it with the ‘Hubble time’.
This is the time elapsed since the big bang until now if the rate of expan-
sion had been the same as at present. In Fig. 1.5 if ON denotes the present
time (t0), then clearly PN is R(t0). If the tangent at P to the curve R(t)
meets the t-axis at T at an angle 
, then

tan 
�PN/NT�R(t0), (1.5)

1
2

1
2

1
2
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so that

NT�PN/R(t0)�R(t0)/R(t0)
�H0

�1. (1.6)

Thus NT, which is, in fact, Hubble’s time, is the reciprocal of Hubble’s
constant in the units considered here. For the value of 50 km s�1 per
million parsecs of Hubble’s constant, the Hubble time is about 20 billion
years. Again in the simpler models, if the universe is older than two-thirds
of the Hubble time it will expand forever, the opposite being the case if its
age is less than two-thirds of the Hubble time.

Whether the universe will expand forever is one of the most important
unresolved problems in cosmology, both theoretically and observation-
ally, but all the above methods of ascertaining this contain many uncer-
tainties.

In this book we shall use the term ‘open’ to mean a model which
expands forever, and ‘closed’ for the opposite. Sometimes the expression
‘closed’ is used to mean a universe with a finite volume, but, as mentioned
earlier, it is only in the Friedmann models that a universe has infinite
volume if it expands forever, etc.

The standard big-bang model of the universe has had three major suc-
cesses. Firstly, it predicts that something like Hubble’s law of expansion
must hold for the universe. Secondly, it predicts the existence of the micro-
wave background radiation. Thirdly, it predicts successfully the formation
of light atomic nuclei from protons and neutrons a few minutes after the
big bang. This prediction gives the correct abundance ratio for He3, D, He4

and Li7. (We shall discuss this in detail later.) Heavier elements are thought

Some basic concepts 9
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to have been formed much later in the interior of stars. (See Hoyle,
Burbidge and Narlikar (2000) for an alternative point of view.)

Certain problems and puzzles remain in the standard model. One of
these is that the universe displays a remarkable degree of large-scale
homogeneity. This is most evident in the microwave background radiation
which is known to be uniform in temperature to about one part in 1000.
(There is, however, a systematic variation of about one part in 3000 attrib-
uted to the motion of the Earth in the Galaxy and the motion of the
Galaxy in the local group of galaxies, and also a smaller variation in all
directions, presumably due to the ‘graininess’ that existed in the matter at
the time the radiation ‘decoupled’.) The uniformity that exists is a puzzle
because, soon after the big bang, regions which were well separated could
not have communicated with each other or known of each other’s exis-
tence. Roughly speaking, at a time t after the big bang, light could have
travelled only a distance ct since the big bang, so regions separated by a
distance greater than ct at time t could not have influenced each other. The
fact that microwave background radiation received from all directions is
uniform implies that there is uniformity in regions whose separation must
have been many times the distance ct (the horizon distance) a second or so
after the big bang. How did these different regions manage to have the
same density, etc.? Of course there is no problem if one simply assumes
that the uniformity persists up to time t�0, but this requires a very special
set of initial conditions. This is known as the horizon problem.

Another problem is concerned with the fact that a certain amount of
inhomogeneity must have existed in the primordial matter to account for
the clumping of matter into galaxies and clusters of galaxies, etc., that we
observe today. Any small inhomogeneity in the primordial matter rapidly
grows into a large one with gravitational self-interaction. Thus one has to
assume a considerable smoothness in the primordial matter to account for
the inhomogeneity in the scale of galaxies at the present time. The problem
becomes acute if one extrapolates to 10�45 s after the big bang, when one
has to assume an unusual situation of almost perfect smoothness but not
quite absolute smoothness in the initial state of matter. This is known as
the smoothness problem.

A third problem of the standard big-bang model has to do with the
present observed density of matter, which we have denoted by the parame-
ter 
. If 
 were initially equal to unity (this corresponds to a flat universe)
it would stay equal to unity forever. On the other hand, if 
 were initially
different from unity, its depature from unity would increase with time. The
present value of 
 lies somewhere between 0.1 and 2. For this to be the

10 Some basic concepts
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case the value of 
 would have had to be equal to 1 to one part in 1015 a
second or so after the big bang, which seems an unlikely situation. This is
called the flatness problem.

To deal with these problems Alan Guth (1981) proposed a model of the
universe, known as the inflationary model, which does not differ from the
standard model after a fraction of a second or so, but from about 10�45 to
10�30 seconds it has a period of extraordinary expansion, or inflation,
during which time typical distances (the scale factor) increase by a factor
of about 1050 more than the increase that would obtain in the standard
model. Although the inflationary models (there have been variations of
the one put forward by Guth originally) solve some of the problems of the
standard models, they throw up problems of their own, which have not all
been dealt with in a satisfactory manner. These models will be considered
in detail in this book.

The consideration of the universe in the first second or so calls for a
great deal of information from the theory of elementary particles, particu-
larly in the inflationary models. This period is referred to as ‘the very early
universe’ and it also provides a testing ground for various theories of ele-
mentary particles. These questions will be considered in some detail in a
later chapter.

As one extrapolates in time to the very early universe and towards the
big bang at t�0, densities become higher and higher and the curvature of
space-time becomes correspondingly higher, and at some stage general rel-
ativity becomes untenable and one has to resort to the quantum theory of
gravitation. However, a satisfactory quantum theory for gravity does not
yet exist. Some progress has been made in what is called ‘quantum cosmol-
ogy’, in which quantum considerations throw some light on problems to
do with initial conditions of the universe. We shall attempt to provide an
introduction to this subject in this book.

If the universe is open, that is, if it expands for ever, one has essentially
infinite time in the future for the universe to evolve. What will be the
nature of this evolution and what will be the final state of the universe?
These questions and related ones will be considered in Chapter 11.
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2

Introduction to general relativity

2.1 Summary of general relativity

The Robertson–Walker metric or line-element is fundamental in the stan-
dard models of cosmology. The mathematical framework in which the
Robertson–Walker metric occurs is that of general relativity. The reader is
assumed to be familiar with general relativity but we shall give an intro-
duction here as a reminder of the main results and for the sake of com-
pleteness. We shall then go on to derive the Robertson–Walker metric in
the next chapter. We begin with a brief summary.

General relativity is formulated in a four-dimensional Riemannian
space in which points are labelled by a general coordinate system
(x0, x1, x2, x3), often written as x� (��0, 1, 2, 3). (Greek indices take
values of 0, 1, 2, 3 and repeated Greek indices are to be summed over
these values.) Several coordinate patches may be necessary to cover the
whole of space-time. The space has three spatial and one time-like dimen-
sion.

Under a coordinate transformation from x� to x�� (in which x�� is, in
general, a function of x0, x1, x2, x3) a contravariant vector field A� and a
covariant vector field B

�
transform as follows:

A��� A�, B�
�

� B
�
, (2.1)

and a mixed tensor such as A�
��

transforms as follows:

A��
��

� A�
��

, (2.2)

etc. All the information about the gravitational field is contained in the
second rank covariant tensor �

��
(the number of indices gives the rank of

�x��

�x�

�x�

�x�v

�x�

�x��

�xv

�x��

�x��

�xv
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the tensor) called the metric tensor, or simply the metric, which determines
the square of the space-time intervals ds2 between infinitesimally separated
events or points x� and x��dx� as follows (�

��
��

��
):

ds2��
��

dx�dx�. (2.3)

The contravariant tensor corresponding to �
��

is denoted by ��� and is
defined by

�
��

�����
�
�, (2.4)

where �
�
� is the Kronecker delta, which equals unity if ��� (no summa-

tion) and zero otherwise. Indices can be raised or lowered by using the
metric tensor as follows:

A�����A
�
, A

�
��

��
A�. (2.5)

The generalization of ordinary (partial) differentiation to Riemannian
space is given by covariant differentiation denoted by a semi-colon and
defined for a contravariant and a covariant vector as follows:

A�
;�� ���

��
A�, (2.6a)

A
�;�� ���

��
A

�
. (2.6b)

Here the ��
��

are called Christoffel symbols; they have the property
��

��
���

��
and are given in terms of the metric tensor as follows:

��
��

� ���(�
��,���

��,���
��,�), (2.7)

where a comma denotes partial differentiation with respect to the corres-
ponding variable: �

��,����
��

/�x�. For covariant differentiation of tensors
of higher rank, there is a term corresponding to each contravariant index
analogous to the second term in (2.6a) and a term corresponding to each
covariant index analogous to the second term in (2.6b) (with a negative
sign). For example, the covariant derivative of the mixed tensor considered
in (2.2) can be written as follows:

A�
��;�� ���

��
A�

��
���

��
A�

��
���

��
A�

��
. (2.6c)

Equation (2.7) has the consequence that the covariant derivative of the
metric tensor vanishes:

�
��;��0, ���

;��0. (2.8)

�A�
��

�x�

1
2

�A�

�xv

�A�

�xv
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This has, in turn, the consequence that indices can be raised and lowered
inside the sign for covariant differentiation, as follows:

�
��

A�
;��A

�;�, ���A
�;��A�

;�. (2.9)

Under a coordinate transformation from x� to x�� the ��
��

transform
follows:

���
��

� ��
��

� , (2.10)

so that the ��
��

do not form components of a tensor since the transforma-
tion law (2.10) is different from that of a tensor (see (2.2)). At any specific
point a coordinate system can always be chosen so that the ��

��
vanish at

the point. From (2.7) it follows that the first derivatives of the metric
tensor also vanish at this point. This is one form of the equivalence princi-
ple, according to which the gravitational field can be ‘transformed away’ at
any point by choosing a suitable frame of reference. At this point one can
carry out a further linear transformation of the coordinates to reduce the
metric to that of flat (Minkowski) space:

ds2� (dx0)2� (dx1)2� (dx2)2� (dx3)2, (2.11)

where x0�ct, t being the time and (x1, x2, x3) being Cartesian coordinates.
For any covariant vector A

�
it can be shown that

A
�;�;��A

�;�;��A
�
R�

���
, (2.12)

where R�
���

is the Riemann tensor defined by

R�
���

���
��,����

��,����

�

�

��

���

�

�

��

. (2.13)

The Riemann tensor has the following symmetry properties:

R
����

��R
����

��R
����

, (2.14a)

R
����

�R
����

, (2.14b)

R
����

�R
����

�R
����

�0, (2.14c)

and satisfies the Bianchi identity:

R�
���;��R�

���;��R�
���;��0. (2.15)

The Ricci tensor R
��

is defined by

R
��

����R
����

�R�
���

. (2.16)

�2x�

�x�� �x��

�x��

�x�

�x��

�x�

�x�

�x��

�x�

�x��
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From (2.13) and (2.16) it follows that R
��

is given as follows:

R
��

���
��,����

��,����
��

��
��

���
��

��
��

. (2.17)

Let the determinant of �
��

considered as a matrix be denoted by �. Then
another expression for R

��
is given by the following:

R
��

� [��
��

(��)1/2],�� [log(��)1/2],��
���

��
��

��
. (2.18)

This follows from the fact that from (2.7) and the properties of matrices
one can show that

��
��

� [log(��)1/2],�. (2.19)

From (2.18) it follows that R
��

�R
��

. There is no agreed convention for
the signs of the Riemann and Ricci tensors – some authors define
these with opposite signs to (2.13) and (2.17). The Ricci scalar R is defined
by

R����R
��

. (2.20)

By contracting the Bianchi identity (2.15) on the pair of indices �� and ��

(that is, multiplying it by ��� and ���) one can deduce the identity

(R��� ���R);��0. (2.21)

The tensor G���R��� ���R is sometimes called the Einstein tensor.
We are now in a position to write down the fundamental equations of

general relativity. These are Einstein’s equations given by:

R
��

� �
��

R� (8�G/c4)T
��

, (2.22)

where T
��

is the energy–momentum tensor of the source producing the
gravitational field and G is Newton’s gravitational constant. For a perfect
fluid, T

��
takes the following form:

T��� (��p)u�u��p���, (2.23)

where � is the mass-energy density, p is the pressure and u� is the four-
velocity of matter given by

u�� , (2.24)

where x�(s) describes the worldline of matter in terms of the proper
time ��c�1s along the worldline. We will consider later some other
forms of the energy–momentum tensor than (2.23). From (2.21) we

dx�

ds

1
2

1
2

1
2

1
( � �)1/2
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see that Einstein’s equations (2.22) are compatible with the following equa-
tion

T��
;��0, (2.25)

which is the equation for the conservation of mass-energy and momen-
tum.

The equations of motion of a particle in a gravitational field are given
by the geodesic equations as follows:

���
��

�0. (2.26)

Geodesics can also be introduced through the concept of parallel transfer.
Consider a curve x�(�), where x� are suitably differentiable functions of
the real parameter �, varying over some interval of the real line. It is
readily verified that dx�/d� transforms as a contravariant vector. This is
the tangent vector to the curve x�(�). For an arbitrary vector field Y� its
covariant derivative along the curve (defined along the curve) is
Y�

;�(dx�/d�). The vector field Y� is said to be parallelly transported along
the curve if

Y�
;� �Y�

,� ���
��

Y�

� ���
��

Y� �0. (2.27)

The curve is said to be a geodesic curve if the tangent vector is transported
parallelly along the curve, that is, putting (Y��dx�/d� in (2.27)) if

���
��

�0. (2.28)

The curve, or a portion of it, is time-like, light-like or space-like according
as to whether �

��
(dx�/d�)(dx�/d�)�0,�0, or �0. (As mentioned earlier,

at any point �
��

can be reduced to the diagonal form (1,�1,�1,�1) by a
suitable transformation.) The length of the time-like or space-like curve
from ���1 to ���2 is given by:

L12� . (2.29)

If the tangent vector dx�/d� is time-like everywhere, the curve x�(�) can
be taken to be the worldline of a particle and � the proper time c�1s

�
�2

�1

�����

dx�

d�

dx�

d� ��1/2

d�

dx�

d�

dx�

d�

d2x�

d�2

dx�

d�

dY�

d�

dx�

d�

dx�

d�

dx�

d�

dx�

ds
dx�

ds
d2x�

ds2
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along the worldline, and in this case (2.28) reduces to (2.26). The former
equation has more general applicability, for example, when the curve
x�(�) is light-like or space-like, in which case � cannot be taken as the
proper time.

Two vector fields V�, W� are normal or orthogonal to each other if
�

��
V�W��0. If V� is time-like and orthogonal to W� then the latter is nec-

essarily space-like. A space-like three-surface is a surface defined by
f(x0,x1,x2,x3)�0 such that ���f,� f,��0 when f�0. The unit normal vector
to this surface is given by n�� (�
�f,
 f,�)�1/2 ���f,�.

Given a vector field ��, one can define a set of curves filling all space
such that the tangent vector to any curve of this set at any point coincides
with the value of the vector field at that point. This is done by solving the
set of first order differential equations.

���(x(�)), (2.30)

where on the right hand side we have put x for all four components of the
coordinates. This set of curves is referred to as the congruence of curves
generated by the given vector field. In general there is a unique member of
this congruence passing through any given point. A particular member of
the congruence is sometimes referred to as an orbit. Consider now the
vector field given by (�0,�1,�2,�3)�(1,0,0,0). From (2.30) we see that the
congruence of this vector field is the set of curves given by

(x0��,x1�constant, x2�constant, x3�constant). (2.31)

This vector field is also referred to as the vector field �/�x0. One similarly
defines the vector fields �/�x1, �/�x2, �/�x3. That is, corresponding to the
coordinate system x� we have the four contravariant vector fields �/�x�. A
general vector field X� can be written without components in terms of
�/�x� as follows:

X�X� . (2.32)

This is related to the fact that contravariant vectors at any point can be
regarded as operators acting on differentiable functions f(x0,x1,x2,x3);
when the vector acts on the function, the result is the derivative of the
function in the direction of the vector field, as follows:

X( f )�X� . (2.33)
�f

�x�

�

�x�

dx�

d�
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As is well known, differential geometry and, correspondingly, general rela-
tivity can be developed independently of coordinates and components. We
shall not be concerned with this approach except incidentally (see, for
example, Hawking and Ellis, 1973).

We will now consider some special topics in general relativity which may
not all be used directly in the following chapters, but which may be useful
in some contexts in cosmological studies.

2.2 Some special topics in general relativity

2.2.1 Killing vectors

Einstein’s exterior equations R
��

�0 (obtained from (2.22) by setting
T

��
�0) are a set of coupled non-linear partial differential equations for

the ten unknown functions �
��

. The interior equations (2.22) may involve
other unknown functions such as the mass-energy density and the pres-
sure. Because of the freedom to carry out general coordinate transforma-
tions one can in general impose four conditions on the ten functions �

��
.

Later we will show explicitly how this is done in a case involving symme-
tries. In most situations of physical interest one has space-time symmetries
which reduce further the number of unknown functions. To determine the
simplest form of the metric (that is, the form of �

��
) when one has a given

space-time symmetry is a non-trivial problem. For example, in Newtonian
theory spherical symmetry is usually defined by a centre and the property
that all points at any given distance from the centre are equivalent. This
definition cannot be taken over directly to general relativity. In the latter,
‘distance’ is defined by the metric to begin with and, for example, the
‘centre’ may not be accessible to physical measurement, as is indeed the
case in the Schwarzschild geometry (see Section 7.4). One therefore has to
find some coordinate independent and covariant manner of defining
space-time symmetries such as axial symmetry and stationarity. This is
done with the help of Killing vectors, which we will now consider. In some
cases there is a less rigorous but simpler way of deriving the metric which
we will also consider.

In the following we will sometimes write x, y, x� for x�, y�, x�� respec-
tively. A metric �

��
(x) is form-invariant under a transformation from x� to

x�� if ��
��

(x�) is the same function of x�� as �
��

(x) is of x�. For example,
the Minkowski metric is form-invariant under a Lorentz transformation.
Thus

��
��

(y)��
��

(y), all y. (2.34)
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Therefore

�
��

(x)� ��
��

(x�)� �
��

(x�). (2.35)

The transformation from x� to x�� in this case is called an isometry of �
��

.
Consider an infinitesimal isometry transformation from x� to x�� defined
by

x���x��
��(x), (2.36)

with 
 constant and �
���1. Substituting in (2.35) and neglecting terms
involving 
2 we arrive at the following equation (see e.g. Weinberg (1972)):

�
��

��
��

� ���0. (2.37)

With the use of (2.6b) and (2.7) the equation (2.37) can be written as
follows:

�
�;���

�;��0. (2.38)

Equation (2.38) is Killing’s equation and a vector field �� satisfying it is
called a Killing vector of the metric �

��
. Thus if there exists a solution of

(2.38) for a given �
��

, then the corresponding �� represents an infinitesimal
isometry of the metric �

��
and implies that the metric has a certain sym-

metry. Since (2.38) is covariantly expressed, that is, it is a tensor equation,
if the metric has an isometry in a given coordinate system, in any trans-
formed coordinate system the transformed metric will also have a corres-
ponding isometry. This is important because often a metric can look quite
different in different coordinate systems.

To give an example of a Killing vector, we consider a situation in which
the metric is independent of one of the four coordinates. To fix ideas, we
choose this coordinate to be x0, which we take to be time-like, that is, the
lines (x0��, x1�constant, x2�constant, x3�constant) for varying � are
time-like lines. In general, �

��
being independent of x0 means that the

gravitational field is stationary, that is, it is produced by sources whose
state of motion does not change with time. In this case we have

��
��,0�0. (2.39)

Consider now the vector field �� given by

(� 0,� 1,� 2,� 3)� (1,0,0,0), (2.40)

����

�x0

����

�x�

���

�x�

���

�x�

�x��

�x�

�x��

�x�

�x��

�x�

�x��

�x�
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with �
�

��
��

����
�0. We have

�
�;���

�;���
�,���

�,�����(�
��,���

��,���
��,�)�

�

��
�0,���

�0,����(�
��,���

��,���
��,�)

��
��,0�0, (2.41)

using (2.39) and (2.40). Thus if (2.39) is satisfied, the vector (2.40) gives a
solution to Killing’s equation. In other words, if the metric admits the
Killing vector (2.40), then (2.39) is satisfied and the metric is stationary. A
similar result can be established for any of the other three coordinates.

We now derive a property of Killing vectors which we will use later. Let
� (1)� and � (2)� be two linearly independent solutions of Killing’s equation
(2.38). We define the commutator of these two Killing vectors as the vector
�� given by

���� (1)�
;�� (2)��� (2)�

;�� (1)�. (2.42)

In coordinate independent notation the commutator of � (1) and � (2) is
written as [� (1), � (2)]. In fact, because of the symmetry of the Christoffel
symbols the covariant derivatives in (2.42) can be replaced by ordinary
derivatives. We will now show that �� is also a Killing vector, that is,

�
�;���

�;��0. (2.43)

Now

�
�;���

�;��� (1)
�;�;��

(2)��� (1)
�;�� (2)�

;��� (2)
�;�;��

(1)�

�� (2)
�;�� (1)�

;��� (1)�
�;�;�� (2)��� (1)

�;�� (2)�
;�

�� (2)
�;�;�� (1)��� (2)

�;�� (1)�
;�. (2.44)

From the fact that � (1)�, � (2)� are Killing vectors, we have

� (i)
�;�;��� (i)

�;�;��0, i�1, 2, (2.45)

by taking the covariant derivative of Killing’s equation. Also, from (2.12)
we find that

� (i)
�;�;��� (i)

�;�;��� (i)�R
����

, i�1, 2. (2.46)

With the use of (2.45) and (2.46) one can show that

� (1)
�;�;��

(2)��� (1)
�;�;�� (2)��� (1)�� (2)�(R

����
�R

����
), (2.47a)

� (2)
�;�;��

(1)��� (2)
�;�;�� (1)��� (2)�� (1)�(R

����
�R

����
). (2.47b)
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Subtracting (2.47b) from (2.47a) we get

(� (1)
�;�;��� (1)

�;�;�)� (2)�� (� (2)
�;�;��� (2)

�;�;�)� (1)�

�� (1)�� (2)�(R
����

�R
����

�R
����

�R
����

)�0, (2.48)

where the last step follows from the symmetry properties of the Riemann
tensor. Thus the terms on the right hand side of (2.44) involving double
covariant derivatives vanish. The other terms can be shown to cancel by
using Killing’s equation. For example,

� (1)
�;�� (2)�

;���� (1)
�;�� (2)�

;�

� (1)
�;�� (2)�

;���� (1)�
;�� (2)

�;�

� (1)
�;�� (2)�

;���� (1)�
;�� (2)

�;� (2.49)

which cancels the last term in (2.44), and so on. Thus �� satisfies (2.43) and
so is a Killing vector. Suppose we have only n linearly independent Killing
vectors � (i)�, i�1, 2, . . . , n and no more. Then the commutator of any two
of these is a Killing vector and so must be a linear combination of some or
all of the n Killing vectors with constant coefficients since there are no
other solutions of Killing’s equation. Thus we have the result

� (i)�
;��

( j)��� ( j)�
;��

(i)�� ak
ij� (k)�, i, j�1, . . ., n. (2.50)

In coordinate independent notation, we can write

[� (i),� ( j)]� ak
ij� (k), i, j�1, . . ., n. (2.51)

In these two equations ak
ij are constants.

2.2.2 Tensor densities

Tensor densities are needed in some contexts, such as volume and surface
integrals. The latter are used in formulating an action principle from which
field equations can be derived in a convenient manner. We shall use this
principle to obtain the field equations with a scalar (Higgs) field in connec-
tion with inflationary cosmologies.

Consider a transformation from coordinates x� to x��. An element of
four-dimensional volume transforms as follows:

dx�0dx�1dx�2dx�3�Jdx0dx1dx2dx3, (2.52)

�
n

k�1

�
n

k�1
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where J is the Jacobian of the transformation given by

J� �� �. (2.53)

For convenience we can also write J as in the first of the following equa-
tions:

J� ; �J�1, (2.54)

where the second equation, in obvious notation, follows by taking deter-
minants of both sides of the identity

(�x��/�x�)(�x�/�x��)� ��
�
, (2.55)

considered as a matrix equation. Equation (2.52) can be written as

d4x��Jd4x. (2.56)

With the use of the usual notation x��
,���x��/�x�, we can write the trans-

formation rule for the covariant metric tensor as follows:

�

�

�x��
,
��

��
x��

,�. (2.57)

As in (2.55) we consider this as a matrix equation, where in the right hand
side the first matrix has its rows specified by 
 and columns by �, in the
second the rows are given by � and columns by �, while in the third matrix
the rows and columns are given respectively by � and �. As before, we
denote by � the determinant of the covariant tensor �


�
considered as a

matrix. Taking determinants of both sides of (2.57), we then get

� �J��J; or � �J2��, (2.58)

where ���det(��
��

). Now � is in general a negative quantity, so we take the
square root of the negative of (2.58) to get the following equation:

(��) �J(���) ; ��J��, (2.59)
1
2

1
2

� �x
�x����x�

�x �

�x�0

�x0

�x�1

�x0

�x�2

�x0

�x�3

�x0

�x�0

�x1

�x�1

�x1

�x�2

�x1

�x�3

�x1

�x�0

�x2

�x�1

�x2

�x�2

�x2

�x�3

�x2

�x�0

�x3

�x�1

�x3

�x�2

�x3

�x�3

�x3

�(x�0,x�1,x�2,x�3)
�(x0,x1,x2,x3)
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where in the second equation we have introduced the notation �� (��) ,
��� (���) , since this quantity occurs in various contexts (the symbol � is
to be read as ‘curly �’). Consider now a scalar field quantity which remains
invariant under a coordinate transformation. If we call it S, then S�S�; S
could be A

�
B�, for example, where A

�
is a covariant vector and B� a

contravariant one. Consider now the following volume integral over some
four-dimensional region 
, and the equations that follow. (There can be
no confusion between the 
 used here and the density parameter intro-
duced in Chapter 1.)

S�d4x� S��Jd4x� S���d4x�, (2.60)

where 
� is the region in the coordinates x�� that corresponds to 
, and we
have made use of (2.56), (2.59). Equation (2.60) implies that

S�d4x�an invariant. (2.61)

For this reason we call S� a scalar density, that is, because its volume inte-
gral is an invariant. More generally, a set of quantities F�

�
is said to be a

tensor density of rank or weight W if it transforms as follows:

F��
�
� F�

�
. (2.62)

From (2.54) and (2.59) we see that � is a scalar density of weight �1, so that
�W is a scalar density of weight �W, and hence �WF�

�
is a tensor density of

weight zero (when one multiplies two tensor densities, their weights add),
that is, it is an ordinary tensor. This can be verified as follows. Let

F�
�
��WF�

�
.

Then

F��
�
� (��)WF��

�

� (�WJ�W) JW F�
�

�� F�
�
� F�

�
, (2.63)

which shows that F�
�

is a tensor. Similar results can be obtained for tensors
of any kind.

�x��

�x�

�x�

�x��

W�x��

�x�

�x�

�x��

��x��

�x�

�x�

�x���

W�x��

�x�

�x�

�x����x�

�x �

�



�

�

�



�



1
2

1
2
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We now introduce the Levi–Civita tensor density �
���, whose compo-
nents remain the same in all coordinate systems, namely (we put the co-
ordinates in some definite order such as (t,x,y,z), etc.)

��1, if 
��� is an even permutation of reference order,
�
������1, if 
��� is an odd permutation of reference order,

��0, if any two or more indices are equal. (2.64)

If we now transform from the coordinate system x� to x��, then by defini-
tion the new components ��
��� are given by exactly the same condition as
(2.64); on the other hand the two sets of quantities satisfy the following
equation:

��
���� �����. (2.65)

This is an identity that follows from the rules for expanding a determinant.
But this relation also shows (see (2.62)), that �
��� is a tensor density of
weight �1, so that ��1�
��� is an ordinary contravariant tensor. We can
form the corresponding covariant tensor density by lowering indices the
usual way:

�

���

��

�

�
��

�
��

�
��

�����. (2.66)

Again making use of expansion of determinants one can show that

�

���

� (��)�
���. (2.67)

It can be verified that �

���

is a covariant tensor density of weight �1. The
Levi–Civita tensor density is used for defining the ‘dual’ of antisymmetric
tensors, such as that of the electromagnetic field tensor F��, the
Yang–Mills field tensor, or, with respect to suitable indices, of the
Riemann tensor (the latter are needed for some of the so-called ‘curvature
invariants’, which will be mentioned later in connection with singularities).

2.2.3 Gauss and Stokes theorems

We discuss the generalization to curved space of the Gauss or divergence
theorem and Stokes theorem, which are used, for example, when one
varies a volume or surface integral to derive some field equations. We first
write down some relevant identities involving � (see (2.59)). From its defi-
nition we get

2��1�,����1� ,�; �,�� (1/2)�����
��,�, (2.68)

�1�x�

�x�


�x�

�x�

��x��

�x�

�x��

�x���x�

�x �
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where the second relation can be verified by using the properties of deter-
minants and matrices and the fact that ��� is the inverse matrix of �

��
.

Further, from (2.6a) we see that the covariant divergence A�
;� of the

contravariant vector A� is given by

A�
;��A�

,����
��

A��A�
,����1�,�A

�, (2.69)

where we have used the relation

��
��

� ���(�
��,���

��,���
��,�)

� ����
��,����1�,�, (2.70)

the last step following from (2.68). Equation (2.69) then yields, with the
use of (2.70), the following relation:

A�
;��d4x� (A��),�d4x. (2.71)

From (2.60) we see that the left hand side of (2.71) is an invariant. If the
integral is over a finite four-dimensional region 
, we can use the ordinary
divergence theorem to convert (2.71) into a surface integral over the three-
dimensional boundary �
 of the four-dimensional volume 
. If the
covariant divergence of A� vanishes, we get, with the use of (2.69), a con-
servation law, as follows:

A�
;��0; (�A�),��0, (2.72)

the second equation being equivalent to the first through (2.69).
Integrating the latter equation over a three-dimensional volume V at a def-
inite time x0, we get

�A0d3x ,0�� (�Am),md3x

� (Surface integral over �V, boundary of V). (2.73)

This relation can be looked upon as the conservation of a fluid whose
density (we are here using ‘density’ in the usual sense) is �A0 and whose
motion is determined by the three-dimensional vector �Am(m�1,2,3). If
there is no flow across the boundary, (2.73) shows that

�A0d3x�constant.

This example illustrates the circumstance that when considering volume
and surface integrals and conservation laws, it is the tensor density (vector

�

�
V

�� �
V

��

1
2

1
2
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density in this case) �A� that is more relevant. However, these results are
not in general applicable, at least not in the above form, for a tensor with
more than one suffix. Also, unlike the case of a scalar density (2.61), the
integral

T���d4x

is not in general a tensor, because the integral gives essentially sums of
terms at different points, which transform differently, so the sum or inte-
gral does not transform in any simple manner. In the special case of an
antisymmetric tensor F����F��, a conservation law can be obtained as
follows. We have

F��
;��F��

,����
��

F�����
��

F��,

whence

F��
;� �F��

,����
��

F�����
��

F��

�F��
,����1�,

�
F��, (2.74)

where we have used (2.70) and the fact that ��
��

F�� vanishes (because ��
��

is
symmetric while F�� is antisymmetric in � and �). From (2.74) we get

�F��
;�� (�F��),�. (2.75)

With the use of reasoning similar to that used in (2.72) and (2.73), we see
from (2.75) that

�F��
;�d

4x�surface integral,

from which a conservation law follows.
For a symmetric tensor Y���Y�� we can get a conservation law with an

additional term. In this case

Y
�

�
;��Y

�
�

,���

��

Y



����
�


Y
�


.

We set ��� and use (2.70) to get

Y
�

�
;��Y

�
�

,����1�,
Y
�


��

��

Y



�. (2.76)

We can transform the last term as follows:

�

��

Y



���
�


�

��

Y����
�


�

��

Y����
�


Y���

��

� (1/2)(�
�


�

��

��
�


�

��

)Y��� (1/2)�
��,�Y��.

�

�
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Using this in (2.76) we get

�Y
�

�
;�� (�Y

�
�),�� ��

��,�Y��. (2.77)

If we now have Y
�

�
;��0, we integrate (2.77) over a three dimensional

volume V at time x0, to obtain the following result:

(�Y
�

0d3x),0�� (�Y
�

�),md3x� ��
��,�Y��d3x

� (Integral over surface �V of V )� � �
��,�Y��d3x. (2.78)

Even if the surface integral vanishes, the quantities

�
�

� �Y
�

0d3x

cannot be considered as constant because of the last term on the right
hand side of (2.78), which could represent the generation or disappearance
of some quantities in the volume V; in other words the volume V has a
‘source’ or a ‘sink’ for some physical quantity. Such a situation arises, for
example, for the energy–momentum tensor that occurs on the right hand
side of Einstein’s equations (2.22). This is a symmetric tensor, and the
covariant divergence of its contravariant form T�� vanishes (see (2.25)).
The reason one gets an ‘additional term’ here is that the energy momen-
tum of matter has to be balanced by that of the gravitational field, which is
not easy to define in a coordinate independent manner (see Landau and
Lifshitz 1975, p. 280; Dirac 1975, p. 64; Weinberg 1972, p. 165).

We consider now Stokes’s theorem. From (2.6b) it is readily verified that
the covariant curl equals the ordinary curl:

A
�;��A

�;��A
�,��A

�,�. (2.79)

This does not in general hold for a contravariant vector. Put ��1, ��2 to
get

A1;2�A2;1�A1,2�A2,1. (2.80)

Integrating this over an area of a surface S given by x0�constant,
x3�constant, and using the ordinary form of Stokes’s theorem, we get

(A1;2�A2;1)dx1dx2� (A1,2�A2,1)dx1dx2

� (A1dx1�A2dx2), (2.81)�
�S

��
S

��
S

�

�1
2

�
V

1
2�

V
�
V

1
2
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where the integral at the end is over the perimeter �S of the area S. We will
express this in an invariant manner. An element of surface dS�� given by
two infinitesimal contravariant vectors �� and �� is given by

dS������������. (2.82)

For example, if ��� (0,dx1,0,0), ��� (0,0,dx2,0), then

dS12�dx1dx2, dS21��dx1dx2,

the other components being zero. Thus (2.81) becomes

(A
�;��A

�;�)dS��� A
�
dx�. (2.83)

In this form Stokes’s theorem can be used for curved (Riemannian)
spaces.

2.2.4 The action principle for gravitation

Consider the quantity

I� �Rd4x, (2.84)

where 
 is a given four-dimensional region. From (2.60) we see that I is a
scalar (invariant) quantity. We will consider the variation of the quantity
�I, when the �

��
are varied by an infinitesimal amount: �

��
→�

��
���

��
,

such that the variations vanish on the boundary �
 of 
. If we put �I�0,
we will obtain Einstein’s vacuum field equations:

R
���0. (2.85)

From (2.71) and (2.20) we get

R����R
��

����(��
��,����

��,����
��

��
��

���
��

��
��

)�R*�Q, (2.86a)

where

R*����(��
��,����

��,�), Q����(��
��

��
��

���
��

��
��

). (2.86b)

We first remove the second derivatives of the �
��

from I given by (2.84);
these occur in the expression R*. We get

�R*��(������
��

),�� (������
��

),�� (����),��
�
��

� (����),���
��

. (2.87)

�



�
perimeter

��
surface

1
2
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We can use the divergence theorem to convert the first two integrals into
surface integrals over �
, and so they will not contribute to the variation
�I since the ��

��
vanish on �
. With the use of (2.7) one can show that

(����),�� (������
��

���
��

�

������
��

)�. (2.88)

Setting ��� we get (since the second and third terms on the right cancel):

(����),��������
��

�. (2.89)

With the use of (2.88), (2.89), the last two terms of (2.87) become

������
��

��
��

�� (�����
��

���
��

�

������
��

)���
��

��[������
��

��
��

� (2�����
��

������
��

)��
��

]

��[�2�����
��

��
��

�2�����
��

��
��

]��2�Q. (2.90)

Thus

I�� �Qd4x. (2.91)

Although the integrand is not a scalar quantity, it is convenient for the
present purpose, since it contains only �

��
and their first derivatives, being

homogeneous of the second degree in the derivatives.
In dynamical problems the action I is in fact the time integral of the

Lagrangian L, so that the latter is given by

L� Ldx�dx2dx3,

where L is the Lagrangian density, and the action I can be taken as a time
integral of L, and a space-time integral of L, as follows:

I� Ldx0� Ld4x; L��R. (2.92)

The �
��

can be considered as coordinates and their time derivatives as
velocities. Thus, as in ordinary dynamics, the Lagrangian is a non-
homogeneous quadratic in the velocities.

We consider the variation of the two parts of �Q (see (2.86b)), as
follows:

�(�

��

��

�

����)��

��

�(��

�

����)���

�

����δ�

��

��

��

�(����,
)���

�

{�(�

��

����)��

��

�(����)}

��

��

�(����,
)���

�

�(�
��),����

�

�

��

�(����), (2.93a)

��

�

�

Some special topics in general relativity 29

TLFeBOOK



�(��
�


�

��

����)�2(���
�


)�

��

�������
�


�

��

�(����)

�2�(��
�


����)�

��

�2��
�


�(����)�

��

���
�


�

��

�(����)

�2�(��
�


����)�

��

���
�


�

��

�(����)

���(���
,
�)�


��
���

�

�


��
�(����). (2.93b)

Subtracting,we get

�(Q�)��

��

�(����),
���

�

�(�
��),�

�(��
�


�

��

���

�

�

��

)�(����)

� [�

��

�(����)],
� [��

�

�(�
��)],�

�{��

��,
���

��,����
�


�

��

���

�

�

��

}�(����). (2.94)

The first two terms, being perfect differentials, may be transformed, as
usual, using the divergence theorem to surface integrals, which vanish
because the variations vanish on the surface. The expression in the curly
brackets is just R

��
. Thus (see (2.91))

�I�� Ld4x�� R
��

�(����)d4x. (2.95)

Since the ��
��

are arbitrary, the quantities �(����) are also arbitrary, and
hence �I�0 implies the vacuum Einstein equations (2.85).

By taking variation of (2.4) one can readily show that

��������
�����

�

.

With the use of (2.68) one can obtain the following relation:

��� ��
���

�

,

so that

�(����)��(��
���� ����
�)���

�

. (2.96)

Thus (2.95) can be written as

�I�� (R��� ���R)���
��

d4x, (2.97)

leading to

R��� ���R�0, (2.98)

which is another form of the vacuum Einstein equations (see (2.22)).

1
2

1
2�

1
2

1
2

��
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The geodesic equation (2.26) can also be obtained by a variation princi-
ple, if it is not a null geodesic. Consider the quantity

SAB� ds, (2.99)

which represents the ‘length’ (in the case of time-like curves this is the
proper time) from the point A to the point B of the curve. Let each point
of the curve with coordinate x� be moved to x��dx�. If dx� is an element
along the curve, we have

ds2��
��

dx�dx�.

Taking variations of both sides, we get

2ds�(ds)�dx�dx��
��,��x��2�

��
dx��(dx�). (2.100)

Further, with u�ds�dx� (see (2.24)), �(dx�)�d(�x�), we get from (2.100)
the following expression for �(ds):

�(ds)� �
��,� �x���

��
ds.

Therefore,

� ds� �(ds)� �
��,�u�u��x���

��
u� (�x�) ds. (2.101)

We carry out partial integration with respect to s and use the fact that
�x��0 at A and B, to get

�SAB�� ds� �
��,�u�u�� (�

��
u�) �x�ds. (2.102)

Since the �x� are arbitrary, for �SAB�0, we get

(�
��

u�)� �
��,�u�u��0. (2.103)

The first term can be transformed as follows:

(�
��

u�)��
��

��
��,� u�

��
��

� (�
��,���

��,�)u�u�.1
2

du�

ds

dx�

ds
du�

ds
d
ds

1
2

d
ds

	d
ds

1
2
�

B

A
�

B

A

	d
ds

1
2
�

B

A
�

B

A
�

B

A

	dx�

ds
d�x�

ds
dx�

ds
dx�

ds
1
2


�
B

A
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Substituting this in (2.103), we get

�
��

� (�
��,���

��,���
��,�)u�u��0.

Multiplying by ��� and using (2.7), we finally obtain the following relation:

���
��

u�u��0, (2.104)

which is the geodesic equation (2.26) written in terms of u�.

2.2.5 Some further topics

In this section we consider some additional topics. First we consider the
action principle in the presence of matter. Before we do this, we will con-
sider a description of the interior of matter that leads, for example, to the
energy–momentum tensor given by (2.23). We will deal with the simpler
situation in which the pressure p vanishes and the material particles move
along geodesics. We have in mind a distribution of matter in which the
velocity varies from one element to a neighbouring one continuously. The
worldlines of material particles fill up all space-time or a portion of it, a
typical worldline being denoted by z�(s), in which the points along the
worldline are distinguished by values of a parameter s which measures the
interval along the line. The interval ds between points z� and z��dz� satis-
fies

ds2��
��

dz�dz�, (2.105)

so that the four-velocity, given by the first equation in the following, satis-
fies the second equation (see (2.24)):

u��dz�/ds; �
��

u�u��1. (2.106)

The four-velocity u� can be considered as a contravariant vector field
whose components are functions of the space-time point x� (��0,1,2,3),
sometimes written as x, as before. There is a unique worldline passing
through each space-time point x, and they may all be indentified by the
point �� at which they intersect some space-like hypersurface given by

f(� 0,� 1,� 2,� 3)�0. (2.107)

A one-to-one correspondence can be set up between points on this three-
dimensional space-like hypersurface and the set of worldlines filling all of

du�

ds

1
2

du�

ds
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space-time. If the surface f�0 is designated by � 0�0, then the worldlines
can be identified by the point �� (� 1,� 2,� 3) on � 0�0 through which it
passes, and the coordinates on a typical such worldline can be written as:

z�(s;�), with z�(0;�)� (0,� i). (2.108)

However, having set up this coordinate system for the worldlines, or the
flow of matter, we will simply assume, as mentioned, that the four-velocity
vector u� is a function of the position (or ‘event’) coordinates x�.

Taking the covariant derivative of the second relation in (2.106), which
is the same as the ordinary derivative for a scalar, we get

0� (�
��

u�u�),�� (�
��

u�u�);���
��

(u�
;�u��u�u�

;�), (2.109)

where we have used the fact that the covariant derivative of �
��

vanishes,
and the symmetry of �

��
. From (2.109) we get

u
�
u�

;��0. (2.110)

Just like the fact that the charge density � and the current jm�(j1,j2,j3) form
a four-vector current J�, with

J0��, Ji� j i, (i�1,2,3), (2.111)

in electromagnetic theory, so we can define a scalar field � and the corres-
ponding vector field �u� which determine the density and flow of matter.
We have seen (see (2.73) and following discussion) that the ordinary
density of matter is not a component of a four-vector, but that of a four-
vector density, which is obtained by multiplying the four-vector by
�� (��) . Thus the density here is given by ��u0 and the flow or the current
by ��ui (i�1,2,3). The equation for the conservation of matter (equation
of continuity) is:

(��u�),��0,

which implies (see (2.69) and (2.72))

(�u�);��0. (2.112)

The matter under consideration has energy density (�u0)u0� and energy
flux (�u0)ui�. Similarly, there will be a momentum density (�u0)un� and a
momentum flux �unum�. These properties are reflected in the tensor (this
discussion is taken from Dirac 1975, 1996, p. 45):

T����u�u�, (2.113)

1
2
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with �T�� giving the density and flux of energy and momentum. The sym-
metric tensor T�� is the material energy–momentum tensor. From (2.112),
(2.113) we get

T��
;�� (�u�u�);�

� (�u�);�u
���u�u�

;�

��u�u�
;�. (2.114)

If, as mentioned earlier, u� is regarded as a field function (i.e., meaningful
not just on one worldline but a whole set of worldlines filling up all space-
time or a region thereof), we obtain the following relations:

du�/ds� (�u�/�x�)(dx�/ds)�u�
,�u

�, (2.115)

whence we get, using (2.104),

(u�
,�u

����
��

u�u�)� (u�
,����

��
u�)u�

�u�
;�u

��0. (2.116)

With the use of (2.114) and (2.116) one can get the following relation:

T��
;��0, (2.117)

so that the tensor T�� defined by (2.113) can be used on the right hand side
of Einstein’s equations (2.22). However, the tensor given by (2.113) is a
special case of that which occurs in (2.23), being obtained from the latter
by setting p�0. This zero-pressure case obtains when there is no random
motion of the material particles that is associated with pressure, so that
the particles move solely under the influence of gravitation and so move
along geodesics given by (2.104), leading to (2.116). This zero-pressure
form of matter is usually referred to as ‘dust’, and arises in various situa-
tions including cosmological ones, as we shall see later.

We will continue a little further the derivation of Einstein’s equations in
the case of dust to introduce the Newtonian approximation and clarify
certain minor issues. From the property (2.21) of the Einstein tensor
R��� ���R and from (2.113), (2.117) we can set

R��� ���R�kT���k�u�u�. (2.118)

(To emphasize the difference in the zero-pressure case and the non-zero
pressure case, we will use � for the density in the former case as at present,
but continue to use � for the mass-energy density in the non-zero pressure
case as in (2.23).) To find the constant k, we have to resort to the
Newtonian approximation, for which we consider the static metric, the

1
2
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2
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components of which are independent of the time, and the ‘mixed’ compo-
nents are zero:

�
��,0�0, � i0�0, i�1,2,3, (2.119a)

whence we get

� i0�0, i�1,2,3; �00� (�00)
�1. (2.119b)

With the use of (2.7), we readily see that (2.119a,b) imply

� i
0j�0, i,j�1,2,3. (2.120)

Because of (2.119a) we can write the second equation in (2.106) as follows:

�00(u
0)2�� iju

iu j�1. (2.121)

For particles moving slowly with respect to the speed of light, the second
set of terms on the left hand side is small compared to the first term (since
the ui are of the order of �/c, where � is a typical velocity), so we get

�00(u
0)2�1. (2.122)

If the particle moves along a geodesic, one obtains from (2.104), neglect-
ing second order quantities (that is, terms proportional to (�/c)2, etc.),

dui/ds��� i
00(u

0)2� (1/2)� ij�00, j(u
0)2. (2.123a)

To first order we also have

dui/ds� (�ui/�x�)(dx�/ds)� (�ui/�x0)u0. (2.123b)

Equating the right hand sides of (2.123a,b) and cancelling a factor u0,
results in (from (2.122) u0� (�00)

� )

(�ui/�x0)� (1/2)� ij�00, ju
0�� ij(�00), j. (2.124)

With the use of (2.119a) and (2.124) we get

� ik(�uk/�x0)�� ik�kj(�00), j

�� j
i(�00), j� (�00),i� (�ui/�x0). (2.125)

This equation is analogous to the Newtonian equation of motion, in that
the ‘acceleration’ �ui/�x0, in units employed here, is equal to the gradient of
a scalar, in this case �00, which plays the role of the Newtonian gravita-
tional potential. Assuming the gravitational field to be weak, the �

��
can

be taken to be constant (i.e., independent of time, as in (2.119a)), and the
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�
��,� and hence all Christoffel symbols to be small. Under these conditions

the vacuum Einstein equations R
��

�0 become (neglecting products of �s)

�

�
,���


��,
�0. (2.126)

This is equivalent to the following equation:

���(�
��,��

��
��,��

��
��,��

��
��,��

)�0. (2.127)

If we set ����0 and �
��,0�0, Equation (2.127) reduces to

�mn�00,mn�0. (2.128)

This is analogous to Laplace’s equation. If we choose units so that �00 is
approximately unity, we may take

�00�1�2V/c2, (2.129)

so that �00�1�V/c2, and from (2.125) we see that V may be identified with
the Newtonian gravitational potential (see below).

Going back to (2.118), by multiplying by ��� we get (introducing c):

�R�c2k�,

so that (2.118) becomes

R
��

�c2k�(u
�
u

�
� (1/2)�

��
). (2.130)

In the weak field approximation which yields (2.127), we now get

(1/2)���(�
��,��

��
��,��

��
��,��

��
��,��

)�kc2�(u
�
u

�
� �

��
). (2.131)

Consider again a static field produced by a static (not moving) distribution
of matter, so that u0�1, ui�0. With ����0, in (2.131), one gets

(1/2)�mn�00,mn� (1/2)c2k�(1� �00). (2.132)

If we substitute �00�1�2V/c2, and keep the leading terms in powers of c
we see that �mn may be taken as �mn (the Kronecker delta), and �00 on the
right hand side may be taken as unity. This yields the following equation:

�2V� (1/2)c 4k��4�G�, (2.133)

the last relation coming from Poisson’s equation for V, G being Newton’s
gravitational constant (6.67	10�8 cm3g�1s�2). In (2.133) we have used
gmnV,mn��mnV,mn� (�2/(�x1)2��2/(�x2)2��2/(�x3)2)V��2V. From (2.133)
we get k�8�G/c4. This is used in (2.22). (The calculations of this section
follow closely those of sections 16 and 25 of Dirac 1975, 1996.)

The derivation of the Newtonian approximation could have been short-
ened, but the longer discussion given here touches on points of somewhat
wider interest.
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3

The Robertson–Walker metric

3.1 A simple derivation of the Robertson–Walker metric

As we saw in the first chapter, the universe appears to be homogeneous
and isotropic around us on scales of more than a 100 million light years or
so, so that on this scale the density of galaxies is approximately the same
and all directions from us appear to be equivalent. From these observa-
tions one is led to the Cosmological Principle which states that the uni-
verse looks the same from all positions in space at a particular time, and
that all directions in space at any point are equivalent. This is an intuitive
statement of the Cosmological Principle which needs to be made more
precise. For example, what does one mean by ‘a particular time’? In
Newtonian physics this concept is unambiguous. In special relativity the
concept becomes well-defined if one chooses a particular inertial frame. In
general relativity, however, there are no global inertial frames. To define ‘a
moment of time’ in general relativity which is valid globally, a particular
set of circumstances are necessary, which, in fact, are satisfied by a homo-
geneous and isotropic universe.

To define ‘a particular time’ in general relativity which is valid globally
in this case, we proceed as follows. Introduce a series of non-intersecting
space-like hypersurfaces, that is, surfaces any two points of which can be
connected to each other by a curve lying entirely in the hypersurface which
is space-like everywhere. We make the assumption that all galaxies lie on
such a hypersurface in such a manner that the surface of simultaneity of
the local Lorentz frame of any galaxy coincides locally with the hypersur-
face (see Fig. 3.1). In other words, all the local Lorentz frames of the gal-
axies ‘mesh’ together to form the hypersurface. Thus the four-velocity of a
galaxy is orthogonal to the hypersurface. This series of hypersurfaces can
be labelled by a parameter which may be taken as the proper time of any
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galaxy, that is, time as measured by a clock stationary in the galaxy. As we
shall see, this defines a universal time so that a particular time means a
given space-like hypersurface on this series of hypersurfaces.

An equivalent description, known as Weyl’s postulate (Weyl, 1923) is to
assume that the worldlines of galaxies are a bundle or congruence of geo-
desics in space-time diverging from a point in the (finite or infinitely
distant) past, or converging to such a point in the future, or both. These
geodesics are non-intersecting, except possibly at a singular point in the
past or future or both. There is one and only one such geodesic passing
through each regular (that is, a point which is not a singularity)
space-time point. This assumption is satisfied to a high degree of accu-
racy in the actual universe. The deviation from the general motion postu-
lated here is observed to be random and small. The concept of a singular
point introduced here will be elucidated in the next chapter and in
Chapter 7.

We assume that the bundle of geodesics satisfying Weyl’s postulate pos-
sesses a set of space-like hypersurfaces orthogonal to them. Choose a
parameter t such that each of these hypersurfaces corresponds to t�con-
stant for some constant. The parameter t can be chosen to measure the
proper time along a geodesic. Now introduce spatial coordinates (x1, x2,
x3) which are constant along any geodesic. Thus, for each galaxy the co-
ordinates (x1, x2, x3) are constant. Under these circumstances the metric
can be written as follows:

ds2�c2 dt2�hijdxidxj, (i, j�1, 2, 3), (3.1)

where the hij are functions of (t, x1, x2, x3) and as usual repeated indices are
to be summed over (Latin indices take values 1, 2, 3). The fact that the
metric given by (3.1) incorporates the properties described above can be
seen as follows. Let the worldline of a galaxy be given by x�(�), where � is
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the proper time along the galaxy. Then according to our assumptions x�(�)
is given as follows:

(x0�c�, x1�constant, x2�constant, x3�constant). (3.2)

From (3.1) and (3.2) we see that the proper time � along the galaxy is, in
fact, equal to the coordinate time t. This is because from (3.2) dxi�0 along
the worldline so that putting dxi�0 in (3.1) yields ds�c d��c dt, so that
�� t. Clearly a vector along the worldline given by A�� (c dt, 0, 0, 0) and
the vector B�� (0, dx1, dx2, dx3) lying in the hypersurface t�constant are
orthogonal, that is,

�
��

A�B��0, (3.3)

since �0i�0 (i�1, 2, 3) in the metric given by (3.1). Further, the worldline
given by (3.2) satisfies the geodesic equation

���
��

�0. (3.4)

This can be seen from the fact that, from (3.2), we have

dx�/ds� (1, 0, 0, 0) (3.5)

so that (3.4) is satisfied if ��
00�0. In fact

��
00� ���(2�

�0,0��00,�). (3.6)

Using the fact that �0i�0 (i�1, 2, 3) which follows from (3.1), it is readily
verified that ��

00 given by (3.6) vanishes, so that (3.4) is satisfied and that
the worldlines given by (3.2) are indeed geodesics.

The metric given by (3.1) does not incorporate the property that space is
homogeneous and isotropic. This form of the metric can be used, with
the help of a special coordinate system obtained by singling out a particu-
lar typical galaxy, to derive some general properties of the universe
without the assumptions of homogeneity and isotropy (see, for example,
Raychaudhuri (1955)). We shall be concerned with this general form in
Chapter 7, but here we consider the form taken by (3.1) when space is
homogeneous and isotropic.

The spatial separation on the same hypersurface t�constant of two
nearby galaxies at coordinates (x1, x2, x3) and (x1��x1, x2��x2, x3��x3) is

d�2�hij�xi�xj. (3.7)

Consider the triangle formed by these nearby galaxies at some particular
time, and the triangle formed by these same galaxies at some later time. By
the postulate of homogeneity and isotropy all points and directions on a

1
2

dx�

ds
dx�

ds
d2x�

ds
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particular hypersurface are equivalent, so that the second triangle must be
similar to the first one and further, the magnification factor must be inde-
pendent of the position of the triangle in the three-space. It follows that
the functions hij must involve the time coordinate t through a common
factor so that ratios of small distances are the same at all times. Thus the
metric has the form

ds2�c2 dt2�R2(t)�ijdxi dxj, (3.8)

where the �ij are functions of (x1, x2, x3) only. Consider the three-space
given by

d��2��ijdxi dxj. (3.9)

We assume this three-space to be homogeneous and isotropic. According
to a theorem of differential geometry, this must be a space of constant
curvature (see, for example, Eisenhart (1926) or Weinberg (1972)). In such
a space the Riemann tensor can be constructed from the metric (and not
its derivatives) and constant tensors only. The following three-dimensional
fourth rank tensor constructed out of the three-dimensional metric tensor
of (3.9) has the correct symmetry properties for the Riemann tensor:

(3)Rijkl�k(�ik�jl��il�jk), (3.10)

where k is a constant. One can verify that the three-dimensional Riemann
tensor of the space given by (3.9) has the form (3.10) if the �ij are chosen to
be given by the following metric (Weinberg 1972, Chapter 13):

d��2� (1� kr�2)�2[(dx1)2� (dx2)2� (dx3)2],
r�2� (x1)2� (x2)2� (x3)2. (3.11)

The metric (3.8) can then be written as follows:

ds2�c2 dt2� , (3.12)

where we have set x1�x, x2�y, x3�z, so that r�2�x2�y2�z2. With 
x�r� sin� cos�, y�r� sin� sin�, z�r� cos�, (3.12) reduces to the follow-
ing:

ds2�c2 dt2�R2(t) . (3.13)

The transformation r�r�/(1� kr�2) yields the standard form of the
Robertson–Walker metric, as follows:

ds2�c2 dt2�R2(t) . (3.14)� dr2

1 � kr2 � r2(d�2 � sin2� d�2)


1
4

�dr�2 � r�2(d�2 � sin2� d�2)
(1 � 1

4kr�2)2 


R2(t) (dx2 � dy2 � dz2)
[1 � 1

4k(x2 � y2 � z2)]2

1
4
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The constant k in (3.14) can take the values �1, 0, �1, giving three
different kinds of spatial metrics. We will deal with these in detail later.

We will now give a brief discussion of the manner in which the
Robertson–Walker metric is derived more rigorously with the help of
Killing vectors. A space is said to be homogeneous if there exists an infini-
tesimal isometry of the metric which can carry any point into any other
point in its neighbourhood. From the discussion of Killing vectors it
follows that this implies the existence of Killing vectors of the metric
which at any point can take all possible values. These remarks can be illus-
trated by a simple example. Consider the following metric:

ds2�A(t) dt2�B(t) dx2�C(t) dy2�D(t) dz2, (3.15)

where A, B, C, D are functions of the time coordinate t only, and x, y, z are
the spatial coordinates. Consider two arbitrary points P and P� with
spatial coordinates (a, b, c) and (a�, b�, c�) respectively. Consider now the
transformation given by

x��x�a��a, y��y�b��b, z��z�c��c. (3.16)

This transformation takes the point P to the point P�, because when (x, y,
z)� (a, b, c), we get (x�, y�, z�)� (a�, b�, c�). On the other hand the new
metric is given by

ds2�A(t) dt2�B(t) dx�2�C(t)dy�2�D(t) dz�2, (3.17)

which has the same form in the new coordinates as (3.15) has in the old
coordinates. Thus (3.16) represents an isometry of the metric, which is not
just infinitesimal but a finite or a global isometry. Thus the metric (3.15)
represents a homogeneous space. In terms of Killing vectors, it is easily
verified that the vectors given by ��� (0, 1, 0, 0), ��� (0, 0, 1, 0) and
��� (0, 0, 0, 1) are all Killing vectors, as are any linear combinations of
these with arbitrary constant coefficients. One can thus get Killing vectors
which take arbitrary spatial values, which correspond to isometries of the
form (3.16).

One can similarly define isotropy in terms of isometries and Killing
vectors. A space is isotropic at a point X if there exists an infinitesimal
isometry which leaves the point X unchanged but takes any direction at X
to any other direction, that is, takes any infinitesimal vector at X to any
other one. In terms of Killing vectors, this implies the existence of Killing
vectors which vanish at X but whose derivatives can take all possible
values, subject to Killing’s equation. The metric (3.15), although homo-
geneous, is not in general isotropic. A space is isotropic if it is isotropic
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about every point in it. Proceeding along these lines one can derive the
Robertson–Walker metric with the use of Killing vectors. We will carry
out such a derivation later in this chapter.

3.2 Some geometric properties of the Robertson–Walker metric

Consider the Robertson–Walker metric (3.14) when k�1. This yields the
universe with positive spatial curvature whose spatial volume is finite, as
we shall see. In this case it is convenient to introduce a new coordinate  by
the relation r�sin , so that the metric (3.14) becomes

ds2�c2 dt2�R2(t)[d 2�sin2 (d�2�sin2� d�2)]. (3.18)

Some insight may be gained by embedding the spatial part of this metric in
a four-dimensional Euclidean space. In general a three-dimensional
Riemannian space with a positive definite metric cannot be embedded in a
four-dimensional Euclidean space, but the spatial part of (3.18) can, in
fact, be so embedded. Before proceeding to do this, we consider a simple
example of embedding, namely, that of the space given by the two-
dimensional metric

d��2�a2(d�2�sin2� d�2). (3.19)

This, of course, is just the surface of a two-sphere and is represented by the
equation x2�y2�z2�a2 in ordinary three-dimensional Euclidean space.
This is a trivial example of the embedding of the two-surface given by
(3.19). However, a metric such as (3.19) describes the intrinsic properties
of the surface and does not depend on its embedding in a higher-
dimensional space, although in this simple case it is natural to think in
terms of the surface of an ordinary sphere in three dimensions. Turning to
(3.18), we write the spatial part as follows:

d�2�R2[d 2�sin2 (d�2�sin2� d�2)], (3.20)

where we concentrate on a particular time t and regard R as constant.
Consider now a four-dimensional Euclidean space with coordinates (w, x,
y, z) which are Cartesian-like in that the distance between points given by
(w1, x1, y1, z1) and (w2, x2, y2, z2) is "12, where

"2
12� (w1�w2)

2� (x1�x2)
2� (y1�y2)

2� (z1�z2)
2. (3.21)

Thus the metric in this space is given by

d"2�dw2�dx2�dy2�dz2. (3.22)
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Consider now a surface in this space given parametrically by

w�R cos , x�R sin sin� cos�,
y�R sin sin� sin�, z�R sin cos�, (3.23)

from which we get

w2�x2�y2�z2�R2. (3.24)

Evaluating dw, dx, dy, dz in terms of d , d�, d� from (3.23) and substitut-
ing in (3.22) we get precisely the metric given by (3.20). Just as all points
and all directions starting from a point on a two-sphere in a three-
dimensional Euclidean space are equivalent, so all points and directions on
a three-sphere in a four-dimensional Euclidean space are equivalent. This
can be seen from the fact that rotations in the four-dimensional embedding
space (which can be affected by a 4	4 orthogonal matrix) can move any
point and any direction on the three-sphere into any other point and direc-
tion respectively, while leaving unchanged the metric (3.22) and the equa-
tion of the three-sphere (3.24). This shows that the metric (3.20), that is,
the space t�constant in (3.18), is indeed homogeneous and isotropic.

Consider again a particular time t so that R can be taken as constant in
(3.23) and (3.24). Consider the two-surface given by  �constant� 0,
which is a two-sphere, as can be seen from (3.23) and (3.24), whence we get
w�R cos 0, and

x2�y2�z2�R2 sin2 0. (3.25)

The surface area of this two-sphere is 4�R2sin2 0. As  0 ranges from 0 to
�, one moves outwards from the ‘north pole’ (given by  0�0) of the
hypersurface through successive two-spheres of area 4�R2sin2 0. The area
increases until  0��/2, after which it decreases until it is zero at  0��.
The distance from the ‘north’ to the ‘south pole’ is R�. This behaviour is
similar to what happens on a two-sphere in a three-dimensional Euclidean
space, as illustrated in Fig. 3.2. Suppose the radius of the two-sphere is R�

and  � denotes the co-latitude. The circumference of the circle on the
sphere given by  ��constant� �0 is 2�R� sin �0, while the distance of this
circle from the north pole O is R� �0. The circumference of this circle
reaches a maximum at  �0��/2, after which it decreases until it reaches
zero at  �0��, when the distance from the north pole along the surface is
R��, analogously to the previous case.

In the case of the three-space (3.24), the entire surface is swept by the
coordinate range 0# #�, 0#�#�, 0#�#2�. The total volume of the
three-space (3.20) is
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(�(3)�)1/2d3x� (R d )(R sin d�)(R sin sin� d�)�2�2R3,

(3.26)

which is finite. Here (3)� is the determinant of the three-dimensional
metric.

In the case k�0 the spatial metric is given by

d�2
1�R2[d 2� 2(d�2�sin2� d�2)], (3.27)

which is the ordinary three-dimensional Euclidean space. As usual, the
transformation

x�R sin� cos�, y�R sin� sin�, z�R cos�, (3.28)

gives

d�2
1�dx2�dy2�dz2. (3.29)

The range of ( , �, �) is 0# �$, 0#�#�, 0#�#2�, and the spatial
volume is infinite. This is also referred to as the universe with zero spatial
curvature, as opposed to the case k�1, which has positive spatial curva-
ture.

The case k��1 corresponds to the universe with negative spatial
curvature. The spatial part of this metric cannot be embedded in a four-
dimensional Euclidean space, but it can be embedded in a four-
dimensional Minkowski space. It is, in fact, the space-like surface given by

x2�y2�z2�w2��R2, (3.30)

��
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c�0
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Fig. 3.2. Diagram to illustrate the analogy between the surface of a two-
sphere and three-space of positive curvature.
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in the Minkowski space with metric

ds2�dw2�dx2�dy2�dz2. (3.31)

Putting k��1 and r�sinh in (3.14), we get for the spatial part of this
metric the following form:

d�2
2�R2[d 2�sinh2 (d�2�sin2� d�2)]. (3.32)

To see the embedding given by (3.30), (3.31) we transform to a Minkowski
space with coordinates (w, x, y, z) given by

w�R cosh , x�R sinh sin� cos�,
y�R sinh sin� sin�, z�R sinh cos�, (3.33)

which gives (3.30) on substitution for w, x, y, z. Evaluating dw, dx, dy, dz
from (3.33) in terms of d , d�, d�, and substituting in (3.31) we get the
metric (3.32). In this case the surface w�constant given by  �con-
stant� 0, corresponds, by substituting into (3.30) w�R cosh 0, to the
surface of the two-sphere given by

x2�y2�z2�R2 sinh2 0. (3.34)

The surface of this sphere has area 4�R2 sinh2 0, which keeps on increas-
ing indefinitely as  0 increases. As is clear from the metric (3.32), the
‘radius’ of this sphere, that is, the distance from the ‘centre’ given by  �0
to the surface given by  � 0 along �� constant and ��constant, is R 0.
Thus the surface area is larger than that of a sphere of radius R 0 in
Euclidean space. In this case the range of the coordinates ( , �, �) is:
0# #$,0#�#�, 0#�� 2�. The spatial volume is infinite.

3.3 Some kinematic properties of the Robertson–Walker metric

We have seen that galaxies have fixed spatial coordinates, that is, they are
at rest in the coordinate system defined above. Such a system is called
comoving. Thus the cosmological ‘fluid’ is at rest in the comoving frame
we have chosen. We now consider the behaviour of a free particle which is
travelling with respect to this comoving frame. It is free in the sense that it
is affected only by the ‘background’ cosmological gravitational field and
no other forces. This could be a projectile shot out of a galaxy or a light
wave (photon) travelling through intergalactic space. Consider the
Robertson–Walker metric in the form

ds2�c2 dt2�R2(t) �r2(d�2�sin2� d�2) . (3.35)
� dr2

1 � kr2
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We write (x0, x1, x2, x3)� (ct, r, �, �), so that

�00�1, �11��R2(t)/(1�kr2),

�22��R2(t)r2, �33��R2(t)r2sin2�, (3.36)

the rest of the metric components being zero. Consider a geodesic passing
through a typical point P. Without loss of generality we can take the
spatial origin of the coordinate system, that is, r�0, to be at the point P.
The path of the particle is given by the geodesic equation

���

�

u
u��0, (3.37)

where u��dx�/d�, x�(�), being the coordinates of a space-time point on
the worldline of the moving particle as a function of the path parameter �.
If the particle is massive, � can be taken as the proper time s of the parti-
cle, and if it is a photon, � is an affine parameter.

Multiply (3.37) by �
��

and use (2.4), (2.7) to get

�
��

(du�/d�)� (�
�
,���

��,
��

�,�)u
u��0. (3.38)

We also have

(�
��

u�)��
��

��
��,�u

�u�. (3.39)

In (3.38) �
�
,�u
u���

��,
u
u�, so that if we eliminate from this equation
the term �

��
du�/d� with the use of (3.39), we arrive at the following equa-

tion

du
�
/d�� �


�,�u
u��0. (3.40)

Equation (3.40) tells us that if the metric components are independent
of a particular coordinate x�, then the covariant component u

�
is constant

along the geodesic. Consider the component ��3, so that we are referring
to x3��. Since the metric components (3.36) are independent of �, we
have du3/d��0, so that u3 is constant along the geodesic. But

u3�g33u
3��R2(t)r2(sin2�)u3, (3.41)

so that u3�0 at the point P were r�0. Thus u3�0 along the geodesic and
so u3�d�/d��0 as well, so � is constant along the geodesic.

Consider (3.40) for ��2:

du2/d�� �

�,2u


u��0. (3.42)1
2

1
2

du�

d�

du�

d�
�

d
d�

1
2

du�

d�
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The only component of �

�

which depends on x2�� is �33, but the contri-
bution of the corresponding term to (3.42) vanishes since u3�0. Thus
du2/d��0, so u2 is constant along the geodesic. Again

u2��22u
2��R2(t)r2u2, (3.43)

which vanishes at P (r�0), and so u2 is zero along the geodesic, as is u2, so
that � is also constant along the geodesic.

To proceed further we concentrate on the case k�0 in (3.35) and (3.36).
We leave it as an exercise for the reader to extend the following analysis to
the cases k��1, �1. In these two cases it is helpful to transform the coor-
dinate r to  given by r�sin , r�sinh respectively, as in (3.20), (3.32).
We return to (3.40) with ��1:

du1/d�� �

�, 1u


u��0. (3.44)

We have u2�u3�0, while �00 and �11 are independent of r (recall that
k�0). Thus du1/d��0 so that u1 is constant along the geodesic:

u1��11u
1��R2(t) �constant, (3.45)

where we have taken the parameter � to be the proper time s. In the metric
(3.35) we can set d��d��0 (since � and � are constant along the geo-
desic) to get

ds2�c2 dt2�R2(t) dr2�c2 dt2�dl2�dt2(c2��2), (3.46)

where dl is the element of spatial distance and ��dl/dt is the velocity of
the particle in the comoving frame, assuming it to be a massive particle of
mass m. The momentum of the particle is given as follows:

q�m (dl/ds)c�m�/(1��2/c2)1/2. (3.47)

Combining (3.45), (3.46), (3.47) we get

qR(t)�constant along the geodesic. (3.48)

The above analysis can also be applied to the case of a photon, in which
case, since the energy q0 and the momentum q of the photon are related by
q0�cq, we have

q0R(t)�constant along the geodesic. (3.49)

Since the energy of the photon is proportional to its frequency �, we
get

�R(t)�constant along the geodesic. (3.50)

dr
ds

1
2
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Consider a photon emitted at time t1 with frequency �1 which is
observed at the point P at time t0 with frequency �0. From (3.50) we get

�0R(t0)��1R(t1). (3.51)

This can be written as

1�z�R(t0)/R(t1), (3.52)

where z� (�0��1)/�1 is the fractional change in the wavelength; �0, �1

being the wavelengths corresponding to the frequencies �0, �1 (with
�0�0��1�1�c). The number z is always observed to be positive, at least for
distant galaxies, indicating a shift in the visible spectrum towards red, so
that z is referred to as the ‘red-shift’. We will come back to (3.52) later, but
now we discuss another derivation of this relation.

The light ray follows a path given by ds�0, which, with the use of
(3.46), yields the following relation

c(dt/R(t))� dr�r1, (3.53)

assuming the emitting galaxy to be at r�r1. If the next wave train leaves
the galaxy at t1��t1 and arrives at t0��t0, (3.53) implies

c dt/R(t)� c dt/R(t). (3.54)

Assuming �t0, �t1 to be small compared to t0, t1, (3.54) can be approxi-
mated as follows

�t1/R(t1)��t0/R(t0). (3.55)

Since the frequency is inversely proportional to the time interval in which
the wave train is emitted, we get (3.51) again.

Without any further consideration the function R(t) which occurs in the
Robertson–Walker metric can be any function of the time t. From (3.52)
we see, since z is observed not to be zero, that the function R(t) is not just a
constant. To determine this function we must resort to dynamics, which
are provided by Einstein’s equations. Before considering these, in the next
chapter, we discuss some further properties of the Robertson–Walker
metric which are independent of what form the function R(t) takes. These
properties may be referred to as kinematic properties.

As indicated in Chapter 1, the first evidence of a systematic red-shift in
the spectra of light coming from distant galaxies was found by Hubble. He
analysed the data on frequency shifts obtained earlier by Slipher and

�
t0��t0

t1��t1

�
t0

t1

�
r1

0
�

t0

t1
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others and found a linear relationship between the red-shift z and the dis-
tance l. He interpreted the red-shift as being due to the recessional velocity
of the galaxies. The approximate argument, which is valid if the values of
the red-shifts are not high, goes as follows. Let �t1 of the earlier discussion
following (3.53) represent the time interval during which successive wave
crests leave the source at r�r1, and let �t0 be the interval during which
these wave crests are received by the observer. If the source is moving away
from the observer with velocity �, during the time the two consecutive
wave crests are emitted the source moves a distance ��t1. Because of this
movement, the time interval in which the crests reach the observer is
increased by an amount ��t1/c. Thus we have

�t0��t1���t1/c. (3.56)

The wavelengths of the emitted and observed light are given as follows:

�1�c�t1, �0�c�t0. (3.57)

From (3.56) and (3.57) it follows that

�0/�1��t0/�t1�1��/c�1�z. (3.58)

Thus z��/c. This is true if the velocity is small compared to the speed of
light. From (3.52) and (3.58) we get

��cz�c(t0� t1)R(t1)/R(t1), (3.59)

where we have assumed t0� t1 to be small and expanded R(t) about t� t1,
with R(t)�dR(t)/dt. Again if t0� t1 is small the t1 in the arguments of R
and R in (3.59) can be replaced by t0. With the use of similar approxima-
tions, we derive the following relations between the coordinate distance r1

and the distance l of the galaxy:

r1�c(t0� t1)/R(t0), (3.60)

l�r1R(t0)�c(t0� t1). (3.61)

With the use of (3.59), (3.60) and (3.61) we finally get Hubble’s law, as
follows:

��cz�H0l, H0�R(t0)/R(t0). (3.62)

There are many uncertainties in the exact determination of Hubble’s con-
stant, H0, some of which we shall discuss later in the book. One of the best
values available for some years was that of Sandage and Tammann (1975),
as follows (other measurements will be mentioned later):

H0� (50.3%4.3) km s�1 Mpc�1. (3.63)
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Here Mpc stands for megaparsec, which is approximately 3.26 million
light years.

As mentioned already, the formula (3.62) holds only when the red-shift
is small. We should expect departures from this linear Hubble’s law if the
red-shift is not small. To this end, we expand R(t) in a Taylor series about
the present epoch t0, as follows:

R(t)�R[t0� (t0� t)]

�R(t0)� (t0� t)R(t0)� (t0� t)2R̈(t0)� . . .

�R(t0)[1� (t0� t)H0� (t0� t)2q0H
2
0� . . .], (3.64)

with

q0��R̈(t0)R(t0)/R
2(t0). (3.65)

With the use of (3.53) with a minor adjustment of sign we get

r� c dt/R(t)� c dt/{R(t0)[1� (t0� t)H0� . . .]}

�cR�1(t0)[(t0� t)� (t0� t)2H0� . . .]. (3.66)

Here r is the coordinate radius of the galaxy under consideration. The first
term in the last expression in (3.66) gives (3.60). With the use of the first
part of (3.61), namely, l�rR(t0), we can invert (3.66) to obtain t0� t in
terms of l as follows

t0� t� l/c� H0l
2/c2. (3.67)

From (3.52) and (3.64) we can find z up to second order in t0� t as follows:

z� [1� (t0� t)H0� (t0� t)2q0H
2
0�…]�1�1

� (t0� t)H0� (t0� t)2( q0�1)H2
0�…. (3.68)

We now substitute for t0� t from (3.67) into (3.68) to obtain a relation for
the red-shift z in terms of the distance l.

z�H0l/c� (1�q0)H
2
0l 2/c2�O(H 3

0l 3). (3.69)

Thus from the observed red-shifts it is possible to determine the parame-
ters H0 and q0 if an independent estimate can be obtained for the distance.
The parameter q0 is referred to as the deceleration parameter, as it indi-
cates by how much the expansion of the universe is slowing down. If the
expansion is speeding up, for which there appears to be some recent evi-
dence, then q0 will be negative.

1
2

1
2

1
2

1
2

1
2

�
t0

t
�

t0

t
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3.4 The Einstein equations for the Robertson–Walker metric

In this section we derive the Einstein equations given by (2.22) for the
Robertson–Walker metric, in which the matter is in the form of a perfect
fluid of mass-energy density � and pressure p, so that the energy–
momentum tensor is given by (2.23), with u�� (1, 0, 0, 0), as we are in
comoving coordinates.

The metric components and Christoffel symbols which are non-zero are
given as follows (recall that (x0, x1, x2, x3)�(ct, r, �, �)):

�00�1, �11��R2/(1�kr2), �22��r2R2,

�33�sin2�R2, (3.70)

�00�1, �11��(1�kr2)/R2, �22��(rR)�2,

�33��(r sin�R)�2. (3.71)

We put the Christoffel symbols ��
��

in four groups according to the values
0, 1, 2, 3 of the index �, as follows:

�0
11�c�1RR/(1�kr2), �0

22�c�1r2RR,

�0
33�c�1r2 sin2�RR, (3.72a)

�1
01�c�1R/R, �1

11�kr/(1�kr2), �1
22��r(1�kr2),

�1
33��r(1�kr2)sin2�, (3.72b)

�2
02�c�1R/R, �2

12�1/r, �2
33��sin� cos�, (3.72c)

�3
03�c�1R/R, �3

13�1/r, �3
23�cot�. (3.72d)

We next substitute the Christoffel symbols into (2.17) or (2.18) to get the
following non-zero components of the Ricci tensor R

��
(note that r is

dimensionless while R(t) has the dimension of length).

R00��3R̈/R, (3.73a)

R11�(RR̈�2R2�2c2k)/(1�kr2), (3.73b)

R22�r2(RR̈�2R2�2c2k), (3.73c)

R33�r2sin2�(RR̈�2R2�2c2k). (3.73d)

It is unfortunate that the same letter is normally used for the scale factor
R(t) as for the Ricci scalar (see (2.20)), but it should be clear from the
context which is meant. The Ricci scalar can be evaluated with the use of
(3.73a)–(3.73d) as follows:

���R
��

��6(RR̈�R2�c2k)/R2. (3.74)
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We are now in a position to write down the Einstein equations (2.22),
noting that the covariant components of the four-velocity are the same as
the contravariant ones: u

�
� (1, 0, 0, 0), so that the non-zero components

of T
��

are:

T00��, T11�pR2/(1�kr2), T22�pr2R2,

T33�pr2(sin2�)R2. (3.75)

The 00- and 11-components of (2.22) can be written as follows:

3(R2�c2k)�8�G�R2/c2, (3.76a)

2RR̈�R2�kc2��8�GpR2/c2. (3.76b)

The 00-component of (2.22) has been multiplied by R2 to get (3.76a), while
the 11-component has been multiplied by kr2�1 to get (3.76b). The 22-
and 33-components of (2.22) yield equations which are equivalent to
(3.76b).

A useful consequence of (3.76a) and (3.76b) can be obtained by consid-
ering the equation of conservation of mass-energy given by (2.25). A gen-
eralization of (2.6a) implies that (2.25) can be written as follows:

T��
,����

��
T�����

��
T���0. (3.77)

With the non-zero contravariant components T�� given as follows:

T00��, T11�p(1�kr2)/R2, T22�p/(rR)2,
T33�p/[r(sin�)R]2, (3.78)

and with the use of the Christoffel symbols (3.72a)–(3.72d), (3.77) can be
written as follows:

�&�3(p��)R/R�0, (3.79)

which comes from the ��0 component of (3.77), the other components
being satisfied identically. Equation (3.79) is, of course, a consequence of
(3.76a) and (3.76b) and can be derived from these by first evaluating �&

from (3.76a) and using (3.76b) to eliminate R̈.
In the next section we shall attempt to provide the essential framework

in which a rigorous derivation of the Robertson–Walker metric can be
carried out (Weinberg, 1972, Chapter 13). We will mention the construc-
tion briefly; the details are given by Weinberg.
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3.5 Rigorous derivation of the Robertson–Walker metric

Consider Killing’s equation (2.38) and a given point X with coordinates X�

which is situated in a neighbourhood with coordinates x�. By a ‘neigh-
bourhood’ we mean a region of space-time in which all points can be rep-
resented by the same coordinate system; this is also referred to as a
‘coordinate patch’. As mentioned earlier, several coordinate patches may
be required for a global description, that is, to describe the whole of space-
time. The Killing condition is such that it enables one to calculate the
function �

�
(x) in the whole neighbourhood from the values of �

�
(x) and

the derivatives �
�;�(x) at the point X, i.e., from the quantities �

�
(X), �

�;�(X).
In these arguments x, X represent x�, X� respectively. When we say ‘deriv-
atives’ here, it makes no difference if we mean ordinary or covariant deriv-
atives, because the latter is expressible in terms of the former and
components of the vector itself, at the point X (see (2.6b)). The fact that
�

�
(x) is determined thus can be seen as follows.
We write down (2.38) here for convenience:

�
�;���

�;��0. (3.80)

Using �
�

instead of A
�

in (2.12) we get

�
�;�;���

�;�;���
�
R�

���
. (3.81)

The following relation is obtained by raising the index � in (2.14c):

R�
���

�R�
���

�R�
���

�0. (3.82)

Equation (3.81) implies, taking cyclic permutations of (���), the following
two equations:

�
�;�;���

�;�;���
�
R�

���
, (3.83a)

�
�;�;���

�;�;���
�
R�

���
. (3.83b)

Adding (3.81), (3.83a,b) and using (3.82), we get

�
�;�;���

�;�;���
�;�;���

�;�;���
�;�;���

�;�;��0. (3.84)

Taking covariant derivatives of Killing’s equation (3.80) with suitable
combinations of indices, we get the following three equations, if �

�
satisfies

(3.80):

�
�;�;���

�;�;��0, (3.85a)

�
�;�;���

�;�;��0, (3.85b)

�
�;�;���

�;�;��0. (3.85c)
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With the use of these equations, (3.84) reduces to the following equation:

�
�;�;���

�;�;���
�;�;��0. (3.86)

Using (3.81) again we get

�
�;�;���

�
R�

���
. (3.87)

With the use of (2.6b) and the following corresponding relation for a
second rank covariant tensor A

��
:

A
��;��A

��,����
��

A
��

���
��

A
��

, (3.88)

it is readily verified that (3.87) can be written as follows:

�
�,�,���

�
R�

���
� (��

��,����
��

��
��

���
��

��
��

)�
�

� (��
��

�
�,����

��
�

�,����
��

�
�,�). (3.89)

This relation shows that, in the neighbourhood of X, the second deriva-
tives of �

�
can be expressed in terms of the �

�
and its first derivatives.

Consider now any function f(x) of the coordinates x� in the neighbour-
hood of X. By a Taylor series, f(x) can be expanded as follows around X�:

f(x)� f(X�x�X)

� f(X )� (x��X�)(�f(x)/�x�)

� (x��X�)(x��X�)(�2f/�x��x�)� . . .. (3.90)

In a similar manner the vector �
�
(x) can be expanded around X�:

�
�
(x)��

�
(X�x�X)

��
�
(X)� (x��X�)(��

�
/�x�)

� (x��X�)(x��X�)(�2�
�
/�x�x�)� . . .. (3.91)

Note that the derivatives are evaluated at x��X�. It is clear from (3.89)
that by repeated use of this equation and its derivatives all higher deriva-
tives of �

�
can be expressed in terms of �

�
and its first derivatives. Thus all

the second and higher derivatives of �
�

occurring in (3.91) (evaluated at X)
can be expressed in terms of �

�
(X) and �

�;�(X). Therefore, in the neigh-
bourhood of X, �

�
(x) turns out to be a linear combination of �

�
(X) and

�
�;�(X), with coefficients which are functions of x�, as well as X�. This rela-

tion can be expressed as follows:

�
�
(n)(x)�A�

�
(x;X)�

�
(n)(X)�B

�
��(x;X)� (n)

�;�(X), (3.92)

1
2

1
2
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where, for convenience, we have reverted to �
�;� in place of �

�,�, since the
two derivatives are equivalent for the present purpose; changing �

�;� to �
�,�

simply changes the coefficient A�
�
(x;X) in a manner which is readily deter-

mined. Note also that the coefficients A�
�
(x;X) and B

�
��(x;X) are both func-

tions of x� and X�; these can be determined explicitly in terms of R�
���

,
the �s and their derivatives evaluated at X; �

�
(x), �

�,�(x) can be expressed
as power series in (x��X�) with the use of (3.89) and its derivatives, and of
(3.91). The superscript n in � (n)

�
, etc., in (3.92) indicates the different pos-

sible linearly independent solutions of Killing’s equation that can exist at
X. Thus every Killing vector �

�
(x) is determined through (3.92) in a neigh-

bourhood in terms of the values of �
�
(x) and �

�;�(x) at any given point X
of the neighbourhood. If the different Killing vectors � (n)

�
, n�1,2, . . .

satisfy an equation

cn�
(n)
�

(x)�0, (3.93)

with constant coefficients cn, then they are linearly dependent; otherwise
they are linearly independent. Note that the above equations are valid in
any number N of dimensions. From (3.92) it therefore follows that in N
dimensions there can be at most N(N�1) linearly independent Killing
vectors in any neighbourhood. This can be seen as follows. From (3.92)
we see that � (n)

�
(x) is linearly dependent on � (n)

�
(X) and � (n)

� ;�(X) for any n and
x. Now in N dimensions, for any n there are N (N�1) quantities � (n)

� ;�(X),
and together with the N quantities � (n)

�
(X), these give N� N(N�1)�

N(N�1) independent quantities. For different values of n these can be
regarded as vectors in a N(N�1) dimensional space. In such a space there
can be at most N(N�1) linearly independent vectors. Thus for any fixed
x, X, (3.92) can yield at most N(N�1) linearly independent vectors
� (n)

�
(x). This argument may be a little more transparent if it is stated as

follows. Let us fix x and X, and let the indices (��) in B
�
�� be denoted by '

which takes values 1,2, . . ., N(N�1), and let � (n)
�

(X), � (n)
�;�(X) be denoted

respectively by �̂ (n)
�

, �̂
'
�(n), the ‘hat’ on � or �� denoting that these quantities

are evaluated at X. Then (3.92) can be written as follows:

� (n)
�

(x)�A�
�
�̂ (n)

�
�B'

�
�̂

'
�(n), (3.94)

where �, as usual, takes values 1,2, . . ., N while ' takes values 1,2, . . .,
N(N�1). Since x, X are fixed, the A�

�
and B'

�
can be regarded as constants.

Let there be M such vectors, for n�1,2, . . .,M. Thus for fixed x, X, for any
given n, � (n)

�
(x) is a linear combination of N(N�1) quantities, namely �̂ (n)

�
,

��1,2, . . . ,N, �̂
'
�(n), '�1,2, . . ., N(N�1), which quantities together can be

regarded as a vector in a N(N�1) dimensional space, namely, the vector1
2

1
2

1
2

1
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(�̂ (n)
1, . . ., �̂N

(n),�̂ �(n)
1, . . .,�̂ �(n)

N(N�1)
). (3.95)

Clearly these are N(N�1) linearly independent vectors; for example, they
can be taken as the N(N�1) linearly independent vectors (1,0, . . .,0),
(0,1,0, . . .,0), . . ., (0, . . .,0,1,0), (0, . . .,0,1), each of these having
N(N�1)�1 zeros as components. Hence at any point x there can be at

most N(N�1) linearly independent vectors, since for M� N(N�1) we
must have, for any M vectors of the form (3.95) with n�1,2, . . .,M, the
following relations holding for some constants c1,c2, . . .,cM:

cn�̂ 1
(n)�0, cn�̂ 2

(n) �0, . . ., cn�̂N
(n) �0,

cn�̂ 1�
(n)�0, . . ., cn�̂�(n)

N(N�1)
�0. (3.96)

These equations imply that the � (n)
�

(x) must satisfy the following equations
(for M� N(N�1)):

cn�
(n)
�

(x)�0. (3.97)

That is, the resulting � (n)
�

(x) (for n�1,2, . . .,M) are linearly dependent, for
M� N(N�1).

As mentioned earlier, a space is homogeneous if there are infinitesimal
isometries (2.36) that can carry any point X to any other point in its neigh-
bourhood. This is equivalent to saying that Killing’s equation (3.80) has
solutions, for the given metric and the given point, which can take all pos-
sible values.

For greater generality we continue to work in N dimensions. Let there
be N Killing vectors

� (�)
�
(x;X), ��1,2, . . .,N, (3.98a)

with

� (�)
�
(X;X), ��

�
, (3.98b)

where ��
�

is the Kronecker delta in N dimensions. The ��
�
(x;X) thus defined

are linearly independent, for if we had

c
�
� (�)

�
(x;X)�0, (3.99a)

then, putting x��X� in (3.99a), we get, using (3.98b),

c
�
� (�)

�
(X;X)� c

�
��

�
�c

�
�0. (3.99b)�
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M
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A metric space is isotropic about any point X of it if there are infinitesi-
mal isometries (2.36) which leave X unchanged: ��(X)�0, while the deriv-
atives �

�;�(X) can take all possible values. If the space has N dimensions, it
is possible to choose N(N�1) Killing vectors �

�
(��)(x;X) satisfying the fol-

lowing relations:

�
�
(��)(x;X)���

�
(��)(x;X), (3.100a)

�
�
(��)(X;X)�0, (3.100b)

�
�;�
(��)(X;X)� [(�/�x�)�

�
(��)(x;X)]x�X

���
�
��

�
���

�
��

�
. (3.100c)

(Equation (3.100b) implies that ordinary and covariant derivatives coin-
cide at x�X ). The N(N�1) Killing vectors defined as above are linearly
independent, for let

c
��

�
�
(��)(x;X)�0, (3.101a)

with c
��

��c
��

. Since this is meant to be an identity, its derivative with
respect to x� should be valid; taking this derivative and setting x�X and
using the condition (3.100c) we get

c
��

�c
��

�2c
��

�0, (3.101b)

which proves linear independence.
Spaces which are isotropic about every point are of particular interest in

cosmology. It is sufficient to consider isotropy about two infinitesimally
near points X�, X��dX�, so that there exist Killing vectors

�
�
(��)(x;X), �

�
(��)(x;X�dX), (3.102)

that vanish at x�X, x�X�dX respectively (see (3.100b)), and such that
the derivatives take all possible values. Since (3.102) are both Killing
vectors, any linear combination is also a Killing vector, and so

dX �→0
Lim {[�

�
(��)(x� d̂X;X)��

�
(��)(x;X)]/dX�}���

�
(��)(x;X)/�X�, (3.103)

is also a Killing vector, where d̂X means d̂X��0 if �(�, d̂X�(0. We eval-
uate this quantity at x�X as follows. First note that �

�
(��)(X;X) vanishes

identically (see (3.100b)). Therefore the derivative of this function of X (or
this set of functions, to be more precise) with respect to X� also vanishes
identically:

��
�
(��)(X;X)/�X��0. (3.104)

�
�,�

1
2

1
2
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But

��
�
(��)(X;X)/�X��

dX �→0
lim (X� d̂X;X� d̂X )��

�
(��)(X;X )]/dX�}

�
dX �→0
lim {[�

�
(��)(X� d̂X;X� d̂X )��

�
(��)(X� d̂X;X )

��
�
(��)(X� d̂X;X )��

�
(��)(X;X )]/dX�}

�{��
�
(��)(x;X )/�X�}x�X�{��

�
(��)(x;X )/�x�}x�X,

(3.105)

where d̂X has the same meaning as above. From (3.104) and (3.105) we
get

{��
�
(��)(x;X)/�X�}x�X��{��

�
(��)(x;X))�x�}x�X

���
�
���

�
���

�
��

�
, (3.106)

where in the last step we have used (3.100c) and (3.103). Thus, from the
fact that there exist Killing vectors (3.102) that vanish at infinitesimally
nearby points X and X�dX and whose derivatives can take any values, we
can construct a Killing vector �

�
(x), which can take any arbitrary value a

�
,

as follows. We define �
�
(x) by the following equation:

�
�
(x)� (a

�
/(N�1))(��

�
(��)(x;X)/�X�), (3.107)

where �
�
(��)(x;X ) has been defined as in (3.100a,b,c). We have already seen

that ��
�
(��)(x;X )/�X� is a Killing vector, and from (3.106) we see that

�
�
(X )� (a

�
/(N�1)){��

�
(��)(x;X)/�X�}x�X

� (a
�
/(N�1))(���

�
��

�
���

�
��

�
)

� (a
�
/(N�1))(���

�
�N��

�
)�a

�
. (3.108)

Thus a space which is isotropic about every point of it is also homogene-
ous, because the latter condition amounts to the existence of Killing
vectors that can take any arbitrary values, which (3.108) implies.

As a ‘comprehension exercise’, the reader may wish to carry out the
above analysis explicitly for the case N�4, in which case the number of
independent Killing vectors is 10, arising essentially out of the four �

�
(X)

and the six independent �
�;�(X).

In this section we have followed closely the account of this topic given
by Weinberg (1972, Chapter 13), but the treatment here is more detailed
and explicit in places.
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We have seen that there can be at most N(N�1) independent Killing
vectors in N dimensions. A metric which admits the maximum number is
referred to by Weinberg as maximally symmetric. Such a space is necessar-
ily homogeneous and isotropic about every point. Maximally symmetric
spaces are uniquely determined by the ‘curvature constant’ K and the
signature of the metric (number of positive and negative terms in the diag-
onal form). In various cases of physical interest, the whole of space (or
space-time) is not maximally symmetric, but it may be possible to decom-
pose it into such subspaces. A spherically symmetric three-dimensional
space, for example, can be decomposed into a series of subspaces, each
being maximally symmetric in two dimensions (see (3.19)). In cosmology
we have one example of a maximally symmetric space-time: the de Sitter
or the steady state universe given by (9.13). More importantly, we have
space-times in which each ‘plane’ of constant time is maximally symmet-
ric. We refer to Weinberg (1972, Chapter 13) for the detailed construction
of such metrics, including the Robertson–Walker metric, from this point
of view. Weinberg’s discussion of these matters is very instructive for the
serious student of cosmology; the considerations of this section may
provide a useful background. The papers by Robertson (1935, 1936) and
by Walker (1936) are outstanding landmarks in the theoretical develop-
ment of modern cosmology.

1
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4

The Friedmann models

4.1 Introduction

In Section 3.4 we derived the Einstein equations for the Robertson–Walker
metric with the energy–momentum tensor as that of a perfect fluid in
which the matter is at rest in the local frame. While the Robertson–Walker
metric incorporates the symmetry properties and the kinematics of space-
time, the Einstein equations provide the dynamics, that is, the manner in
which the matter, and the space-time in turn, are affected by the forces
present in the universe.

We rewrite (3.76a) and (3.76b) as follows. First we eliminate R2 from
(3.76b) to get the following equation:

R̈ ��(4�G/3)(��3p)R/c2. (4.1)

Next we write (3.76a) for the three different values of k: �1, 0, 1.

R2�c2�(8�G/3)�R2/c2, (4.2a)

R2�(8�G/3)�R2/c2, (4.2b)

R2��c2�(8�G/3)�R2/c2. (4.2c)

For any one of the three values of k, we have two equations for the three
unknown functions R, �, p. We need one more equation, which is provided
by the equation of state, p�p(�), in which the pressure is given as a func-
tion of the mass-energy density. With the equation of state given, the
problem is determinate and the three functions R, �, p can be worked out
completely. Models of the universe which are determined in this way are
referred to as Friedmann models, after the Russian mathematician A. A.
Friedmann (1888–1925) who was the first to study these models.
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Some information can be obtained about the function R(t) without
solving the equations explicitly, if one makes a few reasonable assump-
tions about the pressure and density. For example, if we assume that ��3p
remains positive, then from (4.1) we see that the ‘acceleration’ R̈/R is nega-
tive. Let the present time be denoted by t�t0. Now R(t0)�0 (by definition)
and R(t0)/R(t0)�0 (because we see red-shifts, not blue-shifts – see (3.59));
it follows that the curve R(t) must be concave downwards (towards the
t-axis – see Fig. 4.1). It is also clear from the figure that the curve R(t) must
reach the t-axis at a time which is closer to the present time than the time
at which the tangent to the point (t0, R(t0)) reaches the t-axis. We refer to
the time at which R(t) reaches the t-axis as t�0. Thus at a finite time in the
past, namely t�0, we have

R(0)�0. (4.3)

The point t�0 can reasonably be called the beginning of the universe.
Clearly, the point at which the tangent meets the t-axis is the point at
which R(t) would have been zero if the expansion had been uniform, that
is, if R was constant and R̈�0. The time elapsed from that point till the
present time is R(t0)/R(t0)�H0

�1 (see the discussion on page 8). Thus, since,
in fact, R̈ is negative for 0�t�t0, it follows that the age of the universe
must be less than the Hubble time:

t0�H0
�1. (4.4)

Adding p to both sides of (3.79) and multiplying the resulting equation
by R3, we get the following equation:

Introduction 61

R (t)

t = 0 t = t0 t

Fig. 4.1. Diagram to illustrate (4.4), that is, the result that the age of the
universe is less than the Hubble time.
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pR3� [R3(��p)]. (4.5)

We multiply (4.5) by R�1 and transform the derivative with respect to t
to a derivative with respect to R, to arrive at the following equation:

(�R3)��3pR2. (4.6)

From this equation we see that as long as the pressure p remains positive,
the density � must decrease with increasing R at least as fast as R�3. This is
because if the pressure is zero in (4.6), the density varies exactly as R�3,
and with a negative right hand side (for positive pressure), the density must
decrease faster than R�3. Thus as R tends to infinity, the quantity �R2 van-
ishes at least as fast as R�1. We see that in the cases k��1 and k�0, given
respectively by (4.2a) and (4.2b), R2 remains positive definite so that R(t)
keeps on increasing. From (4.2a) we clearly get the result

R(t)→ct as t→$; k��1. (4.7)

For k�0 also, R(t) goes on increasing, but more slowly than t. In the case
k��1, given by (4.2c), R2 becomes zero when �R2 reaches the value
3c4/8�G. Since R̈ is negative definite, the curve R(t) must continue to be
concave towards the t-axis, so that R(t) begins to decrease, and must reach
R(t)�0 at some finite time in the future (the time t�t1 in Fig. 4.2). The
three cases k��1, 0, �1 are illustrated in Fig. 4.2.

In (3.63) we have mentioned approximately 50 km s�1 Mpc�1 as a possi-
ble value of Hubble’s constant. To find the corresponding Hubble time,

d
dR

d
dt
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R (t) k = –1

t = t0 tt = t1

k = 0

k = 1

Fig. 4.2. The behaviour of the curve R(t) for the three values �1, 0, �1
of k. The time t�t0 is the present time and t�t1 the time at which R(t)
reaches zero again for k��1.
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we merely have to determine the time taken to traverse 1 Mpc at a speed
of 50 km s�1. Since there are about 3	1019 km in a megaparsec and about
3	107 s in a year, we readily see that the value of 50 for H0 in the
above units corrresponds to a Hubble time of about 20 billion years.
Similarly, a value of 100 for H0 gives a Hubble time of approximately 10
billion years.

Recalling that H0�R(t0)/R(t0) (see (3.62)), the three relations
(4.2a)–(4.2c) (that is, (3.76a)) can be written as follows:

3c2H 2
0/(8�G)��3kc4/(8�GR2

0)��0, (4.8)

where R0�R(t0). Let us denote the left hand side of (4.8) by �c, and call it
the critical density, �0 being the present value of the density. From (4.8) we
see that if �0 is less than �c, then k is negative, whereas if �0 is greater than
�c, then k is positive. From the above discussion (see Fig. 4.2) we see that
the universe will expand forever if the present density is below the critical
density, and it will stop expanding and collapse to zero R(t) at some time
in the future if the present density is above the critical density. With
G�6.67	10�8 dyne cm2 g�2, the value of the critical density can be
written as follows:

�c/c
2�3H 2

0/(8�G)�4.9	10�30(H0/50 km s�1 Mpc�1)2 g cm�3.
(4.9)

Thus if H0 has the value 50 in the usual units, the critical density is approx-
imately five times 10�30 g cm�3, or, since the proton mass is about
1.67	10�24 g, about three hydrogen atoms in every thousand litres of
space, as mentioned in Chapter 1. From (4.8) and (4.9) one gets

0�(8�G�0/3c2H2

0), the present value of the density parameter 
 intro-
duced in Chapter 1.

Recalling the definition of the deceleration parameter q0 (see (3.65)),
and denoting by a subscript zero all quantities evaluated at the present
epoch t�t0, from (4.1) we get

�0�3p0��3R̈0c
2/(4�GR0)�(3/4�G)q0H

2
0c2. (4.10)

We next eliminate �0 between (4.8) and (4.10) to get the following expres-
sion for p0:

p0��(8�G)�1[kc2/R2
0 �H2

0(1�2q0)]c
2. (4.11)

Observationally it is found that the present universe is dominated by non-
relativistic matter, that is,

p0*�0, (4.12)
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so that if p0 is negligible we get from (4.11)

c2k/R2
0 �(2q0�1)H2

0. (4.13)

From (4.8), (4.9) and (4.13) we then get the following simple relation
between the ratio of the present density to the critical density and the
deceleration parameter:

�0/�c�2q0. (4.14)

We see from (4.14) or directly from (4.13) that the universe is open if q0 is
less than and closed if it is greater than . If the present density is exactly
equal to the critical density or if q0 is exactly equal to (together with the
assumption of zero pressure in the latter case), we have k�0 and the uni-
verse is open (see Fig. 4.2).

4.2 Exact solution for zero pressure

As we have noted, observationally the pressure seems to be negligible com-
pared to the mass-energy density. We shall discuss this further later, but for
the present we set p�0, because this yields an exact solution for all time,
and, although it may not be accurate, especially for the early epoch of the
universe, it provides a useful model. In this case (4.6) can be integrated at
once to yield the following equation:

�/�0�(R0/R)3. (4.15)

We eliminate �0 and k/R2
0 with the use of (4.10) (recalling that p0�0) and

(4.13), and use (4.15) to write (3.76a) as follows:

(R/R0)
2�H2

0(1�2q0�2q0R0/R). (4.16)

The solution of this equation can be expressed as an integral, giving t in
terms of R, as follows:

t�H0
�1 (1�2q0�2q0R0/R�)�1/2 dR�/R0, (4.17)

with t�0 being the value of t for which R(t)�0. In particular, the present
age of the universe is obtained by taking R0 as the upper limit in the inte-
gral in (4.17). This age can be expressed in terms of H0 and q0, both of
which are observational parameters, by changing the variable of integra-
tion to w�R�/R0, as follows:

t0�H0
�1 (1�2q0�2q0/w)�1/2 dw. (4.18)�

1

0

�
R

0

1
2

1
2

1
2
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This relation holds for all three values of k, but with the assumption of
zero pressure. It is clear that for any positive q0, the present age t0 given by
(4.18) must satisfy the inequality (4.4). We now consider explicitly three
different cases, denoted by (i), (ii), and (iii) below.

(i) k��1, �0��c.

From (4.14) we see that this case corresponds to q0� . In this case the inte-
gral in (4.17) can be integrated by the following substitution:

1�cos��(q0R0)
�1(2q0�1)R�, (4.19)

the resulting equation being given by the following:

H0t�q0(2q0�1)�3/2(��sin�). (4.20)

After the integration the R� in (4.19) can be replaced by R(t). Equations
(4.19) and (4.20) then imply that the curve R(t) is a cycloid. From the left
hand side of (4.19) it is clear that R(t) increases from zero at ��0 to its
maximum value at ���, and then decreases steadily until it reaches zero
again at ��2�. The maximum value of R(t) occurs at the time Tm given by

Tm��q0H0
�1(2q0�1)�3/2, R(Tm)�2q0(2q0�1)�1R0. (4.21)

When R(t) returns to zero again, t�2Tm. The present value of �, �0, is
given by setting R� equal to R0 in (4.19), so that

cos�0�q0
�1�1. (4.22)

Substituting this into (4.20) we get the present age of the universe as

t0�H0
�1q0(2q0�1)�3/2[cos�1(q0

�1�1)�q0
�1(2q0�1)1/2]. (4.23)

If, for example, q0� , so that �0��/3, and if H0 is 50 in the units used
earlier, so that H0

�1 is about 20 billion years, from (4.23) we readily see that
t0 is then approximately 12.3 billion years. In this case Tm is about 218
billion years so that the whole life cycle of the universe is about 436 billion
years.

(ii) k�0, �0��c.

From (4.14) we see that this case corrresponds to q0� . The integral (4.17)
is readily evaluated to yield

R(t)/R0�(3H0t/2)2/3. (4.24)

The age of the universe is given by

t0� H0
�1, (4.25)2

3

1
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so that for the value 50 for H0, the age is approximately 13.3 billion years.
This case is known as the Einstein–de Sitter model.

(iii) k��1, �0��c.

From (4.14) it follows that this is the case q0� . The analysis of case (i)
above can be taken over if we consider � to be imaginary and set ��iu.
Equation (4.20) then becomes

H0t�q0(1�2q0)
�3/2(sinhu�u), (4.26)

where u is given by

coshu�1�(q0R0)
�1(1�2q0)R(t). (4.27)

As in case (ii), R(t) increases without limit. For large t and u these two var-
iables are related approximately as

t�H0
�1q0(1�2q0)

�3/2exp(u), (4.28)

so that as t tends to infinity

R(t)/R0→ q0(1�2q0)
�1exp(u)→ (1�2q0)

1/2H0t. (4.29)

The present value of u, u0 is obtained by setting R equal to R0 in (4.27) and
is given as follows:

coshu0�q0
�1�1. (4.30)

Substituting this into (3.26), we get the age of the universe as follows:

t0�H0
�1[(1�2q0)

�1�q0(1�2q0)
�3/2 cosh�1(q0

�1�1)]. (4.31)

The mass density of the visible matter, that is, the matter that is contained
within the galaxies, is between a tenth and a fifth of the critical density for
any reasonable value of Hubble’s constant. In this case, if one takes as an
example the value 0.014 for q0, we get u0 to be approximately 5 and then t0

is nearly 0.96H0
�1, that is, nearly equal to the Hubble time.

The deceleration parameter q0 provides a measure of the slowing down
of the expansion of the universe. This dimensionless parameter can, of
course, be defined for any time t, and in that case it could be called the
deceleration function q(t) (see (3.65)):

q(t)��R̈(t)R(t)/R2(t). (4.32)

Convenient expressions can be found for q(t) in terms of the parameters
� and u introduced above in the cases k�1 and k��1 respectively.

1
2

1
2

1
2
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Consider the case k�1. In this case, with the use of (4.1) (with p�0) and
(4.2c) we get

q(t)�(4�G/3)�R2/[�c4�(8�G/3)�R2]. (4.33)

Evaluating (4.33) at t�t0 we get q0 in terms of �0 and R0, whence we get

(2q0�1)/q0R0�3c4/4�G�0R0
3. (4.34)

Equations (4.19) and (4.34) imply

(4�G/3c4)�0R0
3R�1�(1�cos�)�1. (4.35)

Eliminating � from (4.33) with the use of (4.15) and using (4.35), we get

q(t)�(1�cos�)�1. (4.36)

Thus as � varies from 0 to 2� during one cycle, q(t) rises from to infinity
and then drops to again. An analysis similar to the one above yields for
the case k��1 the following expression for q:

q(t)�(1�coshu)�1. (4.37)

Thus as u varies from 0 to infinity, q decreases steadily from to zero. In
the case k�0, we find with the use of (4.1) (with p�0) and (4.2b), that q(t)
remains constant, at the value q� . There is some recent observational
evidence that the deceleration parameter q0 may be negative, that is, the
universe may be accelerating. We will discuss this later.

4.3 Solution for pure radiation

When the cosmological fluid is dominated by radiation, as was presumably
the case in the early universe, the equation of state can be taken as 

p� �. (4.38)

In this case (4.1) reduces to the following equation:

R̈c2��(8�G/3)�R. (4.39)

Equation (4.6) can now be integrated to give the relation:

�/�0�(R0/R)4. (4.40)

The equation corresponding to (4.13) can be written in this case as:

c2k/R2
0�(q0�1)H2

0, (4.41)

while that corresponding to (4.16) is as follows:

(R/R0)
2�H2

0(1�q0�q0R
2
0/R

2). (4.42)
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Equation (4.42) can be expressed as an integral as:

t�H0
�1 (1�q0�q0/x

2)�1/2 dx, (4.43)

with t�0 being the value of t for which R(t)�0. Explicit solutions can be
obtained as before, but they are not of much physical interest as the
present universe is far from radiation dominated. The behaviour near t�0
is interesting and is considered below. One point worth noting is that in the
case k�0 the deceleration function q(t) is constant at q�1, as can be
readily verified with the use of (4.2b) and (4.39).

4.4 Behaviour near t�0

It is of considerable interest to determine the behaviour of the function
R(t) near the beginning of the universe, that is, near t�0. This behaviour
will be used later when we study the early universe. Consider first the zero
pressure case. In this case � varies as R�3 so that �R2 varies as R�1. Thus in
all three cases (4.2a)–(4.2c) near t�0 the following relation holds:

R2�2u�0R
3
0R

�1, u�4�G/3c2. (4.44)

In the case k�0 this equation holds exactly (for zero pressure). Equation
(4.44) can be integrated readily to give the following behaviour for R:

R(t)� ( )2/3(2u�0)
1/3R0t

2/3, (4.45)

so that R varies as t2/3 near t�0, for zero pressure and all three values of k.
Consider next the pure radiation cases given by p� �. In this case �

varies as R�4 (see (4.40)), so that �R2 varies as R�2. Thus in this case too
the first terms in (4.2a) and (4.2c) can be ignored near t�0, and all three
equations can be written as follows (with the use of (4.40)):

R2�2u�0R
4
0R

�2. (4.46)

Again in the case k�0 this equation holds exactly. This equation can be
integrated to yield the following behaviour for R:

R(t)� (8u�0)
1/4R0t

1/2. (4.47)

4.5 Exact solution connecting radiation and matter eras

More general equations of state than the cases of zero pressure and pure
radiation mentioned above have been considered by Chernin (1965, 1968),
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McIntosh (1968) and Landsberg and Park (1975). In this section we give
an exact solution for an equation of state which is such that for small
values of R it approximates to that of pure radiation, that is, p� �, while
for large values of R the ratio between the pressure and density behaves
like R�2, that is, the pressure becomes negligible. We make the ansatz that
the mass-energy density is given as a function of R as follows:

��AR�4(R2�b)1/2, (4.48)

where A, b are positive constants. We see that (4.48) implies that for small
R, the function � behaves like R�4, while for large R it behaves like R�3.
These are indeed the cases of pure radiation and zero pressure, given
respectively by (4.40) and (4.15). We note further that when b�0, (4.48)
reduces to the zero pressure case given by (4.15).

We combine Equations (4.2a)–(4.2c) into the following one:

R2��kc2�2u�R2, (4.49)

(with u given by (4.44)) and substitute for � from (4.48) to get the following
equation:

R2��kc2�2uAR�2(R2�b)1/2. (4.50)

This equation can be expressed as the following integral:

t� [�kR2c2�2uA(R2�b)1/2]�1/2R dR. (4.51)

This integral can be simplified by the substitution:

x� (R2�b)1/2, (4.52)

which transforms (4.51) as follows:

t� (�kx2c2�2uAx�c2kb)�1/2x dx. (4.53)

Consider the three cases k�1, 0, �1 separately.

(i) Case k�1.

In this case (4.53) can be integrated to yield the following parametric rela-
tion between R and t:

(R2�b)1/2� sin�, �� , (4.54a)

tc3�uA(���0)�c�(cos��cos�0), (4.54b)

�bc2 �
u2A2

c2 �1/2uA
c2 �

�

c

�
(R2�b)1/2

b1/2

�
R

0

1
3

Exact solution connecting radiation and matter eras 69

TLFeBOOK



where �0 is the value of � for which R vanishes, that is,

b1/2c2�uA�c� sin�0. (4.54c)

(ii) Case k�0.

In this case R and t are related as follows:

R2��b� (wt�b3/4)4/3, w� (2uA)1/2. (4.55)

(iii) Case k��1.

In this case (4.53) can be integrated to give the following parametric rela-
tion between R and t:

(R2�b)1/2�� cosh , (4.56a)

tc3��uA( � 0)�c�(sinh �sinh 0), (4.56b)

where  0 is the value of  for which R vanishes, that is,

b1/2c2��uA�c� cosh 0. (4.56c)

To find the pressure, we first take the derivative of (4.50) with respect to
t and cancel a factor R to get the following expression for R̈:

R̈ ��uAR�3(R2�2b)(R2�b)�1/2. (4.57)

From (4.1) we get p as follows:

3p��(uR)�1R̈ ��, (4.58)

so that, with the use of (4.57), we arrive at the following expression for p:

p� (bA/3)R�4(R2�b)�1/2. (4.59)

The equation of state is given parametrically by (4.48) and (4.59). The
condition that as R tends to zero the relation between p and � tends to
p� � is automatically satisfied by � and p given by (4.48) and (4.59)
respectively.

We get the following value for the ratio of the pressure and the mass-
energy density:

p/�� (b/3)(R2�b)�1. (4.60)

Thus near R�0 this ratio is while as R tends to large values the ratio
behaves as R�2, that is, the pressure becomes negligible compared to the
mass-energy density, as is indicated by observations.
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In the case of k�1, we have R�0 at t�0 (for ���0), and the maximum
value of R occurs at ���/2, at the value of t given by

tc3�Tc3�uA(�/2��0)�c� cos�0, (4.61)

the corresponding value of R being given by the following expression:

R� . (4.62)

After the maximum, R decreases steadily to zero in the manner of a
cycloid considered earlier. This case can be considered as a generalized
cycloid, the whole cycle lasting for a period of 2T, the final value of �

being ���0. The behaviour of R(t) is thus very similar to the case of pure
radiation or zero pressure for k�1.

In all three cases R(t) behaves as t1/2 for small t, which is consistent with
(4.47). In the case k�0 it is readily seen that for large t, R(t) behaves like t.
In the case k��1, large values of R and t occur for large values of the
parameter  , and for such values both Rc and tc2 behave like � e , so that
R(t) tends to infinity like ct, in the manner of the zero pressure case with
k��1.

It is of some interest to note that the deceleration function, defined by
(4.32), is given by the following expression for this solution:

q(t)�uA(R2�2b)/{(R2�b)1/2[�kR2c2�2uA(R2�b)1/2]}. (4.63)

The deceleration function takes the following simple form for the case
k�0:

q(t)� (R2�2b)/(R2�b). (4.64)

This function tends to unity as R tends to zero, which is consistent with the
fact that for the case of pure radiation and k�0, the deceleration function
remains constant at the value of q�1 (see the end of Section 4.3). As R
tends to infinity, q(t) tends to , consistent with the zero pressure, k�0 case
(see the end of Section 4.2).

4.6 The red-shift versus distance relation

In Section 3.3 we considered the relation between the red-shift and dis-
tance for small values of r, t� t0, l, etc. (see (3.64) (3.66), (3.67) and (3.69)).
In this section we want to extend that analysis to arbitrary values of the
red-shift, etc., with the use of the exact solution for zero pressure. Let a
light ray emitted at t� t1 from the position r�r1 radially be received at the
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position r�0 at time t� t0. Denoting by R1 the value of R at t1, the red-
shift z is given as follows (see (3.52)):

1�z�R0/R1. (4.65)

We consider the analogue of (3.53) for k(0 to get the following equa-
tion:

(1�kr2)�1/2 dr�c �c . (4.66)

We now substitute for R from the exact solution for zero pressure given by
(4.16), and transform to the integration variable x�R/R0, to get

(1�kr2)�1/2 dr�c(R0H0)
�1 (1�2q0�2q0/x)�1/2x�1 dx.

(4.67)

It can be shown that for all three values of k, the expression for r1 is the
same, as follows:

r1�c{zq0� (q0�1)[�1� (2q0z�1)1/2]}/[H0R0q
2
0(1�z)]. (4.68)

For large values of the red-shift z it is convenient to define a luminosity dis-
tance, measured by comparison of apparent luminosity and absolute lumi-
nosity, which are respectively the radiation received by an observer per
unit area per unit time from the source, and the radiation emitted by the
source per unit solid angle per unit time. The luminosity distance, dL, is
given as follows (see, for example, Weinberg (1972, p. 421)):

dL�r1R
2
0/R1. (4.69)

With the use of (4.65) and (4.68), this can be written as follows:

dL�R0r1(1�z)�c(H0q
2
0)

�1{zq0� (q0�1)[�1� (2q0z�1)1/2]}.
(4.70)

For small values of z we get

dL�cH0
�1[z� (1�q0)z

2]. (4.71)

This equation is independent of models and can be derived using kinemat-
ics only, like (3.69).
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4.7 Particle and event horizons

In Section 4.2 we obtained exact and explicit solutions for R(t) for zero
pressure, that is, in the matter-dominated era. This solution can be used to
illustrate certain limitations of our vision of the universe first pointed out
by Rindler (1956). Here we follow closely the discussion of this question
given by Weinberg (1972, p. 489). Consider an observer situated at r�0.
Let another observer situated at r�r1 emit a light signal at time t1.
Suppose this light signal reaches the first observer at time t. Assuming
light to be the fastest of any signals, the only other signals emitted at time
t1 that the first observer receives by time t are from radial coordinates
r�r1. Extending (3.53) to the two non-zero values of k, we see that r1 is
determined as follows:

dr/(1�kr2)1/2�c dt�/R(t�). (4.72)

If the t� integral in (4.72) diverges as t1 tends to zero, then r1 can be made
as large as we please by taking t1 to be sufficiently small. Thus in this case
in principle it is possible to receive signals emitted at sufficiently early
times from any comoving particle, such as a typical galaxy. If, however, the
t� integral converges as t1 tends to zero, then r1 can never exceed a certain
value for a given t. In this case our vision of the universe is limited by what
Rindler has called a particle horizon. It is possible to receive signals at time
t from comoving particles that are within the radial coordinate rh, which is
a function of t, given as follows:

dr/(1�kr2)1/2�c dt�/R(t�). (4.73)

The proper distance dh of this horizon is

dh(t)�R(t) dr/(1�kr2)1/2�cR(t) dt�/R(t�). (4.74)

From (3.76a) we see that if the mass-energy density � varies as R�2�� for
some positive �, as R goes to zero, the k on the left hand side of this
equation can be neglected and it is readily seen that R(t) behaves as
t2/(2��). In this case the t� integral in (4.73) converges as t1 goes to zero and
a particle horizon is present. This is the case in the solution for zero pres-
sure considered in Section 4.2. If the largest contribution to the t� integral
comes from the matter-dominated era, we can use (4.17) to express dh as
follows:

�
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cR0
�1H0

�1(2q0�1)�1/2R(t) cos�1[1�q0
�1R0

�1(2q0�1)R(t)],

q0� (k�1),
dh(t)� 2cH0
�1[R(t)/R0]

3/2, q0� (k�0),

cR0
�1H0

�1(1�2q0)
�1/2R(t) cosh�1[1�q0

�1R0
�1(1�2q0)R(t)],

q0� (k��1).
(4.75)

It can be shown that in the limit of small t, for the early epoch of the
matter-dominated era, one gets the following expression for dh:

dh(t)→cH0
�1(q0/2)�1/2(R/R0)

3/2�ct/3. (4.76)

Here R(t) is much smaller than R0. From (4.75) it is clear that for q0+ ,
R(t) increases without limit as t tends to infinity, so that dh(t) increases
faster than R(t) and the particle horizon will eventually include all comov-
ing particles, given sufficient time. For q0� , the universe is spatially finite,
with a circumference given by

L(t)�2�R(t). (4.77)

(See the discussion following (3.25).) At any time t we can see a fraction of
this circumference given by (4.13) and (4.75) as follows:

dh(t)/L(t)� (2�)�1 cos�1[1�q0
�1R0

�1(2q0�1)R(t)]. (4.78)

Comoving particles within this fraction are visible. When R(t) reaches its
maximum value given by (4.21), this fraction will be , and we shall see all
the way to the ‘antipodes’. This fraction remains less than unity until R(t)
reaches zero again, so we shall not be able to see all the way around the
universe until that happens. If q0�1 and H0

�1�13	109 years, the present
circumference is 80	109 light years and the particle horizon is at 20	109

light years.
There may be some events in some cosmological models that we shall

never see. It is clear from (4.72) that an event that occurs at time t1 at the
coordinate value r1 will become visible at r�0 at a time t given by (4.72). If
the t� integral diverges as t tends to infinity (or at a time that R reaches zero
again), then it will be possible to receive signals from any event. However,
if the t� integral converges for large t then we can receive signals from only
those events for which

dr/(1�kr2)1/2+c dt�/R(t�) (4.79)�
tmax

t1

�
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where tmax is either infinity or the time of the next contraction: R(tmax)�0.
This is referred to by Rindler as an event horizon. It is readily verified that
for q0� or q0� , the t� integral diverges as t tends to infinity so that there
is no event horizon. For q0� , tmax�2T, where T is given by (4.21). In this
case an event horizon exists and the only events occurring at time t1 that
will be visible before R reaches zero again are those within a proper dis-
tance dE(t1) given as follows:

dE(t1)�cR(t1) dt�/R(t�)

�cR0
�1H0

�1(2q0�1)�1/2R(t1){2��cos�1[1�q0
�1R0

�1(2q0�1)R(t1)]}.
(4.80)

If q0�1 and H0
�1�13	109 years, then the only events occurring now that

will ever become visible are those within a proper distance of 61	109 light
years.
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5

The Hubble constant and the
deceleration parameter

5.1 Introduction

In the last two chapters we developed the mathematical framework, both
kinematical and dynamical, to study various cosmological models that
may represent, albeit as an idealization, the universe that we inhabit. In
this chapter we discuss in some detail the observational aspects that must
be considered to connect the models to reality. We will first give an account
of earlier developments of this subject and mention more recent work
towards the end of Section 5.4 and in the next chapter.

Two of the most important observational parameters in cosmology are
the present values of Hubble’s constant H0 and the deceleration parameter
q0. Hubble’s constant determines the present rate of expansion of the uni-
verse through the first term on the right hand side of (3.69). We write the
following approximate form of this equation here again for convenience:

z�H0l/c� (1�q0)H
2
0l 2/c2. (5.1)

Thus in the limit of small distances the red-shift is given by H0 times the
distance divided by c. The deceleration parameter determines the rate at
which the expansion is slowing down (or speeding up). As we see in (5.1),
q0 occurs in the second order term in a power series expansion in terms of
l, the distance. Thus q0 is determined by galaxies which are further than
the ones from which H0 is determined.

As we saw in the last chapter in the case of the Friedmann models, the
parameters H0 and q0 determine these models completely. For example, if
no pressure exists, the age of the universe t0 is given in terms of H0, q0 by
(4.18). We then get three possibilities. In the cases k�1, 0, �1 we get q0� ,
q0� and q0� respectively. In these cases the age of the universe is given
respectively by (4.23), (4.25) and (4.31). Thus if we knew all three quantities
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H0, q0, t0 precisely, we could, in principle, decide which of the three models
is correct, assuming, of course, zero pressure and other implicit assump-
tions that go into the definition of these models. We could then know all the
large-scale physical properties of the universe.

Although, in principle, the determination of H0 and q0 is straightfor-
ward, in practice many difficulties arise and in this chapter we will consider
some of these difficulties. This chapter is based mainly on the reviews by
Sandage (1970, 1987), Gunn (1978), Longair (1978, 1983) and Bagla,
Padmanabhan and Narlikar (1996).

5.2 Measurement of H0

As mentioned earlier H0 is measured from ‘local’ galaxies which are rela-
tively nearby, whereas q0 requires consideration of more distant galaxies.
The first complication in measuring H0 is that galaxies possess random
motion of the order of 200 km s�1 which is caused by local gravitational
perturbation, or ‘lumpiness’ of the galactic distribution, on a scale of
about two million light years, which is the size of a small cluster of galax-
ies. For a large cluster which has rotational velocity about some centre, this
random motion can be much higher. One can take account of this random
motion, but for this one has to take a large sample. Secondly, there may be
local anisotropy, but on quite a large scale, which may distort the velocity
field in some directions for red-shifts which imply velocities smaller than
about 4000 km s�1. This anisotropy may arise partly due to an abnormal
concentration of groups of galaxies such as the Virgo cluster on a scale of
about 30 million light years.

Another complication in the measurement of H0 is the rotational
motion of the Sun about the galactic centre of the Milky Way, which
amounts to approximately 300 km s�1 in the direction of Cygnus. This
velocity is an appreciable fraction of the recessional velocities of nearby
galaxies in the direction of Cygnus, so this effect appears as an added
anisotropy in the observed velocity field. To map this velocity field pre-
cisely, accurately subtracting any spurious velocities, requires data from
the Southern Hemisphere, which have only recently been forthcoming.

Thus an accurate measurement of H0 requires precise distance determi-
nations of nearby objects. Distance calibration is a stepwise process in
which errors proliferate at each step. First one measures the apparent
brightness of well-known objects in nearby galaxies, which can be resolved
optically. If the absolute brightnesses of these objects are known from
another source, the distance can be determined by the inverse-square law
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of the falling of the intensity. Because the absolute luminosities can be
related to the periods of Cepheid variable stars, these stars are excellent
indicators of distance.

The term Cepheid variables derives from a particular member of this
class known as Delta Cephei. In the early part of this century H. S. Leavitt
and H. Shapley found a relationship between the observed period of varia-
tion of the Cepheids and their intrinsic brightness. In 1923 Hubble was for
the first time able to resolve the nearby galaxy Andromeda into separate
stars, and locate Cepheid variables in it. Using the Leavitt–Shapley rela-
tion he concluded that the Andromeda nebula was at a distance of 900 000
light years, which was clearly outside our galaxy, since it was more than
ten times further than the most distant object known in our galaxy. Later,
however, Baade (1952) and others showed that there are, in fact, two types
of Cepheid variables, and that those that Leavitt and Shapley observed
and those that Hubble observed belong to the two different types, so that
Hubble used the wrong period–luminosity relation. The distance to the
Andromeda nebula turns out to be over two million light years. (See Figs
5.1 and 5.2 for further information about Cepheid variables.)

The distance range over which H0 can be determined is not very large. It
starts from about 107 light years, which is far enough so that recessional
velocities begin to dominate the random velocities, and ends at about
6	107 light years, which is the upper limit for the distance indicators to be
resolved by powerful optical telescopes. There are various possible dis-
tance indicators in this range, such as red and blue supergiants, the angular
size of HII regions, normal novae and possibly supernovae. The nearer of
these are first calibrated with Cepheid variables and then used in turn as
more distant indicators.

Because of Hubble’s error alluded to above, the value of H0 for more
than a decade following 1936 was taken to be about 165 km s�1 per million
light years or about 538 km s�1 Mpc�1. In the simplest cosmological
models this meant an age of the universe of only 1.8	109 years. Even in
the 1930s this was known to violate the age of the Earth as known from
geological studies, such as the age of the Earth’s crustal rocks and the
lower limit of 7	109 years for the age of the Earth’s radioactive elements.

There was a controversy in the 1930s and 1940s as to whether the value
of H0 was wrong, or the Friedmann models. Lemaître and Eddington, for
example, devised models with a ‘cosmological constant’ (about which we
will learn more in the next chapter) to fit the high value of H0. The contro-
versy was finally settled in the 1950s following the work of Baade cited
earlier, which started a detailed recalibration of the period–luminosity
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relation of Cepheid variables, to which contributions were made by Kraft
(1961), Sandage and Tammann (1968, 1969) and others. High-precision
photometric methods developed in the 1950s by Eggen, Johnson and
others also contributed to this progress. These improved calibrations, and
the precise distance determinations in the crucial range for H0 mentioned
earlier, such as some highly resolved systems centred on the giant spiral
M81, have considerably improved the measurement of H0. There is,
however, still an uncertainty, the present range of values being 15,H0,30
km s�1 10�6 (light year)�1 or about 50,H0,100 km s�1 Mpc�1. This
makes the age of the universe from 13 to 20 billion years approximately.
Among those who have contributed to this new determination of H0 are
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Fig. 5.1. In this diagram the visual luminosity MV of a star is plotted
against its colour B–V which is a measure of its temperature. Here
B–V�2.5 log(lV

�lB)�constant, where lV, lB are the luminosities inte-
grated over the visual and blue ranges of the spectrum, respectively.
Pulsating stars lie in the region between the two outer lines with positive
slope. The stars pulsate with periods that increase with increasing lumi-
nosity. Cepheids of the same period can differ in absolute luminosity by
one magnitude, the bluer Cepheids being brighter.
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Sandage and Tammann (1975), de Vaucouleurs (1977), Tully and Fisher
(1977) and Van den Bergh (1975).

5.3 Measurement of q0

If one had knowledge of ‘standard candles’, that is, objects of fixed,
known absolute luminosities, then the apparent luminosities of these
objects would be a measure of their distance, and by determining their
red-shifts one could plot a graph of red-shift versus apparent luminosity,
from which, in principle, one could read off the values of H0 and q0. The
apparent luminosity of a source is usually described by its so-called bolo-
metric magnitude, denoted by mbol. For small red-shifts z the following
relation obtains between mbol and z (see the Appendix to this chapter for a
definition of mbol and a derivation of this relation, (5.17) below):

mbol�5 log10(cz)�1.086(1�q0)z�constant. (5.2)

The constant contains H0 (see the Appendix, p. 90). This relation is true
for all Friedmann models, but for small z.

Equation (5.2) is useful because it relates quantities mbol and z which are
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Fig. 5.2. In this diagram the apparent visual magnitude is plotted against
the logarithm of the period (in days). The scatter in this diagram is
caused by variation of the colour indicated in Fig. 5.1. An accurate cali-
bration can be made if this P–L (period–luminosity) diagram is consid-
ered in conjunction with the colour of the Cepheids. Calibrating
Cepheids are the galactic cluster Cepheids (solid circles) and the h and
Perseus Association (open circles). Other symbols represent Cepheids
belonging to the Local Group of galaxies.
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directly measurable. All observations confirm the leading term in (5.2).
Figure 5.3 gives one of these observational plots. The figure has data for 42
clusters of galaxies, each of which has a good distance indicator, which is
the brightest in the cluster. The small horizontal dispersion about the line,
with the theoretical slope of 5, shows the near constancy of absolute lumi-
nosity for galaxies chosen this way. It is clear, however, from (5.2) that the
value of q0 cannot be determined from the data in Fig. 5.3, and that one
must resort to much higher red-shifts. The data of Fig. 5.3 extend only till
z�0.46, and for this kind of red-shift any significant variation in q0 which
could decide between different models gives a variation in mbol which is
equivalent to the scatter of galaxies about the mean line, and for this
reason not very useful. Further, there are uncertainties in the various cor-
rections to observed magnitudes which are themselves comparable to the
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Fig. 5.3. This is a Hubble diagram for 42 galaxies in clusters (see para-
graph following Equation (5.2)). Triangles represent non-radio sources
measured by W. A. Baum. Crosses represent radio sources and closed
circles represent other non-radio sources. These were measured by the
200 in telescope at Mount Palomar (Sandage, 1970).
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variation. One also requires knowledge of the way absolute luminosities
evolve during the period which has elapsed since light left those distant
galaxies, due to evolution of their stellar content.

Figure 5.4 displays an idealized version of Fig. 5.3, and shows clearly
that one needs galaxies with higher red-shifts to distinguish between
different values of q0. The ‘test objects’ in Fig. 5.3 are giant elliptical galax-
ies, which tend to be the brightest galaxies in any cluster, and have similar
light distribution curves, that is, curves which give a plot of intensity
versus wavelength or frequency.

As mentioned earlier, several difficulties arise when one attempts to
measure q0 accurately. One of these is that galaxies do not have well-
defined boundaries, so the intensity depends to some extent on the aper-
ture with which one measures it. For this reason all measurements have to
be corrected to some adopted ‘standard galaxy diameter’.

Every galaxy has an intrinsic frequency distribution of light, that is, an
intensity–frequency plot. For distant galaxies this frequency distribution is
distorted, because their visual or blue magnitudes reflect their absolute
luminosities at higher frequencies than for near galaxies. Thus the left
hand side of (5.17) below is replaced by m�M�k(z), where k(z) is an
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Fig. 5.4. This diagram is an idealized version of Fig. 5.3, showing the
extrapolation to regions which would determine the value of q0
(Weinberg, 1972).
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explicitly known function of z, calculated by Oke and Sandage (1968),
known as the k term. In the earlier alternative procedure due to Baum
(1957), the luminosity distribution is measured directly for each galaxy
and no k term is needed.

Our galaxy absorbs a certain amount of radiation coming from objects
outside the galaxy. Considering the galaxy to be a flat slab, the distance
through which light must travel in the galaxy on its way to the observer is
proportional to cosec b, where b is the angle between the line of sight and
the plane of the galaxy. Due to absorption in the galaxy the light will thus
be decreased in intensity by a factor exp(�� cosec b), where � is a constant
which can be determined from some known extragalactic objects. The dis-
tance modulus in (5.17) will then be corrected as follows:

(m�M)corr�m�M�k(k)�A(b), (5.3)

where we have approximately, A(b)�0.25 cosec b. This is a somewhat
simplified description of the correction due to absorption by the galaxy.

There are still uncertainties in the precise determination of the absolute
luminosities of the brightest E galaxies (giant ellipticals). Any change in
the estimated distance to nearby objects such as the Hyades or the Virgo
cluster would require a corresponding change in these absolute luminos-
ities.

If there is no definite upper limit to the absolute luminosity of a cluster
of galaxies, then there would be a tendency to select richer clusters at
greater distances resulting in a slight increase of the absolute luminosities
of the brightest galaxies with increasing z. This is known as the ‘Scott
Effect’ and may result in a slight overestimation of q0 but would not have a
significant effect on H0.

The rotation of the Sun about the galactic centre and the existence of a
local anisotropy in the galactic velocity field have already been mentioned.
The evolutionary effects which were mentioned briefly will be considered
in more detail in the Appendix.

The observation and analysis of radio sources have played a significant
part in cosmology. For reviews of this topic we refer to Longair (1978,
1983, 1998). One of the most important applications of radio astronomy
has been the detection and identification of quasars, which are powerful
emitters in the radio band. The quasars 3C48 and 3C273, for example,
were also identified through optical telescopes and they appeared to be
stars, but with peculiar emission lines. These seemed peculiar because the
objects were thought to be stars within our galaxy. It was realized later that
the emission lines were familiar ones which had been red-shifted by the
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equivalent of z�0.367 and z�0.158 respectively, so that these were at dis-
tances of 5 and 3 billion light years respectively. Many other quasars have
since been discovered; the quasar 3C9, for example, has a red-shift of
z�2.012. Since the quasars are so bright at such distances, their energy
output must be enormous, especially because this energy comes from
regions which are only a few light days or weeks across. This follows from
the fact that the brightness of the quasars varies substantially over periods
of days or weeks. How this enormous energy output is possible from such
a small region has been a puzzle for a long time. One of the reasonably suc-
cessful models is that of a large black hole at the centre of the galaxy which
swallows stars, which in the process get disrupted by tidal gravitational
forces and give off large amounts of radiation. Such a process can account
for the energy output of quasars provided this enormous output does not
last for more than a few tens of millions of years at most. There is evidence
that quasars do, in fact, only last for a few tens of millions of years.

An intriguing aspect of the quasar problem, which seems worth pursu-
ing carefully, is the fact that there seems to be a cut-off in quasar red-shifts
at about z�4. For about ten years the highest quasar red-shift known was
z�3.53, although techniques had improved so that higher red-shifts could
have been observed. According to M. Smith (see Longair (1983)), there are
seven quasars in the Hoag and Smith survey in the red-shift range
2.5�z�3.5, and so eight or nine of them should have been detectable in
the Osmer deep survey carried out later, with 3.5�z�4.7, provided the
comoving spatial density of quasars remains constant. In fact none was
found, although one larger red-shift quasar is now known. However, the
question is a statistical one and a great deal more work has to be done
before any definite conclusion can be drawn. If indeed there is a cut-off in
quasar red-shifts around z�4, the following reasons might be adduced for
this phenomenon:

(a) There might be intervening dust in the discs of galaxies so that by
the time one gets to distances corresponding to a red-shift of
about 3.5, a substantial portion of the celestial sphere might be
covered by these discs.

(b) The most prominent emission line through which quasar red-
shifts are observed is the Lyman-
 line. It is possible that there
may be a lack of continuum photons or gas around large red-shift
quasars which inhibits the Lyman-
 lines.

(c) It is possible that it takes a long time for the black holes, which are
at the centre of the largest quasars, to grow. There may be quasars
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with z much larger than 4, but they may not have grown to the
hyperluminous stage.

(d) The dust and gas in the intervening young galaxies may absorb a
significant part of the emission from quasars and reradiate in the
infrared band.

(e) There is the intriguing possibility that there are no galaxies
beyond about z�4, because galaxies may condense out of the
intergalactic gas until about z�4.

From the above considerations it would appear that there used to be
much more violent activity in the universe at red-shifts of about 2–4 than
there is now. This does indicate evolution of the universe and is consistent
with the existence of the cosmic background radiation.

Radio astronomy has provided a valuable additional approach to obser-
vational cosmology. One of the reasons for its importance is that numer-
ous faint radio sources have been detected, many of which lie presumably
at great distances, which have not been optically identified and probably
cannot be so identified, at least in the foreseeable future. However, the red-
shifts of these sources are for this reason not known, so that one has to
follow a programme other than the Hubble programme (outlined above)
to elicit information from these faint sources that may be of cosmological
interest. Such a programme is that of number counts, in which one deter-
mines the number of sources as a function of flux density. It can be shown
that in a uniform Euclidean world model, the number of sources N whose
flux density is greater than S is proportional to S�3/2. By observing and
plotting the departure of the actual distribution from this law one can get
information about the correct model of the universe. Although there are
many uncertainties, some interesting points have emerged. For example,
there is evidence that there have been significant variations in the popula-
tion of radio sources with cosmic epoch. We refer to Weinberg (1972) and
Longair (1983, 1998) for more details.

5.4 Further remarks about observational cosmology

The distant galaxies that are used for the measurement of q0 are all in clus-
ters. In this case a substantial proportion of the mass is not in the galaxies,
but is distributed smoothly between the galaxies. A galaxy moving through
this stuff – whatever form it has – experiences so-called dynamical friction
(Chandrasekhar, 1960), which is a kind of frictional drag which the
moving galaxy experiences by virtue of the high-density gravitational
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wake behind it. This effect on clusters of galaxies was first studied by
Ostriker and Tremaine (1975). The net effect of this is that galaxies which
are near the main one are swallowed up by it and its luminosity is thereby
increased. The final effect of this on the value of q0 is somewhat uncertain.
Although the brightness of the cannibal galaxy increases, it becomes
extended and of low density. Since the luminosity of galaxies is measured
in a fixed aperture, it is not clear if the luminosity increases or decreases.
The situation is rather complex and a great deal of theoretical and obser-
vational work has to be done before this process is fully understood. We
refer the reader to Gunn (1978) for further material on this. As is clear
from Gunn’s article, one of the most important problems is to determine
precisely the evolutionary effects on galaxies, clusters of galaxies and
quasars.

From (4.14) we recall that if the pressure is negligible, the ratio of the
present density to the critical density is twice the deceleration parameter.
This ratio is usually denoted by 
0 and referred to as the density parame-
ter. The galactic mass density of the universe, that is, the mass of visible
matter, is of the order of about a tenth or less of the critical density, so
that 
0 is around 0.1 or less. However, although there is much uncertainty
in the observed value of q0, indications are that it is about unity or a bit
less. There is thus a disagreement between observations and (4.14). This
discrepancy has been a long-standing problem in cosmology, and various
explanations have been put forward for it. One possibility is that the value
of q0 obtained so far is higher than it should be, because of evolution or
selection effects. In fact, it is known that if one determines q0 solely on the
data from quasars, one gets a value somewhat higher than unity. However,
if one assumes for the present that q0 is indeed of order unity, then (4.14)
implies that the density of the universe is about 2	10�29 g cm�3. This is an
order of magnitude or more higher than that observed. Thus there may be
some ‘missing mass’ which is not directly observable. One possibility is
that the missing mass resides in the intergalactic space in clusters of galax-
ies. If a cluster is gravitationally bound, then by the use of the virial
theorem one can estimate its mass, which turns out to be several times
higher than would be obtained by adding the masses of individual galaxies
(see, for example, Karachentsev (1996)). If this is the case for all or most
clusters, the density of the universe would be raised considerably.
However, although, for example, the Coma cluster appears to be bound
(there is no certainty of this), others like those in Virgo or Hercules are
highly irregular and may not be bound.

The missing mass may reside in the space between clusters of galaxies.
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The total volume outside clusters is approximately 500 times the volume
within clusters, so that even a density between clusters which is one-tenth
of that within clusters would add significantly to the average density. If
indeed there is mass between clusters, presumably it is in a form which
does not radiate significantly in the visible spectrum such as atomic or
ionized hydrogen, dwarf galaxies which are very faint, black holes, etc. It is
uncertain if these or other forms of matter exist in the intergalactic space.

The missing mass may also reside in highly relativistic particles such as
cosmic rays, photons, neutrinos or gravitons. These may either be relics from
the early universe (see Chapter 8), or may be created in various processes in
more recent times. As regards the cosmic background radiation, from the
fact that its temperature is 2.7 K and the Stefan–Boltzmann law one can
deduce that the associated energy density is about 4.4	10�34 g cm�3. The
density of cosmic rays and other known forms of radiation is much less than
this. As regards ‘cosmic background neutrinos’, the temperature of these
would be times the temperature of the cosmic background radiation
(see Chapter 8 and Weinberg (1977)), or about 2 K. Assuming that the
number density of these neutrinos is the same as that of photons, that is,
approximately 109 for each baryon, this would not make a significant contri-
bution to the overall density if the neutrinos are massless. However, in
recent years there have been indications that neutrinos may have a non-zero
but small mass, of the order of a few electron volts (recall that the electron
has a mass of about half a million electron volts). Thus if neutrinos had a
mass of 10 eV, the contribution of neutrinos to the density would be about
ten times that due to the visible matter in the universe. However, there are, as
usual, many uncertainties in this analysis, and one must wait for more accu-
rate data and theories (see, for example, Tayler (1983)). One point of some
interest is that if the density is dominated by massless particles the equation
of state becomes that of pure radiation (see Section 4.3) and instead of
(4.14) we get �0/�c�q0, and the density required for a given q0 and H0 is half
of that needed for a zero pressure model.

In the rest of this section we remark on more recent work, following the
important review by Sandage (1987). As is clear from the foregoing discus-
sion, one of the most important problems in observational cosmology is
the determination of q0 by comparing (5.2) with observations. Some of the
difficulties have already been mentioned in the discussion of Fig. 5.3.
Sandage refers to this problem as the ‘m(z) test’. Following many years of
work by various people (Sandage, 1968, 1972a,b, 1975a,b; Sandage and
Hardy, 1973; Gunn and Oke, 1975; Kristian, Sandage and Westphal, 1978;
Sandage and Tammann, 1983, 1986), Sandage feels that the m(z) test is

( 4
11)1/3
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inconclusive mainly because of uncertainty in the evolution of standard
candles. It is clear from (5.2) (see Equation (15) of Sandage (1987)) that for
small z, log z�0.2 m�constant. This is indeed indicated by observations
until about z�0.5. There are departures from this linear relation between
log z and m for z�0.5. According to Sandage, there may be three different
reasons for this departure, as follows: (a) a value of q0 in the range
0.5�q0�2, (b) genuine small departures from linearity for small z, and (c)
the combined effects of q0(1 and evolution of luminosity (see (5.20)
below). The reader is referred to studies of the m(z) relation by Lilley and
Longair (1984), Lilley, Longair and Allington-Smith (1985) and Spinrad
(1986) for more material on this question.

Gross deviations from the m(z) relation – the latter referred to some-
times as the ‘Hubble flow’ – although sometimes claimed (Arp, 1967, 1980;
Burbidge, 1981), have not been substantiated. Large perturbations to the
Hubble flow connected with the Local Group of galaxies may, however,
exist (see, for example, Davies et al., 1987).

The angular diameter � of some standard objects also has a depen-
dence on z and q0 and can be used as a test, as was first suggested by
Hoyle (1959). Strictly speaking, the m(z) relation and �(z) relation should
be derivable from each other, but as � is directly measurable, this can
provide a useful additional check. There are uncertainties in the �(z) pro-
gramme; one has firstly, to give a precise definition of angular diameter
(for example, angular size to a given isophote, that is, a contour of equal
apparent brightness) that will be valid for sources of all magnitudes and,
secondly, there are the difficulties of evolutionary and selection effects
similar to those for the m(z) test (see, for example, Sandage (1972a),
Djorgovski and Spinrad (1981)). When discussing the �(z) programme
Sandage makes an important point about observational cosmology.
There are essentially three tests, namely the m(z), �(z) and N(m) tests,
where N(m) is the number of galaxies brighter than the apparent magni-
tude m. Sandage thinks that the predictions of the Friedmann models are
not confirmed in detail by any of these tests ‘using the data as they are
directly measured’. To get agreement one usually invokes evolutionary
effects with time. This would be justified only if one had independent evi-
dence that the standard model is correct, which is, in fact, the object of
the exercise.

An important difficulty is that of selection effects, which, roughly speak-
ing, means that in a sample of sources of limited flux (apparent magni-
tude), the average absolute luminosity of the nearby members is, in
general, less than that of more distant members. Selection effects can
cause serious uncertainties, such as in the determination of the value of
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H0. The reader is referred to Sandage (1972c), Sandage, Tammann and
Yahil (1979), Spaenhauer (1978), Tammann et al. (1979) and Kraan-
Korteweg, Sandage and Tammann (1984) for more material on selection
effects, particularly in the form known as the Malmquist bias.

An important observational problem is large scale clustering of galaxies
(‘superclusters’), first suggested by Hubble (1934). Hubble concluded that
the universe was homogeneous on the largest scale that he could measure
(to a depth of m�22), but that it was clumped or clustered on an interme-
diate scale. A study by Crane and Saslaw (1986) obtained similar results
and drew the same conclusions as Hubble. As regards intermediate struc-
ture, an important discovery of the 1980s has been that of ‘filaments’
along which galaxies tend to concentrate, initially noticed by Peebles and
his collaborators (see, for example, Seldner, Siebers, Groth and Peebles
(1977)). Unusually large empty regions (‘voids’) have also been detected.
Much work has been done on this matter and is continuing; see for
example, studies by Tarenghi et al. (1979), Gregory, Thompson and Tifft
(1981), Kirshner, Oemler, Schechter and Schectman (1981), Gregory and
Thompson (1982), Chincarini, Giovanelli and Haynes (1983), Huchra,
Davis, Latham and Tonry (1983), and the review by Oort (1983). (See espe-
cially the recent book by Saslaw, 2000.)

The time scale test, one in which one compares the age of the universe
from observations and models, has been mentioned earlier. The main
uncertainty here is the value of H0, which varies by a factor 2. For
H0�50 km s�1 Mpc�1, the age is about 19.5	109 years, whereas for
H0�100 km s�1 Mpc�1 one gets approximately 9.8	109 years. The com-
parison with observation is somewhat inconclusive (Sandage, Katem and
Sandage, 1981; Sandage, 1982).

Sandage suggests the following programme for observation cosmology
for the next two decades (writing in 1987). This is a succinct version of the
description of the programme given by Sandage (1987).

(a) Proof or otherwise that the red-shift represents a true expansion
of the universe.

(b) Proof or otherwise of evolution of galaxies in the look-back time.
(c) Comparison of the value of H0 with that obtained from the glob-

ular cluster time scale. (The globular clusters are among the oldest
objects in the Galaxy.)

(d) The compatibility of clustering properties of galaxies with pos-
sible variations of the Hubble flow.

(e) Studies of the galaxy luminosity functions for different types of
galaxies (see (5.18), (5.19) below).
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( f ) The detection of �T/T fluctuations in the temperature T of the
cosmic background radiation at a level of one part in �105.5 on
small angular scales. This would have an important bearing on
galaxy formation.

Appendix to Chapter 5

In this Appendix we derive the formula (5.2), and give some relevant
definitions. For more details we refer to Weinberg (1972). The absolute
luminosity L of a source is the amount of radiation emitted by the source
per unit time. The apparent luminosity l� is the amount of radiation
received by the observer per unit time per unit area of the telescopic mirror
or plate. In Euclidean space, the apparent luminosity of a source at rest at
a distance d would be L/(4�d 2), by the usual inverse square law of the
decrease of radiation. By analogy with this one defines a luminosity dis-
tance dL in the more general case as follows:

dL�(L/4�l�)1/2. (5.4)

By taking into account the red-shift of the moving source one can show
that in the general case the apparent luminosity is related to the absolute
luminosity as follows:

l��LR2(t1)/4�R4(t0)r1
2. (5.5)

(See Equation (14.4.12) of Weinberg (1972).) Here the source is at the
coordinate radius r1, the times t0 and t1 being those of the reception and
emission of the radiation. Equation (5.5) is valid for all three values of k.
From (5.4) and (5.5) we get

dL�R2(t0)r1/R(t1). (5.6)

By generalizing (3.53) to the two other values of k we get

c dt/R(t)� dr/(1�kr2)1/2�f(r1), (5.7)

where f(r1)�sin�1 r1, r1, sinh�1 r1 according to whether k�1, 0, �1.
Next we write (3.68), with t�t1:

z�(t0�t1)H0�(t0�t1)
2( q0�1)H2

0 �· · · . (5.8)

Inverting this power series, we get (see Fig. 5.5)

t0�t1�H0
�1z�H0

�1 (1� q0)z
2� · · · . (5.9)1

2

1
2

�
r1

0
�

t0

t1
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With the use of (3.64) or the right hand side of (3.66) in (5.7) we get

r1�O(r1
3)�cR0

�1[t0�t1� H0(t0�t1)
2�· · ·]. (5.10)

With the use of (5.9) and (5.10) we get r1 in terms of the red-shift:

r1�c(R0H0)
�1[z� (1�q0)z

2� · · ·]. (5.11)

Equation (5.6) then gives dL as a power series in z:

dL�cH0
�1[z� (1�q0)z

2� · · ·]. (5.12)

This can be transformed to a formula for the apparent luminosity l�:

l��L/(4�d 2
L)�c�2(LH2

0/4�z2)[1�(q0�1)z�· · ·]. (5.13)

The apparent luminosity l� is usually expressed in terms of an apparent
bolometric magnitude mbol, or simply m, which is defined as follows:

l��10�2m/5	2.52	10�5 erg cm�2 s�1. (5.14)

The absolute bolometric magnitude M is defined as the apparent bolomet-
ric magnitude the source would have at a distance of 10 pc:

L�10�2M/5	3.02	1035 erg s�1. (5.15)

1
2

1
2

1
2
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Fig. 5.5. In this diagram Equation (5.9) is illustrated. The ‘look-back
time’ is t0�t1 of (5.9) (Sandage, 1970).
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Thus the distance modulus m� M can be defined as follows:

dL�101�(m�M)/5pc. (5.16)

Equations (5.12) and (5.16) can now be combined to give the desired rela-
tion between the distance modulus (or the bolometric magnitude) and the
red-shift:

m�M�25�5 log10H0(km s�1 Mpc�1)

m�M��5 log10(cz) (km s�1)�1.086(1�q0)z�· · · . (5.17)

The apparent magnitudes mU, mB, etc., in the ultraviolet, blue, photo-
graphic, visual (see Fig. 5.1), and infrared wavelength bands are defined
similarly to (5.15) and (5.16) but with different constants chosen so that all
apparent magnitudes will be the same for stars of a certain spectral type
and magnitude. The colour index is the quantity mB�mv�MB�Mv.

We will now give a brief description of the correction to the deceleration
parameter due to possible variation of the luminosity L with evolution of
galaxies. As we observe distant galaxies, we are looking at earlier times
when these galaxies were younger. It is possible that the luminosity of the
brightest E galaxies is a function of the time t1 at which the light was
emitted: L(t1). We see from (5.9) that in this case the L in (5.13) should be
replaced by the following expression:

L(t1)�L(t0)[1�E0(t0�t1)�· · ·]

L(t1)�L(t0)[1�E0z/H0�· · ·] (5.18)

where

E0�L(t0)/L(t0). (5.19)

Substituting this into (5.13) we readily see that the overall effect is to
replace q0 with q0

eff, where

q0
eff�q0�E0H0. (5.20)

There are many uncertainties in the value of E0. Any value of E0 of the
order of 0.04/109 years or above would have a significant effect on the
value of q0

eff. It is possible that E0 is negligible.
We end this Appendix with some remarks about dimensions. It is

straightforward to check the dimensions of any of the equations in this
book, but the following discussion may help the novice. As usual we
denote by L, M, T the dimensions of length, mass and time respectively
(the T here is not to be confused with the temperature, which is denoted by
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T elsewhere in the book). We write [X] for the dimension of the quantity X,
and denote by unity the dimension of a dimensionless quantity. The fol-
lowing relations are easy to verify:

[G]�M�1L3T�2, [c]�LT�1, (5.21a)

[R]�L, [R]�LT�1, [R̈]�LT�2, (5.21b)

[z]�[r]�[q0]�1, [H0]�T�1. (5.21c)

In (5.21b) and (5.21c) R, r are respectively the scale factor in the
Robertson–Walker metric and the coordinate radius. Other similar rela-
tions can be derived readily. We will now choose a few equations at
random and verify the dimensions of each side of the equations. Consider
(4.1), of which the left hand side has dimension LT�2 (see (5.21b)). The
quantity � on the right hand side is energy density, that is, energy divided
by volume. Since energy has dimension ML2T�2, we get

[�]�ML2T�2/L3�ML�1T�2. (5.22)

This is the same as the dimension of p, the pressure, which is force per unit
area. Force has the dimension MLT�2; dividing this by L2, the area, yields
ML�1T�2 as in (5.22). The right hand side of (4.1) thus has dimension

[G][�][R/c2]�(M�1L3T�2)(ML�1T�2)(L/L2T�2)�LT�2, (5.23)

as required. Consider (4.24), of which the left hand side is clearly dimen-
sionless. Since H0 has the dimension T�1, H0t is also dimensionless. In
(4.41) both sides have the dimension T�2. It might be instructive for the
reader without much experience of this matter to check in detail the
dimension of each equation.

We will consider more recent developments in observational cosmology
at the end of the next chapter after a discussion of the cosmological con-
stant.
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6

Models with a cosmological constant

6.1 Introduction

From (4.1) we see that if we want a static solution of Einstein’s equations,
that is, one in which R�0, we must have ��3p�0, which is a somewhat
unphysical solution, because, assuming the energy density to be positive,
the pressure must be negative. If we demand that the pressure be zero, then
the energy density turns out also to be zero.

When Einstein formulated the equations of general relativity in 1915 the
expansion of the universe had not been discovered, so that the possibility
that the universe may be in a dynamic state did not occur to people. It was
natural for Einstein to look for a static solution to his cosmological equa-
tions. But for the reasons mentioned above such a solution did not appear
to exist. Einstein therefore modified his equations by adding the so-called
‘cosmological term’ to his equation (2.22), as follows:

R
��

� �
��

R�'�
��

� , (6.1)

where ' is the cosmological constant. Equations (3.76a) and (3.76b) are
then modified as follows (note that [']�L�2):

3(R2�c2k)�8�G�R2/c2�c2'R2, (6.2a)

2RR̈�R2�kc2��8�GpR2/c2�c2'R2. (6.2b)

If we now demand a static solution with R(t)�R0, a constant, and, say,
zero pressure, we get the following values:

��(c4'/4�G), k�'R2
0. (6.3)

Thus ' must be positive and, correspondingly, we must choose k�1, so
that the universe has positive spatial curvature. This is Einstein’s static

8�GT��

c4
1
2
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universe. In later years Einstein regretted adding the cosmological term,
because if he had been sure that the universe conformed to his original
equations, the fact that no reasonable solutions exist representing a static
universe would have led him to infer that the universe is in a dynamic state.
He would still not have known if the universe is expanding or contracting,
but the discovery of a dynamic state would have been an important one.

Apart from the static solution mentioned above, there are, of course,
many dynamic solutions with the cosmological constant. These models
were first studied by Lemaître so they are known as Lemaître models. In
recent years other motivations have been found for introducing a cosmo-
logical term and such a term arises in many different contexts. We shall
consider some of these later in this chapter and in other chapters.
Introducing the cosmological term is like introducing a fictitious ‘fluid’
with energy–momentum tensor T�

��
given by

T�
��

�(���p�)u
�
u

�
�p��

��
�(8�G/c4)�1'�

��
, (6.4)

so that the energy density and pressure of this fluid are given by
���(c4'/8�G), p���(c4'/8�G). For then (6.1) can be written as follows:

R
��

� �
��

R�(8�G/c4)(T
��

�T�
��

). (6.5)

One can follow steps similar to those in Chapter 4 to derive the Lemaître
models. Thus instead of (4.8) we get the following equation:

�c�3c2H2
0/8�G��3kc4/8�GR2

0 ��0�c4'/8�G. (6.6)

Recalling the density parameter 
0 introduced in Chapter 4 (see discussion
following (4.9)), (6.6) can be written as follows:

c2k/R2
0H2

0 �
0�1�c2'/3H2
0. (6.7)

Equation (4.10) is modified as:

�0�3p0�(3/4�G)q0H
2
0c2�c4'/4�G, (6.8)

while (4.13) becomes

H2
0(2q0�1)�c2k/R2

0 �'c2. (6.9)

Consider now the solutions that would obtain if we had zero pressure
but non-zero '. It can be shown after some reduction, in which use is
made of (6.7)–(6.9), and the fact that (3.79) and (4.6) remain unaltered,
that instead of (4.16) one gets the following equation for R:

R2�c2R�1(�kR� 'R3�
), (6.10)1
3
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where 
 is a constant given by 
�R0
3(H2

0c�2� '�k/R2
0). The behaviour of

the solution depends on the pattern of the zeros and turning points of the
cubic on the right hand side of (6.10). There are three particular cases of
interest, which are dealt with in the following.

(i) de Sitter model

This arises in the case k�0, 
�0. With the use of (6.8), (6.9) one can show
(in the case p0�0), that

8�G�0�3(kc2/R2
0 �H2

0)c2�'c4. (6.11)

Thus if k�0 and 
�0, that is, H2
0 � 'c2, then the mass-energy density

also vanishes, and R(t) is proportional to an exponential:

R(t)-exp[('/3)1/2tc]. (6.12)

One gets a similar form for R(t) in the so-called Steady State Theory of
Bondi and Gold (1948) and of Hoyle (1948). However, unlike the de Sitter
model, which is empty, in the Steady State Theory there is continuous
creation of matter due to the so-called C-field.

An interesting property of the metric given by (6.12) is that there is no sin-
gularity at a finite time in the past, that is, R(t) does not vanish for any finite
value of t (see Fig. 6.1). One can show that this metric has a ten-parameter
group of isometries, which is equivalent to ‘rotations’ in a five-dimensional
space with metric whose diagonal elements are (1, �1, �1, �1, �1) and
non-diagonal elements zero. This is therefore known as the de Sitter group.

(ii) Lemaître model (Lemaître, 1927, 1931)

This model corresponds to the solution of (6.10) with k�1 and 
�
0,
where 
0 is the value of 
 obtained when ' has the value in the Einstein
static case given by (6.3). From (6.10) we find by differentiation

1
3

1
3
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R̈�� c2'R�c2
/2R2. (6.13)

In this model R(t) starts from zero at t�0 and increases at first like t2/3,
that is, initially we can put R(t)��t2/3 for some constant �. Equation (6.13)
then becomes

R̈� c2'�t2/3�(c2
/2� 2)t�4/3. (6.13a)

The first term on the right hand side approaches zero and the second term
approaches minus infinity as t tends to zero from above. We thus see from
(6.13) that at the initial stage R̈ is negative so the expansion is slowing
down. The minimum rate of expansion occurs at R�(3
/2')1/3, when
R̈�0, after which the expansion speeds up, ultimately reaching the de
Sitter behaviour given by (6.12). An interesting property of this solution is
that there is a ‘coasting period’ near the point at which R has its minimum,
when the value of R(t) remains almost equal to (3
/2')1/3. By taking R(t)
close to this value, we can write an approximate form of the differential
equation (6.13) for k�1, as follows:

R2/c2��1�(9
2'/4)1/3�'(R�(3
/2')1/3)2, (6.14)

which has the following solution:

R(t) �(3
/2')1/3{1�[1�(9
2'/4)�1/3]1/2 sinh('1/2(t�tm)c)}, (6.15)

where tm is the time at which R reaches its minimum. By taking 


sufficiently close to 2/(3')1/2, one can make the coasting period arbitrarily
long. In the latter half of the 1960s there was some evidence that an excess
of quasars with red-shifts approximately equal to 2 might exist. This
prompted Petrosian, Salpeter and Szekeres (1967) to invoke the Lemaître
model, because in this model the parameters can be adjusted so that the
‘coasting period’ causes an excess of quasars with red-shift 2 or so.
However, later the statistical evidence for such an excess disappeared. (See
Fig. 6.2 for this model.)

(iii) Eddington–Lemaître model

This is a limiting case of the Lemaître models, which is given this name
because it was emphasized by Eddington (1930). In this case k�1 and

�2/(3')1/2, which are the values that obtain in the Einstein static model.
This model has an infinitely long ‘coasting period’. Thus if R(0)�0, then
R(t) approaches the Einstein value (3
/2')1/3 asymptotically from below
as t tends to infinity, while if R(0)�(3
/2')1/3, then R(t) increases mono-
tonically, eventually reaching the de Sitter behaviour as t tends to infinity

1
3

1
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(see Fig. 6.3). This also shows that the Einstein static model is unstable, at
least under perturbations which preserve the Robertson–Walker form of
the metric, because when perturbed it will either keep on expanding or
approach the Einstein static universe asymptotically.

6.2 Further remarks about the cosmological constant

As is clear from the existence of the Einstein static model, a positive cos-
mological constant as introduced here represents a repulsive force, so that
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the attractive force of the matter is balanced by this repulsive force in the
Einstein model. In the dynamic models when the galaxies are very far apart
after a period of expansion, the attractive force of the matter becomes
weak and eventually the repulsive force due to a positive cosmological con-
stant takes over, and one gets asymptotically the de Sitter behaviour.
Correspondingly, with a negative cosmological constant one gets an attrac-
tive force in addition to the gravitational attractive force already present.

We saw in the case of the Friedmann models that a model which
expands forever corresponds to k�0, �1, that is, it has infinite spatial
volume (the spatial curvature is zero or negative), whereas a model which
eventually collapses has k�1, that is, finite spatial volume and positive
curvature. This is no longer valid in models with a cosmological constant.
We have seen in the case of the Lemaître models (see Fig. 6.2), that
although k�1, the model expands forever. With a negative cosmological
constant it is possible to have k�0, �1, and a collapse in the future. This is
clear from (6.10), because if ' is negative eventually the term 'R3 will
dominate, so that R(t) cannot be very large, for then R2 becomes negative.
This will happen regardless of the value of k.

During the mid-seventies there was some evidence that the deceleration
parameter q0 might be negative, that is, the rate of expansion may be
increasing. This prompted Gunn and Tinsley (1975) to invoke a Lemaître
model with a positive '. However, later considerations of evolutionary
effects such as that of galactic cannibalism mentioned in the last chapter
modified the value of q0, so that such an ‘accelerating’ universe no longer
seemed necessary. The situation may change again; we will discuss this in
the Appendix at the end of the book.

The extent to which a cosmological constant is necessary is uncertain.
However, to give cosmological studies generality and scope it seems rea-
sonable to consider (H0, q0, ') as the three unknown parameters of cos-
mology which have to be determined from observation. The cosmological
constant may turn out to be zero, in which case the actual model will be a
pure Friedmann one. However, it may also turn out to be non-zero, for,
while there is no compelling reason for having a cosmological constant,
there is also not sufficient reason for its absence. Zel’dovich (1968) has sug-
gested that a term may occur due to quantum fluctuations of the vacuum;
in this case the cosmological term becomes a part of the energy–momen-
tum tensor. To consider another motivation for having a ' term, which
arises in the work of Hawking (see citation in Islam (1983b)), we have to
know about anti-de Sitter space, which occurs in a similar manner to the

1
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de Sitter space considered above except that ' is now negative. The metric
in this case can be written as (A is a constant with dimension of length)

ds2�c2 dt2�A2 cos2t[d.2�sinh2.(d�2�sin2� d�2)]. (6.16)

This coordinate system covers only a part of the space. For more details on
anti-de Sitter space the reader is referred to Hawking and Ellis (1973, p. 131).
Hawking considers N�8 supergravity theory (see, for example, Freund,
1986) and shows that in this theory a phase transition occurs at a certain crit-
ical value of the coupling constant and below this critical value the ground
state is an anti-de Sitter space with a negative cosmological constant. Above
the critical value there exists a contribution to the Ricci tensor due to
vacuum fluctuations which is equivalent to a positive cosmological constant
so that the net effect is that the ground state has an ‘apparent’ cosmological
constant which is zero. Other contexts in which the cosmological constant
arises will be mentioned later in this book. Other people have given reasons
why ' is small or zero (Coleman, 1988; Banks, 1988; Morris, Thorne and
Yurtsever, 1988). Coleman, for example, suggests quantum tunnelling
between separate universes (see Chapter 9 and Schwarzschild, 1989).

It was shown by McCrea and Milne (1934) that many of the properties
of the Friedmann and Lemaître models can be derived from purely
Newtonian considerations if one assumes that the universe is in a dynamic
state. The cosmological term is introduced by postulating a force which is
proportional to the distance between particles (see the next section).
However, the conceptual basis of this formulation is not sound partly
because it does not incorporate the special theory of relativity.

It is clear from the above discussion that it is important to have limits on
the cosmological constant. This we will consider in the next section. For a
selection of other works on Lemaître models, we refer to Petrosian and
Salpeter (1968), Kardashev (1967), Brecher and Silk (1969), Tinsley (1977),
Raychaudhuri (1979) and Bondi (1961) (the last three contain reviews).

6.3 Limits on the cosmological constant

From (6.7) and (6.9) we get the following relation:

q0� 
0�c2'/3H2
0. (6.17)

This is the equation which replaces (4.14), the latter being valid for
Friedmann models. From (6.17) we get

/q0� 
0/�/c2'/3H2
0/. (6.18)1

2
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Although the observational values of q0 and 
0 are uncertain, one can rea-
sonably safely say that q0 lies between �5 and �5, and that 
0 lies between
0 and 4. The left hand side of (5.18) can then have the maximum value of
7, so that we get

/'/�21H2
0/c2. (6.19)

By setting a limit of 100 km s�1 Mpc�1 on H0, (6.19) leads to a limit of
approximately 10�54 cm�2 on the absolute value of ' (this limit is men-
tioned by Hawking; see citation in Islam (1983b)).

The above limit comes from cosmological considerations. It is of some
interest to see if local considerations can give anything like the same limits.
Such a local limit can be obtained by considering the effect of a ' term on
the perihelion shift of Mercury (Islam, 1983b). The Schwarzschild metric
is modified as follows by the ' term (here r has dimension of length):

ds2�c2(1�2m/r� 'r2)dt2

�(1�2m/r� 'r2)�1dr2�r2(d�2�sin2� d�2), (6.20)

where m is the mass of the Sun, multiplied by G/c2. It is well known that
the usual Schwarzschild solution implies a perihelion shift of Mercury of
about 430 per century. This shift is known with an accuracy of about half a
per cent. Using this fact one can show that ' must satisfy the following
inequality (see Islam (1983b) for more details):

/'/�10�42 cm�2. (6.21)

Thus the limit from local considerations is much worse than that derived
from cosmology, as expected. One can improve on (6.21) by considering
local systems of bigger dimensions, such as the fact that a galaxy is a
bound system (Islam and Munshi, 1990; Munshi, 1999). For this we con-
sider a typical galaxy such as ours with 1011 stars of solar mass, that is, of
mass 2	1033 g. The matter contained in a disc of diameter 80 thousand
light years and thickness 6 thousand light years we imagine to fill a sphere
of uniform density with the same average density. The equivalent sphere
has a radius of about 19 thousand light years.

Let r be the position vector of a point with respect to the centre of the
spherical galaxy, then we assume the force on a unit mass to be given by
(� is the density):

F�� ��Gr� 'c2r. (6.22)

Here the ' term is the Newtonian form of the cosmological term. As
before, a positive ' implies a repulsive force. The first term on the right
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hand side of (6.22) represents the usual gravitational force. The galaxy
ceases to be a bound system if the right hand side of (6.22) gives an
outward force. The condition for this is

'�4��G/c2. (6.23)

For the dimensions given above we find 4���1.14	10�22 g cm�3, so that
(6.23) gives a limit of approximately 10�48 cm�2 for '. This could also be
considered as a limit on the absolute value of ', for even if ' is negative, if
its absolute value violated this limit, the effect on the binding of the galaxy
would be noticeable. One has to augment this analysis with a general rela-
tivistic one by considering the Schwarzschild interior solution, and its
modification due to the ' term. For this and other details we refer to Islam
and Munshi (1990) and Munshi (1999).

6.4 Some recent developments regarding the cosmological constant

and related matters

6.4.1 Introduction

In the preceding sections we have provided some basic information regard-
ing the cosmological constant, including some historical aspects. In this
section we consider some more recent developments which have both theo-
retical and observational aspects; the latter can be considered as exten-
sions of observational cosmology discussed in the last chapter. For
convenience we may repeat some earlier remarks. There are some uncer-
tainties, as usual, both theoretically and observationally, but we will
attempt to present a balanced picture and try to convey the ‘flavour’ of the
current research. We will rely largely on the reviews by Carroll, Press and
Turner (1992), Weinberg (1989), Bagla, Padmanabhan and Narlikar
(1996), and Viana and Liddle (1996). We also present an exact solution
with the cosmological constant.

For simplicity we restrict to the zero pressure case: p�0. In this case (see
(4.15), which is valid for '(0, as mentioned earlier – see also (4.6)), we get

�/�0�(R0/R)3��
1

/�M0, (6.24)

where we have introduced the mass density �M related to the mass-energy
density � as follows. In the case of non-zero pressure p the mass-energy
density consists of the rest mass of the particles constituting the matter,
the energy density of any radiation present, and the energy arising from
the random motion of the particles that occurs when the pressure is non-
zero. In the case of zero pressure, that is, dust, assuming radiation to be
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absent, the energy density is simply that given by the mass density, and it
may be more appropriate to use �M with ���Mc2, and �M0 as the present
value of �M: �M0��0/c

2.
Consider (6.6) and (6.11) and write the latter as follows:

(8�G�0)/(3c2H2
0)�kc2/(H2

0R2
0)�1�'c2/(3H2

0). (6.25)

The left hand side is the present value of the density parameter 
0 (see
remarks following (4.9) and (6.6)), which can also be written as follows:

0�(8�G�M0)/(3H2

0). With the following definitions:



'

�('c2)/(3H2
0); 
k��kc2/(H2

0R2
0), (6.26)

Equation (6.25) can be written as follows:


0�
k�

'

�1. (6.27)

Introduce the following dimensionless forms of R and t, given respectively
by a and �:

a(�)�R(t)/R0; ��H0t. (6.28)

We proceed to derive a first order differential equation for a(�). We have

da/d��(dR/dt)(da/dR)(dt/d�)�R/(R0H0). (6.29)

Next we re-write (6.10), inserting the value of 
 given after the equation:

R2��c2k�( )c2'R2�R0
3H2

0R�1�( )c2'R0
3R�1�c2kR0R

�1. (6.30)

We divide this equation by R2
0H2

0 and re-arrange terms to get the following
equation:

R2/(R2
0H2

0)�(�c2k/R2
0H2

0)(1�R0R
�1)

�(c2'/3H2
0)(R2/R2

0 �R0R
�1)�R0R

�1. (6.31)

This equation can be expressed readily in terms of a, da/d�, 
k and 

'
,

with the use of (6.26), (6.28) and (6.29). Eliminating 
k from the resulting
equation with the use of (6.27), we get

(da/d�)2�1�
0(1�a�1)�

'
(a2�1). (6.32)

This can be written as

(da/d�)2�a�1[

'
a3�(1�
0�


'
)a�
0], (6.33)

a form that leads to the integral solution (6.34).
In the next subsection we present an exact solution which might not be

physically important, but may provide a useful exercise for the reader.
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6.4.2 An exact solution with cosmological constant

Before proceeding with the observational aspect, we consider (6.32)
further. The case '�0 gives the Friedmann models discussed in the last
chapter, while some approximate and limiting solutions for '(0 were con-
sidered earlier in this chapter. A general solution of (6.32) in the form of
an integral can be expressed as follows:

(���i)�% a da/[

'
a3�(1�
0�


'
)a�
0] , (6.34)

where �i, ai are some initial values of �, a, e.g., those at the big bang. The
right hand side is in general an elliptic integral which cannot be expressed
in terms of elementary functions. However, there is a fortuitous combina-
tion of values of 
0, 


'
for which the integral can be evaluated. Although

these values might be unrealistic, an explicit evaluation may give some idea
of the form of the function (for some parameter values) which may be of
interest in some contexts. The solution consists of two parts, for positive
and negative '; the former is related to the approximate solution consid-
ered in Section 6.1 (see (6.15) and Fig. 6.2)). In fact for positive ' the exact
solution describes the two curves in Fig. 6.3, depending on the boundary
condition at the origin. We write the cubic in (6.34) as follows:



'
a3�(1�
0�


'
)a�
0�


'
(a�
�)2(a��), (6.35)

where 
� and � are constants. It is readily verified that in this case we must
have


��(
0/2

'
)1/3�( )�, (6.36a)

and 
0, 

'

must satisfy a relation which leads to the value of ' as follows,
with k�1, assuming 
� to be positive.

'�(4c4/9R0
6H0

4) (�c/�M0)
2; 1�
0�


'
�
k

��k/R2
0H2

0 ��3(
2
0


'
/4)1/3, (6.36b)

where �c�(3H2
0/8�G), the critical value of �. The relation (6.34) then

reduces to the following; the positive sign is more appropriate:



'
� a da/[(a�
�) (a�2
�) ]�(���i). (6.37)

The substitution

a�2
�sinh2 , (6.38a)

1
2

1
2�1
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1
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1
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a
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transforms the integral on the left hand side to the following one:

�(4 sinh2  d )/(2 sinh2 �1)�2�[d �d /(2 sinh2 �1)]. (6.38b)

The second integral on the right hand side can be written as follows and
evaluated through the substitution e2 ��:

�2e2 d /(e4 �4e2 �1)��d�/[(��2)2�3]

�(1/(2��3))log[(��2���3)/(��2���3)]�constant. (6.39)

In terms of  given by (6.38a), the equation (6.37) can thus be written as:

(���i)�

'

� log{e2 [A(��3�2�e2 )/(e2 �2���3)]1/��3}, (6.40)

where A�(��3�1)/(��3�1), so chosen that �i represents the moment of the
big bang when a�0. If �i�0, then a�0 when ��0 (see (6.38a)). This
choice leads to the lower branch in Fig. 6.3. With the use of (6.38a)  can
be expressed in terms of a as follows:

e2 �[1�a/
�%(a2/
�2�2a/
�) ]. (6.41)

This can be substituted in (6.40) to express � in terms of a. Let us consider
behaviour near ��0 (setting �i�0) and a�0. To this end we expand the
right hand side of (6.41) in powers of a, as follows:

e2 �[1% (2a/
�) �a/
�%(1/2��3) (a/
�)3/2�· · · ]. (6.42)

It can be verified that terms of order a cancel when the expression is sub-
stituted in (6.40). The next order term leads to a linear behaviour for a on
the right hand side of (6.40), so that this would lead to a solution in which
the scale factor behaves like � (or t) near the origin, i.e., near the big bang.
However, such a behaviour would imply that (da/d�) is finite at ��0, which
is inconsistent with (6.32), from which it is clear that (da/d�) is infinite at
��0. Indeed, the term linear in a on the right hand side of (6.40) also van-
ishes, as can be verified. The next term is of order a3/2, and this leads to the
behaviour a��2/3, which is consistent with (4.45) and the fact, evident
from (6.32), that the ' term does not affect behaviour near ��0. We will
come back to this solution after considering the case where 
� in (6.35) is
negative.

Let 
� in (6.35) be negative and set �
��
̂ �0. From (6.36a) we see that



'
is negative and accordingly we write (6.32) using (6.35) with 
̂ ��
�,

as follows:

(da/d�)2��

'
a�1(a�
̂)2(2
̂�a). (6.43)
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The second part of (6.36b), which is still valid, implies k��1. This leads
to the following integral (we choose the positive sign in (6.45)):

���i�%(�

'
)� a da/[(a�
̂) (2
̂ �a) ], (6.44)

with again �i, ai some initial values of �, a, which can both be taken as zero,
as we do in the following. The substitution a�2
̂ sin2� yields

��(�

'
)� �{2�2/(1�2 sin2�)}d�. (6.45)

The substitution ��tan(�/2) transforms the second integral as follows:

�d�/(1�2 sin2�)��2(1��2)d�/(1�10�2��4)

��d�{(1�(2/3) )/(1�(5�2��6)�2)�(1�(2/3) )/(1�(5�2��6)�2)}.
(6.46)

The integrals are now standard; performing the integration and substitut-
ing for �, we get the following implicit relation between � and a (with
��sin�1(a/2
̂))

��(�

'
)� 2�� tan�1 (5�2��6) tan

� tan�1 (5�2��6) tan . (6.47)

The corresponding expression for the case '�0 (
��0) can be written
down by first expressing (6.40) as follows (with �i�0)

��(�

'
)� {2 �(1/��3)log(A(��3�2�e2 )/(e2 �2���3))}, (6.48)

with A�(��3�1)/(��3�1), and then substituting for  from (6.41), as indi-
cated earlier. In (6.47) and (6.48), it can be verified that ��0 implies a�0.

We consider briefly some properties of the solution. From (6.32) and
(6.35) we see, for 
��0, that

(da/d�)2�

'
a�1(a�
�)2(a�2
�). (6.49)

Taking derivatives with respect to �, it is clear, because of the (a�
�)2

factor, that both (da/d�) and (d2a/d�2) vanish at a�
�. This is therefore a
point of inflexion for the curve (6.49), or the latter is asymptotic to the line
a�
�. In fact the second situation is the correct one, and leads to the beha-
viour displayed in Fig. 6.3.

In the case �
��
̂�0 (6.32) reduces to (6.43). In this case we have
(da/d�)�0 for a�2
̂, but, as is readily verified, (d2a/d�2) does not vanish

1
2


	�

2
1
2�2(1 � (2/3)

1
2)

(5 � 2�6)
1
2

�

2
1
2�2(1 � (2/3)

1
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for any value of a. We then get a ‘closed’ model akin to the case k�1 in
Fig. 4.2; the maximum value of a is 2
̂.

The considerations of this subsection and extensions of these may
provide ‘comprehension exercises’ for the reader to get to know better the
graphical and analytic structure of the Friedmann and Lemaître models.

6.4.3 Restriction of parameter space

As indicated, several sets of authors have studied and reviewed the obser-
vational and related theoretical situation to try and restrict the ‘space’ of
observational parameters, to see which set of models has more validity
than others. As a representative such review, we shall follow that of Bagla,
Padmanabhan and Narlikar (1996). We choose this review partly because
it is concise and clear, and not necessarily because we regard it as the most
accurate one. This can be considered as one of several ‘platforms’ from
which to assess other reviews and the overall situation. Because of the
observational and theoretical uncertainties, as well as the natural tendency
to emphasize certain aspects, there is usually a subjective element in the
reviews. Later we will mention some more recent reviews.

Bagla et al. (1996) start by mentioning a review by Gunn and Tinsley
(cited earlier, on p. 99) carried out in 1975 in which they conclude: ‘new
data on the Hubble diagram, combined with constraints on the density of
the universe and the ages of galaxies, suggest that the most plausible cos-
mological models have a positive cosmological constant, are closed, too
dense to make deuterium in the big bang, and will expand for ever . . .’.
Because of various developments in the intervening period, the reviewers
feel that the time is ripe to ‘take fresh stock of the cosmological situation
today’. Indeed, certain new aspects have come to the fore which were not
seriously considered a decade or two ago. One of these is the abundance of
rich clusters of galaxies, some of which contain as much as 1015 solar
masses. As Viana and Liddle (1996) say, ‘One of the most important con-
straints that a model of large-scale structure must pass is the ability to gen-
erate the correct number density of clusters. This is a crucial constraint
. . .’ (see also Liddle et al., 1996). Other ingredients that go into the exam-
ination of a model are: consistency with the ages of the oldest objects in
the universe, namely, globular clusters, whose age has been estimated to be
15.8%2.1 billion years (Bolte and Hogan, 1995; Bolte, 1994), fraction of
mass contributed by baryons in rich clusters, abundance of high red-shift
objects in radio galaxies and so-called damped Lyman alpha systems
(DLAS) (Lanzetta, Wolfe and Turnshek, 1995), and, of course, more
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recent measurements of the Hubble constant H0. For a ‘local’ value of H0

(that is, from studies of relatively nearby objects) Freedman et al. (1994)
get H0�80%17, while a ‘global’ value (from distant objects) of
H0�65%25 was obtained by Birkinshaw and Hughes (1994) (compare
Sandage and Tamman, 1975 (see (3.63)); see also Saha et al., 1995). We
will return to some of these points later.

Bagla et al. analyse in detail essentially two models: (i) the first one
satisfies 
0�


'
�1, k�0, and (ii) the second satisfies 
0�1, 


'
�0,

k��1 (see (6.33)). The results are set out in Fig. 6.4, which is a simplified
and modified version of their Fig. 3 (Bagla et al., 1996). The Hubble con-
stant here is given in units of 100, that is, h�H0/100 km s�1 Mpc�1. The
upper and lower boxes correspond to the cases (i) and (ii) cited above.

As mentioned, this review is meant to take stock of the situation in
observational cosmology at the time of writing (1996). As will be clear
from Chapter 9, a strong requirement for inflation is that the density
parameter should equal unity. In recent times this requirement has been
somewhat modified to include the cosmological constant, so that

tot�
0�


'
should equal unity (see 6.33); this is a sort of ‘generalized’

flatness condition. This is incorporated in model (i). Model (ii) does not
necessarily conform to the inflation condition and has zero cosmological
constant and negative curvature. The two models therefore are of some-
what different nature and so representative of a wide spectrum. To recapit-
ulate, the observational constraints being used here are: the Hubble
constant, the deceleration parameter, ages of globular clusters, abundance
of primordial deuterium and of rich clusters, baryon content of galaxy
clusters and abundance of high red-shift objects. The authors find that the
available parameter space is rather limited. This casts doubt on the error
bars of the measurements, or requires fine tuning of the theoretical models.

We now discuss in some detail the ingredients that go into Fig. 6.4. The
topic of the cosmic background radiation (CBR), mentioned in Chapter 1,
will arise; this will be dealt with in detail in Chapter 8. Here we refer to it in
broad terms. Firstly, the age of globular clusters, which are known to be
amongst the oldest objects in the universe, set a lower limit to the age of
the universe. The ages of the stars in the globular clusters can be calculated
from their mass, from the observed metallicity, and the point at which they
leave the well-known, so-called ‘main sequence’ in the Herzsprung–Russell
(HR) diagram. Nuclear reactions in a star result in heavier nuclei, until
one gets to iron, which has the most stable nucleus. Metallicity thus gives
indication of the stage of nuclear burning. Bolte and Hogan (1995) esti-
mate the ages of stars in M92 to lie in 15.8%2.1 Gyr (billion years). Given
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Fig. 6.4. This diagram displays the restrictions on the (h, 
0) plane
imposed by various observations, as worked out by Bagla, Padmanabhan
and Narlikar (1996). The upper part refers to a model with k�0,

0�


'
�1, while the lower one describes a model with k��1, 


'
�0.

The text (Section 6.4.3) explains the various curves.
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the values of 
0, 

'
, and H0, the age t0 of the universe can be calculated;

these are indicated by dashed lines in the figure for t0�12, 15 and 18 Gyr;
the allowed region in the diagram lies below the corresponding curve. The
upper diagram displays these curves for models with k�0, while the lower
one is for models with k��1, 


'
�0.

The measurement of distance to M100, which is a galaxy in the Virgo
cluster, using the Cepheid luminosity relation and the Hubble Space
Telescope (HST), gives h�0.80�0.17 (Freedman et al., 1994). This may be
regarded as a ‘local’ value which may be different from the global value.
Turner et al. (1991) and Nakamura and Suto (1995) have estimated the prob-
ability distribution of a local value of H0; apparently values smaller than
h�0.5 can be ruled out at 94% confidence. Birkinshaw and Hughes (1994)
find a ‘global’ value of h�0.65%0.25, for Abell 2218, with methods like the
Sunyaev–Zel’dovich effect; the latter is caused by the scattering of CBR
photons by electrons in hot plasmas that exist in some regions. This produces
an observable effect (Sunyaev and Zel’dovich, 1980). Sandage and Tamman,
as mentioned earlier, get values of h in the range 0.5–0.6, using various
methods. In the figure horizontal dotted lines give limits on values of h.

One of the important large scale properties of the universe is the occur-
rence of rich clusters of galaxies; these can be identified from X-ray obser-
vations if one assumes the central temperature to exceed 7 keV. The
abundance of rich clusters can be worked out theoretically. The calcula-
tions have some model dependence, hence the possibility of confronting
models with observations. The mass of the clusters is estimated, for
example, by assuming virial equilibrium and using the velocity dispersion
of galaxies, gravitational lensing, etc. The cluster abundance can be calcu-
lated analytically by the Press–Schechter theory (Press and Schechter,
1974; Bond et al., 1991; Bond, 1992, 1995). This theory gives the fraction
of material contained in gravitationally bound systems larger than some
mass M, in terms of the fraction of space where the linearly evolved (suit-
ably smoothed out) density field exceeds some threshold (see Eq. (13) of
Viana and Liddle, 1996).

An alternative way to compare observation with theory is to convert the
number density of clusters into amplitude of density fluctuations, scaled
in a suitable manner. One assumes a power law for the root-mean-square
density perturbations (White et al., 1993). The constraints arising from
these considerations are represented by a pair of thick unbroken lines. The
thin pair of outer lines indicate uncertainties arising from normalization
of certain COBE (Cosmic Background Explorer, about which more later)
data.
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The Coma cluster is a rich cluster of galaxies which has been studied in
great detail. This cluster can be considered to be a prototype. From these
studies it emerges that the fraction of mass contributed by baryons is given
by

(Mass in baryons/Total mass)�(
B/
0)�0.009�0.050h�3/2,
(6.50)

where the right hand side is uncertain by 25%. As we shall see in Chapter
8, light nuclei formed in the early universe; the abundance of different ele-
ments is a function of 
Bh2. Thus the value of 
B obtained from primor-
dial nucleosynthesis can be used in conjunction with (6.50) to put
additional constraints on 
0. The lowest and highest such bounds are rep-
resented by thick dot-dashed lines; the permitted region lies to the left in
each case. More recent observations of deuterium in a high red-shift system
(Saha et al., 1995) imply values of 
B smaller than previous ones. The
resulting constraint is represented by the thin dot-dashed line in Fig. 6.4.

The occurrence of high red-shift objects such as radio galaxies and
damped Lyman alpha systems (DLAS) imply that the amplitude of
density perturbations at z�2 is of order unity at M�1011M

�
. This

circumstance places a lower bound in the (h, 
0) diagram, represented by
the unbroken line at the lower left hand corner. For flat models (at the top)
this line runs alongside the line of constant age (18 Gyr) and so provides
an upper bound for the age of the universe. For DLAS and related
matters, we refer to Subramanian and Padmanabhan (1993).

Lastly, for the present, the deceleration parameter, about which there is
considerable uncertainty, as mentioned earlier, is represented here by the
vertical line in the top diagram. The allowed region lies to the right.

As indicated earlier, the present review can be taken as a platform. As
the authors themselves say, any changes in the observations or, to some
extent, in the theory, can be taken care of, within reason, by suitably mod-
ifying and scaling.

Much of the material of this subsection has been considered in detail in
interesting papers by Viana and Liddle (1996) and by Liddle et al. (1996).
(See also Liddle and Lyth, 2000.)

Some recent observations of supernovae in distant galaxies indicate the
existence of a positive cosmological constant and, consequently, a possible
accelerating universe (Perlmutter et al., 1998). This will be discussed
briefly in the Appendix.
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7

Singularities in cosmology

7.1 Introduction

In Chapter 4 we saw that all the Friedmann models have singularities in the
finite past, that is, at a finite time in the past, which we have called t�0; the
scale factor R(t) goes to zero and correspondingly some physical variables,
such as the energy density, go to infinity. Only exceptionally, such as in the
de Sitter or the steady state models (see Fig. 6.1), is there no singularity in
the finite past. But these latter models have some unphysical or unortho-
dox feature, such as the continuous creation of matter, which is not gener-
ally acceptable. The presence of singularities in the universe, where
physical variables such as the mass-energy density or the pressure or the
strength of the gravitational field go to infinity seems doubtful to many
people, who therefore feel uneasy about this kind of prediction of the
equations of general relativity. This was partly the motivation with which
Einstein searched for a ‘unified field theory’. In this connection he says
(1950):

The theory is based on a separation of the concepts of the gravitational
field and matter. While this may be a valid approximation for weak fields,
it may presumably be quite inadequate for very high densities of matter.
One may not therefore assume the validity of the equations for very high
densities and it is just possible that in a unified theory there would be no
such singularity.

There was at one time the feeling that the singularities in the Friedmann
models arise because of the highly symmetric and idealized form of the
metric, and that, for example, if the metric were not spherically symmetric,
the matter coming from different directions might ‘miss’ each other and
not gather at the centre of symmetry, as it does in the (spherically symmet-
ric) Friedmann models. However, it was shown by Hawking and Penrose
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(1970) that spherical symmetry is not essential for the existence of a singu-
larity. We shall consider this work later.

There are in the main two possible approaches for dealing with the
problem of singularities. Firstly, one can try to relax the symmetry condi-
tions inherent in Robertson–Walker metrics and try to determine what the
field equations predict in these more general cases. Secondly, one can try to
derive some general results about singularities by using reasonable assump-
tions, say about the energy–momentum tensor, without considering the
field equations in detail. The Penrose–Hawking results fall in the latter cate-
gory. As regards the former approach, the simplest relaxation of the sym-
metries of the Robertson–Walker metrics (which are homogeneous and
isotropic) is to drop the requirement of isotropy and consider metrics which
are only homogeneous. A simple example of such a metric was given in
(3.15). We shall consider such metrics in some detail in the next section,
partly with a view to explaining another approach to the question of singu-
larities, pioneered by Lifshitz and Khalatnikov (1963). There is an extensive
literature on singularities and cosmological solutions, incorporating both
the approaches mentioned above. This chapter is meant to be only a brief
introduction to this work. For more detailed reviews the reader is referred to
Hawking and Ellis (1973), Ryan and Shepley (1975), Landau and Lifshitz
(1975), MacCallum (1973), Raychaudhuri (1979) and Clarke (1993).

7.2 Homogeneous cosmologies

In this section we shall derive the metric and field equations for homogene-
ous (but not isotropic) cosmologies. We shall give the bare essentials here.
For more details the reader can consult Landau and Lifshitz (1975, p.
381).

In Section 3.1 we defined a homogeneous space. To continue that discus-
sion, consider the spatial part of the metric (3.1), as follows:

dl2�hij(t, x1, x2, x3)dxi dxj, (7.1)

where as usual the indices i and j are to be summed over values 1, 2, 3. A
metric is homogeneous if after a transformation of the spatial coordinates
x1, x2, x3 to new coordinates x�1, x�2, x�3 the metric (7.1) transforms to the
following one:

dl2�hij(t, x�1, x�2, x�3)dx�i dx�j, (7.2)

with the same functional dependence as before of the hij on the new spatial
coordinates. Further, this set of transformations must be able to carry any
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point to any other point. We saw an explicit example of such a transforma-
tion in a simple case in (3.15). One way to characterize the invariance of
the metric under spatial transformations is to consider a set of three
differential forms em

(a) dxm (with a�1, 2, 3) which are invariant under these
transformations, as follows:

em
(a)(x) dxm�em

(a)(x�) dx�m, (7.3)

where we have written x for x1, x2, x3, etc., in the arguments. With the use
of these forms a metric invariant under spatial transformations can be
constructed as follows (the �ab are six functions of t):

dl2��ab(em
(a) dxm)(en

(b) dxn), (7.4)

that is, the three-dimensional metric tensor hij of (7.2) is given as follows:

hij��abei
(a)ej

(b). (7.5)

Note that in (7.3) the em
(b) on the two sides of the equation are respectively

the same functions of the old and new coordinates. We introduce the recip-
rocal triplet of vectors em

(a) by the following relations:

em
(a)em

(b)��a
b, em

(a)en
(a)��n

m. (7.6)

It can be shown after some manipulations (see Landau and Lifshitz, 1975,
pp. 382–3), that (7.3) leads to the following equation for the reciprocal
triplet em

(a):

em
(a) �em

(b) �Cc
abe

n
(c), (7.7)

where the Cc
ab are constants satisyfing Cc

ab��Cc
ba. These are the so-called

structure constants of the groups of transformations. If we denote by Xa

the following linear differential operator:

Xa�em
(a) , (7.8)

then (7.7) can be written as follows:

[Xa, Xb]�XaXb�XbXa�Cc
abXc. (7.9)

One can now use the Jacobi identity given by

[[Xa, Xb], Xc]�[[Xb, Xc], Xa]�[[Xc, Xa], Xb]�0, (7.10)

to derive the following relation for the structure constants:

Ce
abC

d
ec�Ce

bcC
d
ea�Ce

caC
d
eb�0. (7.11)

�

�xm

�en
(a)

�xm

�en
(b)

�xm
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The different types of homogeneous spaces correspond to the different
inequivalent solutions of (7.11) satisfying the antisymmetry condition
Cc

ab��Cc
ba. Some solutions are equivalent to each other, reflecting the fact

that the em
(a) can still be subjected to a linear transformation with constant

coefficients so that the operators Xa are not unique.
There are nine different types of homogeneous spaces that arise from

the different inequivalent solutions of (7.11) with the required antisymme-
try condition. These are known as the Bianchi types, types I–IX. The
Einstein equations for these spaces can be reduced to a system of ordinary
differential equations for the �ab(t), without the necessity of working out
the frame vectors em

(a), etc. We will consider an application of these results
in Section 7.7.

7.3 Some results of general relativistic hydrodynamics

Before considering the results of Penrose and Hawking it is useful to have
some idea of relativistic hydrodynamics. The fundamental quantity here is
the four-velocity vector u� of a continuous distribution of matter in hydro-
dynamic motion. Thus u� is a unit time-like vector. Some of the following
formulae are valid for any arbitrary four-vector u�. With the use of the
covariant derivative u

�;� one can define the following quantities which are
of physical significance:

(a) The scalar expansion ��u�
;�, which gives the rate at which a

volume element orthogonal to the vector u� expands or contracts.
(b) A measure of the departure of the velocity field from geodesic

motion is given by the acceleration u
�

�u
�;�u

�. In the absence of
non-gravitational forces, such as in the case of dust (pressure-less
matter), theparticles followgeodesicsandtheaccelerationvanishes.

(c) The shear tensor is symmetric, trace-free and is orthogonal to the
vector u

�
. It describes the manner in which a volume element

orthogonal to u� changes its shape, and is given as follows:

�
��

� (u
�;��u

�;�)� (�
�;��u

�
u

�
)�̇� (u

�
u

�
�u

�
u

�
). (7.12)

(d) A measure of the amount of rotational motion present in the
matter is given by the vorticity tensor defined as follows:

w
��

� (u
�;��u

�;�)� (u
�
u

�
�u

�
u

�
). (7.13)

One can also define a vorticity vector w� as follows:

w�� �����u
�
u

�;�, (7.14)1
2

1
2

1
2

1
2

1
3

1
2
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where ����� is the Levi–Civita alternating tensor which is antisym-
metric in any pair of indices with �0123�(��)�1/2, � being the
determinant of the metric. If the vorticity vector or tensor van-
ishes, the vector u� is said to be hypersurface orthogonal and this
implies the absence of rotation in some invariant sense (rotation
of the local rest frame relative to the compass of inertia; see, for
example, Synge, 1937; Gödel, 1949).

Next we use (2.12) with u
�

instead of A
�

and make slight changes in the
indices to get the following equation:

u�
,
;��u�

;�;
�R�
��


u�. (7.15)

In this equation we set � equal to � and multiply the resulting equation
with u
 as follows:

u
(u�
;
;��u�

;�;
)�R
�


u�u
, (7.16)

where we have used (2.16). From the Einstein equation (2.22) with (2.23)
we readily get

R
��

� [(��p)u
�
u

�
� (p��)�

��
], (7.17)

whence it follows:

R
��

u�u�� (��3p). (7.18)

One can use the definitions of expansion, shear, vorticity and acceleration
given above to write (7.16) as follows:

�,
u
� �2�u

;
�2(�2�w2)��R

��
u�u�. (7.19)

In deriving this relation the following equations have been used (the first
one follows by taking the dot-derivative of u�u

�
�1);

u
�
u��0, (7.20a)

�
��

u��w
��

u��0, (7.20b)

�2� �
��

���, (7.20c)

w2� w
��

w��. (7.20d)

Equation (7.19) holds for an arbitrary four-vector u�. We now let u� be the
four-velocity of matter, so that (7.18) can be used in (7.19). We then get the

1
2

1
2

1
3

4�G
c4

1
2

8�G
c4
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following important equation, known as the Raychaudhuri equation
(Raychaudhuri, 1955, 1979):

�,
u
� �2�u

;
�2(�2�w2)�4�(��3p)Gc�4�0. (7.21)

The importance of this equation derives from the fact that in one form or
another it is used in most if not all singularity theorems of general relativ-
ity. To see the relevance of this equation to the question of singularities we
consider a simple and somewhat crude analysis. Consider a set of time-like
geodesics described by the four-vector u�. Let these geodesics be irrota-
tional. Thus we have u��w�0. Let � be a parameter along a typical geo-
desic so that u��dx�/d�. Then

�,
u
� �� �2�2�2�4�(��3p)Gc�4. (7.22)

Now make the assumption that 2�2�4�(��3p)Gc�4 is greater than a pos-
itive constant � 2. Then the behaviour of � is governed by the following
differential equation:

d�/d��� (�2�� 2), (7.23)

which has the solution

���0�� tan[(�/3)(���0)], (7.24)

�0 being the value of � at ���0. From this equation it is clear that �

becomes infinite as � is decreased from the value �0 to �0�3�/2�. If, for
example, � denotes the proper time along the geodesic, then this shows
that at a finite time in the past the expansion � becomes infinite. An infinite
value of � indicates that at that point geodesics cross each other and there
is a sort of ‘explosion’ like the big bang. In the Friedmann models u� is
given by the vector (1, 0, 0, 0) and it is readily verified that �, which is the
covariant divergence of this vector, is given by 3R/R. In the case k�0, for
example, from (4.2b) we see that this is proportional to �1/2. We know that
this tends to infinity as the big bang t�0 is approached. Thus the expan-
sion � tends to infinity at a finite time in the past. The assumption
2�2�4�Gc�4(��3p)� � 2 is a limiting case. If 2�2�4�Gc�4(��3p)� � 2

the infinity in � occurs at a shorter distance away from ���0.
The above somewhat crude analysis can be made more precise, and this

is essentially what is done in the singularity theorems. These theorems are
very technical and need a great deal of preliminary apparatus. We shall
here give only the statement of one of these theorems, but we need some
familiarity with singularities.

1
3

1
3

1
3

1
3

1
3

��

�x


dx


d�
�

d�

d�

1
3
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7.4 Definition of singularities

The question of a definition of singularities in general relativity is a highly
complex one and we can only consider a bare outline of the extensive liter-
ature on the subject. An excellent account of this topic is given in Hawking
and Ellis (1973).

We have encountered a simple case of a singularity in the Friedmann
models, where at t�0 the mass-energy density goes to infinity. The mass-
energy density is a simple example of the so-called ‘curvature scalars’ or
‘curvature invariants’ whose values do not change under a coordinate
transformation, so that if they are infinite at a certain point in one coordi-
nate system, they will be infinite at that point in every coordinate system.
Another example of a curvature scalar is the Ricci scalar defined by (2.20).
It is well known that in empty space (where the Ricci tensor vanishes),
there are four curvature invariants, one of these being R


���
R
��� (see, for

example, Weinberg (1972) for a discussion of this). If one of the curvature
scalars goes to infinity at a point, that point is a space-time singularity, and
cannot be considered as a part of the space-time manifold, whose points
are defined to be such that one can introduce a coordinate system so that
the metric and its derivatives to second order are well behaved. Such points
may be called ‘regular’ points. However, all the curvature scalars remain-
ing finite at a point does not necessarily imply the point is regular. The
usual example of this that is cited is that of the two-dimensional surface of
an ordinary cone in three dimensions. The curvature scalars of this surface
remain finite as one approaches the apex of the cone, but the latter is not a
regular point as it is not possible to introduce any coordinate system that is
well behaved at that point. On the other hand, the metric behaving badly
at a point does not necessarily mean that the point is singular, because the
bad behaviour may be simply due to the unsuitable nature of the coordi-
nate system. These matters are illustrated well by the Schwarzschild
metric.

The Schwarzschild solution is given as follows:

ds2�c2(1�2m/r) dt2�(1�2m/r)�1 dr2�r2(d�2�sin2� d�2). (7.25)

Here the coefficient of dt2 goes to infinity at r�0 and that of dr2 goes to
infinity at r�2m. The curvature invariants are well behaved at r�2m, but
some of them go to infinity at r�0. Thus the bad behaviour of the metric
cannot be removed at r�0, so the latter is a singularity. However, as men-
tioned earlier, the fact that the curvature invariants are regular at r�2m
does not necessarily mean that the latter is not a singularity. To prove this
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one would have to find a coordinate system which is well behaved at the
point. For a long time after the Schwarzschild solution was discovered, in
1916, such a coordinate system could not be found. It was observed that
the radial time-like and null geodesics displayed no unusual behaviour at
r�2m. Finally, in 1960 Kruskal found the following transformation from
(r, t) to new coordinates (u, �) which shows that the point r�2m is regular:

u2��2�(2m)�1(r�2m) exp(r/2m), ��u tanh(ct/4m), (7.26)

with the metric (7.25) given as follows:

ds2�r�1(32m3) exp(�r/2m)(du2�d�2)�r2(d�2�sin2� d�2), (7.27)

where r is to be interpreted as a function of u and � given implicitly by the
first equation in (7.26).

Another aspect of the question of singularities can be illustrated with
the Schwarzschild metric, as follows (Raychaudhuri, 1979, p. 146).
Transform the coordinate r in (7.25) to a new coordinate r� given by

r�2m�r�2. (7.28)

This changes (7.25) to the following form:

ds�c2r�2/(r�2�2m) dt2�(r�2�2m)(d�2�sin2� d�2)
�4(r�2�2m) dr�2. (7.29)

Clearly this metric is regular for all values of r� in 0+r�+$. But this is
only a part of the space represented by (7.25) with 0+r+$. In (7.29) there
would be no singularities of the curvature scalars such as R


���
R
��� for

any values of r�. It is thus not always satisfactory simply to see if the
metric components are regular. One way to demand regularity which is
physically meaningful is to require that all time-like and null geodesics
should be complete in the sense that they can be extended to arbitrary
values of their affine parameters. Since time-like and null geodesics give
respectively the paths of freely falling (that is, in motion under purely grav-
itational forces) massive and massless particles, this requirement means
that the space-time must contain complete histories of such freely falling
particles, and that these geodesics should not suddenly come to an end at
any point. In fact even this may not be satisfactory as the definition of a
regular space-time, as Geroch (1967) has provided an example of a space-
time that is geodesically complete (that is, the geodesics can be extended
arbitrarily) but one that has a non-geodetic time-like curve (for example
an observer propelled by a space-ship, that is, non-gravitational forces)
with bounded acceleration which has a finite length. To get over these
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kinds of difficulties a modified definition of completeness, called b-com-
pleteness, has been given by Schmidt (1973).

7.5 An example of a singularity theorem

As indicated earlier, there are various forms of singularity theorems,
mostly due to Penrose, Hawking and Geroch (see Hawking and Ellis,
1973), which involve elaborate conditions, some of which are quite techni-
cal. Roughly speaking, these theorems show that quite reasonable assump-
tions lead to at least one consequence which is physically unacceptable. We
will give here the statement of one of these theorems, due to Hawking and
Penrose (1970), which is as follows:

Space-time is not time-like and null geodesically complete if:

(a) R
��

K�K�20 for every non-space-like vector K�. If the Einstein
equations (2.22) are valid, and if K� is taken to be a unit time-like
vector, this condition is readily seen to imply T

��
K�K�2 T. If, in

addition, T
��

is that for a perfect fluid given by (2.23) and K� is
taken to be the four-velocity u�, then this condition implies
��3p20. For this reason this is sometimes referred to as the
energy condition. Physically it is very reasonable.

(b) Every non-space-like geodesic contains a point at which

K[�R
�]��[�K�]K

�K�(0, [ ] implies antisymmetrization,

where K
�

is the tangent vector to the geodesics. This is one of the
rather technical conditions and it appears that this is true for any
general solution of Einstein’s equations.

(c) There are no closed time-like curves. Physically this means that no
observer can go to his past.

(d) There exists a point p such that the future or past null geodesics
from p are focussed by the matter or curvature and start to recon-
verge. Penrose and Hawking show that observations on the micro-
wave background radiation indicate that this condition is
satisfied.

There are actually two alternatives to the condition (d) which are more
technical. We refer the interested reader to Hawking and Ellis (1973, p.
266) for an account of this. We thus see that assumptions which are quite
reasonable lead to consequences which are physically very strange, such as
a particle’s worldline suddenly coming to an end, or an observer meeting
his past.
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7.6 An anisotropic model

To see an example of singularities which is different from the simple
Friedmann cases and yet not too complicated, we will consider in this
section a model that is homogeneous but anisotropic. It is, in fact, the
metric of (3.15) with A�1, and we use X 2, Y 2, Z 2 instead of B, C, D in
that equation, so that our metric is as follows:

ds2�c2 dt2�X 2(t) dx2�Y 2(t) dy2�Z 2(t) dz2. (7.30)

This metric belongs to Bianchi type I mentioned in Section 7.2. Such models
have been studied by Raychaudhuri (1958), Schücking and Heckmann
(1958) and others. The case X�Y with dust was considered by Thorne
(1967). An account of this model is given in Hawking and Ellis (1973, p. 142).

The fact that the metric (7.30) is homogeneous has been shown at the
end of Section 3.1. It is anisotropic because not all directions from a point
are equivalent. There are several reasons for studying anisotropic uni-
verses. We have mentioned earlier that the universe displays a high degree
of isotropy in the present epoch. However, in earlier epochs, perhaps very
early ones, there may have been a significant amount of anisotropy. Also,
in a realistic situation the singularity in the universe is unlikely to possess
the high degree of symmetry that the Friedmann models have. The
observed isotropy of the universe needs to be explained and, in the process
of seeking this explanation, one must consider more general models of the
universe than the Friedmann ones.

We will consider solutions of Einstein’s equations for the metric (7.30)
for a perfect fluid with zero pressure, that is, dust. We set G�1 and c�1
for this section and the next, and define a function S(t) by S3�XYZ. A
solution of Einstein’s equation is given as follows (M, a, b are constants):

��3M/(4�S3), X�S(t2/3/S)2sina, Y�S(t2/3/S)2sin(a�2�/3),	
Z�S(t2/3/S)2sin(a�4�/3), S3� Mt(t�b).

(7.31)

The constant b determines the amount of anisotropy, the value b�0
giving the isotropic Einstein–de Sitter universe (see (4.24)). The constant
‘a’ determines the direction of most rapid expansion, the domain of ‘a’
being ��/6�a��/2. We have

S/S�(2/3t)(t� b)/(t�b), X/X�(2/3t)[t� b(1�2 sin a)]/(t�b),
(7.32)

the expressions for Y/Y and Z/Z being obtained by replacing a in X/X by
a�2�/3 and a�4�/3 respectively. This universe has a highly anisotropic
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singular state at t�0. For large t it tends to isotropy, in fact to the
Einstein–de Sitter universe.

Suppose we follow the time t backwards to the initial singularity. At first
there is isotropic contraction. Let a( �. Then 1�2 sin(a� �) is negative.
Thus the collapse in the z-direction halts and is replaced by expansion, the
rate of which becomes infinite as t tends to zero. The collapse is monotonic
in the x- and y-directions. Consider now the situation forwards from t�0.
The matter collapses from infinity in the z-direction, then halts and
expands. In the x- and y-directions it expands monotonically. Thus we
have here a cigar-shaped singularity. If one could observe the matter far
back in time, one would see a maximum red-shift in the z-direction, then
the red-shift would decrease to zero (corresponding to the halt), then one
would get indefinitely large blue-shifts, the latter occurring in light given
off by the matter near t�0.

The case a� � is somewhat different. Here we have

X/X�(2/3t)(t� b)/(t�b), Y/Y�Z/Z�(2/3)(t�b)�1. (7.33)

Following time backwards again, the initially isotropic contraction slows
down to zero in the y- and z-directions but the collapse is monotonic in the
x-direction. Going forwards in time, the rate of expansion of the universe
in the y- and z-directions starts from a finite value but the expansion rate
in the x-direction is infinite. This is thus a ‘pancake’ singularity. There are
limiting red-shifts in the y- and z-directions, but no limit to the red-shifts
in the x-direction.

7.7 The oscillatory approach to singularities

In this section we consider an interesting approach to singularities devel-
oped by Lifshitz and Khalatnikov (1963) and by Belinskii, Khalatnikov
and Lifshitz (1970). We study one of the homogeneous spaces that were
introduced in Section 7.2, namely, Bianchi type IX, whose structure
constants are as follows (see (7.11)):

C 1
23�C 2

31�C 3
12�1. (7.34)

Denoting (x1, x2, x3) by (�, �,  ), the three vectors em
(a) (see (7.3) and (7.4))

can be taken as follows:

em
(1)�(sin , �cos sin�, 0), em

(2)�(cos , sin sin�, 0),

em
(3)�(0, cos�, 1). (7.35)
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The metric (7.4) is given as follows, where we have taken �ab(t) to be diag-
onal and set �11�a2, �22�b2, and �33�c2.

ds2�dt2�a2(sin  d��cos sin� d�)2

�b2(cos  d��sin  sin� d�)2�c2(cos� d��d )2. (7.36)

In the isotropic models studied in Chapter 3, near the singularity the
spatial curvature term behaves as R�2 whereas the mass-energy density
behaves as R�3 (for zero pressure) and as R�4 (for radiation). (See
(4.2a)–(4.2c), (4.15) and (4.40).) Thus in the Friedmann models the curva-
ture terms go to infinity slower than the terms arising from T

��
and the

derivatives with respect to time of the metric (that is, R terms). This kind
of singularity is referred to as a velocity-dominated singularity (Eardley,
Liang and Sachs, 1972). In the anisotropic models which are our concern
in this section the behaviour near the singularity is dominated by curvature
terms as observed by Belinskii and his coworkers and by Misner (1969)
and is called the mixmaster singularity.

Thus if we are interested in the behaviour near the initial singularity for
the anisotropic metric (7.36), it is sufficient to consider the empty space or
vacuum Einstein equations where T

��
�0, for the terms arising from T

��

are negligible in comparison to the other terms. The empty space Einstein
equations can be written as follows:

(abc)˙/(abc)�(2a2b2c2)�1[(a2�b2)2�c4], (7.37a)

(abc)˙/(abc)�(2a2b2c2)�1[(b2�c2)2�a4], (7.37b)

(aḃc)˙/(abc)�(2a2b2c2)�1[(c2�a2)2�b4], (7.37c)

ä/a�b̈/b� c̈ /c�0. (7.37d)

Here a dot represents differentiation with respect to t. If the right hand
sides in (7.37a)–(7.37c) were absent, we would get the following well-
known Kasner (1921) solution (of Bianchi type I):

a�tq, b�tr, c�tp, (7.38)

where p, q, r are constants satisfying

p�q�r�p2�q2�r2�1. (7.39)

Suppose now that even when the terms on the right hand sides of
(7.37a)–(7.37c) are present, there exist certain ranges of values of t for
which the metric is given approximately by (7.38):

a�tq, b�tr, c�tp. (7.40)
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Then from (7.37d) we get

p2�q2�r2�p�q�r. (7.41)

It is readily verified that not all the three expressions on the right hand
sides of (7.37a)–(7.37c) can be positive, that is, one of these at least must
be negative. From this it follows, substituting (7.40) into the left hand sides
of (7.37a)–(7.37c), that at least one of the expressions p(p�q�r�1),
q(p�q�r�1), r(p�q�r�1) must be negative. The possibility that p, q, r
are all positive with p�q�r�1 negative is inadmissible because it contra-
dicts (7.41) (for in this case we must have 0�p�1, 0� q�1, 0�r�1, so
that p2�p, q2�q, r2�r, and (7.41) becomes impossible). Thus at least one
of the indices p, q, r is negative. This implies that the length along at least
one direction shrinks while (since p�q�r�0 from (7.41)) the spatial
volume, which is determined by the product (abc)2 expands. In fact
(7.37a)–(7.37c) do not allow two of the exponents p, q, r to be negative at
the same time.

We suppose that p is negative and q�r. Then (7.40) implies that for
small t, a and b can be neglected in comparison with c. We now define new
dependent variables 
, �, � and a new independent variable � by the fol-
lowing relations:

a�exp(
), b�exp(�), c�exp(�); dt/d��abc. (7.42)

These transformations, together with the approximations introduced
above, enable us to write (7.37a)–(7.37c) as follows:

�0�� exp(4�), (7.43a)


0��0� exp(4�), (7.43b)

where a prime denotes differentiation with respect to �. Equation (7.43a) is
in the form of the equation of motion of a particle which is moving in a
potential well which is exponential. The ‘velocity’ �� thus changes sign cor-
responding to a change from a region where c is decreasing to one where c
is increasing. Belinskii et al. assume that the right hand sides of
(7.37a)–(7.37c) are small enough at a certain epoch such that p�q�r is
nearly unity and one has the Kasner solution with

abc�wt, ��w�1 log t�constant, (7.44)

where w is a constant. Equations (6.43a) and (6.43b) can then be inte-
grated as follows:

a2�a2
0[1�exp(4pw�)] exp(2qw�), (7.45a)
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b2�b2
0[1�exp(4pw�)] exp(2rw�), (7.45b)

c2�2/p/[cosh(2wp�)]�1, (7.45c)

where we have chosen the integration constants so that as � tends to
infinity, a, b, c go to the assumed Kasner solution with a negative p. We get
the following asymptotic values of a, b, c as � tends to infinity and minus
infinity respectively:

As �→$, a�exp(qw�), b�exp(rw�), c�exp(pw�), (7.46a)

As �→�$, a�exp[w(q�2p)�], b�exp[w(r�2p)�],
c�exp(�pw�), (7.46b)

In (7.46a) we have w��log t while in (7.46b), w(1�2p)��t. In the second
of these limits, that is in (7.46b), transforming back to t from � (with
w(1�2p)��t), we get

a�tq�, b�tr�, c�tp�, (7.47)

where

p���p/(1�2p)�0, (7.48a)

q��(2p�q)/(1�2p)�0, (7.48b)

r��(r�2p)/(1�2p)�0. (7.48c)

This behaviour is different from that existing in the limit �→$ which is
given by (7.40), in the sense that the exponent in c has changed from nega-
tive to positive, while that of a has become negative (that is, q is positive
but q� negative). Thus the a- and c-axes have interchanged their expanding
and contracting behaviours. This indicates that, as we move towards the
singularity, distances along two of the axes oscillate while that along the
third axis decreases monotonically. This happens in successive periods
which are called ‘eras’. On going from one era to the next, the axis along
which distances decrease monotonically changes to another one.
Asymptotically the order in which this change occurs becomes a random
process (Landau and Lifshitz, 1975). One has a particularly long era if (p,
q, r) corresponds to the triplet (1, 0, 0). In this case there are no particle
horizons (see Section 4.7) in the direction for which the index is unity,
since �0 t�1 dt diverges. In the course of evolution this particular direction
also changes and this phenomenon may lead to effective abolition of all
particle horizons. This was one of the motivations of the mixmaster model
of Misner which was thought to provide the solution to the ‘horizon’
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problem mentioned in Chapter 1, that is, to explain why the universe is so
isotropic and homogeneous. But this model did not provide a solution to
the problem, although some interesting insights were gained. This com-
pletes our brief exposition of singularities in cosmology. For more details
of the material presented in this chapter, we refer to the books by Hawking
and Ellis (1973), Raychaudhuri (1979), Landau and Lifshitz (1975) and
the papers cited in this chapter. There have also been interesting inhomo-
geneous exact cosmological solutions following the work of Szekeres
(1975); see, for example, the papers by Szafron (1977), Szafron and
Wainwright (1977), Wainwright (1979), Wainwright and Marshman
(1979), Wainwright, Ince and Marshman (1979), Wainwright and Goode
(1980), Wainwright (1981), and Goode and Wainwright (1982). It is
however, beyond the scope of this book to consider these models.

7.8 A singularity-free universe?

A new class of inhomogeneous cosmological solutions has been found by
Senovilla (1990) which does not seem to possess any singularities in the
past, with the curvature and matter invariants regular and smooth every-
where. The source is a perfect fluid with equation of state ��3p. The
metric is as follows (with signature �2):

ds2�e2f(�dt2�dx2)�K(q dy2�q�1 dz2), (7.49)

where the functions f, K and q depend on t and x only and are given expli-
citly as follows:

e f�[A cosh(at)�B sinh(at)]2 cosh(3ax),

K�[A cosh(at)�B sinh(at)]2 sinh(3ax)[cosh(3ax)]�3/2, (7.50)

q�[A cosh(at)�B sinh(at)]2 sinh(3ax),

where a, A, B are arbitrary constants. The pressure and energy density are
given as follows:

p� ��5.�1a2[A cosh(at)�B sinh(at)]�4[cosh(3ax)]�4, (7.51)

where . is the gravitational constant in suitable units.
In two important papers, Raychaudhuri (1998, 1999) evaluates the new

Senovilla solution and re-examines the singularlity theorems, and offers an
additional theorem. To recapitulate, there are essentially four conditions:
(1) the causality condition forbidding closed time-like lines, (2) the strong
energy condition (T

��
� g

��
T)u�u�20, (3) a condition on the Riemann–

Christoffel tensor, and (4) existence of a trapped surface. Raychaudhuri

1
2

1
3

126 Singularities in cosmology

TLFeBOOK



quotes from Misner, Thorne and Wheeler (1973): ‘All the conditions except
the trapped surface seem eminently reasonable for any physically realistic
space time’ (p. 935). Raychaudhuri also discusses the further solutions
found by Ruiz and Senovilla (1992). One of the important points to notice
is that it is the last condition that is violated by the new singularity-free
solution. However, as Raychaudhuri shows, the average of the physical and
kinematic scalars taken over the entire space-time vanishes. In the new solu-
tion the space-time is open in all directions, which means, according to
Raychaudhuri, that the space-time has topology R3	R. Raychaudhuri
goes on to enunciate and prove an interesting new theorem: ‘In any singu-
larity free non-rotating universe, open in all directions, the space-time
average of all stress energy invariants including the energy density van-
ishes.’ Here ‘non-rotating’ means all matter has worldlines forming a
normal congruence, that is, one that is hypersurface orthogonal. This
means essentially that the tangent four-vectors to the worldlines are
orthogonal to the space-like three-surface on which the matter lies at any
instant. The proof is based on Raychaudhuri’s earlier equation (7.21). He
goes on to discuss interesting implications.
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8

The early universe

8.1 Introduction

As mentioned in Chapter 1, the ‘cosmic background radiation’ discovered
originally by Penzias and Wilson in 1965 provides evidence that the uni-
verse must have gone through a hot dense phase. We have also seen that
the Friedmann models (described in Chapter 4), if they are regarded as
physically valid, predict that the density of mass-energy must have been
very high in the early epochs of the universe. In fact, of course, the
Friedmann models imply that the mass-energy density goes to infinity as
the time t approaches the ‘initial moment’ or ‘the initial singularity’, at
t�0. This is what is referred to as the ‘big bang’, meaning an explosion at
every point of the universe in which matter was thrown asunder violently,
from an infinite or near infinite density. However, the precise nature of the
physical situation at t�0, or the situation before t�0 (or whether it is
physically meaningful to talk about any time before t�0) – these sorts of
questions are entirely unclear. In this and the following chapter we shall
try to deal partly with some questions of this kind. In the present chapter
we simply assume that there was a catastrophic event at t�0, and try to
describe the state of the universe from about t�0.01 s until about t�one
million years. This will be our definition of the ‘early universe’, which
specifically excludes the first hundredth of a second or so, during which,
as we shall see in the next chapter, and as speculations go, events occurred
which are of a very different nature from those occurring in the ‘early uni-
verse’ according to the definition given here.

In this section we shall describe qualitatively the state of the early uni-
verse and in the following sections we shall provide a more quantitative
account of this state. The description given in this section is derived largely
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from that given in Weinberg’s book (1977, 1983). As indicated in Fig. 1.3,
the spectrum of the cosmic background radiation peaks at slightly under
0.1 cm. Penzias and Wilson made their original observation at 7.35 cm.
Since that time there have been many observations, both ground-based
and above the atmosphere, which confirm the black-body nature of the
radiation, with a temperature of about 2.7 K. Below about 0.3 cm, the
atmosphere becomes increasingly opaque, so such observations have to be
carried out above the atmosphere. Although at times there have been slight
doubts, it is now generally agreed that the cosmic background radiation is
indeed the remnant of the radiation from the early universe, which has
been red-shifted, that is, reduced in temperature to 2.7 K. As we shall see
later in more detail, the temperature of the cosmic background radiation
provides us with an important datum about the universe, that there are
about 1000 million photons in the universe for every nuclear particle; by
the latter we mean protons and neutrons, or ‘baryons’. There is some
uncertainty in this figure, but we shall use this figure for the time being,
and later explain the possible modification.

To describe the state of the early universe we choose several instants of
time, which are referred to by Weinberg as ‘frames’, as if a movie had been
made and we were looking at particular frames in this movie. These
instants of time are chosen so that major changes take place near those
times. In the following we describe the physical state of the universe at
these instants, or frames. (The values of the temperature, time, etc., are
slightly different from those in Weinberg (1977, 1983) to conform with
subsequent calculations in this book.)

(i) First frame

This is at t�0.01 s, when the temperature is around 1011 K, which is well
above the threshold for electron–positron pair production. The main con-
stituents of the universe are photons, neutrinos and antineutrinos, and
electron–positron pairs. There is also a small ‘contamination’ of neutrons,
protons and electrons. The energy density of the electron–positron pairs is
roughly equal to that of the neutrinos and antineutrinos, both being 
times the energy density of the photons. The total energy density is about
21	1044 eV 1�1, or about 3.8	1011 g cm�3. The characteristic expansion
time of the universe (that is, the reciprocal of Hubble’s ‘constant’ at that
instant, which is the age of the universe if the rate of expansion had been
the same from the beginning as at that instant) is 0.02s. The neutrons and
protons cannot form into nuclei, as the latter are unstable. The spatial
volume of the universe would be either infinite or, if it is one of the finite
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models, say with density twice the critical density, its circumference would
be about 4 light years.

(ii) Second frame

This is at t�0.12 s, when the temperature has dropped to about 3	1010 K.
No qualitative changes have occurred since the first frame. As in the first
frame, the temperature is above electron–positron pair threshold, so that
these particles are relativistic, and the whole mixture behaves more like
radiation than matter, with the equation of state given nearly by p� �.
The total density is about 3	107 g cm�3. The characteristic expansion
time is about 0.2 s. No nuclei can be formed yet, but the previous balance
between the numbers of neutrons and protons, which were being trans-
formed into each other through the reaction n��→←p�e�, is beginning to
be disturbed as neutrons now turn more easily into the lighter protons
than vice versa. Thus the neutron–proton ratio becomes approximately
38% neutrons and 62% protons. The thermal contact (see below) between
neutrinos and other forms of matter is beginning to cease.

(iii) Third frame

This is at t�1.1 s, when the temperature has fallen to about 1010 K. The
thermal contact between the neutrinos and other particles of matter and
radiation ceases. Thermal contact is here taken to mean the conversion of
electron–positron pairs into neutrino–antineutrino pairs and vice versa,
the conversion of neutrino–antineutrino pairs into photons and vice
versa, etc. Henceforth neutrinos and antineutrinos will not play an active
role, but only provide a contribution to the overall mass-energy density.
The density is of the order of 105 g cm�3 and the characteristic expansion
time is a few seconds. The temperature is near the threshold temperature
for electron–positron pair production, so that these pairs are beginning to
annihilate more often to produce photons than their creation from
photons. It is still too hot for nuclei to be formed and the neutron–proton
ratio has changed to approximately 24% neutrons and 76% protons.

(iv) Fourth frame

This is approximately at t�13 s, when the temperature has fallen to about
3	109 K. This temperature is below the threshold for electron–positron
production so most of these pairs have annihilated. The heat produced in
this annihilation has temporarily slowed down the rate of cooling of the
universe. The neutrinos are about 8% cooler than the photons, so the
energy density is a little less than if it were falling simply as the fourth
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power of the temperature (recall that according to the Stefan–Boltzmann
law ���T4 erg cm�3, where ��7.564 64	10�15, and T is the temperature
in K). The neutron–proton balance has shifted to about 17% neutrons and
83% protons. The temperature is low enough for helium nuclei to exist, but
the lighter nuclei are unstable, so the former cannot be formed yet. By
helium nuclei we mean alpha particles, He4, which have two protons and
two neutrons. The expansion rate is still very high, so only the light nuclei
form in two-particle reactions, as follows: p�n→D��, D�p→He3��,
D�n→H3��, He3�n→He4��, H3�p→He4��. Here D denotes deute-
rium, which has one neutron and one proton, He3 is helium-3, an isotope
of helium with two protons and one neutron, H3 is tritium, an isotope of
hydrogen with one proton and two neutrons, and � stands for one or more
photons. Although helium is stable, the lighter nuclei mentioned here are
unstable at this temperature, so helium formation is not yet possible, as it is
necessary to go through the above intermediate steps to form helium. The
energy required to pull apart the neutron and proton in a D nucleus, for
example, is one-ninth that required to pull apart a nucleon (neutron or
proton) from an He4 nucleus. In other words, the binding energy of a
nucleon in deuterium is one-ninth that in an He4 nucleus.

(v) Fifth frame

This is about 3 min after the first frame when the temperature is about
109 K, which is approximately 70 times as hot as the centre of the Sun. The
electron–positron pairs have disappeared, and the contents of the universe
are mainly photons and neutrinos plus, as before, a ‘contamination’ of
neutrons, protons and electrons (whose numbers are much smaller than
the number of photons, by a ratio of about 1:109), which will eventually
turn into the matter of the present universe. The temperature of the
photons is about 35% higher than that of the neutrinos. It is cool enough
for H3, He3 and He4 nuclei to be stable, but the deuterium ‘bottleneck’ is
still at work so these nuclei cannot be formed yet. The beta decay of the
neutron into a proton, electron and antineutrino is becoming important,
for this reaction has a time scale of about 12 min. This causes the
neutron–proton balance to become 14% neutrons and 86% protons.

A little later than the fifth frame the temperature drops enough for deu-
terium to become stable, so that heavier nuclei are quickly formed, but as
soon as He4 nuclei are formed other bottlenecks operate, as there are no
stable nuclei at that temperature with five or eight particles. The exact tem-
perature depends on the number of photons per baryon; if this number is
109 as assumed before, then the temperature is about 0.9	109 K, and these
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events take place at some time between t�3 min and t�4 min. Nearly all
the neutrons are used up to make He4, with very few heavier nuclei due to
the other bottlenecks mentioned. The neutron–proton ratio is about 12%
or 13% neutrons to 88% or 87% protons, and it is frozen at this value as the
neutrons have been used up. As the He4 nuclei have equal numbers of neu-
trons and protons, the proportion of helium to hydrogen nuclei (the latter
being protons) by weight is about 24% or 26% helium and 76% or 74%
hydrogen. This process, by which heavier nuclei are formed from hydrogen,
is called nucleosynthesis. If the number of photons per baryon is lower
(that is, if the baryon: photon ratio is higher), then nucleosynthesis begins
a little earlier, and slightly more He4 nuclei are formed than 24% or 26% by
weight.

(vi) Sixth frame

This is approximately at t�35 min, when the temperature is about
3	108 K. The electrons and positrons have annihilated completely, except
for the small number of electrons left over to neutralize the protons. It is
assumed throughout that the charge density in any significant volume of
the universe is zero. The temperature of the photons is about 40% higher
than the neutrino temperature, and will remain so in the subsequent
history of the universe. The energy density is about 10% the density of
water, of which 31% or so is contributed by neutrinos and the rest by
photons. The density of ‘matter’ (that is, of the nuclei and protons, etc.) is
negligible in comparison to that of photons and neutrinos. The character-
istic expansion time of the universe is about an hour and a quarter.
Nuclear processes have then stopped, the proportion of He4 nuclei being
anywhere between 20% and 30% depending on the baryon : photon ratio
(see Fig. 8.1).

We see from the preceding discussion that the proportion of helium
nuclei formed in the early universe was anything from 20–30% by weight,
with very few heavier nuclei due to the five- and eight-particle bottlenecks.
For the nucleosynthesis process to take place one needs temperatures of
the order of a million degrees. After the temperature dropped below about
a million degrees in the early universe, the only place in the later universe
where similar temperatures exist would be the centre of stars. It can be
shown that no significant amount of helium (compared to the 20–30% of
the early universe) could have been created in the centre of stars. This
follows from the fact that such a significant amount of helium formation
would have released so much energy into the interstellar and intergalactic
space, that it would be inconsistent with the amount of radiation actually
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given off since the time of star and galaxy formation, an amount of which
can be calculated from the average absolute luminosity of stars and galax-
ies, which are known, and the time scale during which these have existed,
which is from soon after the recombination era (see below). Thus if the
above picture is reasonable, there should be approximately 20–30% helium
nuclei in the present universe, most of the rest being predominantly hydro-
gen, with a small amount of heavier nuclei. This is indeed found to be the
case. We shall have more to say about this later in this chapter.

We have seen that the time, temperature and the extent of nucleosynthe-
sis depends on the density of nuclear particles compared to photons. The
amount of deuterium that was produced by nucleosynthesis in the early
universe, and the amount that survives and should be observable today,
depends very sensitively on the nuclear particle to photon ratio. As an
illustration of this, we give in Table 8.1 the abundance of deuterium as
worked out by Wagoner (1973) for three values of the photon : nuclear
particle ratio. We shall have more to say about deuterium later in this
chapter.

We have seen that after the first few minutes the only particles left in the
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Fig. 8.1. Diagram to describe the neutron–proton ratio in the early uni-
verse. The period of ‘thermal equilibrium’ is one in which all particles
and radiation are in equilibrium and the neutron–proton ratio depends
on the mass difference between these particles. The ‘era of nucleosynthe-
sis’ is the period when lighter nuclei, predominantly helium, are being
formed. The dashed portion indicates that if the neutrons had not been
incorporated into nuclei they would have decayed through beta decay
(Weinberg, 1977).
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universe were photons, neutrinos, neutrons, protons and electrons. The
latter two particles are charged ones, and in their free state they could
scatter photons freely. As a result the ‘mean free path’ of photons, that is,
the average distance that a photon travels in between scatterings by two
charged particles, was small compared to the distance a photon would
travel during the characteristic expansion time of the universe for that
period, if it were unimpeded. This is what is meant by the matter and radi-
ation being in equilibrium, as there is free exchange of energy between the
two. Thus the universe, during the period that protons and electrons were
free particles, was opaque to electromagnetic radiation.

Eventually the temperature of the universe was cool enough for elec-
trons and protons to form stable hydrogen atoms in their ground state
when they combined. Now it takes about 13.6 eV to ionize a hydrogen
atom completely, that is, pull apart the electron from the proton. The
energy of a particle in random motion at a temperature of T K is kT,
where k is Boltzmann’s constant. Thus the temperature corresponding
to an energy of 13.6 eV is k�1 times 13.6, where k�1 is approximately
11605 K eV�1. This gives about 1.576	105 K as the temperature at which
a hydrogen atom is completely ionized. However, even in the excited states,
in which it is not ionized, a hydrogen atom can effectively scatter photons.
Thus it is only in the ground state that it ceases to interact significantly
with photons. The temperature at which the primeval protons and elec-
trons combined to form the ground state hydrogen atoms was about
3000–4000 K, which occurred a few hundred thousand years after the big
bang. This era is referred to as ‘recombination’ (a singularly inappropriate
term, as Weinberg remarks, as the electrons and protons were never in a
combined state before!). After this period the universe became transparent
to electromagnetic radiation, that is, the mean free path of a photon
became much longer than the distance traversed in a characteristic expan-
sion time of the period. This is the reason we get light, which has hardly
been impeded, except for the red-shift, from galaxies billions of light years
away.

134 The early universe

Table 8.1 Abundance of deuterium and the photon : baryon ratio.

Photons: nuclear particle Deuterium abundance (parts/106)

100 million 0.000 08
1000 million 16

10000 million 600
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8.2 The very early universe

In the last section we discussed qualitatively the early universe which we
defined to begin at about t�0.01 s. In this section we shall give a qualita-
tive and speculative discussion of the very early universe, which we take to
be the first hundredth of a second or so. As mentioned in Chapter 1 and
also earlier in this chapter, there have been elaborate speculations about
the very early universe. We shall discuss these speculations in some detail
in the next chapter, where we shall give a quantitative discussion wherever
possible. Some of the remarks made in this section may have to be
qualified in the next chapter.

As we shall see more clearly in the next chapter, the very early universe
involves elementary particles and their interactions in an intimate way,
much more so than the early universe. For this reason it is necessary to
know something about these particles. Table 8.2 gives the classification
and properties of the more common elementary particles. As is well
known from quantum field theory, which is the theory describing the inter-
actions of these particles, the interactions can be described in a pictu-
resque way by Feynman diagrams, which give the amplitudes for various
processes to certain order in the coupling constant. Three such diagrams
are given in Fig. 8.2, corresponding to electromagnetic, strong and weak
interactions. These interactions and gravitation are described in Table 8.3.
There is a considerable amount of uncertainty in our knowledge of the
first hundredth of a second of the universe. This stems partly from our
inadequate knowledge of the strong interactions of elementary particles.
As we go to higher temperatures than the first frame temperature of about
1011 K, nearer t�0, there would be copious production of hadrons, and it
becomes difficult to describe the nature of matter at these temperatures for
this reason, as the hadrons take part in strong interactions, whose precise
nature is not known. There are two views of the nature of matter at such
energies. The first one, which is not in favour at present, says that there are
no ‘elementary’ hadrons but that every hadron is in a sense a composite of
all other hadrons. In this case, as the temperature increases, the energy
available goes into producing more massive hadrons, and not into the
random motion of the constituent particles. As there is no limit to the
mass of these ‘elementary’ hadrons, there is a maximum possible tempera-
ture, around 2	1012 K, even though the density goes to infinity. The idea
of this ‘nuclear democracy’ was mainly due to G. F. Chew; the maximum
temperature in hadron physics was pointed out by R. Hagedorn (see, for
example, Huang and Weinberg (1970)).
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In the second view of particle physics all hadrons are made of a few fun-
damental constituents, known as quarks. They come in six varieties, known
as ‘flavours’, these being the up, down, strange, charmed, top and bottom
quarks, represented respectively by the letters u, d, s, c, t, b (the latter two
are sometimes called ‘truth’ and ‘beauty’). There are also the correspond-
ing aniquarks denoted by u, d, etc. These quarks have fractional charges
(see Table 8.4) and each flavour comes in three states called ‘colours’,
usually referred to as yellow, blue and red, with the corresponding anti-
quarks being antiyellow, etc. Within a baryon or a meson the quarks inter-
act with each other by exchanging still other fundamental particles called
‘gluons’ of which there are eight kinds, depending on their colour composi-
tion. The hadrons are ‘colourless’, being composite of quarks of all three
colours, or quarks of a certain colour and its anticolour.

The Glashow–Weinberg–Salam theory gives a unified description of the

138 The early universe

Fig. 8.2. This figure illustrates how forces are mediated by the exchange
of particles. In (a) an electron (e�) and a proton (p) interact by exchang-
ing a photon (�). In (b) a neutron becomes a proton by emitting a
�-meson, which is then absorbed by another proton which subsequently
becomes a neutron. In (c) the beta decay of a neutron is caused by the
emission of an intermediate vector meson W� which decays into an elec-
tron and an electron-antineutrino.
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weak and electromagnetic interactions, according to which above a certain
energy both interactions are similar and have the same strength. There
have been attempts at unifying these with the strong interactions – the
Grand Unified Theories – but these have not been so successful.

Although there are strong indications that hadrons are made of quarks,
no quarks have been observed yet. A satisfactory explanation of this phe-
nomenon has not been found, although there are some hints in the prop-
erty of ‘asymptotic freedom’, which is a consequence of the gauge theory
which is thought to describe the interactions of quarks and gluons. This
property indicates that the strength of the interaction between two quarks
becomes negligible when they are close together, and correspondingly the
strength increases when they are far apart. Thus if one attempts to detach
a quark from other quarks in a baryon, say, the energy required eventually
becomes so great that a quark–antiquark pair is formed, so that these
combine with the existing quarks to form two hadrons, and one does not
get a free quark. Thus in the quark model, in the very early universe the
quarks must have been very close to each other and so behaved essentially
as free particles. As the universe cooled, every quark must have either anni-
hilated with another quark to produce a meson, or else formed a part of a
neutron or a proton. In this case both the temperature and the density
tends to infinity as t tends to zero.

There is a possibility that the universe may have suffered a phase transi-
tion as the universe cooled, somewhat like the freezing of water. At this

140 The early universe

Table 8.4 In one form of the grand unified theories there is a
correspondence between leptons and quarks, as shown in this table. See the
text for the meaning of the quark symbols. The �¯ refers to the �-lepton and
v

�
is the corresponding neutrino. Each of the quarks come in three ‘colours’.

Leptons Quarks

Symbol Charge Symbol Charge

First generation �e �0 u �

e� �1 d �

Second generation �
�

�0 c �

� �1 s �

Third generation �
�

�0 t �

� �1 b �1
3

2
3

1
3

2
3

1
3

2
3

TLFeBOOK



phase transition, the electromagnetic and weak interactions may have
become different. In the Glashow–Weinberg–Salam unification of electro-
magnetism and the weak interactions, the basic theory used is a gauge
theory. One way of looking at this unification is as follows. Electro-
magnetic interactions between charged particles are mediated via the
photon, which is a massless spin 1 particle (see Fig. 8.2(a)). The weak
interactions are mediated by massive intermediate vector bosons, the W%

and Z0 particles, which are spin 1 particles with masses of about 80 and 90
proton masses respectively. Now at energies which are much higher than
the energies represented by these masses, the intermediate boson masses
can be neglected so that the weak interactions can be considered as being
mediated by massless spin 1 particles. This is akin to the electromagnetic
interactions so that at these energies the two interactions behave in a
similar manner. It was shown in 1972 by Kirzhnits and Linde that, in fact,
gauge theories exhibit a phase transition at a critical temperature of about
3	1015 K. Above this temperature the unity between the electromagnetic
and weak interactions that is incorporated in the Glashow–Weinberg–
Salam model was manifest. Below this temperature the weak interactions
became short range while the electromagnetic interactions continued to be
long range (these are characteristics of interactions which are mediated
respectively by massive and massless particles). When water freezes, a
certain symmetry is lost, for example, ice crystals at any point do not
possess the same rotational symmetry as liquid water. Secondly, the frozen
ice is separated into different domains with different crystal structures. It is
conceivable that after the phase transition at some critical temperature the
universe has different domains in which the erstwhile symmetry between
the electromagnetic and weak interactions is broken in different manners,
and that we live in one of these domains. There may remain in the universe
zero-, one- or two-dimensional ‘defects’ from the time of the phase transi-
tion.

There is also the possibility that at higher temperatures there may have
been symmetry between all three of the microscopic interactions – the
weak, electromagnetic and strong interactions, and at yet higher tempera-
tures the weakest of the forces, gravitation, may also have been included in
this symmetry. At superhigh temperatures the energies of particles in
thermal equilibrium may be so large that the gravitational force between
them may be comparable to any other force. This may occur at 1032 K, at
about 10�43 s after t�0. In this situation the horizon would be at a dis-
tance less than what we regard as the radius of the particles, that is,
crudely speaking, each particle would be as big as the observable universe!
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Just as neutrinos and then photons decoupled from matter and contin-
ued to form a part of the ‘background’ radiation, so at a much earlier time
gravitational radiation would have also decoupled and there must also be
present cosmic background gravitational radiation with a temperature of
about 1 K. If it could be detected, it would give us information about a
much earlier epoch of the universe than the photon or the neutrino back-
ground radiation. However, this is far beyond present technology, as gravi-
tational radiation has not yet been detected in any form.

After the above qualitative descriptions of the early and the very early
universe, we go on to more quantitative descriptions in this and the next
chapter. The rest of this chapter is based mainly on Weinberg (1972, 1983),
Schramm and Wagoner (1974), Bose (1980), and Gautier and Owen
(1983).

8.3 Equations in the early universe

We see from (4.15) and (4.40) that in the matter-dominated and radiation-
dominated situations the mass-energy density varies as R�3 and R�4

respectively. Thus in these situations �R2 varies as R�1 and R�2 respec-
tively. We know that in all the Friedmann models R starts from the value
zero at t�0. Thus in any case �R2 tends to infinity as t tends to zero. This
shows (see (3.76a) and (4.2a)–(4.2c)) that near t�0, that is, in the early
universe, one can approximate the evolution of R for all three values of k
by the same equation, (4.2b), that is, as follows:

R2�(8�G/3)�R2/c2. (8.1)

This in turn shows that the initial behaviour of R is independent of
whether the universe is open or closed. We have seen that the early universe
is dominated either by radiation or radiation and highly relativistic parti-
cles. For these the equation of state is p� �, so that we get the mass-energy
density � behaving as R�4. Now according to the Stefan–Boltzmann law
the energy density of radiation varies as T4, where T is the absolute temper-
ature. Thus the temperature of the radiation (and relativistic matter) in the
early universe varies as R�1. After the decoupling of matter and radiation
the temperature of the radiation continues to decrease as R�1. For a short
period there is modification of this behaviour (see below).

Equation (8.1) has the consequence that in the early universe R behaves
as t1/2, since the equation of state is p� � (see (4.47)). If the early universe
had been matter-dominated, R would have varied as t2/3 (see (4.45)).

1
3

1
3
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The early universe, which is radiation-dominated, can thus be character-
ized by connecting values of R, �, T at any two instants of time t1 and t2, as
follows:

R1/R2�t1
1/2/t2

1/2��2
1/4/�1

1/4�T2/T1, (8.2)

provided no major changes take place in the constitution of the contents,
such as electron–positron annihilation. For example, for the whole of the
radiation-dominated period after the electron–positron annihilation, the
energy density is given as follows:

��1.22	10�35T 4 g cm�3, (8.3)

(see (8.23) below) where here, as elsewhere, T denotes absolute tempera-
ture.

8.4 Black-body radiation and the temperature of the early universe

Although the properties of black-body radiation are well known, we give
here a brief summary for completeness. The energy density of black-body
radiation in a range of wavelengths from � to ��d� is given by the Planck
formula as follows:

du�(8�hc/�5) d�[exp(hc/kT�)�1]�1, (8.4)

where k is Boltzmann’s constant (1.38	10�16 erg K�1), h is Planck’s con-
stant (6.625	10�27 erg s). For long wavelengths, neglecting higher powers
of ��1, (8.4) reduces to

du�(8�kT/�4) d�, (8.5)

which is the Rayleigh–Jeans formula. If this formula is continued to ��0,
one gets an infinite energy density. The maximum of du in the Planck
formula (8.4) occurs at the value of � given by the following equation:

5kT�[exp(hc/kT�)�1]�hc exp(hc/kT�). (8.6)

The solution of this transcendental equation is given approximately as
follows:

�0�0.201 405 2hc/kT, (8.7)

which shows that the wavelength at which the maximum occurs is inversely
proportional to the temperature. The total energy at temperature T is
obtained by integrating (8.4) over all wavelengths:
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u� (8�hc/�5)[exp(hc/kT�)�1]�1 d�

u� (8�h�3/c3)[exp(h�/kT)�1]�1 d�, (8.8)

where in the last step we have expressed the integral in terms of the fre-
quency ��c/�. The result of the integration is as follows:

u�8�5(kT)4/15h3c3�7.5641	10�15 T 4 erg cm�3. (8.9)

Since a photon has energy h��hc/�, the number density of photons is
given as follows, for wavelengths from � to ��d�:

dN�du/h��� du/hc�(8�/�4)[exp(hc/kT�)�1]�1, (8.10)

and the number density of photons is

N� dN�60.421 98(kT)3/(hc)3�20.28T3 photons cm�3 (8.11)

and the energy per photon is

u/N�3.73	10�16T. (8.12)

Equation (8.11) enables us to make a rough estimate of the photon :
baryon ratio mentioned earlier. In the present universe, almost all the
photons are in the cosmic background radiation – the number of photons
that make up the radiation from stars and galaxies is negligible in compar-
ison. Assuming the background radiation to have temperature 2.7 K,
(8.11) then gives about 400 photons cm�3 as the present number density.
We have seen earlier that there is an uncertainty in the present matter
density of the universe. Assuming H0 to be 50 km s�1 Mpc�1, (4.9) gives
4.9	10�30 g cm�3 as the critical density. Let us suppose that the actual
density is anywhere from 0.1 to 2 times the critical density. Since the
matter is predominantly in baryons, this makes the baryon number
density lie approximately between 0.3	10�6 and 6	10�6 per cubic centi-
metre (using the fact that a proton has mass 1.67	10�24 g). This implies
that the ratio of baryons to photons lies approximately between
0.75	10�9 and 1.5	10�8. Taking reciprocals, the ratio of photons to
baryons is between 1.33	109 and 6.6	107. Although there is some uncer-
tainty, the cosmic background radiation thus provides us with the useful
piece of information of the approximate ratio of the numbers of photons
and baryons. This number does not change as the universe evolves, unless
it has gone through a stage which produces significant numbers of
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photons through friction and viscosity, which seems unlikely if the stan-
dard model is correct. A knowledge of the photon:baryon number ratio
enables us to infer the rate at which nucleosynthesis proceeded in the early
universe, and to compare these predictions with the existing abundances
of the nuclei. Although there are uncertainties in various stages, the above
considerations do provide information about the different pieces in the
jigsaw.

There is another way to look at the increase of wavelength of the back-
ground photons as the universe expands. Let R change by a factor f. Then
the wavelength of a typical ray of light will also change by a factor f. This
is clear from (3.52). After the expansion by a factor f the energy density
du� in the new wavelength range �� and ���d�� is decreased from the orig-
inal energy density du due to two effects: (a) since the number of photons
in a given volume that has increased due to the expansion of the universe
remains the same, the photon density decreases by a factor f 3; (b) since the
energy of a photon is inversely proportional to its wavelength, its energy
decreases by a factor f. Thus we get:

du��(1/f 4)du�(8�hc/�5f 4)d�[exp(hc/kT�)�1]�1,

du� �(1/f4)du�(8�hc/��5)d��[exp(hcf/kT��)�1]�1. (8.13)

This equation has the same form as (8.4) except that T has been replaced
by T/f. It thus follows that freely expanding black-body radiation contin-
ues to be described by the Planck formula, but the temperature decreases
in inverse proportion to R.

We can determine the neutrino temperature by considering the change
in entropy as the universe expands. The entropy S at temperature T is pro-
portional to NTT 3, to a good approximation, where NT is the effective
number of species of particles in thermal equilibrium with threshold tem-
perature below T. We have NT�N1N2N3, where N1 is 1 if the particle does
not have a distinct antiparticle, and 2 if it does; N2 is the number of spin
states of the particle; N3 is a statistical mechanical factor which is or 1
according as to whether the particle is a fermion or a boson. In order to
keep the total entropy constant, S must be proportional to R�3, so that we
have

NTT3R3�constant. (8.14)

As mentioned earlier, the neutrinos and antineutrinos went out of equi-
librium with the rest of the contents of the universe before the annihila-
tion of electrons and positrons (which occurred at approximately 5	109

K). Now according to the definition of NT given above, electrons and
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positrons have NT� , whereas photons have NT�2. Thus the total
effective number of particles before and after the annihilation was

Nb� �2� ; Na�2. (8.15)

From (8.14) it then follows that

(T�R�)3�2(T 0R0)3, (8.16)

where T�, R� are values of T, R before annihilation, and T 0, R0 the values
afterwards. Thus

T 0R0/T�R��( )1/3�1.401. (8.17)

This gives the increase in TR due to the heat produced by the annihilation.
The neutrino temperature T�

�
before the annihilation was the same as the

photon temperature T�; from then on T�
�

just decreased like R�1. Let the
neutrino temperature afterwards be T

�
0. Thus

T�
�
R0�T�

�
R��T�R�, (8.18)

from which, with the use of (7.17), it follows that

T 0/T
�
0�T 0R0/T

�
0R0�T 0R0/T�

�
R��T 0R0/T�R��1.401. (8.19)

Although the neutrinos go out of equilibrium quite early, they continue to
make a significant contribution to the energy density. Remembering that
the effective number of species NT for neutrinos is , and that the energy
density is proportional to the fourth power of the temperature, the ratio of
the densities of neutrinos to photons is:

u
�
/u

�
� �0.4542. (8.20)

From (8.9) we see that the photon energy density u
�

can be written as
follows:

u
�
�7.5641	10�15T 4 erg cm�3. (8.21)

Thus the total energy density after the electrons and positrons have annihi-
lated is

u�u
�
�u

�
�1.4542u

�
�1.100	10�14T 4 erg cm�3. (8.22)

The equivalent mass density is as follows:

mass density�u/c2�1.22	10�35T 4 g cm�3. (8.23)

Given that the present temperature of the background radiation is of the
order of 3 K, we see from (8.23) that the mass-energy density of this radia-

7
4( 4

11)4/3

7
2

11
4

11
2

11
2

7
2

7
2

146 The early universe

TLFeBOOK



tion is negligible in comparison to that of visible matter, which is of the
order of 10�31 g cm�3.

We have said earlier that the temperature decreases as R�1. To examine
this further consider the situation in which the rest masses of the particles
are not necessarily negligible in comparison with their kinetic energies.
Then the mass-energy density and the pressure are given as follows (we
revert to �):

��mn� nkT�N�aT 4, (8.24a)

p�nkT� N�aT 4, (8.24b)

where we envisage the contents to have a common temperature T, m being
the mass of the massive particles (nucleons), k, a are the Boltzmann and
Stefan constants, n is the number density of nucleons, and N� is related to
the number of species of particles. The first terms in (8.24a) and (8.24b)
give the non-relativistic contributions, the later ones give the relativistic
terms. The number density n satisfies the following equation:

n(t)R3(t)�constant. (8.25)

This can be established from the baryon conservation law

J�
;��0, (8.26)

where the baryon current J� is given by J��nu�, u� being the four-velocity.
Equation (8.25) is then obtained from (8.26) with the use of (2.6a), (3.72a)
and (3.72b). We now substitute from (8.24a), (8.24b) and (8.25), into
(3.79), which we write here again for convenience:

�̇ �3(p��)R/R�0. (8.27)

The result of the substitution for �̇ , n, �, p, into (8.27), is, after
simplification, the following equation:

( �N��)T/T�(1�N��)R/R�0, (8.28)

where ��4aT 3/3nk. When �51, (8.28) yields TR�constant as a solution.
In this case � becomes a constant, since n varies as R�3. This is termed a
hot universe. To see what this implies, recall the number density of photons
given by (8.11), which can be written as follows:

N�20.28T 3 photons cm�3�0.37(a/k)T 3 photons cm�3, (8.29)

using the fact that a��2k4/15c333�7.5641	10�15 erg cm�3 K�4, and
k�1.38	10�16 erg K�1. Here 3�h/2�. From (8.29) and the definition of
� we see that

��3.6 N/n. (8.30)
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Thus the condition �51 implies that there are very many more photons
and other relativistic particles than nucleons, so that radiation is un-
affected by matter and after the decoupling of matter and radiation the
temperature continues to drop like R�1. The radiation maintains its black-
body spectrum throughout the early universe as well as after the decoup-
ling. We see from (8.25) and the decrease of T as R�1 that if the present
number density of nucleons and the present temperature are respectively
n0 and T0 and if these quantities have values n1, T1 respectively (the tem-
perature being that of the background radiation; see the following sen-
tence for a possible epoch to which n1, T1 refers), then the following
relation obtains:

T0�(n0/n1)
1/3T1. (8.31)

If one can make a reasonable estimate of the nucleon number density at
some early epoch, say when deuterium was just being formed (just below
109 K or so), one could predict the present temperature of the radiation
from (8.31) and a knowledge of the present number density of nucleons.
We will come back to this point later. Alternatively, one can use the present
observed value 2.7 K of T0 and an estimate of the present number density
of nucleons to calculate the relation between T and n at any early epoch,
and see what this implies for the abundances of the various nuclei. It is one
of the successes of the standard model that the predictions of the abun-
dances turn out to be in reasonable agreement with observed estimates.

8.5 Evolution of the mass-energy density

If we assume the early universe to be dominated by radiation, the equation
of state is p� �, and (8.27) gives

R/R�� �̇/�, (8.32)

so that, with the use of (8.1) we get

�̇ ��4(8�G/3)1/2�3/2/c, (8.33)

which can be integrated to give the following equation:

t�(3/32�G)1/2��1/2c�constant. (8.34)

This relation, together with considerations of the previous section, leads
to a thermal history of the early universe. This is done as follows. For any
given range of temperatures, one determines the types of particles that are
present in thermal equilibrium. One then determines the corresponding
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mass-energy density, assuming the particles to be relativistic. The tempera-
ture is given by Stefan’s T4 law. One then gets a relation between the time
and the temperature with the use of (8.34). We will follow this procedure
to provide a more quantitative description of the evolution of the early
universe than that given at the beginning of this chapter. In this we follow
mainly the accounts given by Weinberg (1972) and Bose (1980). We may
repeat some parts of the qualitative account given earlier.

(i) 1012 K�T �5.5	109 K

Just below 1012 K the matter in the early universe consists of photons (�),
electron–positron pairs (e�, e�), electron- and muon-neutrinos and their
antiparticles (�e, �

�
, �̄e, �̄

�
). There is also a small admixture of nucleons

(neutrons and protons) and electrons – these will form the atoms of the
later universe. Certain numbers of muons are also present to keep the neu-
trinos in thermal contact with other particles via weak interaction pro-
cesses. The particles have a common temperature which is falling like R�1.
When the temperature goes below 1011 K or so, the neutrinos cease to be in
thermal contact with the rest of the matter and radiation, but they con-
tinue to share a common temperature which drops like R�1.

If the mixture of relativistic matter and radiation is considered to be an
ideal gas, the number density ni(q) dq of particles of species i with momen-
tum between q and q�dq in thermal equilibrium is given as follows
(Weinberg, 1972, Equation (15.6.3)):

ni(q) dq�(4�/h3)�iq
2{exp[(Ei(q)��i)/kT]%1} dq, (8.35)

where the positive sign applies for fermions and the negative for bosons.
Since the particles are relativistic, the energy Ei(q) of the ith particles with
mass mi is given by c(q2�c2mi

2)1/2, �i is the chemical potential of the ith
species, �i is the number of spin states, with ��1 for neutrinos and anti-
neutrinos, and ��2 for photons, electrons, muons and their antiparticles.

The energy density for the ith species is given by

�i� Ei(q)ni(q) dq, (8.36)

so that with the use of (8.35) one gets the following values for the photon
and neutrino densities:

�
�
�aT4; �

�
� aT4, (8.37)

where a is Stefan’s constant mentioned earlier. The chemical potential for
the photon is zero, so that for electrons and positrons it is equal and
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opposite, since chemical potential is conserved additively in reactions and
e% pairs are produced from photons. However, in the range of tempera-
tures under consideration, there are many more electron–positron pairs
than unpaired electrons. Thus the number density of electrons is almost
equal to that of positrons; since the corresponding chemical potentials are
opposite it is reasonable to assume from (8.35) that both these chemical
potentials vanish. Since the electrons are highly relativistic in the range of
temperatures under consideration we can set me�0, and (8.36) yields the
electron energy to be as follows:

�e�
� aT 4. (8.38)

One can use these parameters to calculate the electron number density
from (8.35) as follows:

ne�
� N, (8.39)

where N is the photon number density given by (8.29). Since n, the nucleon
density, is nearly equal to the density of ‘atomic’ (unpaired) electrons, we
see from (8.29), (8.30), (8.39) and the fact that �51, that the electrons are
predominantly the pair-produced ones. Adding the contributions of �, �e,
�

�
, �̄e, �̄

�
, e�, e�, we get the total energy density to be as follows:

�� aT 4. (8.40)

Putting this value of � in (8.34) and inserting the values of a and G we get

t�3.27	1010/T 2�constant�1.09/T�2 (s)�constant, (8.41)

where T� is the temperature measured in units of 1010 K. Thus the temper-
ature takes 0.0108 s to drop from T��102 (that is, T�1012 K) to T��10 K
(T�1011 K) and another 1.079 s to drop to T��1, (T�1010 K). These
values are roughly consistent with the ‘first frame’ time and temperature
t�0.01 s, T�1011 K, and ‘third frame’ t�1.1 s, T�1010 K.

(ii) 5.5	109 K�T�109 K

We have mc�0.51 MeV, so that the rest mass of an electron–positron pair
is about 1.02 MeV. Thus the temperature at which electron–positron pairs
are produced is given by kT�1.02 MeV, which yields, using the fact that
k�1�11605KeV�1, a value of 1.1837	1010K for the temperature at
which pair production occurs. Thus at about 1010 K the electron–positron
pairs start annihilating, and at the beginning of the present era these pairs
become non-relativistic, so that (8.38) is no longer valid, and the behaviour
T� R�1 has to be modified. One can proceed by considering the entropy of
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particles in thermal equilibrium: electrons, positrons and photons. With
the use of (8.35) one can work out the entropy in a volume R3, as follows:

S� (��p)� (RT)3 , (8.42)

where x�q/kT, y�E/kT, E�c(q2�c2me
2)1/2. Since the entropy S is con-

stant, one can use (8.42) to determine how T changes with R. When the
electrons are relativistic, we have me�0, x�y, and the expression in the
curly brackets becomes (1� ); for non-relativistic electrons this factor is 1,
so that (RT)3 increases by a factor . The ratio of the photon to neutrino
temperatures, as we saw in (8.19), becomes ( )1/3�1.401.

(iii) T�109 K

The electron–positron pairs have annihilated completely and the particles
in equilibrium are photons and the relatively small number of ‘atomic’
electrons and nucleons. The neutrinos have been decoupled for some time
and are expanding freely. The corresponding temperatures and energy
densities are worked out in (8.17)–(8.23), with the electron–nucleon den-
sities negligible at the beginning of this era. From (8.20)–(8.22) we see that
the energy density in the early stages of this era is

��[1� 4/3]aT4�1.45aT4. (8.43)

Substituting in (7.34) we get

t�(15.5�Ga)�1/2T�2c�constant�192T 0�2 (s)�constant, (8.44)

where T 0 is measured in units of 109 K. By putting T 0 equal to 1 and 0.1
respectively and subtracting, we see that it took about 5 h and 16.8 min for
the temperature to drop from 109 K to 108 K. Equation (8.44) also gives
the age of the universe at the time of recombination, that is, when elec-
trons and protons combined to form hydrogen atoms at a temperature of
about 4000 K, of about 4	105 years.

The onset of the matter-dominated era can be worked out as as follows.
From (8.25) and the dropping of the photon temperature as R�1 we see the
number density of nucleons satisfies

n/n0�(T/T0)
3, (8.45)

where n0, T0 are the present values of n, T. Thus the mass density of nucle-
ons equals the density of radiation given by (8.43) at a temperature Tc

which is as follows:

Tc�mn0/(1.45aT 0
3). (8.46)
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If we take the present density of matter as 5	10�31 (this amounts to one-
tenth of the critical density given by (4.9) if H0�50), then we get

Tc�2085 K. (8.47)

and the corresponding age of the universe from (8.44) is approximately
1.6	106 years. Thus the ages at which matter started becoming dominant
and at which recombination occurred are of the same order of magni-
tude.

Thus in the early universe particles were highly relativistic most of the
time and (8.32) and (8.34) are valid for that period; � is found to be pro-
portional to T 4 and (8.41) and (8.44) are obtained as the time–temperature
relations, so that T decreases as R�1. However, during the brief period of
electron–positron annihilation the more complicated relation (8.42)
obtains, which can be written as

(RT)3F(T)�constant, (8.48)

where F(T) is a complicated function which becomes a constant both in
the highly relativistic and fully non-relativistic regimes, yielding the usual
behaviour RT�constant, but with different constants in the two regimes.
The function F(T) can be worked out by numerical methods; this becomes
necessary if one wants to follow the details of the temperature drop which
may be required for an analysis of nucleosynthesis.

Before we end this section we show explicitly how some of the figures
mentioned at the beginning of this chapter are arrived at from the formal-
ism given in this and the last two sections. The time and temperature for
the first and third frames have already been mentioned in the paragraph
containing (8.41). We are only concerned with the approximate derivation
of the figures; a precise number containing several significant figures is not
very meaningful in view of the uncertainties mentioned earlier, such as the
photon:baryon ratio.

If we assume that t*0.01 s for some large value of T such as 1014 K,
we can take the constant in (8.41) as negligibly small for our purpose.
Then if we set T��0.3 K (which is the fourth frame temperature), we
get t�109/9 s�12.1 s. This is consistent with t�13 s mentioned for the
fourth frame, because we are just outside the range for which (8.41) is
applicable, and t is a little higher than that given by (8.41). For the fifth
frame (8.44) is just beginning to be applicable and for this frame we
have T 0�1, so that (again assuming the constant to be negligible),
t�192 s, which is consistent with t approximately 3 min given for the
fifth frame. Similarly, for the sixth frame we put T 0�0.3 K in (8.44) and
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get approximately 35 min for t. Also, when T is 4000 K at recombina-
tion, we get t as several hundred thousand years from (8.44), as men-
tioned towards the end of Section 8.1.

As an example of the energy density, from (8.23), taking T to be the
third frame temperature of 1010 K, we get � to be 1.22	105 cm�3, which is
consistent with the value mentioned for the third frame. Lastly, we give an
example of the calculation of the Hubble time, which is the characteristic
expansion time of the universe, given by H�1�R/R. From (8.32) and
(8.33) we see that R/R�(8�G/3)�1/2��1/2, which gives about 3 or 4 s as the
third frame Hubble time, as mentioned.

8.6 Nucleosynthesis in the early universe

We have seen that in the early universe when the temperature was high
enough neutrons and protons were separate and independent entities. In
the present universe there are scarcely any free neutrons left; they form
part of helium or heavier nuclei. In fact about 70–80% of the matter in
the present universe is in the form of hydrogen, about 20–30% in the form
of helium and a small percentage in the form of heavier nuclei. Any satis-
factory theory of the early universe must explain the present observed
abundances of the elements. One place in which nucleosynthesis can take
place in the later universe, as mentioned earlier, is the centre of stars,
where the temperature is of the order of a million Kelvin. Many of the
heavier nuclei can indeed be produced here, as was shown in a famous
paper by Burbidge, Burbidge, Fowler and Hoyle (1957). However, a
simple calculation shows that the 20–30% helium that is observed today
could not have been produced in the centre of stars. Indeed, the rate of
energy release of our galaxy, for example, is about 0.2 erg g�1 s�1. If the
galaxy has been in existence for about 1010 years, this gives a total energy
radiation of about 0.6	1017 erg per gram, or 0.375	1023 MeV per gram.
Using the fact that a nucleon has mass 1.67	10�24 g, we see that this
amounts to energy release of about 0.0625 MeV per nucleon, whereas
hydrogen fusion into helium releases about 6 MeV per nucleon, so that
only about 1% of the hydrogen in our galaxy could have been converted
into helium.

In this section we will give an account of nucleosynthesis in the early
universe. This is mainly based on Peebles (1971), Weinberg (1972),
Schramm and Wagoner (1974) and Bose (1980).

The original suggestion that helium was synthesized in the early uni-
verse was made by Gamow, who developed a theory of nucleosynthesis
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with his collaborators in the 1940s. Although this theory was incomplete in
some respects, there were useful insights and, in fact, a cosmic background
radiation with temperature of 5 K was predicted in the 1940s! However, for
various reasons this theory was not taken seriously. Gamow realized that
helium synthesis was possible only during a brief period in the early uni-
verse (the first few minutes) and that for a sufficient amount of helium to
be produced the density must have been very high. This leads to the picture
of a hot and dense early universe, a picture which is essential in under-
standing nucleosynthesis in the early universe. One can start with the pres-
ently observed 2.7 K as the temperature of the remnant radiation and
work backwards. This was done by Peebles (1971) and with other reason-
able assumptions he obtained a helium abundance of about 25%. This is
one of the conspicuous successes of the picture of an early universe that is
hot and dense.

To work out the details one has to determine how the neutron–proton
balance changes as the universe evolves; see if the rate of deuterium for-
mation is sufficiently fast to ensure that nearly all the neutrons are used up;
and see if the reactions are fast enough to convert nearly all the deuterium
into helium.

Neutrons and protons are converted into each other by the following
weak processes:

n↔p�e���̄ ; n�e�↔p��̄ ; n��↔p�e�. (8.49)

In the equilibrium condition as many neutrons are changing into protons
as protons into neutrons. In the temperature range of interest the distribu-
tion of nucleons is given as follows, assuming they are non-relativistic
(henceforth in the book we set c�1 except for some specific cases):

n(q) dq�(8�/h3) exp[(��m)/kT�q2/2mkT]q2 dq. (8.50)

Here � is the chemical potential of neutrons and protons, these being the
same since the chemical potential is additively conserved, as noted earlier,
and since leptons have zero chemical potential. In (8.50) m is the mass of
the nucleon in units of energy, with mn�mp�Q�1.293 MeV. Integrating
(8.50) between zero and infinity and taking the ratio of the cases for neu-
trons and protons respectively, we get:

n�/n0�exp(�Q/kT), (8.51)

where n� and n0 denote the neutron and proton number densities respec-
tively. Note that n�, n0 become equal as T tends to infinity, or t tends to
zero.
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The number densities for �, �̄, e� and e� are given by (8.35) with zero
chemical potential, with temperature T for e% and �, and Tv for �, �̄:

ne�
(q) dq�ne�

(q) dq�(8�/h3)q2 dq{exp[Ee(q)/kT]�1}�1, (8.52a)

n
�
(q) dq�n

�̄
(q) dq�(4�/h3)q2 dq{exp[E

�
(q)/kT

�
]�1}�1, (8.52b)

where Ec(q)�(q2�mc
2)1/2 and E

�
(q)�q, are the electron (or positron) and

neutrino energies respectively. The rates of the reactions given in (8.49) are
given by the V–A theory of weak interactions (see, for example, Marshak,
Riazuddin and Ryan, 1969), with the proviso that the Pauli exclusion prin-
ciple decreases these rates by a factor corresponding to fraction of states
unfilled, as follows:

1�[exp(Ee/kT)�1]�1�[1�exp(�Ee/kT)]�1, (8.53a)

1�[exp(E
�
/kT

�
)�1]�1�[1�exp(�E

�
/kT

�
)]�1. (8.53b)

Taking into account (8.52a), (8.52b), (8.53a) and (8.53b), the rates of the
processes (8.49) per nucleon are given as follows:

�(n��→p�e�)

�(n�A �eEe
2q

�
2 dq

�
[exp(E

�
/kT

�
)�1]�1[1�exp(�Ee/kT)]�1,

(8.54a)

�(n�e�→p��̄)

�(n�A E
�
2qe

2 dqe[exp(Ee/kT )�1]�1[1�exp(�E
�
/kT

�
)]�1,

(8.54b)

�(n→p�e���̄)

�(n�A �eE�
2Ee

2 dq
�
[1�exp(�E

�
/kT

�
)]�1[1�exp(�Ee/kT)]�1,

(8.54c)

�(p�e�→n��)

�(n�A E
�
2qe

2 dqe[exp(Ee/kT )�1]�1[1�exp(�E
�
/kT

�
)]�1,

(8.54d)

�(p��̄ →n�e�)

�(n�A �eEe
2q

�
2 dq

�
[exp(E

�
/kT

�
)�1]�1[1�exp(�Ee/kT

�
)]�1,

(8.54e)

�(p�e���̄ →n)

�(n�A �eEe
2q

�
2 dq

�
[exp(Ee/kT)�1]�1[exp(E

�
/kT

�
)�1]�1.

(8.54f)
�

�

�

�

�

�
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The constant A here is given as follows:

A�(�2
V�3�2

A)/2�337, (8.55)

with �V and �A being the vector and axial vector coupling constants of the
nucleon, with the following values:

�V�1.407	10�49 erg cm3; �A��1.25�v, (8.56)

which correspond to a half-life of �11 min for the decay of a free neutron.
The lepton energies are related to Q as follows:

E
�
�Ee�Q for n↔p�e���̄, (8.57a)

E
�
�Ee�Q for n� e�↔p��̄, (8.57b)

Ee�E
�
�Q for n�� ↔p�e�. (8.57c)

In (8.54a)–(8.54f) �e is the velocity of the electron given by qe/Ee. These
integrals are over lepton momenta that are consistent with (8.57a)–(8.57c).
If these integrals are written over a common variable q (�E

�
�q

�
) in

(8.54a) and (8.54d) and as �E
�

in (8.54b), (8.54c), (8.54e) and (8.54f) and
we also replace qe

2 dqe with �eEe
2 dEe, the total transition rates for n→p and

p→n can be written as follows:

�(n→p)��(n→p�e���̄)��(n�e�→p��̄)��(n��→p�e�)

�(n→p)�A (q�Q)2q2 dq[1�exp(q/kT
�
)]�1

�(n→p)��(n→	{1�exp[�(q�Q)/kT]}�1, (8.58a)

�(p→n)��(p�e���̄ →n)��(p��̄ →n�e�)��(p�e�→n��)

�(n→p)�A (q�Q)2q2 dq[1�exp(�q/kT
�
)]�1

�(n→p)��(n→	{1�exp[(q�Q)/kT]}�1. (8.58b)

Here T is the temperature of the electrons, photons and nucleons and T
�

is
the neutrino temperature; below about 1010 K, T and T

�
are different and

are given by (8.19). The integration in (8.58a) and (8.59b) ranges from �$

to �$ with a gap from �Q�me to �Q�me. We are interested in the frac-
tional abundance x given by

x�n�/(n��n0), (8.59)

whose evolution is given by the following equation:

dx/dt���(n→p)x��(p→n)(1�x). (8.60)

��1 �
m2

e

(q � Q)2
1/2

��1 �
m2

e

(q � Q)2
1/2
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In the limiting case when kT is much larger than Q, (8.58a) and (8.58b)
yield the following approximations:

�(p→n)��(n→p)�A q4dq[1�exp(�q/kT)]�1[1�exp(q/kT )]�1,

� �4 A(kT)5�0.36T�5 s�1, (8.61)

where, as in (8.41), T� is the temperature measured in units of 1010 K. We
also have from (8.1) and (8.40):

R/R�(12�aG)1/2T2�0.46T�2 s�1. (8.62)

From (8.61) and (8.62) we see that at T��1 (T�1010 K) a neutron is con-
verting into a proton (and vice versa) at almost the same rate at which
the universe is expanding. Thus at temperatures higher than 1010 K or so
the processes (8.49) attain equilibrium and (8.50) is valid, and initially the
neutron/proton numbers are nearly equal. Below 1010 K or so one has to
integrate (8.58a), (8.58b), (8.59) and (8.60) numerically. This was done by
Peebles (1971) and the results are set out in Table 8.5.

Helium synthesis involves essentially three steps. First, deuterium is
produced (at a suitable temperature) directly from neutrons and protons.
Next, two deuterium nuclei produce He3 or H3. The latter two nuclei
then produce He4, which is the stable helium isotope. The precise
working out of helium synthesis is a complicated matter involving many
equations. Such details have been considered by Peebles (1966) and by
Wagoner, Fowler and Hoyle (1967). The reactions involved are many,
such as:

7
15

�
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Table 8.5 Neutron fractional abundances as a function of time. (Taken
from Peebles, 1971.)

T(K) t(s) �(p→n) (s�1) �(n→p) (s�1) x

1012 0.00010 4.02	109 4.08	109 0.496
1011 0.0109 3.9	104 4.6	104 0.462
2	1010 0.273 9 19 0.330
1010 1.102 0.19 0.83 0.238
109 182 0 0.00109 0.130
8	108 296 0 0.00108 0.116
6	108 535 0 0.00107 0.089
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p�n↔D��; D�D↔He3�n↔H3�p;

H3�D↔He4�n; p�D↔He3��; n�D↔H3��;

p�H3↔He4��; n�He3↔He4��; D�D↔He4��.
	 (8.63)

Reactions involving �s (photons) are radiative processes which usually
take longer than other ones. Nucleosynthesis, when it begins, proceeds
very quickly. The precise temperature at which it begins depends on
the density, which can be extrapolated backwards from the present
density, knowing the temperature of the background radiation. Peebles
finds that nucleosynthesis begins at T�0.9	109 K if the present density
is �0�7	10�31 g cm�3, or at T�1.1	109 K if it is �0�1.8	10�29 g cm�3.
All processes which are relevant conserve the total number of nucleons.
One result of nucleosynthesis is that the neutron:proton ratio is ‘frozen’
at the value it had just before nucleosynthesis began because once inside
a nucleus a neutron cannot undergo beta decay. Before nucleosynthesis
began, the ratio of neutrons to all nucleons is given by x (see (8.59)).
After nucleosynthesis there are just free protons and He4 nuclei. Thus the
fraction of neutrons to all nucleons is just half the fraction of nucleons
bound in He4; this is the same as the abundance of helium by weight. It is
found that a probable value (which comes out of the above calculations
of x) when nucleosynthesis begins is 0.12. Thus the theory predicts about
24% for helium abundance, which is consistent with the observed value.

Appreciable amounts of elements heavier than helium cannot be pro-
duced in the early universe as there are no stable nuclei with five or eight
nucleons, as mentioned earlier. As regards nuclei with seven nucleons, the
Coulomb barrier (repulsion between the protons in different nuclei) in the
reactions

He4�H3→Li7��; He4�He3→Be7��, (8.64)

prevents these in comparison with

p�H3→He4��; n�He3→He4��. (8.65)

He4 has the highest binding energy by far of all nuclei with less than five
nucleons, so effectively all the neutrons are used up in the formation of
He4.

There is a simpler way of obtaining the neutron:proton ratio by com-
paring the weak interaction rate with the Hubble rate (as pointed out by
Barrow, 1993). However, some of the details of the derivation given here,
although circuitous, may be useful in other contexts.
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8.7 Further remarks about helium and deuterium

We have seen earlier that the standard model predicts that the proportion
of helium and deuterium present in the universe depends on the
baryon:photon ratio. The helium abundance is higher for a greater number
of baryons, while the deuterium abundance is correspondingly lower. The
baryon:photon ratio is thus a crucial parameter in cosmology. As the
cosmic background temperature is known fairly accurately, and as the
photons in the present universe reside predominantly in the background
radiation, the baryon:photon ratio can be worked out if one knows the
matter density of the present universe, as the matter is predominantly in
the form of baryons. Thus an accurate observational determination of the
matter density, and of the relative abundances of helium and deuterium,
can provide a useful test of the standard model.

To settle this question one has to examine if there are processes in the
later universe which can create or destroy helium and deuterium. As we
remarked earlier, significant amounts of helium could not have been pro-
duced in the later universe. One has to ask a similar question about deute-
rium. A brief discussion of deuterium production and destruction is in
order here. In the Sun and such typical hydrogen burning main sequence
stars deuterium is produced by weak interaction as follows:

p�p→D�e���e. (8.66)

The deuterium thus produced is quickly transformed by the much faster
reaction

p�D→He3��. (8.67)

Reactions (8.66) and (8.67) lead to a small equilibrium abundance of deu-
terium. The small amount of deuterium that is present in the interstellar
medium and that is incorporated in stars soon disintegrates due to reac-
tions such as (8.67). Thus any deuterium that existed when the galaxy was
formed would be depleted by now. As mentioned earlier, deuterium is also
created by the following radiative process:

p�n→D��, (8.68)

which is not prevented by the Coulomb barrier and involves no weak inter-
action. However, the free neutron that (8.68) requires is not usually present
in astrophysical situations, except where there is very high energy involved
such as in supernova explosions.
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Another astrophysical situation in which deuterium can be created is in
spallation reactions, mainly through the following reaction:

p�He4→D�He3. (8.69)

This requires a centre-of-mass energy of 18.35 MeV, which is very high,
because the binding energies of the product nuclei are somewhat less than
those of the initial ones. In (8.69), for example, a part of this energy is used
up in extracting the neutron from the He4 nucleus. Such high energies
sometimes exist in cosmic ray protons.

In astrophysical settings deuterium can be readily destroyed by the fol-
lowing reactions:

D�D→n�He3; D�D→H3�p; n�D→H3��, (8.70)

if either the neutron or deuterium concentration is high. Thus to produce
and preserve deuterium one needs energy and low density.

The abundance of deuterium is usually specified by D/H, the ratio of
deuterium and hydrogen nuclei in a small volume. This ratio is different in
different astrophysical and terrestrial situations. In sea water, for example,
where deuterium occurs as HDO (heavy water; obtained by replacing a
hydrogen atom in H2O by deuterium), the ratio is 150 ppm (parts per
million), which is somewhat higher than the average for all situations. The
proportion of deuterium in carbonaceous meteorites is similarly high. The
high proportion of deuterium in sea water is explained by the fact that due
to chemical fractionation, in the formation of water D is preferred to H;
the larger mass of D allows for different chemical and nuclear properties.
On the other hand, in the outer regions of the Sun D/H is only about
4 ppm. This is because reactions such as D�p→He3��, destroy deute-
rium in the Sun. In the interstellar gas near the Sun D/H is about 14 ppm.
In the interstellar gas deuterium is detected through deuterated molecules
such as CH3D (deuterated methane) and DCN (deuterium cyanide). For
example, it was found that in the Orion nebula the DCN/HCN ratio was
about 40 times the terrestrial D/H ratio (Jefferts, Penzias and Wilson,
1973; Wilson, Penzias, Jefferts and Solomon, 1973); this is again due to
chemical fractionation which favours DCN formation over HCN. The
deuterium in interstellar material is detected by its 91.6 cm hyperfine line
(the equivalent of the well-known 21 cm hydrogen line). The possibility of
deuterium production in supernova explosions has also been considered
(see Schramm and Wagoner, 1974, for references on this), but it is found
that these explosions are much more efficient at producing other light ele-
ments such as Li7, Be9 and B11 than D. In Table 8.6 we set out the observed
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abundances of deuterium in various situations; although some of these
may be out of date the table nevertheless incorporates some essential
points.

As the Jovian CH3D estimate requires determination of the CH4 abun-
dance there was some uncertainty about this measurement (Beer and
Taylor, 1973). The Voyager infrared experiment enabled a simultaneous
determination of CH4/CH3D mixing ratio and Kunde et al. (1982) then
derived the D/H ratio from Jovian CH3D as 22 and 46 ppm (see Gautier
and Owen (1983)). This is not inconsistent with the 1973 estimate given by
Beer and Taylor (see Table 8.6).

The question arises as to what extent the helium and deuterium abun-
dances found in the present universe represent these abundances in the pri-
mordial universe soon after nucleosynthesis. As we have seen, deuterium
can be created to a small extent and destroyed more readily in the later
universe. For helium a minor component of the abundance currently
observed can be produced in stars and injected into the interstellar
medium by supernova explosions and stellar winds. The giant planets like
Jupiter and Saturn, because of their low exospheric temperatures and
large masses, provide environments in which the elements are more or less
in their primordial form, almost undisturbed for about 4.55 billion years
since these planets were formed. Even the lightest elements have not
escaped from the atmospheres of these planets since their inception. The
Jovian helium abundance has been determined by Voyager. The hydro-
gen/helium mixing ratio can be found in many different areas of Jupiter
and one finds a mass ratio Y (Y�mass of helium/mass of all nuclei) of
0.19%0.05 by one method, and Y�0.21%0.06 by another. Combining the
two methods one gets (Gautier and Owen, 1983):

0.15�Y�0.24. (8.71)

Table 8.7 summarizes a representative set of observations of helium abun-
dance. The low value of Y for Saturn is probably due to the phenomenon
of differentiation of helium from hydrogen (Smoluchowski, 1967), that
may have depleted the amount of helium in the Saturn atmosphere.
Presumably this phenomenon has not begun in Jupiter.

Gautier and Owen (1983) find that the primordial abundance of deute-
rium must have been reduced (that is, the deuterium must have been
destroyed) by a factor of between 5 and 16 between the time of the pri-
mordial nucleosynthesis and the origin of the solar system 4.55 billion
years ago. This is seen as follows. Since helium and deuterium were synthe-
sized at the same time, Y and X(D) (the deuterium mass fraction which is
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approximately 1.5 times D/H – the exact multiple depending on Y) have a
certain dependence on �, the ratio of baryon to photon number densities.
The uncertainty in Yp (the primordial value of Y) is found to be:
0.22�Yp�0.24, which corresponds to the following uncertainty in �:
0.35	10�11���2	10�10. The corresponding abundance of primordial
deuterium turns out to be 3.4	10�4�(X(D))p�11.6	10�4. From the
Jovian deuterium abundance one gets the upper limit X(D)�7	10�5. This
leads to the discrepancy cited at the beginning of this paragraph. This
analysis seems to imply that either deuterium is destroyed more
efficiently than hitherto assumed, or that the standard model needs some
modification. Whether this claim made by Gautier and Owen is valid is
not clear, but the above analysis does emphasize the need to look very
carefully into the question of helium and deuterium abundances and their
relation with the baryon to photon number density ratio, both observa-
tionally and theoretically. There are some other assumptions made in this
analysis which we have not mentioned; one of these is the assumption that
there are three different kinds of neutrinos. The reader is referred to
Gautier and Owen (1983) for more details.

As noted earlier, different amounts of nuclei are created in the early uni-
verse according to different assumptions of the baryon:photon ratio,
which, in turn, depends on the present mass density of the universe. Thus
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Table 8.7 Helium abundances. (Taken from Gautier and Owen, 1983, with
some omissions and a minor change.)

Determination Y Reference

Jupiter (Voyager IRIS) 0.15�Y�0.24 Gautier et al., 1981
Saturn:

Pioneer 11 0.18%0.05 Orton and Ingersoll, 1980
Voyager IRIS �0.14 Conrath, Gautier and

Hornstein, 1982
Solar:

Helium emission lines 0.28%0.05 Heasley and Milkey, 1978
Cosmic rays 0.20%0.04 Lambert, 1967
Standard interior models 0.22 Iben, 1969; Bahcall et al.,

1973, 1980; Ulrich and
Rood, 1973; Mazzitelli,
1979

Primordial
best estimate from several

results 0.23%0.01 Pagel, 1984
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different values of the present mass density give different abundances.
Figure 8.3 depicts this dependence of the abundances on the mass density,
as given by Schramm and Wagoner (1974). It is interesting that the He4

abundance is almost constant, that is, it is not at all sensitive to the value of
the present mass density. By contrast, the abundance of D is strongly
dependent on the mass density.

8.8 Neutrino types and masses

We end this chapter with a brief discussion of neutrino types and masses
and the cosmological implications of these. We saw earlier that the
temperature depends on the types of particles that were in thermal

164 The early universe

Fig. 8.3. This figure gives the dependence of the abundances of various
nuclei on the present value of the mass density, which is not precisely
known. The curve marked A212 refers to nuclei with baryon number
greater than or equal to 12.
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equilibrium with the photons in the early universe. In our earlier analysis
we did not adequately take into account the fact that there are different
types of neutrinos. Two types, the electron- and muon-neutrinos, are
definitely known. There may be a third type associated with the heavier
tau-lepton, which was discovered relatively recently. If there are three or
more kinds of neutrinos, it can be shown that this results in faster expan-
sion in the early universe, so that more He4 is produced. However, like the
mass density, the He4 abundance is not so sensitively dependent on neu-
trino types so that many more types than are known at present can be
accommodated without seriously violating the observed He4 abundance.
However, it is quite a different matter with D abundance, which is highly
sensitive to the number of neutrino types. It would be very difficult to rec-
oncile the observed D abundance if the neutrino types were five or six in
number. However, the latter situation would be saved somewhat if the neu-
trinos had mass, as has been indicated recently. Massive neutrinos have
much less effect on the expansion rate and nucleosynthesis in the early uni-
verse. Another consequence of massive neutrinos is that the ‘background’
neutrinos then might contribute enough mass to the present mass density
to make it above the critical density. The present indications are that neu-
trino masses cannot be more than a few electron volts. A recent analysis of
the neutrino arrival time from the supernova in the Large Magellanic
Cloud (Hirata et al., 1987; Adams, 1988) shows that there is a 90% prob-
ability of the neutrino mass being less than 5 eV and 99% probability of it
being less than 10 eV. A great deal of theoretical and observational work
has to be done to clarify this question. We refer the interested reader to the
papers cited, and Tayler (1983), Schramm (1982) and Bahcall and Haxton
(1989). This question will be discussed further in the Appendix at the end
of the book.
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9

The very early universe and inflation

9.1 Introduction

As is clear from the discussion so far in this book, the standard big bang
model incorporates three important observations about the universe.
These are, firstly, the expansion of the universe discovered by Hubble in
the 1930s, secondly, the discovery of the microwave background radiation
by Penzias and Wilson and its confirmation by other observers and,
thirdly, the prediction of the abundances of various nuclei on the basis of
nucleosynthesis in the early universe, particularly the abundances of He4

and deuterium, which appear to conform reasonably with observations. As
is also clear from the earlier discussions, much theoretical and observa-
tional work remains to be done to clarify these questions further.

As mentioned in Chapter 1, some glaring puzzles do remain, such as the
horizon problem. The puzzle here is: how is the universe so homogeneous
and isotropic to such vast distances, extending to regions which could not
have communicated with each other during the early eras? This problem is
illustrated in Fig. 9.1. Another puzzle is why the density parameter 
 (the
ratio of the energy density of the universe to the critical density – see dis-
cussion following (1.4)) is so near unity. If the present value of 
 lying
between 0.1 and 2 is extrapolated to near the big bang we get the following
orders of magnitude:

/
(1 s)�1/�O(10�16), (9.1a)

/
(10�43 s)�1/�O(10�60). (9.1b)

These extremely small numbers seem difficult to explain. The third
problem is the smoothness problem, which is to explain the origin and
nature of the primordial density perturbations which result in the ‘lumpi-
ness’, that is, the presence of galaxies and the structure of the observable

166
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universe. The inflationary models, of which the original one was pro-
pounded by Guth (1981), attempt to explain these puzzles.

9.2 Inflationary models – qualitative discussion

In this section we shall give a qualitative description of inflationary
models; this will be followed by some quantitative accounts. However, it
will not be possible to explain all aspects quantitatively. Some aspects
involve fairly technical questions of particle physics and in particular
Grand Unified Theories, which are beyond the scope of this book. Our
treatment of inflationary models is by no means exhaustive; our intention
is to point out the essential features.

As mentioned earlier, at high energies, according to the Glashow–
Weinberg–Salam unified electroweak theory, electromagnetic and weak
interactions behave in a similar manner and, consequently, there is a phase
transition in the early universe associated with this at a critical temperature

Inflationary models – qualitative discussion 167

Fig. 9.1. This diagram illustrates the horizon problem. The point A rep-
resents our present space-time position, one space dimension being sup-
pressed in this diagram. The points B and C represent events at a much
earlier epoch, lying in opposite spatial direction from us, but lying in our
past light cone. The plane at the bottom represents the instant t�0, the
big bang. The past light cones of B and C have no intersection, so these
two events could not have had any causal connection. How is it that radi-
ation received from these two points (the cosmic background radiation)
are at the same temperature?
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of about 3	1015 K. The Grand Unified Theories attempt to find a unified
description of all three of the fundamental interactions, namely, electro-
magnetic, weak and strong interactions. Grand Unified Theories predict
that there is a phase transition in the universe at a critical temperature of
about 1027 K, above which there was a symmetry among the three interac-
tions. Consider again the analogy with the freezing of water. In the liquid
state there is rotational symmetry at any point in the body of the water;
this symmetry is lost, or ‘broken’ when ice is formed, as ice crystals have
certain preferential directions. Secondly, the liquids in different portions
begin to freeze independently of each other with different crystal axes, so
that when the whole body of the liquid is frozen certain defects remain at
the boundaries of the different portions. In a similar manner in the early
universe above 1027 K or so the symmetry among the three interactions
was manifest, and below this temperature this symmetry was broken. Now
in water the manner in which the rotational symmetry is broken in
different portions can be characterized by parameters which describe the
orientation of the ice-crystal axes. Thus these parameters take different
values in different portions of the liquid as it freezes, that is, as the symme-
try is broken. In a similar way, the manner in which the manifest symmetry
among the three interactions is broken can be characterized by the acquir-
ing of certain non-zero values of parameters known as Higgs fields; this is
referred to as spontaneous symmetry breaking. The symmetry is manifest
when the Higgs fields have the value zero; it is spontaneously broken when-
ever at least one of the Higgs fields becomes non-zero. Just as in the case of
the freezing of water, certain defects remain at the boundaries of different
regions in which the symmetry is broken in different ways, that is, by
the acquiring of different sets of values for the Higgs fields. There are
point-like defects which correspond to magnetic monopoles, and two-
dimensional defects called domain walls. A region in which the symmetry
is broken in a particular manner could not have been significantly larger
than the horizon distance at that time, so one can work out the minimum
number of defects that must have occurred during the phase transition.
The defects are expected to be very stable and massive. For example, it
turns out that monopoles are about 1016 times as massive as a proton. The
result is that there would be so many defects that the mass density would
accelerate the subsequent evolution of the universe, so that the 3 K back-
ground radiation would be reached only a few tens of thousands of years
after the big bang instead of ten billion years. Thus this prediction of
Grand Unified Theories seems to conflict seriously with the standard
model.
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None of the successes of the standard model are affected by the
inflationary models, because after the first 10�34 s or so, the two models are
exactly the same as far as our observable universe is concerned. The origi-
nal inflationary model put forward by Guth in 1981 had serious draw-
backs, as mentioned in Chapter 1. We shall be concerned with the ‘new
inflation’ put forward independently by Linde (1982) and Albrecht and
Steinhardt (1982). For simplicity we consider a single Higgs field which we
take to be a scalar field �. The possible forms of the potential energy cor-
responding to this field are indicated in Figs. 9.2 and 9.3.

Consider some properties of the potential as depicted in Figs. 9.2 and
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V(f)

f�0 f�� f

Fig. 9.2. One of the possible forms of the potential for the scalar field
given by Equation (9.16a).

V(f)

f�0 f�� f

Fig. 9.3. Another possible form for the potential of the scalar field given
by Equation (9.16b).
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9.3. The potential has stationary points at ��0 and ���. At these points
the system can be in equilibrium. The states which are stationary states of
the potential can be referred to as ‘vacuum’ states. Consider Fig. 9.2 first.
The energy of the stationary state at ��0 is higher than that at ���.
There might be a situation in which the system is ‘trapped’ in the station-
ary state at ��0 and cannot make the transition to the stationary state at
���, because of the potential barrier, even though ��� has a lower
energy. In this situation the state ��0 is referred to as a ‘false vacuum’,
while ��� is the ‘true vacuum’. What is the relevance of this to the very
early universe and inflation?

We assume that the very early universe had regions that were hotter than
1027 K and were expanding. The symmetry among the interactions was
manifest and the Higgs field, represented by � here, was zero. One can
look upon this situation as the thermal fluctuations driving the Higgs field
to the equilibrium value zero. As the expansion caused the temperature to
fall below the critical temperature, it would be thermodynamically more
favourable for the Higgs field to acquire a non-zero value. However, for
some values of the parameters in Grand Unified Theories the phase tran-
sition occurs very slowly compared to the cooling rate. This can cause the
temperature to fall well below 1027, the critical temperature, but the Higgs
field to remain zero. This is akin to the phenomenon of supercooling; for
example, water can be supercooled to 20° below freezing. This is the situa-
tion of the false vacuum mentioned above, in which the Higgs field
remains zero although it is energetically more favourable to go to the state
��� (that is, the energy in the state ��� is lower than that in ��0). It
turns out that this situation causes the region to cool down considerably
and also have a very high rate of expansion. The situation, depicted in Fig.
9.2, however, leads to difficulties, which are avoided in that depicted in Fig.
9.3, so we shall follow the rest of the development in the latter situation.

Before considering a more quantitative description of inflationary
models, it may be useful to give an idea of the overall effect of these
models on the standard model. This is given in Fig. 9.4, which is taken
from Turner (1985). The inflationary models incorporate all the predic-
tions of the standard model for the observable universe, because for the
latter the inflationary models have the same behaviour after t�10�32 s or
so. From about 10�34 to 10�32 s or so, the inflationary models are radically
different. A region of the universe underwent accelerated exponential
expansion, as well as cooling. After this period of expansion and cooling it
was reheated to just below the critical temperature. After this the story is
the same as the standard model, the important difference being, the initial
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region was within a horizon distance and had time to homogenize and
have the same temperature, etc., and after the inflation the entire observ-
able universe can lie within such a region, so that the horizon problem
does not arise. Let us see this, still qualitatively, in more detail keeping in
mind the Higgs potential of Fig. 9.3.

Consider a region of the very early universe which was hotter than 1027 K
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Fig. 9.4. This figure depicts the evolution of the scale factor R and tem-
perature T of the universe in the standard model and in the inflationary
models. The standard model is always adiabatic (RT�constant), except
for minor deviations when particle–antiparticle pairs annihilate, whereas
inflationary models undergo a highly non-adiabatic event (at 10�34 s or
so), after which it is adiabatic Turner, 1985).
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or so. We will consider the evolution of this region in the inflationary
model. The reason this evolution is different from the standard model is
due to the presence of the Higgs field, which describes the phase transition
that the universe undergoes at that temperature, as mentioned earlier. The
presence of the Higgs field radically alters the evolution of the scale factor
R in the very early epochs, as depicted in Fig. 9.4, the evolution of R being
the same as in the standard model after 10�32 s or so. We will write down
these equations in the next section. Here we describe this evolution qual-
itatively with the Higgs potential being given by Fig. 9.3. As mentioned
earlier, above 1027 K thermal fluctuations drive the equilibrium value of
the Higgs field to zero and the symmetry is manifest. As the temperature
falls the system undergoes a phase transition with at least one of the Higgs
fields acquiring a non-zero value (here we consider only one), resulting in a
broken symmetry phase. However, for certain values of the parameters,
which we assume to be the case, the rate of the phase transition is very
slow compared with the rate of cooling. This causes the system to super-
cool to a negligible temperature with the Higgs field remaining at zero (this
corresponds to the ‘well’ in the curve marked T in the lower figure in Fig.
9.4), resulting in a ‘false vacuum’. Now quantum fluctuations or small
residual thermal fluctuations cause the Higgs field to deviate from zero.
Unlike the situation depicted in Fig. 9.2, in Fig. 9.3 there is no energy
barrier, so the Higgs field begins to increase steadily. The rate of increase
is, in fact, like the speed of a ball which was perched on top of the poten-
tial curve in Fig. 9.3 (at ��0) and which starts to roll down; at first the
speed is very slow, increasing gradually until it has high speed in the
steeper portions, and finally it oscillates back and forth when it reaches
the bottom of the well. In the flatter portions, as we shall see more clearly
in the next section, the region undergoes accelerated expansion, doubling
in diameter every 10�34 s or so. When the value of the Higgs field reaches
the steeper parts of the potential curve, the expansion ceases to accelerate.
An expansion factor of 1050 or more can be achieved in this manner for the
region under consideration.

The picture given above is a simplified one. As mentioned earlier, there
can be many different broken-symmetry states (depending on the non-zero
values acquired by the Higgs fields), just as there are many different pos-
sible crystal axes during the freezing of a liquid. Thus different regions in
the very early universe would acquire different broken-symmetry states,
each region being roughly of the size of the horizon distance at the time.
The horizon distance at time t is approximately ct, the distance travelled by
light in time t; thus at t�10�34 s the horizon distance is about 10�24 cm.
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Once a domain was formed with a particular set of non-zero values of the
Higgs fields, it would gradually attain one of the stable broken-symmetry
states and inflate by a factor of 1050 or so. Thus after inflation the size of
such a domain would be approximately 1026 cm. At that epoch the entire
observable universe would measure only 10 cm or so, so it would easily fit
well within a single domain. Since the observable universe lay within a
region which, in turn, started from a region contained in a horizon dis-
tance, it would have had time to homogenize and attain a uniform temper-
ature. This then solves the horizon problem.

Because of the enormous inflation, any particle with a certain density
that may have been present before the inflation, would have its density
reduced to almost zero after the inflation. Most of the energy density would
be incorporated in the Higgs field after the inflation. After the Higgs field
evolves away from the flatter portion of the curve in Fig. 9.3 and goes down
the steep slope and starts oscillating back and forth near the true vacuum at
���, we have the situation that corresponds in quantum field theory to a
high density of Higgs particles (recall a high level of energy for a harmonic
oscillator corresponds to a larger number of ‘excitations’ of the electromag-
netic field, that is, a large number of photons). The Higgs particles would be
unstable and would undergo decays into lighter particles, and the system
would rapidly attain the condition of a hot gas of elementary particles in
equilibrium, akin to the initial condition assumed in the standard model.
The system would be reheated to a temperature of about 2–10 times lower
than the phase transition temperature of 1027 K. The story after this is the
same as the standard model, so that the successes of the standard model are
maintained.

Several points and questions remain in the above description, which we
will deal with at the end of this chapter. Firstly, how is the monopole
problem solved by this model? One of the problems of the standard model
that Grand Unified Theories purport to solve is the problem of baryon
asymmetry, that is, secondly, why do we see matter rather than antimatter
in the present universe? In other words, when in the last chapter we spoke
of a small ‘contamination’ of neutrons and protons, one can ask why there
was not a contamination of antineutrons and antiprotons instead. Thirdly,
as a matter of interest, what was wrong with the original model put
forward by Guth (1981)? Lastly, do any problems remain in the new
inflationary model as described above? In other words, is the new
inflationary model able to solve all the problems of the standard model
mentioned earlier and not throw up problems of its own, that is, is it self-
consistent and in accord with present observations?
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9.3 Inflationary models – quantitative description

As mentioned earlier, it is not possible to give here the technical details
from particle physics and quantum field theory. Secondly, even in the clas-
sical and semi-classical treatments, suitable exact solutions are not known
so that even when we have the equations a certain amount of qualitative
analysis is necessary.

Recall Einstein’s equations (2.22) (with c�1):

R
��

� �
��

R�T
��

.

Here T
��

represents the energy–momentum tensor. For a perfect fluid this
is given by (2.23). However, although the latter case suffices for the stan-
dard model, in general, one has to consider the contributions to T

��
from

all possible fields. For example, when there is an electromagnetic field
present (this is not relevant in the cosmological context), one has to add
the following contribution to the energy–momentum tensor:

T
��
(em)�(4�)�1(�F

�

F

�

� �

��
F


�
F
�), (9.2)

where the electromagnetic field tensor F
��

is given in terms of the four-
potential A

�
as follows: F

��
�A

�,��A
�,�.

As mentioned earlier, the phase transition of the very early universe can
be described by introducing a scalar Higgs field � into the theory. One way
to do this is to add an additional energy–momentum tensor T�

��
, due to the

Higgs field, to the existing energy–momentum tensor on the right hand
side of Einstein’s equations (2.22). The form of this additional energy–
momentum tensor is suggested by the Lagrangian of a scalar field, which
is as follows (V is a suitable potential and we omit the factor � that makes
this a scalar density – see section 2.2; this is taken in account in deriving
(9.9 a,b)):

L� �
�
�����V(�). (9.3)

It is well known (see, for example, Bogoliubov and Shirkov (1983, p. 17))
that for a scalar field the energy–momentum tensor associated with a
Lagrangian L is given by

T
��

� �,���
��

L. (9.4)

For L given by (9.3) this gives

T�
��

��
�
��

�
���

��
L��

�
��

�
���

��
[ �

�
�����V(�)]. (9.5)1

2

�L
�� ,�

1
2

1
4

1
2
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The energy–momentum tensor for a perfect fluid given by (2.23) for the
comoving cosmological fluid can be written in the following form:

T�
�

�diag(�, �p, �p, �p), (9.6)

where the tensor is written in matrix form with diagonal elements, other
elements being zero. We now assume that the scalar field, �, depends on
the time t only, and if we write the tensor T�

��
in the form (9.6), that is,

T
�
���diag(��, �p�, �p�,�p�), (9.7)

we find from (9.5) the following relations for ��, p�:

��� �· 2�V(�); p�� �· 2�V(�); �· ���/�t. (9.8)

Thus the modified Einstein equations in the cosmological situation with
the Higgs field � are obtained by simply replacing � by ����, and p by
p�p�, with ��, p� given by (9.8).

There are some basic assumptions in this analysis which we must clarify.
Firstly, we are dealing essentially with a region which is within the horizon
distance at the time under consideration. This region, according to the
above scenario, undergoes rapid expansion, cooling, etc., more or less
independent of the rest of the universe. Yet we are using for this region the
Robertson–Walker metric which is derived under the assumption that the
entire space is homogeneous and isotropic. We are thus using the assump-
tion here that the total space-time behaves in such a manner that the
Robertson–Walker form of the metric is justified locally. Secondly, we are
ignoring the spatial variation of �, so that throughout the region � takes a
uniform value. This assumption leads to the relatively simple Equations
(9.8). A third assumption, which is not a serious restriction, is that in (9.8)
we have used the k�0 form of the Robertson–Walker metric, that is, the
form which has flat spatial geometry. We will do this throughout this
chapter. Thus the Einstein equations are now given by (with c�1):

(R/R)2�H2�(8�G/3)(����), (9.9a)

2R̈/R�H2��8�G(p�p�), (9.9b)

where ��, p� are given by (9.8) in terms of �.
Consider now the situation in the very early universe when the tempera-

ture is higher than 1027 K. As mentioned earlier ��0 so that from (9.8) we
see that �� has the constant value V(0). On the other hand, if we assume
that the equation of state is that of radiation, we see that R behaves like t1/2

(see (4.47)) while � behaves like t�2 (see (4.40)). Thus in (9.9a) the � domi-
nates the right hand side, so the evolution of R is as if the � term did not

1
2

1
2
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exist, that is, � decreases like t�2 as t increases. Since the evolution of R is
faster than the phase transition (for some set of parameters of Grand
Unified Theories), � remains at the value zero while the temperature goes
below the critical. The � term on the right hand side of (9.9a) becomes
much less than ��, that is, V(0), so that the evolution of R is given by

(R/R)2�(8�G/3)V(0), (9.10)

which has the solution

R�exp(�t), �2�(8�G/3)V(0), (9.11)

provided V(0) is positive, which is the case, for example, in Figs. 9.2 and
9.3. Thus the scale factor R undergoes exponential expansion. This beha-
viour is, in fact, that of de Sitter space, for which we give a little digression.

In (6.2a) and (6.2b), if we set ��p�k�0, we get (with c�1):

(R/R)2� ', (9.12a)

2R̈/R�(R/R)2�'. (9.12b)

It is readily verified that (9.12a) and (9.12b) are satisfied by

R�exp( ')1/2t, (9.13)

assuming that the cosmological constant is positive. The model given by
(9.13) (with k�0) is called the de Sitter universe, which is empty, has a pos-
itive cosmological constant, and has a non-trivial scale factor given by
(9.13). Sometimes it is said that the de Sitter space represents ‘motion
without matter’ as opposed to the Einstein universe (see (6.3)), which rep-
resents ‘matter without motion’. Equation (9.13) gives the same behaviour
as (9.11) and is also the form of the steady state universe, as mentioned
earlier, which was put forward originally by Bondi and Gold (1948) and by
Hoyle (1948). The latter is maintained at a steady state by the continuous
creation of matter, the amount of which is cosmologically significant but
negligible by terrestrial standards, so that no experiment on the conserva-
tion of mass is violated. Observations of the background radiation and
others, however, contradict the steady state theory. It is curious that in the
inflationary models one has to consider again a similar exponential metric
(9.11), albeit for a very short period in the history of the universe.

When the energy–momentum tensor T
��

of the cosmological fluid can
be neglected in comparison with the energy–momentum tensor T�

��
of the

scalar field soon after the onset of the phase transition and when � is still
zero (that is, the situation that leads to the metric (9.11)), we see from (6.1)

1
3

1
3
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(with T
��

�0) and (9.5), we get precisely the Einstein equations with the
cosmological constant but zero pressure and density with '�8�GV(0).
Thus the cosmological constant reappears here in quite a different context.

Consider again the situation when the scalar field dominates but it has
started deviating from zero. Using (9.8) and (9.9a) we get

(R/R)2�H2�(8�G/3)[ �· 2�V(�)]. (9.14)

Consider the vanishing of the divergence of the energy–momentum
tensor, which gives (3.79) for the Friedmann models, which we write here
for convenience:

�̇�3(p��)R/R�0.

In the present situation of the scalar field we should replace �, p with ��, p�

in this equation in accordance with (9.6), (9.7) and (9.8). Doing this, from
(9.8) we get the following equation, after cancelling a factor �· :

�̈ �2H��V��0, V��dV/��. (9.15)

Equations (9.14) and (9.15) represent the equations which govern the evo-
lution of the scale factor and the scalar field when the latter is the domi-
nant agent of the evolution. In general, exact solutions are difficult to get
for any reasonable form of the potential V(�). For example, the forms
depicted in Figs. 9.2 and 9.3 are given respectively by (9.16a) and (9.16b)
below.

V(�)��0�
2��1�

3��2�
4�V0, (9.16a)

V(�)��(�2��2)2, (9.16b)

for suitable values of the constants �0, �1, �2, V0, �, �. However, it is very
difficult to find exact solutions of (9.14), (9.15) for the forms (9.16a) and
(9.16b) of the potential V(�). In sections 9.4 and 9.6 we shall consider an
exact solution found by the author (Islam, 2001a) for a potential V(�) of
the sixth degree. For V given by (9.16a) and (9.16b) one usually resorts to
an approximation, in one form of which one ignores the �̈ term in (9.15),
and takes V(�) to be given by (9.16b), so that the system is initially at ��0
and ‘rolls’ slowly away from ��0, the speed of departure from ��0 grad-
ually increasing (Brandenberger, 1987). However, these approximation
schemes are unsatisfactory as they sometimes give ambiguous results. For
example, Mazenko, Unruh and Wald (1985) argue that in many possible
models, conditions for inflation do not obtain in the very early universe.
This point of view has been opposed by Albrecht and Brandenberger

1
2
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(1985) who also claim that there are many possible models in which a
period of inflation does occur. It would probably be true to say that a com-
pletely satisfactory picture for inflation has not yet emerged. See also
Pacher, Stein-Schabes and Turner (1987) and Page (1987). This was the sit-
uation about a decade ago in the late eighties; it has not changed substan-
tially.

9.4 An exact inflationary solution

In this section we present an exact solution of the coupled scalar field cos-
mological equations (9.14) and (9.15), for V(�) given as follows:

V(�)�V0�V1�
2�V5�

5�V6�
6, (9.17)

where the Vi are constants. The solution presented here does not, in fact,
satisfy the properties appropriate to the inflation scenario that we have
been discussing; for example, �(0)(0 in this case. Nevertheless, it is of
interest because it is an exact solution for a polynomial potential, probably
the only exact solution known for such a potential (an exact solution for
an exponential potential was found by Barrow, 1987), and the correspond-
ing scale factor does have exponential behaviour over certain ranges of
values of t. We will simply state the solution and verify that it is indeed a
solution. In Section 9.6 we will generalize this solution.

Write q�3�G, and let n be a constant. Choose the Vi as follows:

V0�9n2/8q; V1�n2; V5�� n2q3/2; V6�2n2q2/9. (9.18)

The solution for � is as follows:

�(t)�q�1/2exp(nt)[exp(nt)�� ]�1�q�1/2x, (9.19)

where � is a constant. It is readily verified that

�· �nq�1/2(x�x2); �̈ �n2q�1/2(1�2x)(x�x2). (9.20)

With the use of (9.18) and (9.20), Equation (9.14) yields

H2� q( �̇ 2�V(�))

H2�n2(1� x2� x3� x4� x5� x6)

H2�n2(1� x2� x3)2, (9.21)

so that

H�%n(1� x2� x3). (9.22)4
9

2
3

4
9

2
3

16
81

16
27

4
9

8
9

4
3
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2
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9
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If we now substitute for �̈, �̇ , H and V� from (9.17), (9.18), (9.20) and
(9.22) into (9.15) we find, after some reduction, that the latter is satisfied.
The scale factor R(t) can be determined by integrating (9.22), where the
negative sign must be taken to satisfy (9.15). The result of the integration
is as follows:

R(t)�Aexp(�nt)[exp(nt)��]�2/9exp{(2�/9)exp(nt)[exp(nt)��]�2},
(9.23)

where A is an arbitrary constant. If we take n to be negative, R has an
exponential increase, while �(t) goes to zero as t tends to infinity.

The form of the potential (9.17) is that depicted in Fig. 9.5. This can be
seen from the fact that the equation V�(�)�0 determining the turning
points is given as follows:

�(2V1�5V5�
3�6V6�

4)�0. (9.24)

With the use of (9.18), in addition to the root at ��0 we get the following
equation (in terms of x�q1/2�):

2x4�5x3�3�0, (9.25)
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Fig. 9.5. This diagram depicts the form of the potential given by (9.17)
and (9.18) in terms of x (9.19). The curve has turning points at x�0,
x�1 and x�x1, where x1 is slightly greater than 2. At t�0, x starts at x0
and goes to zero as t tends to infinity; x0�(1��)�1. The potential is neg-
ative for a finite range of values of the field, but the negative portion does
not come into play for the particular solution found here. One gets more
realisitic behaviour for the generalized solution (see Fig. 9.7).
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which has only two real roots, one at x�1, and the other at slightly above
x�2. If we assume � to be positive, at t�0, x has the value (1��)�1, and it
tends towards zero (for negative n) as t tends to infinity. Thus it goes
‘down’ the slope from the point B to the point C in Fig. 9.5.

Before closing this section, we will state briefly Barrow’s (1987) solution.
This is of the form

R(t)�R0(t/t0)
b, (9.26a)

�(t)��0(log t/log t0), (9.26b)

V(�)�V0 exp(���), (9.26c)

where t0, R0, �0, V0, b and � are suitable constants. Note that this solution
gives a power law inflation. In Section 9.6 we will consider more inflationary
solutions, including one corresponding to a generalized form of the simpler
solution which will make it easier to follow the generalization.

9.5 Further remarks on inflation

In Sections 9.3 and 9.4 we have attempted to give a quantitative descrip-
tion of inflation. It is indicated how at the onset of the phase transition a
de Sitter-like exponential expansion might occur due to the presence of the
Higgs field, represented here by a scalar field. However, the further evolu-
tion of the scale factor R(t) and the scalar field are not clear due to the
difficulty of obtaining exact solutions of the coupled equations, (9.14) and
(9.15), for any reasonable potential. In the last section we obtained an
exact solution which, though somewhat unrealistic, offers some hope that
physically more meaningful solutions might be found. Its generalization in
Section 9.6 is more realistic.

To discuss phase transitions in the very early universe one must know
the so-called ‘effective potential’ V(�, T) as a function of the scalar field �
and the temperature T. For temperatures above the critical temperature for
the phase transition, the symmetric phase (��0), in which the symmetry
among the various interactions is manifest, is the global minimum of the
effective potential. One has to derive the effective potential from quantum
field theoretic considerations (see, for example, Brandenberger (1985)), but
even here one has to resort to approximation schemes. The effective poten-
tial used by Albrecht and Steinhardt (1982) and by Linde (1982) is based
on the Coleman–Weinberg mechanism (Coleman and Weinberg, 1973)
and is given as follows:
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V(�, T)�
�2�A�4�B�4 log(�2/�2
0)�18(T4/�2)

V(�, T)�	 dyy2 log{1�exp[�(y2�25�2�2/8T2)1/2]}, (9.27)

where 
, A, B, �0, � are suitable constants. Figure 9.6 depicts the effective
potential given by (9.27) for three typical values of the temperature T.

We will now give some tentative answers to the questions raised at the
end of Section 9.2. As regards the monopole problem, the new inflationary
model attempts to solve the horizon, magnetic monopole and domain-wall
problems in one stroke, namely, by the requirement that before the phase
transition the region or space from which the observable universe evolved
was much smaller than the horizon distance, so that this region had time
to homogenize itself, and because of the inflation from a small portion, the
observable universe is expected to have very few monopoles and domain
walls, consistent with observation. As regards the matter–antimatter
asymmetry, it is possible in some forms of Grand Unified Theories to
produce the observed excess of matter over antimatter by elementary par-
ticle interactions at temperatures just below the critical temperature of the
phase transition, provided certain parameters are suitably chosen.

�
$

0
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Fig. 9.6. This figure gives the potential represented by (9.27) for three
values of the temperature, one slightly above the critical temperature for
the phase transition Tc, one near Tc, and a third slightly below Tc. (This is
a simplified form of the diagram given in Albrecht and Steinhardt
(1982).)
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However, there are still many uncertainties in this analysis, but the very
possibility of deriving the asymmetry is interesting.

In the form in which the model of the inflationary universe was origi-
nally proposed by Guth in 1981 it had a serious defect in that the phase
transition itself would have created inhomogeneities to an extent which
would be inconsistent with those observed at present. The difficulties with
the new inflationary models are, firstly, as already indicated, a completely
satisfactory quantitative treatment does not as yet exist and, secondly, in
the approximate treatment of the slow-rollover transition, one requires
fine tuning of the parameters which seems somewhat implausible. A great
deal of further work needs to be done to clarify the above questions.

We will mention briefly some related points of some importance which
we have not been able to deal with in detail. These are firstly the origin of
inhomogeneities in the universe that we observe today. One aspect of this
problem is similar to the horizon problem. One way to this problem is to
consider the inhomogeneities at any time as consisting of perturbations to
the smooth background which involve wavelengths of all scales. However,
as one extrapolates this analysis to earlier times, a certain range of the
larger wavelengths becomes longer than the horizon distance, and it
becomes a problem as to how these larger wavelengths arose; in other
words, one has to find a mechanism in which wavelengths larger than the
horizon distance are excluded at any time. Another related aspect is the
formation of one-dimensional defects during the phase transition; these
are known as cosmic strings and may have a role to play in the formation
or origin of galaxies. We refer the reader to Brandenberger (1987) and
Rees (1987) for these questions. Press and Spergel (1989) in particular,
explain in a picturesque manner how a field-theoretic description of
matter (such as that given by the Lagrangian (9.3)) implies fossilized one-
dimensional remnants of an earlier, high-temperature phase. Different
symmetries of the Langrangians describing possible states of matter in the
very early universe give rise to different kinds of remnants, which arise
from certain invariant topological properties of space-time. For other con-
sequences of the phase transition in the very early universe, the reader is
referred to Miller and Pantano (1989) and to Hodges (1989); the latter
author considers domain wall formation. The question of chaotic inflation
is considered by Futamase and Maeda (1989) and by Futamase, Rothman
and Matzner (1989). Adams, Freese and Widrow (1990) study the problem
of the evolution of non-spherical bubbles in the very early universe. The
problem of the formation of clusters of galaxies from cosmic strings is
investigated by Shellard and Brandenberger (1988). Lastly, we mention
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‘extended inflation’ (La and Steinhardt, 1989; La, Steinhardt and
Bertschinger, 1989) in which a special phase transition is not needed, that
is, V(�) can have a significant barrier between the true and false vacuum
phases. Steinhardt (1990) shows that this model accommodates initial con-
ditions leading to 
+0.5. In ‘extended inflation’ the defects of ‘old
inflation’ are avoided if the effective gravitational constant, G, varies with
time during inflation.

9.6 More inflationary solutions

Ellis and Madsen (1991) find a number of exact cosmological solutions
with a scalar field and non-interacting radiation, which could provide
some new inflationary models. They give a method of ‘generating’ a class
of solutions, following an old idea due to Synge (1955). We give two exam-
ples, in which the radiation density is set equal to zero, so that one has a
pure scalar field (with k�1, i.e. flat spatial sections):

R(t)�A exp(wt), A, w constant�0, (9.28a)

�(t)��0%(B/w)e�wt, �0�constant, B2�(4A2�G)�1, (9.28b)

V(�)�(3w2/8�h)�w2(���0)
2. (9.28c)

This solution gives the usual de Sitter exponential expansion, without a
singularity in the finite past, unlike the following solution, which has a sin-
gularity in the finite past:

R(t)�A sinh(wt), A, w constant�0, (9.29a)

�(t)��0%(B/w) log , �0�constant,

B2� 20, (9.29b)

V(�)� �B2 sinh (���0) . (9.29c)

In (9.29b) the inequality is true for k�0, 1 and can always be satisfied for
k��1. Ellis and Madsen discuss various properties of these solutions in
the context of inflationary models. An interesting aspect of these solu-
tions is that they allow a wide variety of behaviour for the density param-
eter 
.

A number of interesting power law and exponential inflationary
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�2w
B
3w2

8�G

1
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solutions, including ones which have intermediate expansion rates, have
been considered by Barrow (1990), Barrow and Maeda (1990) and Barrow
and Saich (1990).

We will now consider a generalization of the exact solution found in
Section 9.4. Some of the unphysical features of the previous solution are
rectified in the new solution. We first describe the solution and discuss its
properties. We verify in the Appendix to this chapter that it is indeed a
solution, and derive some of the properties. The potential (9.17) is general-
ized as follows:

V(�)�V0�V1��V2�
2�V3�

3 V4�
4�V5�

5�V6�
6, (9.30)

where the Vi are constants, which are expressed in terms of three constants

, � and n as follows:

V0�q�1{
2� n2�2(1��)2}; V1�q� �(��1){2��2n
�n2 (2��1)};
V2�{��2n(2��1)
�n2 (� �3���2�4�3�2�4)};
V3�q {(2��2/3)n
�n2 (1�6�2�4�3); V4�(10/3)qn2�(��1);
V5�(2/3)q3/2n2(2��1); V6�(2/9)q2n2. (9.31)

The function �(t) is given by the following relation:

�(t)�q� {���ent(ent��)�1}, (9.32)

where �, as before, is also a constant. This solution reduces to the previous
one if ��0 and 
��(3/2��2)n. The corresponding relation for R(t) will be
given in the Appendix.

We discuss some properties of the new solution. First note that �(t)
need not be non-zero at t�0. In fact �(0)�0 if � is chosen to be equal to
(1��)�1. Besides, instead of the unusual behaviour of the potential
depicted in Fig. 9.5, one gets a variety of more realistic possibilities, which
are somewhat like the behaviour of the Coleman–Weinberg potential dis-
played in Fig. 9.6, for different values of the constant �, which thus
behaves like the temperature T. To see this, we set V1�0, so that dV/d�

vanishes at ��0. This is achieved by taking 
 to be given as follows, in
terms of � and n: 
�n(2��1)/2��2. Henceforth we use this value of 
. For
the purpose of drawing the potential curves for different values of �, we
define a modified potential U, proportional to V, and express it as a poly-
nomial in y, defined as follows:

U�qV/n2; y�q ��x��, (9.33)

where x is defined by (9.19), that is, x�ent(ent��)�1. After some reduction
we find the following expression for U in terms of y:

1
2

1
2

1
2

1
2

1
2

1
2
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U�{(�4�4�8�3�4��1)/8��(��1) (2�2�2��1)y2

U�{�[4�3�6�2�(2/3)��1/3]y3�(10/3)�(��1)y4

U�{�(2/3) (2��1)y5�(2/9)y6}. (9.34)

The potential U can thus be written as U(y, �), that has different func-
tional form for various values of �. The qualitative behaviour of U for two
different values of � is displayed in Fig. 9.7, which is not drawn to scale. If
we ignore the different starting values of U (for y�0), we see that the
curves are somewhat like two of those in Fig. 9.3 and Fig. 9.6. Some
details of the derivation are given in the Appendix. The new solution is
thus more realistic, in that there are more parameters which give a variety
of behaviours for the potential. A further generalization to an eighth
degree potential has been considered by the author in collaboration (Azad
and Islam, 2001). Although these polynomial potentials differ in form
from more realistic potentials such as (9.27), the higher the degree of the
polynomial potential, the closer it can be made to any desired function. In
this sense potentials of higher order polynomials are useful in this
context, as approximations to the Coleman–Weinberg or other potentials
(see, e.g., Lazarides, 1997). The corresponding R(t) is not so easy to ascer-
tain. Some unphysical features remain in the new solution, such as the fact
that, if one insists on �(0)�0, as t tends to infinity, both for positive and
negative n, �(t) tends to a (negative) constant. Nevertheless, the fact that
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y = y0

(a)

(b)

U

y

Fig. 9.7. The potential U(y; �) for two values of �, given respectively by
(9.40) and (9.43) ((a) and (b) respectively). Curve (a) is similar to that in
Fig. 9.3 and curve (b) is similar to one of the curves in Fig. 9.6.
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one can derive an exact and explicit solution for a fairly complicated
potential enables one to examine some aspects in detail. The new solution
was obtained by the author some years ago when starting to prepare this
second edition. It is presented here for the first time. It is hoped to con-
sider some incomplete aspects and related matters in a future work. In this
connection mention may be made of the work of Barrow and Liddle
(1997), Barrow (1993), Rahaman and Rashid (1996), and Rahaman
(1996).

Appendix to Chapter 9

In this Appendix we present the main steps of the derivation of the new
solution and some of its properties. The method is essentially the same as
in Section 9.4 with the restricted potential (9.17), but the steps are more
elaborate. The basic equations, as before, are (9.14) and (9.15). The equa-
tions (9.20) remain unchanged, except that it is more convenient to express
these, and other relations involving x, in terms of y�x��. Following
steps similar to those given in (9.21) and (9.22), one finds that the form
(9.31) of the potential leads to an expression for H2 (given by (9.14) or the
top equation in (9.21)) in terms of y that is a perfect square, which leads to
the following relation for H:

H�{(4/9)ny3�(2/3)n(2��1)y2�(4/3)n�(��1)y�(2��2/3)
}
6�{(4/9)nq3/2�3�(2/3)n(2��1)q�2�(4/3)�(��1)nq ��(2��2/3)
}.

(9.35)

To verify (9.15), we use the relations for �̇ and �̈ given by (9.20), expressed
in terms of y, and insert the expressions for the Vi given by (9.31) in the
derivative:

dV/d��V1�2V2��3V3�
2�4V4�

3�5V5�
4�6V6�

5. (9.36)

The resulting expression for the left hand side of (9.15) is as follows:

�̈ �3H�̇ �dV/d��nq� {n(y��) (1�2y�2�) (1�y��)
�3(y��) (1�y��) [(4/9)ny3�(2/3)n(2��1)y2

�(4/3)n�(��1)y�(2��2/3)
]��(1��) [�2��2
�n(2��1)]
�2[��2
(2��1)�n(� �3���2�4�3�2�4)]y
�3[(2��2/3)
�n(1�6�2�4�3)]y2�(40/3)n�(��1)y3

�(10/3)n(2��1)y4�(4/3)ny5}. (9.37)

It can be verified that the right hand side of (9.37) vanishes identically. The
fact that the term independent of y and the coefficient of y5 vanish can be
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2
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seen by inspection. Thus both the equations (9.14) and (9.15) are satisfied.
To obtain R(t) it is easier to express H in terms of x(�ent(ent��)�1), as
follows:

H�{n(4/9)x3�n(2/3)x2�(2��2/3)
�n(2/3)�2�n(4/9)�3}. (9.38)

Compare this with (9.22), where the lower sign is the relevant one.
When ��0 and 
��(3/2��2)n, (9.38) reduces to (9.22). Noting that
H�R/R�(d/dt) (log R), one can integrate (9.38) as in (9.22), to get the fol-
lowing expression for R(t) (with B an arbitrary constant):

R(t)�B exp(kt) [exp(nt)�� ]�2/9exp{(2�/9)exp(nt) [exp(nt)�� ]�2},
(9.39)

where k�(2��2/3)
�(2/9)n�2(3�2�), so that k��n, as in (9.23) when
��0 and 
��(3/2��2)n. Thus the only difference between the expressions
(9.23) and (9.39) for R(t) is that in the latter the first factor is exp(kt)
instead of exp(�nt), with k given as above. One can choose values of 


and � so that k is positive and, for a period at least, there is exponential
expansion.

We now consider the form of the potential function U(y, �) given by
(9.34) for two specific values of �, namely, ��(��3�1)/2�1.366, and
��3/2. We choose these values because they lead to interesting behaviour
for the potential, and it is possible to determine this behaviour analytically
without resorting to numerical computation.

Consider ��(��3�1)/2 first. For this value of � the function U is given
as follows:

U(y; (��3�1)/2)�{1/8�((��3�1)/��3)y3�(5/3)y4�(2/��3)y5�(2/9)y6}.
(9.40)

Note that the coefficient of y2 vanishes and that of y3 is negative. The
turning points of this curve, apart from the one at y�0, occur at the roots
of the following cubic, obtained by setting dU/dy�0 and cancelling a
factor y2:

(4/3)y3�(10/��3)y2�(20/3)y�3���3�0. (9.41)

It can be verified that the left hand side of (9.41) is negative for y�0.2 and
positive for y�0.25. There is thus a root of this equation at y�y0 with
0.2�y0�0.25. Furthermore, the left hand side of (9.41) is clearly an
increasing function of y for positive y. The root y�y0 is therefore the only
positive root. We now show that the function U given by (9.40) is positive
for positive y. There are values of � for which some parts of the potential
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(9.34) are negative, as is clear from the earlier restricted potential depicted
in Fig. 9.5. The negative parts may or may not be unphysical; to avoid such
questions we choose � for which the potential does not have negative
parts; this also makes a better analogy with potentials shown in Fig. 9.6.
Now U given by (9.40) takes its minimum value for y�y0, so that if it is
positive at this point, it will be positive for all y�0. Consider the value
y�y1���3(��3�1)/5, for which the cubic and quartic terms in (9.40) cancel,
and U is clearly positive at this value: y1�0.254. It can also be verified that
the first two terms in (9.40) are positive for y�y1:

1/8�[(��3�1)/��3]y1
3�0. (9.42a)

Now a necessary, but not sufficient condition for U to be negative at y�y0

is that the first two terms must be negative (because the other terms are
�0):

1/8�[(��3�1)/��3]y0
3�0. (9.42b)

Now these first two terms form a decreasing function of y (for y�0), and
y1�y0, so we have a contradiction in (9.42b). Hence (9.42b) cannot be
right and so U must be positive for y�y0, and so positive for all y�0.

Consider next ��3/2. From (9.34) we get in this case:

U(y; 3/2)�{11/16�(3/8)y2�(2/3)y3�(5/2)y4�(4/3)y5�(2/9)y6}
(9.43)

This curve has no turning points for y�0, since dU/dy, having all positive
terms, cannot vanish for y�0. The behaviour of U(y; �) for the two values
of � are thus as depicted in Fig. 9.7. From the analysis carried out here it is
also clear that a value of � is likely to exist for which U(y; �) has the form
displayed in Fig. 9.3, that is, the ‘slow roll over’ form; (9.40) has some sim-
ilarity to this.
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10

Quantum cosmology

10.1 Introduction

We saw in the previous chapters that the standard model predicts a singu-
larity sometime in the past history of the universe where the density tends
to infinity. In Chapter 7 we also saw there is reason to believe that the exis-
tence of singularities may not be a feature peculiar to the highly symmetric
Friedmann models, but may exist in any general solution of Einstein’s
equations representing a cosmological situation. Many physicists think
that the existence of singularities in general relativity is unphysical and
points to the breakdown of the theory in the extreme situations that singu-
larities purport to represent. Indeed, in these extreme conditions the
quantum nature of space-time may come into play, and there have been
suggestions that when the quantum theory of gravitation is taken into
account, singularities may not arise. However, the quantization of gravita-
tion is notoriously difficult – there does not, at present, exist any satisfac-
tory quantum theory of gravitation, whether the gravitation theory is
general relativity or any other reasonable theory of gravity. However, there
have been some approximate schemes to try and answer at least partially
some of the questions that a quantum theory of gravitation is supposed to
answer. One of these schemes is quantum cosmology. We shall only give a
brief and incomplete account of quantum cosmology in this chapter, as
the technicalities are mostly beyond the scope of this book. This chapter is
based mainly on Hartle and Hawking (1983), Hartle (1984, 1986),
Narlikar and Padmanabhan (1983), and Islam (1993, 1994).

We give first a very simple-minded description of quantum theory and see
what kind of light an extension of this theory to the cosmological situation
may be expected to throw. The quantum theory is supposed to be the basic
and fundamental theory which describes all physical phenomena. Classical
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(non-quantum) physics, including general relativity, is supposed to be an
approximation in situations where the action becomes large compared to
Planck’s constant h, which is of the order of 10�27 erg s. The description we
will give here is somewhat crude, but it has the merit of putting in a nutshell
the kind of approach the quantum cosmologist has in mind. Consider Fig.
10.1, where (a) represents a simple quantum mechanical system, which is

190 Quantum cosmology

Fig. 10.1. (a) In the typical quantum mechanical situation the state of
the system is given by the wave function ( (x, t)) at time t�ti; the
Schrödinger equation gives the wave function at a later time t�tf . (b) In
general relativity the three-geometry is given on a space-like hypersurface
�i; the quantum theory of gravitation then gives the probability for the
three-geometry on the hypersurface �f . (c) If the state of the universe is
known at the present time t0, the theory should predict the probability of
different states that are possible near the ‘singularity’.
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described by a single spatial coordinate x at any time t. The wave function
 (x, t) represents the quantum mechanical state of the system at time t. We
will not define here completely what we mean by the ‘quantum mechanical
state’, but suffice it to say that if the wave function is known, all questions of
physical interest can be answered with the use of the wave function. It is well
known that if the wave function is known at a certain time ti, the
Schrödinger equation then enables us to calculate the wave function at
a later time tf. Extending the simple description given here to the case of a
space-time geometry, we might suppose that space-time evolves from a space-
like hypersurface �i to another space-like hypersurface �f; the condition of
the space-time on any space-like hypersurface is given by the three-geometry
on the hypersurface. For example, if we choose coordinates such that the
metric may be written as follows

ds2�dt2��jk dxj dxk, j, k�1, 2, 3, (10.1)

so that the space-like hypersurfaces may be taken as t�constant, the
three-geometry (3)� at any time is given by the values of �jk at that time.
The evolution of the space-time from �i to �f is given classically by
Einstein’s equations, but in a quantum mechanical description we may ask
for the probability of the space-time having any given three-geometry at �f

if it has a certain given three-geometry on �i. In practice many difficulties
arise; for example, there is the freedom on any surface t�constant (in the
metric (10.1)) of carrying out a purely spatial coordinate transformation
which does not affect the intrinsic geometry, and one must disentangle the
effects of such transformations from the physical evolution of the space-
time. The manner in which such a probability amplitude might be found
we will consider later. Finally (see (c) of Fig. 10.1), if we did find such a
description, we could use the result backwards from the state of the uni-
verse at any time t0 to a period of time near the supposed singularity, to
study the quantum mechanical nature of the universe near such a point.

10.2 Hamiltonian formalism

As mentioned earlier, there exists as yet no satisfactory theory for quantiz-
ing gravitation. One of the approaches tried so far is the Hamiltonian
approach. As is well known, in the Hamiltonian approach one has to
single out a particular time coordinate. In general relativity this corres-
ponds to choosing a particular manner of ‘slicing’ space-time with
space-like hypersurfaces. We first give an elementary discussion of the
non-relativistic Hamiltonian formalism and the corresponding derivation
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of the Schrödinger equation: this is mainly to have a simple situation in
mind while tackling the more complicated situation later.

We start with a Lagrangian L(q, q) depending on a generalized coordi-
nate q and its time derivative q. The equation of motion is found by
varying the action S derived from L given as follows:

S� L(q, q) dt. (10.2)

The condition that the variation q(t)→q(t)��q(t), with �q(t1)��q(t2)�0
gives �S�0 leads to the Euler–Lagrange equation of motion:

� �0. (10.3)

Corresponding to the coordinate q one defines the generalized momentum
p as follows:

p��L/�q. (10.4)

One then eliminates q in favour of p with the use of (10.4), and defines the
Hamiltonian as follows:

H(p, q)�pq�L(q, q), (10.5)

where it is assumed that q has been expressed in terms of p and q. From
(10.3)–(10.5) it is readily seen that

p���H/�q, q��H/�p. (10.6)

One defines the Poisson bracket of two functions F, G of p, q as follows:

{F, G}� , (10.7)

so that (10.6) can be written as follows:

p�{p, H}, q�{q, H}. (10.8)

It is well known that in quantum mechanics the variables q, p, H, etc.,
become operators in such a manner that the Poisson bracket can be
replaced by commutators as follows (3�h/2�):

{q, H}→ [q, H]�(i3)�1(qH�Hq), (10.9)

etc., so that, by comparing with the equation of motion of a free particle
derived from the Lagrangian L� mq2 (given by q�p/m), we have the fol-
lowing commutation relation between q and p in quantum mechanics:

1
2

�F
�q

�G
�p

�
�F
�p

�G
�q

�L
�q

d
dt ��L

�q& �

�
t2

t1
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qp�pq�i3. (10.10)

This implies that p can be expressed as the operator p��i3 �/�q. One can
also show that the energy E can be replaced by the operator i3 �/�t. It is
readily seen that if the Lagrangian is given by

L� mq2�V(q), (10.11)

which represents a particle moving in a potential V(q), the Hamiltonian is
given by

H�(2m)�1p2�V(q), (10.12)

so that, since the Hamiltonian represents the energy, we get the
Schrödinger equation by applying both sides of (10.12) as operators to
the wave function  (q, t), whose modulus square / (q, t)/2 represents the
probability density of finding the particle at q at time t; in fact / /2 dq is
the probability of the particle being between q and q�dq:

i3 �  . (10.13)

Consider now the Lagrangian for several particles given by

L� L(qr, qr), (10.14)

where qr represents the coordinate of the rth particle, and the generalized
canonical momentum corresponding to qr is given by

pr��L/�qr. (10.15)

The corresponding Hamiltonian is given by

H(pr, qr)� prqr� L(qr, qr). (10.16)

We now consider the case of the Lagrangian of a field – this is like replac-
ing the coordinate of the rth particle qr(t) by �(x, t), so that the index r is
replaced by the spatial position x in a suitably limiting sense. The
Lagrangian in this case is a function of the fields �(x, t) and the time and
spatial derivatives �

�
�(x, t). The sum over particles becomes an integral

over the spatial coordinates (� is the Lagrangian density):

L(t)� �(�, �
�
�)d3x. (10.17)

One defines a field �(x, t) canonically conjugate to �(x, t) as follows:

����/��̇. (10.18)

�

�
r

�
r

�
r

� �
h2

2m
�2

�q2 � V(q)
� 

�t

1
2
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In analogy with the particle case one defines the Hamiltonian:

H(t)� (��̇ ��) d3x. (10.19)

One can also make a simple-minded extension of the idea of a wave func-
tion to that of a wave functional 7[�, t] which is a functional of the fields
and a function of the time. It can be interpreted as saying that / (�, t)/2��

is the probability of finding the field configuration between � and ����

at time t. In analogy with the particle case, the Schrödinger equation in
this case is given by

H7[�, t]�i3 �7/�t. (10.20)

Here H is given by (10.19), where the �̇ has to be eliminated in favour of �

using (10.18), and later � has to be replaced by the operator – i3 �/��, that
is, �i3 times the functional derivative with respect to �.

A functional is a number which depends on a function on the whole
domain of its definition. Restricting to one variable x, a functional F of a
function A(x) may be given by

F[A]� f(x)A(x) dx, (10.21)

where f(x) is a fixed function. The fundamental relation for taking func-
tional derivatives is the following one:

�A(x)/�A(x�)��(x�x�), (10.22)

where on the right we have the Dirac delta function. With the use of
(10.22) we find readily that

� f(x) dx� f(x)�(x�x�)dx�f(x�). (10.23)

In a similar manner with the use of (10.22) and the rules of ordinary
differentiation, one can evaluate all functional derivatives.

The Wheeler–De Witt equation is a functional differential equation. The
reader may not be familiar with functional derivatives and the correspond-
ing functional differential equations. We have given above a very incom-
plete and somewhat crude account of the topic. In the next two or three
sections we give a more detailed discussion. The subject matter may be
unfamiliar and difficult, so the uninterested reader can skip these sections,
but we believe those who are keen on quantum cosmology may find them
of some interest. These are taken mainly from Islam (1994).

��A(x)
�A(x�)��F

�A(x�)

�

�
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We first discuss (10.18), (10.19) and (10.20) for a specific Lagrangian
and corresponding Hamiltonian.

10.3 The Schrödinger functional equation for a scalar field

We start with the following Lagrangian density for the scalar field �, where
m is the mass, U(�) a suitable non-linear function of �, for example, a
polynomial of degree greater than 2, and the derivatives have their usual
meaning:

�� �
�
����� m2�2�U(�), �

�
����/�x�, etc. (10.24)

The equation of motion, or field equation, is as follows:

(� �m2)��U�(�)�0, � ��
�
��, U��dU/d�. (10.25)

Setting c�1, we have x��(t, x). Using a dot to represent differentiation
with respect to t, we can write the Lagrangian density (10.24) as follows:

�� [�̇ 2�(��)2]� m2�2�U(�). (10.26)

As in (10.18), the field conjugate to �, denoted by �, is as follows:

��/��̇ ��̇ ��. (10.27)

The Hamiltonian density is then defined by the following equations:

� ���̇ ��� �̇ 2� (��)2� m2�2�U(�). (10.28)

If the function U(�) is positive definite, we see that the Hamiltonian
density � given by (10.28) is positive definite, in keeping with the
definition of the Hamiltonian as the energy. The Hamiltonian H is then
given by integrating the Hamiltonian density � over all three-space:

H��� d3x�� [ �2� (��)2� m2�2�U(�)] d3x. (10.29)

To proceed further, we consider the analogy with non-relativistic quantum
mechanics of N particles with position and momenta given, respectively,
by qr, pr, r�1, . . . , N. Setting the modified Planck’s constant 3�1, we
write the commutation relations as follows (see (10.14)–(10.16)):

qr ps�psqr�i�rs, r, s�1, . . . , N, (10.30)

where �rs is the Kronecker delta. It is well known that (10.30) implies the
following representation for ps: ps��i�/�qs. Consider now the following
equal time commutation relation between the field � and the conjugate
field �:
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�(t, x) �(t, x�)��(t, x�) �(t, x)�i�(x�x�), (10.31)

where �(x�x�) is the three-dimensional Dirac delta function. In analogy
with the above non-relativistic case, it can be shown that (10.31) implies
that the conjugate field � has the following representation:

�(t, x)��i�/��(t, x), (10.32)

where the right hand side is the functional derivative with respect to
�(t, x). Since we shall be considering all functional derivatives at a particu-
lar time t, we will usually suppress the time and write the derivative thus:
�/��(x). Just as the wave function in non-relativistic quantum mechanics is
a function of the qr and the time t, so for quantum fields the wave function
is a functional of the field � and a function of the time t, written thus:
7[�, t]. Schrödinger’s equation is then a functional differential equation
given by (setting 3�1 in (10.20)):

H7[�, t]�i�7/�t, (10.33)

where H is the operator derived from (10.29) by replacing � by the right
hand side of (10.32):

H��{� [�/��(x)]2� (��)2� m2�2�U(�)} d3x. (10.34)

As in quantum mechanics, we can consider stationary states which are of
the form

H7[�, t]�7[�] exp(�iEt), (10.35)

so that (10.33) reduces to

H7[�]�E7[�]. (10.36)

Let us note the structure of (10.36). The functional 7[�] itself is in general
independent of x and is a pure (complex) number. However, the expression
�7/��(x) or �27/(��(x))2 is dependent on x. On the left hand side, after
integration over the spatial volume the integral becomes independent of x,
i.e., it becomes a pure number, as is the right hand side. At this stage we
have mechanically extended the Schrödinger equation in the quantum
mechanical case to the case of the quantum field in a simple-minded
manner. There are certain subtleties, some of which will emerge later.

As regards the physical interpretation of the wave functional 7, it is
similar to that of the wave function in quantum mechanics. Just as
/ (t, q)/2 dq gives the probability of finding the quantum mechanical par-
ticle between coordinate values q and q�dq, so /7(�, t)/2 �� gives the

1
2

1
2

1
2

196 Quantum cosmology

TLFeBOOK



probability of the field configuration having values between � and ����

at time t. The function � here plays the role of the coordinate q. This
definition needs to be made more precise, such as considering the measure
of the space of functions, etc.

10.4 A functional differential equation

In this section we give a simple example of a functional differential equa-
tion and its solution, to prepare the reader for the more complicated func-
tional differential equation to be encountered. We have already given a
brief discussion of functionals. For later convenience we use q, q�, instead
of x, x�, etc.

A useful example is the functional derivative of an exponential, as
follows:

G[A]�exp(F [A]), (10.37)

�G/�A(q�)�exp(F [A])(�F/�A(q�)). (10.38)

Equation (10.38) can be established by expanding exp(F) in (10.37) as a
power series in F and using the relations

[�/�A(q�)](F n)�(nF n�1)(�F/�A(q�)). (10.39)

The foregoing formulae are sufficient to determine the functional deriva-
tives of all functionals of interest. As a final example, we consider the fol-
lowing case, which can be treated using the foregoing relations and which
will lead to a typical functional differential equation and its solution. We
evaluate the functional derivatives of the following functional:

W[A]�exp [b � g(q�, q0) A(q�) A(q0) dq� dq0]�exp Z[A], (10.40)

where g(q�, q0) is some fixed function of q� and q0, and b is a constant.
From (10.38) we see that

�W/�A(q)�(�Z/�A(q))W. (10.41)

We have

�Z/�A(q)�b � g(q�, q0) A(q�) (�A(q0)/�A(q))
�Z/�A(q)� �(�A(q�)/�A(q)) A(q0) dq� dq0

�Z/�A(q)�b � g(q�, q0) (A(q�) �(q�q0)��(q�q�) A(q0)) dq� dq0

�Z/�A(q)�b � g(q�, q) A(q�) dq��b� g(q, q0) A(q0) dq0

�Z/�A(q)�b � (g(q�, q)�g(q, q�)) A(q�) dq�

�Z/�A(q)�2b � g(q, q�) A(q�) dq�. (10.42)
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In the last step we have made the assumption that the function g(q, q�) is
symmetric:

g(q, q�)�g(q�, q), (10.43)

a relation which need not necessarily hold. Substituting in (10.41) we
get

�W/�A(q)�(2b � g(q, q�) A(q�) dq�)W. (10.44)

Next we take the second functional derivative of W, for which we first take
the functional derivative of the right hand side of (10.44) with respect to
A(q) rather than A(q):

�2W/�A(q)�A(q)�2b(�W/�A(q)) � g(q, q�) A(q�) dq�

�2W/�A(q)�A(q)� �2bW(�/�A(q)) � g(q, q�) A(q�) dq�

�2W/�A(q)�A(q)�4b2W��g(q, q�) g(q, q0) A(q�) A(q0) dq� dq0

�2W/�A(q)�A(qf5 �2bWg(q, q), (10.45)

where we have used (10.42) and (10.44). We now set q�q to get

�2W/(�A(q))2�4b2W[� g(q, q�) A(q�) dq�]2�2bW g(q, q). (10.46)

This expression assumes that g(q, q) is well defined, which may not be the
case. For example, if g(q, q�)�(q�q�)�1, then g(q, q) is not defined. In this
case one may have to use a convergence factor or use some other suitable
limiting procedure.

Consider now the following functional differential equation of second
order for the unknown functional W�[A] of the function A(q):

�{(�/�A(q))2�k (�g(q, q�) A(q�) dq�)2}dq W�[A]�EW�[A], (10.47)

where k, E are constants and g(q, q�), as before, is a fixed function of q, q�,
which is symmetric in q, q�. From (10.40) and (10.46) it is clear that the
functional W[A] given by (10.40) is a solution of this equation if we iden-
tify the constants k, E as follows:

k�4b2, E�2b �g(q, q) dq. (10.48)

The functional differential equation (10.47) is somewhat analogous to but
simpler than the Schrödinger functional equation (10.48) for the scalar
field. Equation (10.47) and its solution (10.40) therefore give some idea of
the kind of solution we can expect, at least in the simple cases, and the
manner in which the solution satisfies the functional differential equa-
tion.
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10.5 Solution for a scalar field

The Schrödinger equation (10.34) reduces to that for a free scalar field if in
the expression (10.34) for H we set U�0. We will simply state the solution
for the ground state. The fact that it is a solution can be verified by the
methods above. We consider first the massless case with m�0. In this case
the ground state is given as follows:

70[�]�N exp {�k �f(x�, x0) �a
(x�) �(x�) �a

(x0) �(x0) d3x� d3x0},
�a

(x�)��/�x�a, etc., (10.49)

where N, k are suitable constants and f(x�, x0) is a suitable weight function,
defined below. Latin indices in (10.49) and other cases take values 1, 2, 3 in
three-dimensional cases and values 1, 2 in cases where we have two spatial
dimensions.

The massive case with non-zero m has the following ground state:

7[�]�F[�]70[�], (10.50)

where 70[�] is given by (10.49) and the functional F[�] is defined as
follows:

F[�]�exp(J[�]), J[�]��k� �j(x�, x0) �(x�) �(x0) d3x� d3x0,
(10.51)

where k� is a constant and the function j(x�, x0) is symmetric: j(x�, x0)�

j(x0, x�). The functions f(x�, x0) and j(x�, x0) are defined through their
Fourier transforms f̂ (p), ĵ (p):

f(x�, x0)�(2�)�3 � f̂ (p) e�ip · (x��x0) d3p, (10.52a)

j(x�, x0)�(2�)�3 � ĵ (p) e�ip · (x��x0) d3p. (10.52b)

The functions f̂ (p) and ĵ (p) are given as follows (k̂ is a constant):

f̂ (p)�k̂(p2)�1/2, ĵ (p)�[�kk̂(p2)1/2� (4k2k̂2p2�m2)1/2]/k�, (10.53)

which gives a complete solution of the Schrödinger functional equation
for the free massive scalar field.

10.6 The free electromagnetic field

The Lagrangian density for the free electromagnetic field can be written as
follows:

���(1/4) F
��

F��, F
��

��
�
A

�
��

�
A

�
, (10.54)

1
2

The free electromagnetic field 199

TLFeBOOK



A
�

being the electromagnetic four-potential; it is given in its contravariant
form as A��(A0, A), where A0 is the electric potential and A is the three-
vector potential. The Lagrangian (10.54) is invariant under the gauge
transformation

A
�

→A�
�

�A
�

��
�
V, (10.55)

where V is any arbitrary function of space-time. It is well known that one
can use this freedom to introduce the temporal gauge in which the time
component of the four-vector potential vanishes: A0�0�A0. The
Lagrangian density (10.54) then reduces to the following expression:

�� ȦnȦn�(1/4)FabFab, (10.56)

where Latin indices range over values 1, 2, 3 and a dot, as before, denotes
differentiation with respect to t. The momentum canonically conjugate to
An is given by Pn, where

Pn���/�Ȧn�Ȧn, (10.57)

so that the Hamiltonian density is

� �PnȦn��� PnPn�(1/4) FabFab. (10.58)

Since contravariant and covariant spatial indices differ by a sign only, in
(10.56) and (10.58) it does not matter if we use FabFab or FabF

ab, as they are
equal. Since Pn is canonically conjugate to An, when we quantize the theory
Pn(x) becomes the operator �i�/�An(x), in a manner similar to the case of
the scalar field, where we have again suppressed the t-dependence.
Following steps similar to the case of the scalar field, the Schrödinger
equation for stationary states in this case can be written as

H7[A]� �{��2/[�An(x)]2� Fab(x)Fab(x)} 7[A] d3x�E7[A].
(10.59)

Here 7[A] is the stationary state which is a functional of the three compo-
nents of A. There is a significant difference between the cases of the scalar
and the electromagnetic field. The condition A0�0 still leaves an arbitrari-
ness in the remaining components A1, A2, A3 because we can still carry out
a purely spatial gauge transformation

An→A�n�An��nh, (10.60)

where the function h is independent of the time and a function of x only.
This transformation will leave the modified Lagrangian density (10.56)
invariant. The three functions A in (10.59) are therefore not independent
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in this sense. It can be shown that this invariance implies that in addition
to the Schrödinger equation (10.59) the wave functional must satisfy the
gauge constraint or Gauss’s relation, as follows:

�n
(x)(�7/�An(x))�0. (10.61)

The ground state solution of (10.59) has been considered by various
authors and is well known. It is given as follows:

70[A]�N�exp{�k0 �Fab(x�) Fab(x0) g(x�, x0) d3x� d3x0}, (10.62)

where N�, k0 are constants and g(x�, x0) is a suitable weight function [inde-
pendent of the An(x)]. In fact, g(x�, x0) turns out to be proportional to the
weight function f(x�, x0) considered in the scalar case, and can be identified
with the latter. The case of the electromagnetic field considered in this
section, although very simple and well known, provides a useful back-
ground for the much more complicated case of the Yang–Mills field, or the
Wheeler–De Witt equation. The case of linearized gravity considered by
Hartle (1984) is similar to this case.

10.7 The Wheeler–De Witt equation

In quantum gravity one can derive an equation similar to the Schrödinger
equation (10.36), which is known as the Wheeler–De Witt equation. This
equation is best derived from the path integral formalism, which we will
consider in the next section. We shall not give the derivation here but only
write down the equation itself and give a brief description of it.

As mentioned earlier, there are many subtleties which we will not con-
sider. One of these is the manner in which space-timeshould be sliced to give a
series of appropriate three-geometries, in which there remains the problem
of dealing with the freedom of carrying out spatial transformations. One of
the conditions that go into the derivation of the Wheeler–De Witt equation
(that given, for example, by Hartle and Hawking (1983)), is that the universe
should be closed, so that the space-like sections are compact. We use units
with 3�c�1 and introduce coordinates so that the space-like hypersurfaces
are t�constant and the metric is written as follows:

ds2�(N2�NiN
i) dt2�2Ni dxidt�hij dxidxj, i, j�1, 2, 3. (10.63)

N, Ni are functions of space-time with Ni�hijN
j. Kij is the extrinsic curva-

ture of the three-surface t�constant given as follows:

Kij��ni;j, (10.64)
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where ni is the spatial part of the unit normal to the hypersurface, t�con-
stant and the semi-colon denotes covariant derivative as in (2.6b).
Equation (10.64) can be written as follows (see Appendix A14):

Kij� N�1(ḣij��iNj��j Ni), (10.65)

where �j denotes covariant derivative with respect to the three-metric hij.
The momentum canonically conjugate to hij is given as follows in terms of
Kij and its trace K�Ki

i:

�ij��h1/2(Kij�hijK), (10.66)

where h is the determinant of the metric hij. The wave functional in this
case is a functional 7[hij] of the three-metric hij and is related to the prob-
ability of finding the space-like hypersurface with the given three-metric.
One can find an expression which is equivalent to the Hamiltonian, and if
one replaces the �ij with the operator �i�/�hij in it, one gets the
Wheeler–De Witt equation

�Gijkm �3Rh1/2�2'h1/2 7[hij]�0. (10.67)

Here

Gijkm� h�1/2(hikhjm�himhjk�hijhkm), (10.68)

3R is the scalar curvature for the three-metric, and ' the cosmological
constant. Equation (10.67) corresponds to the stationary form of
Schrödinger’s equation given by H7�E7. The tensor Gijkm is, in fact, the
metric in the ‘superspace’, which is the space of all three-geometries. In
(10.67) we have also ignored the matter fields, for which one would get
additional terms. The freedom to carry out spatial transformations of the
three-metric gives additional constraints which the wave function must
satisfy – these are familiar in gauge theories in the so-called Gauss rela-
tions. This completes our brief discussion of the Wheeler–De Witt equa-
tion. We will now consider the equivalent path integral approach, for
which we first give a brief account of path integrals.

10.8 Path integrals

In recent years path integrals have been used increasingly in the formula-
tion of gauge theories and other aspects of physics. The originator of the
method of path integrals was Feynman (1948) (see also Feynman and
Hibbs, 1965). There are many introductory accounts of path integrals (see,
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for example, Taylor, 1976). We will give the bare essentials here (see
Narlikar and Padmanabhan, 1983).

A convenient way of introducing path integrals is to compare the formu-
lation of the equations of motion of a free particle in classical mechanics
and quantum mechanics as expressed in terms of path integrals. If the posi-
tion vector of the particle is r�(x, y, z), its equation of motion is given by

mr̈ �0. (10.69)

Suppose the particle is at ri at time ti (the initial time) and at rf at time tf

(the final time). It is easy to see that in the intervening period ti�t�tf the
position vector is given by

r(t)�ri� (rf�ri)�r̄(t). (10.70)

Quantum mechanically, if the particle is at ri at time ti, one can only give a
probability amplitude for finding the particle at rf at time tf ; this is given as
follows:

K(rf , tf ; ri, ti)�[m/2�i3(tf�ti)]
3/2 exp[im(rf�ri)

2/23(tf�ti)]. (10.71)

The connection between (10.70) and (10.71) is established by saying that
classically the particle follows the definite path r(t) given by (10.70)
whereas quantum mechanically the particle can take any path that is
allowed by causality; there is a certain amplitude associated with each path
r(t) and to get the complete amplitude to find the particle at rf at time tf

one has to sum over all paths weighted by the amplitude for the path (see
Fig. 10.2). The amplitude associated with the path r(t) is given by
exp[(i/3)S] where S is the classical action assoociated with the path, given
by (10.72) (with r(t) instead of q; that is, instead of the one coordinate q we
have three coordinates r). The sum is then taken over all paths; this sum is
a kind of integral over all functions r(t), which can be defined by a limiting
procedure in which the time interval [ti, tf] is divided into n equal parts so
that the weight function becomes a function of the variables r(tm), where
tm is a typical instant at which the division of the interval [ti, tf] occurs. One
then integrates over the rm�r(tm), and takes the limit as n tends to infinity
to get the complete amplitude to arrive at rf at time tf (see, for example,
Feynman and Hibbs, 1965, for details). For example, if one starts with the
classical action which gives rise to (10.69) namely,

S� mr2 dt, (10.72)1
2�

tf

ti

� t � ti

tf � ti
�
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one arrives at the amplitude (10.71) by adopting this limiting procedure.
Symbolically, this integral can be written as follows:

K(rf , tf ; ri, ti)��exp{(i/3)S[r(t)]}�r(t). (10.73)

Note that here S is not a function but a functional of r(t); for this reason
this integral is also called a functional integral. Here the symbol �r(t)
means the integral is a sum over all functions r(t) in the sense explained in
Feynman and Hibbs (1965).

By dividing every path at a certain instant t, one can derive from (10.73)
the following relation:

K(rf , tf ; ri, ti)��K(rf , tf ; r, t)K(r, t; ri, ti) d
3r, (10.74)

for any time ti+t+tf. Similarly, one can show that if the state of the parti-
cle at time ti is represented by the wave function  i(ri, ti), then its final wave
function  f(rf , tf ) is given as follows:

 (rf , tf )��K(rf , tf ; ri, ti) i(ri, ti) d
3ri. (10.75)

This relation can be verified explicitly for the free particle wave function
 (ri, ti)�exp[(i/3(Eti�p·ri)], with a similar expression for  (rf, tf) where
E�p2/2m if one uses the K given by (10.73). In fact this confirms that
(10.71) is the corrrect free particle amplitude.

By analogy with the above case, one can consider the case of a space-
time geometry, in which �i, �f represent respectively an initial and a final
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ically the particle can follow any of the paths r(t), but each path is
weighted by the amplitude exp(i/3)S, where S is the classical action asso-
ciated with the path r(t).
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space-like hypersurface (see Fig. 10.1(b)), and one asks for the probability
amplitude for a certain three-geometry (3)�f on �f given the three-geometry
(3)�i on �i. In this case the classical ‘path’ is the solution given by Einstein’s
equations, but the contributions to the probability amplitude come from
all four-geometries which are not necessarily solutions of Einstein’s equa-
tions. Symbolically this can be represented by

K{(3)�f, �f;
(3)�i, �i}��exp{(i/3)S[�]}��, (10.76)

in analogy with (10.73). Here S[�] is the action for gravitation (see, e.g.,
(10.77) below) and the functional integration is over all four-geometries
connecting �i and �f. There are, of course, many complexities hidden in
(10.76). For example, one has to take into account that some four-
geometries are simply transforms of each other. Presumably these can be
taken into account by a generalization of the method of Faddeev and
Popov (1967) which is used in Yang–Mills type gauge theories and which
effectively amounts to dividing out an infinite gauge volume. Secondly,
the actual evaluation of the path integral (10.76) for any given situation
presents prohibitive problems. Nevertheless, the conceptual simplicity of
(10.76) is striking. In the next section we will examine how some infor-
mation can be extracted from (10.76) with some simplifying assump-
tions.

We end this section with some remarks about the classical limit of the
path integral (10.73). Classical physics is valid when the action of the clas-
sical system is large compared to 3; note that S and 3 have the same
dimensions so that S/3 is a pure number. Thus for a classical system the
phase of the exponential in (10.73) is large for most paths, so that a small
variation in the path causes a relatively large variation in the phase with
the result that, because of the oscillation of the exponential, the contribu-
tions from neighbouring paths cancel each other. The only paths which
contribute substantially in this case are those for which the action does not
vary much with the variation in the paths. These are given by paths near
the one which gives �S�0, which, of course, yields the classical path r(t).
Thus in the limit of vanishing 3 we get the classical path. The interesting
thing is that the same argument applied to (10.76) yields the Einstein equa-
tions in the classical limit, these equations being given by �Sg�0, where Sg

is given as follows, inserting c:

Sg�(c3/16�G) �� R(��)1/2 d4x, (10.77)

where � is the space-time region under consideration. The scalar curva-
ture R of the space-time has dimensions (length)�2. Thus if we take
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R�L�2, where L is the characteristic length, and the four-volume � is of
dimension L4, we find the following estimate for the magnitude of Sg:

Sg�c3L2/16�G. (10.78)

Thus the action Sg becomes comparable to 3 if the linear size of the uni-
verse is (ignoring the numerical factor 16�)

LP�(G3/c3) �1.6	10�33 cm, (10.79)

which is the so-called Planck length.
We note finally that the Schrödinger equation can be derived from

(10.75) by making tf�ti infinitesimally small.

10.9 Conformal fluctuations

We have seen that in the path integral (10.76) the sum involves space-
times which do not necessarily satisfy Einstein’s equations. In practice to
include all such space-times is a formidable task. One simplification that
has been tried is to consider only geometries which are conformal to the
classical solutions, that is, solutions of Einstein’s equations. Suppose
that for a given action (10.77) we have a classical solution given by the
metric

ds 2��̄
��

dx� dx�, (10.80)

for the region which lies between the space-like hypersurfaces �i and �f

(see Fig. 10.1(b)). Non-classical paths also contribute to (10.76) but we
consider only those paths which are conformally related to (10.80), that is,
only those metrics which are of the following form:

ds2�
2 ds 2�
2�̄
��

dx� dx�, (10.81)

where 
 is an arbitrary function of space-time. Since Einstein’s equations
are not conformally invariant, except in the trivial case 
�constant,
(10.81) represents a non-classical path between �i and �f. There are other
ways of generating non-classical paths, but the merit of (10.81) is that null
geodesics are conformally invariant, so the light cone structure of space-
time is preserved by such paths. We write

��
�1, (10.82)

so that � represents the conformal fluctuation around the classical path.
We shall only give the results of the consideration of conformal paths, and
refer to Narlikar and Padmanabhan (1983) for the details. We take the
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classical geometry to be that of Friedmann cosmologies, which we write as
follows

ds2�dt2�Q2(t)[dr2/(1�kr2)�r2(d�2�sin2� d�2)]. (10.83)

We consider the state of the universe at the initial epoch ti to be given by a
wave packet with spread �i, as follows:

 i(�, ti)�(2��i
2)�1/4 exp(��2/4�i

2). (10.84)

It is shown by Narlikar (1979) and by Narlikar and Padmanabhan (1983)
that if conformal paths are taken into account, the wave packet (10.84)
evolves to the one given by a similar expression to (10.84) except that �i is
replaced by �f given as follows (see (10.75) and Fig. 10.3):

�f�(2�T/3VQiQf)[1�(3V/2�T)�i
2Qi

2(1�TQiHi)
2]1/2, (10.85)

where V is the coordinate volume of the region under consideration, given
by r+rb, where r is the radial coordinate occurring in (10.83) and T, Hi are
defined as follows:

T� du/Q(u), Hi�Q(ti)/Q(ti), Qi�Q(ti), Qf�Q(tf). (10.86)

The important thing to notice is that as tf tends to zero, that is, as we
approach the singularity, �f goes as Qf

�1, and so diverges. Thus it appears
that in the limit of the classical singularity quantum conformal
fluctuations diverge. Thus the classical solution, which can be regarded as
the ‘average’ of the wave packet, is no longer reliable near the singularity.
Narlikar and Padmanabhan (1983) further find indications that quantum
conformal fluctations may prevent a space-time singularity and also may
eliminate the appearance of a particle horizon.

�
ti

tf
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Fig. 10.3. For the conformal fluctuation of Friedman cosmologies we
reverse the time and take the final time tf to be earlier than the initial time
ti, with the former near the singularity at t�0.
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There are many approximations involved in the above considerations
and, hence, many uncertainties. It is not clear to what extent the claims
made in the above paragraph are valid. The important thing to notice here,
however, is that the formalism of this chapter seems to provide a handle
with which these interesting questions can be meaningfully tackled. There
is obviously a long way to go before definitive answers can be given to such
questions. The above work has been generalized by Joshi and Narlikar
(1986) to cases where the state of the universe is defined by wave function-
als that are not necessarily wave packets, with similar results.

To end this section we consider as an illustration conformal perturba-
tion of flat space-time. For this we first consider a transform of Sg given by
(10.77) under the conformal transformation (10.81). Putting c�3�1, Sg is
transformed to S�g given by the following expression:

S�g�(16�G)�1�� (
2R�6

�

�)(��̄)1/2 d4x, 


�
� 
, (10.87)

where R is the scalar curvature derived from the metric �̄
��

, and �̄ is the
determinant of this metric. If we now specialize the metric �̄

��
to that of

flat space given by �
��

with ��00��11��22��33��1, with �
��

�0 when
�(�, the action S�g reduces to the following one:

S



��(3/8�G)�

�

�d4x. (10.88)

We apply the formalism developed in (10.24)–(10.29). The Lagrangian
density for (10.88) is given as follows:

��(�3/8�G)

�

��(�3/8�G)(
̇2�(�
)2), (10.89)

so that the momentum density canonically conjugate to 
 is given by

��/�
̇ �2k�
̇ ��, k��(�3/8�G). (10.90)

The Hamiltonian density is given as follows:

���
̇ ���k�[
̇2�(�
)2]�(4k�)�1�2 �k�(�
)2. (10.91)

The corresponding Schrödinger equation is (replacing � by �i�/�
):

(4k�)�1�[�(�/�
)2�4k�2(�
)2] d3x7[
]�E7[
]. (10.92)

This equation is similar to the one that obtains in quantum electrodynam-
ics of the pure electromagnetic field, for which the solution is well known
(see, for example, Rossi and Testa, 1984; Hartle, 1984; Islam, 1989; also
Feynman and Hibbs, 1965. The ground state solution of (10.92) can be
written as follows (the derivation is similar to that of (10.49), (10.62)):

�

�x�
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7[
]�N exp
�x
 ·�y


(x�y)2 d3x d3y , (10.93)

which gives the probability amplitude for detecting a conformal factor in
flat space. This expression implies that large deviations from flat space can
occur at Planck length scales LP. This is usually referred to as the ‘foam’
structure of space-time.

10.10 Further remarks about quantum cosmology

We end this chapter by mentioning some further developments. One
significant one is the proposal for the wave function of the ‘ground state’
of the universe, put forward by Hartle and Hawking (1983), which we
describe here briefly. An interesting aspect of any quantum mechanical
theory is the ground state or the state of minimum excitation. In terms of
path integrals, the ground state at t�0 can be defined by

 0(x, 0)�N�exp{�I[x(�)]}�x(�); (10.94)

where the time integral in the action S has been transformed by t→�i�, to
make the path integral well defined (this does not, in general, affect its
value) and iS has been replaced by �I. The function x(�) represents all
paths which end at x(0)�x at t���0. (A proof of (10.94) can be found in
Hartle and Hawking (1983).)

In the case of closed universes, which Hartle and Hawking consider, it is
not appropriate to define the ground state as the state of lowest energy, as
there exists no natural definition of energy for a closed universe. In fact,
the total energy of a closed universe may be zero – the gravitation and
matter energies cancelling each other. It might be reasonable, however, to
define a state of minimum excitation corresponding classically to a geome-
try of high symmetry. In analogy with (10.94) Hartle and Hawking
propose the following expression as the ground state wave function of a
closed universe:

 0[hij]�N�exp(�IE[�])��, (10.95)

where IE is the Euclidean action for gravity (obtained by carrying out the
transformation t→�i� in Sg given by (10.77)) and including the cosmolog-
ical constant '. They are able to work out the path integral using certain
simplifying assumptions, and find that the ground state corresponds to de
Sitter space in the classical limit. They also find excited states which yield
universes which start from zero volume, reach a maximum and collapse,


�� �
3

8�3L2
P
� � �
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but which also have a non-zero (but small) probability of tunnelling
through a potential barrier to a de Sitter type of continued expansion.

We have glossed over several complexities earlier in the chapter. One of
these is the problem of ‘operator ordering’ in (10.67) where a simple order-
ing between �ij and hij has been used. Another possibility for the first term
in (10.67) would have been, for example,

(2h1/2)�1(�/�hij)h
1/2Gijkm(�/�hkm). (10.96)

A term q2p, for example, in the classical Hamiltonian, can become q2p,
qpq, or pq2 and one has to use other considerations to decide which is the
correct one, as quantum mechanically these are apparently distinct pos-
sibilities, since here q, p are non-commuting.

Coleman and Banks (see Schwarzschild, 1989), and references therein)
have considered a modification of the Hartle–Hawking formalism given
by (10.94) and (10.95) in which the path integrals are not only over the
entire history of the present universe, but also over the full manifold of all
universes connected by wormholes (see, for example, Misner, Thorne and
Wheeler, 1973, p. 1200). In the resulting analysis they find an explanation
of the vanishing of the cosmological constant (see also Weiss, 1989).

We have attempted to provide here the bare minimum of the subject of
quantum cosmology. It is hoped that this will enable the reader to follow
the more specialized material in the papers cited here (see particularly
Hartle, 1986, and the papers cited there).
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11

The distant future of the universe

11.1 Introduction

In the previous chapters we have considered in some detail the ‘standard’
model of the universe. It is pertinent to ask what the prediction of the
standard model is for the distant future of the universe. The future of the
universe has been the subject of much speculation, in one form or another,
from time immemorial. It is only in the last few decades that enough
progress has been achieved in cosmology to study this question
scientifically. In this chapter we shall attempt to provide an account of – or
at any rate limit the possibilities for – the distant future of the universe, on
the basis of the present state of knowledge. We refer the reader to Rees
(1969), Davies (1973), Islam (1977, 1979a,b, 1983a,b), Barrow and Tipler
(1978) and Dyson (1979) for more material on this topic. This chapter is
based mostly on the papers by Islam and Dyson.

The distant future of the universe is dramatically different depending on
whether it expands forever, or it stops expanding at some future time and
recollapses. In the earlier chapters we have considered in detail the condi-
tions under which these possibilities are likely to arise. As galaxies are the
basic constituents of the universe, to examine the distant future of the uni-
verse we must consider the long term evolution of a typical galaxy. We will
first assume that we are in an open universe, or, at any rate, that an
indefinite time in the future is available. It is worth noting that by taking
the mass density of the universe to be above but sufficiently close to the
critical density, we can get models of the universe which have a finite but
arbitrarily long life-time.

11.2 Three ways for a star to die

In any amount of matter there is a tendency for the matter to collapse
towards the centre of mass due to the gravitational attraction of different
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parts for each other. In a star this inward force is balanced by the release of
energy during nuclear burning in which hydrogen is converted into helium
and helium into heavier nuclei. At this stage the material of the star can be
approximated by an ideal gas, in which the pressure p is related to its tem-
perature T and number density n by the relation:

p�nkT, (11.1)

where k is Boltzmann’s constant (there should not be any confusion with
the k used in the Robertson–Walker metric). As the star loses energy and
its temperature decreases, this thermal energy, after a few billion years, is
insufficient to balance the inward force of gravity. The star contracts and
becomes more dense so that the electrons are eventually stripped off the
atoms and run about freely in the material of the star. They then exert a
Fermi pressure due to the Pauli exclusion principle. When the density is
about 5	106 g cm�3 this electron degeneracy pressure is given by, restor-
ing c (Chandrasekhar, 1939):

p�hcn4/3. (11.2)

At lower densities p is proportional to n5/3.
For a spherically symmetric star, p and the mass density � satisfy the

equation of hydrostatic equilibrium at radius r:

dp/dr��G[m(r)/r2]�, (11.3)

where m(r) is the mass inside radius r. One can show that in order to
support itself against collapse the pressure pc at the centre must be

pc�GM2/3�4/3, (11.4)

where M is the total mass of the star. Thus the pressure available at high
densities (11.2) and the pressure needed for support have the same depen-
dence on n (since � is proportional to n). It can be shown that when M is
less than about 1.4 times the mass of the Sun, the electron degeneracy
pressure can permanently halt collapse (Chandrasekhar, 1935, 1939) and
one gets white dwarfs whose size is roughly that of the Earth. These even-
tually become cold and stop radiating altogether to become what are
sometimes called ‘black dwarfs’. The nuclei in these stars are mostly those
of iron, since the latter has the most stable nucleus.

When the mass of the star is greater than 1.4 solar masses, or if there is a
sudden inward pressure due to an explosion of the outer layers, the elec-
tron degeneracy pressure is insufficient to balance gravity. The star contin-
ues to collapse and becomes more dense until the electrons are squeezed
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into the protons of the nuclei to become neutrons and different nuclei coa-
lesce until the star becomes a giant nucleus – a neutron star. If the mass of
the star is less than a certain critical mass Mc (this is about 2–3 solar
masses) the neutron degeneracy pressure and the forces of nuclear interac-
tions are sufficient to balance gravity. To find Mc one must appeal to
general relativity, since Newtonian theory is inadequate for the strong
fields generated by the neutron stars. For the latter (11.13) is replaced by

dp/dr�G(��p/c2)[m(r)�4�r3p/c2]/{r[r�2Gm(r)/c2]}. (11.5)

Equation (11.5) implies that more pressure is needed to support a star for
strong fields than is implied by Newtonian theory. Neutron stars are the
pulsars, discovered in 1967, of which more than six hundred have been
found since the original discovery (Hewish et al., 1968).

When the mass of the star is greater than Mc after shedding any mass,
even neutron degeneracy pressure and the forces of nuclear interactions
are insufficient to halt the collapse. In this case there is no known force
which can halt the collapse and it is assumed that the star continues to col-
lapse until it gets literally to a point – into a space-time singularity akin to
the space-time singularity of the very early universe, about the nature of
which, as seen earlier in this book, there is a great deal of uncertainty. This
collapse results in a black hole which is a spherical region of radius
2GM/c2, where M is the mass of the star. If M is ten times the solar mass
then this radius – the Schwarzschild radius – is about 20–30 km. The
surface of the sphere of the Schwarzschild radius is called the horizon and
the spherical region is called a black hole because once the star collapses to
within this region nothing – not even light – can escape. There may, of
course, be radiation from infalling matter just before the matter enters the
region. The black hole may be detected by such radiation and also by its
gravitational influence on nearby stars, etc. (see, for example, Thorne,
1974).

The above three final states, namely, those of black dwarf, neutron star
and black hole, occur for masses not too small compared to the mass of
the Sun. For smaller bodies such as the Earth and the Moon or a piece of
rock, gravity can be balanced indefinitely by the ordinary pressure that
matter exerts in resisting being compressed.

11.3 Galactic and supergalactic black holes

Consider the fate of a typical galaxy assuming we have an indefinite period
ahead. All stars will ultimately be reduced to black dwarfs, neutron stars
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or black holes. As the galaxy will be losing energy by radiation all the time,
including the thermal energy of any hot interstellar gas, given sufficient
time the galaxy will eventually consist of a gravitationally bound system of
black holes, neutron stars, black dwarfs and cold interstellar matter in the
form of planets, asteroids, meteorites, dust, etc. From the average energy
and luminosity of a typical galaxy one can deduce that the time scale to
arrive at this state will be anything between 1011 and 1014 years.

This situation will continue for thousands of billions of years without
any significant changes within galaxies, but galaxies which are not in the
same cluster will continue to recede from each other. The next significant
change in a galaxy will take much longer than earlier changes such as stars
becoming black holes, etc. The stars (henceforth by ‘stars’ we mean black
dwarfs, neutron stars or stellar size black holes) in the galaxy will eventu-
ally tend to form a dense central core with an envelope of low density. The
long term evolution of such a system is very difficult to predict accurately
(see, for example, Saslaw, 1973, and Saslaw, Valtonen and Aarseth, 1974).
Some stars, if they are involved in close three-body or many-body encoun-
ters, may be thrown out of the galaxy altogether. Such encounters are rela-
tively rare in time scales of a few billion years. The time scales over which
such processes dominate can be worked out as follows (Dyson, 1979). If a
galaxy consists of N stars of mass M in a volume of radius R, their root-
mean-square velocity will be of the order

��(GNM/R)1/2. (11.6)

The cross-section for close collision is

��(GM/� 2)2�(R/N)2, (11.7)

and the average time spent by a star between two collisions is

tav�(���)�1�(NR3/GM)1/2, (11.8)

where � is the density of stars in space. For a typical galaxy N�1011,
R�3	1017 km, so

tav�1019 years. (11.9)

Dynamical relaxation of the galaxy takes about 1018 years. The combined
effect of close collisions and dynamical relaxation is to produce a dense
central core which eventually collapses to a single black hole, while stars
from the outer regions evaporate in a time scale of that given by (11.9).
The number of stars that will escape is very difficult to determine; perhaps
99%. Thus in about 1020 years or somewhat longer the original galaxy will
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be reduced to a single ‘galactic’ black hole of about 109 solar masses, while
stray stars and other small pieces of matter thrown out of the galaxy will
be wandering singly in the intergalactic space.

It is likely that a cluster of galaxies will continue to be gravitationally
bound as the expansion of the universe proceeds. Through long term
dynamical evolution as described above the cluster will also eventually
reduce to a single ‘supergalactic’ black hole of about 1011 or 1012 solar
masses, a large fraction of the stars having evaporated.

This process of the transformation of the original galaxy into a single
black hole may be slightly affected by gravitational radiation. When a
number of stars go round each other, they radiate gravitational waves, thus
lose energy and become more tightly bound. The time scale over which
this process has a significant effect on the galaxy is anything from 1024 to
1030 years (Islam, 1977; Dyson, 1979). Thus the effects of dynamical evolu-
tion will be more dominant than those of gravitational radiation.

11.4 Black-hole evaporation

According to the laws of classical mechanics, a black hole will last forever.
It was shown by Hawking (1975) that when quantum phenomena are taken
into account, a black hole is not perfectly black but gives off radiation such
as electromagnetic waves and neutrinos. ‘Empty’ space is actually full of
‘virtual’ particles and antiparticles that come into existence simultaneously
at a point in space, travel a short distance and come together again, annihi-
lating each other. The energy for their existence can be accounted for by
the uncertainty principle. In the neighbourhood of the horizon of a black
hole it might happen that one particle from a virtual pair falls into the
black hole with negative energy, while its partner, unable to annihilate,
escapes to infinity with positive energy. The negative energy of the falling
particle causes a decrease in the mass of the black hole. In this manner the
black hole gradually loses mass and becomes smaller, eventually to disap-
pear altogether. The time scale for its disappearance is given by

tbh�G2M3/3c4. (11.10)

For a black hole of one solar mass tbh�1065 years.
A black hole radiates as if it were a black body with a temperature

which is inversely proportional to its mass. Such a black-body spectrum
existed, as we have seen earlier, in the radiation in the early stages of the
universe; it is describable in terms of a single temperature. The tempera-
ture of a black hole is of the order of 1026/M K where M is the mass of the
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black hole in grams. For a supergalactic black hole this amounts to about
10�18 K. If the temperature of the cosmic background radiation is higher
than this, the black hole will absorb more energy than it radiates. But as
the universe expands, the temperature of the background radiation, which
is proportional to (R(t))�1, decreases. In the Einstein–de Sitter universe a
temperature of 10�20 K would be reached in 1040 years, whereas in the dust
universe with k��1 (where R is asymptotically proportional to t) this
temperature would be reached in 1030 years. For models with a positive
cosmological constant this temperature would be reached earlier, since for
these models R behaves exponentially (asymptotically) with time. Thus by
the time galactic and supergalactic black holes are formed, or some time
afterwards, the temperature of the black holes will exceed that of the
background radiation and they will begin to radiate more than they
absorb.

From (11.10) we see that a galactic black hole will last for about 1090

years while a supergalactic black hole will evaporate completely in about
10100 years. Thus after 10100 years or so black holes of all sizes will have dis-
appeared, that is, all galaxies as we know them today will have been com-
pletely dissolved and the universe will consist of stray neutron stars, black
dwarfs and smaller planets and rocks that were ejected from the galaxies.
There will be an ever-increasing amount of empty space in which there will
be a minute amount of radiation with an ever-decreasing temperature.

11.5 Slow and subtle changes

Consider the long term behaviour of any piece of matter, such as a rock or
a planet, after it has cooled to zero temperature. Its atoms are frozen into
an apparently fixed arrangement by the forces of cohesion and chemical
binding. But from time to time the atoms will move and rearrange them-
selves, crossing energy barriers by quantum mechanical tunnelling. Even
the most rigid materials will change their shapes and chemical structure on
a time scale of 1065 years or so, and behave like liquids, flowing into spher-
ical shape under the influence of gravity.

Any piece of ordinary matter is radioactive because it can release energy
by nuclear fusion or fission reactions which take place by quantum tunnel-
ling. All pieces of matter other than neutron stars must decay ultimately to
iron, which has the most stable nucleus. The life-time for decay is given
approximately by the Gamow formula exp[Z(M/m)1/2], where Z is the
nuclear charge, M the nuclear mass and m the electron mass. To get the
actual life-time one has to multiply this pure number by some typical
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nuclear time scale, say 10�21 s. This gives a life-time of from 10500 to 101500

years. On this time scale ordinary matter is radioactive and is constantly
generating nuclear energy.

What will eventually happen to black dwarfs and neutron stars? If a
black dwarf is compressed from outside by some external agent, it will col-
lapse to a neutron star. In the near emptiness of the future universe there
will be no external agent to compress it. However, the ‘compression’ can
occur spontaneously by quantum tunnelling. The time scale can be calcu-
lated by another form of the Gamow formula, and is given as 1010⁷⁶ years
(Dyson, 1979). In a similar period, a neutron star will collapse into a black
hole by quantum tunnelling and eventually evaporate by the Hawking
process. Thus ultimately all black dwarfs and neutron stars will also disap-
pear.

The decay of black dwarfs and neutron stars (indeed, of smaller pieces
of matter) may occur earlier than 1010⁷⁶ years if black holes of smaller than
stellar size are possible. Let MB be the minimum size of a black hole, that
is, suppose it is not, in principle, possible for a black hole to exist with
mass less than MB. Then the following alternatives arise:

(a) MB�0. In this case all matter is unstable with a comparatively
short life-time.

(b) MB is equal to the Planck mass: MB�MPL�(hc/G)1/2�2	10�5 g.
This value of MB is suggested by Hawking’s theory, according to
which every black hole loses mass until it reaches a mass of MPL,
at which point it disappears in a burst of radiation. In this case
the life-time for all matter with mass greater than MPL is 1010²⁶

years, while smaller pieces are absolutely stable.
(c) MB is equal to the quantum mass MB�MQ�hc/GmP�3	1014 g,

where mp is the proton mass. MQ is the mass of the smallest black
hole for which a classical description is possible (Harrison,
Thorne, Wakano and Wheeler, 1965). In this case the life-time for
a mass greater than MQ is 1010⁵² years.

(d) MB is the Chandrasekhar mass Mch�4	1033 g. In this case the
life-time for a mass greater than Mchis 1010⁷⁶ years, as mentioned
earlier.

The long term future of matter in the universe depends crucially on
which alternative is correct. Dyson (1979) favours (b). In the analysis so far
we are assuming that the ‘stable’ elementary particles such as electrons and
protons are, in fact, stable. This may not be the case over the periods which
we have been discussing.
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Barrow and Tipler (1978) show, under certain assumptions, that the uni-
verse will become increasingly irregular and unstable against the develop-
ment of vorticity. This conclusion, however, is based on the assumption
that the universe will consist of pure radiation in the long run, with all
matter decaying. The matter density of stable matter varies as R�3 while
that of radiation varies as R�4. Thus radiation will dominate only if all
matter decays. It is not clear how far this assumption is justified. Page and
McKee (1981) find that a substantial proportion of the electrons and posi-
trons (the latter arising from the decay of protons) will never annihilate.

The concept of the passage of time loses some of its meaning when
applied to the final stages of the universe. Time is measured against some
constantly changing phenomena. The only way in which the passage of
time will manifest itself finally will be, presumably, the density and temper-
ature of the background radiation, which will approach zero but never
quite reach it.

The long term future of life and civilization has been discussed by
Dyson (1979) (see also Islam (1979a,b, 1983a), and Krauss and Starkman
(1999)).

11.6 A collapsing universe

The long term future of the universe is very different if the universe stops
expanding and starts to contract. The life-time for a closed universe
depends on the present average density of the universe.

Suppose the present density of the universe is twice the critical density.
The universe will then expand to about twice its present size and start to
contract. The total duration of the universe will be about 1011 years. The
cosmic background radiation will go down to about 1.4 K and start to rise
thereafter. The turning point will come in a few tens of billions of years –
there will not be much change in the universe during this time. After the
turning point, all the major changes that took place in the universe since
the big bang will be reversed. In a few tens of billions of years, the cosmic
background temperature will rise to 300 K, and the sky will be as warm all
the time as it is during the day at present. After a few million years, galax-
ies will mingle with each other and stars will begin to collide with each
other at frequent intervals. But before they get disrupted by such collisions,
they will, in fact, dissolve because of the intensity of the background radi-
ation (Rees, 1969), which will eventually knock out all electrons from
atoms and finally neutrons and protons from nuclei. Ultimately, there will
be a universal collapse of all matter and radiation into a compact space of
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infinite or near infinite density. It is not clear what will happen after such a
collapse. Indeed, it is not clear if it is meaningful to talk about ‘after’ the
final collapse, just as it is unclear whether it is meaningful to ask what hap-
pened ‘before’ the big bang.

In the steady state model proposed by Bondi and Gold (1948) and by
Hoyle (1948) mentioned earlier, it is, in principle, possible for the universe
to stay the same into the indefinite future. But as we have seen such a
model is observationally untenable. It is also not clear in what way the
above scenario is affected by the inflationary models, in which it appears
possible to have different universes.

A collapsing universe 219

TLFeBOOK



Appendix

A1. Introduction

In this appendix we consider topics some of which are extensions of
material covered in the earlier chapters, and other additional ones which
are not necessarily recent developments, but may have relevance for cos-
mological studies generally. We discuss both observational and theoretical
matters.

A2. Neutrino types

A significant discrepancy between theory based on the standard model of
particle physics and observation of the flux of solar neutrinos on the
surface of the Earth has been noticed for some years. In spite of much
effort, an adequate explanation of this discrepancy has not been found.

As discussed in Section 8.8, the number of types of neutrino is of cos-
mological importance. Among relevant points to emerge at the 14th
International Conference on Neutrino Physics and Astrophysics at CERN
in 1990 was that there are three neutrino types unless the mass of the
fourth one exceeds 45 GeV; the relic abundance of such a heavy neutrino is
not sufficient to contribute to dark matter (Griest and Silk, 1990; Salati,
1990). These results come from LEP, the Large Electron Positron collider
at CERN.

A large detector has been set up at Mount Ikenoyama in an active zinc
mine in Japan, known as the Super-Kamiokande Detector (Kearns, Kajita
and Totsuka, 1999). The original experiment was concerned with the
detection of proton decay, and was set up at Kamioka, a mining town
about 250 km from Tokyo. The name ‘Kamiokande’ stands for ‘Kamioka
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Nucleon Decay Experiment’. A similar experiment was the IMB one
located in a salt mine near Cleveland, Ohio. Although no proton decays
have been seen, the same experimental set-up is suitable for detecting neu-
trino oscillations, because hundreds of events have been recorded of neu-
trino interactions. Super-Kamiokande, or Super-K, is a similar machine
but about ten times bigger. Interesting data are beginning to emerge, with
some corroboration from experiments carried out elsewhere. These indi-
cate that muon-neutrinos transform into other kinds, perhaps tau-
neutrinos. The expected flux of muon-neutrinos, which include those
coming through the Earth from below as well as those coming from above,
which should be about twice that of the electron-neutrino flux, amounts to
only 1.3 times instead.

Figure A1 gives a graph indicating this discrepancy. Neutrino oscilla-
tion, as stated earlier, indicates mass; the present discrepancy leads to mass
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of the heavier neutrino of 0.03 to 0.1 eV. This is small enough to be accom-
modated in the Standard Model.

An experiment carried out at Los Alamos National Laboratory
detected electron-neutrinos from a source that is meant to produce only
muon-neutrinos, indicating oscillations. These results, interesting as they
are, will be clarified by further experiments at these laboratories, and other
ones such as the Sudbury Neutrino Observatory in Ontario and the Chooz
nuclear power station in Ardennes, France. Theoretically also there are
various alternative possibilities which have to be carefully examined. These
matters are relevant to aspects of cosmology as well as to particle physics.

A3. A critique of the standard model

Arp, Burbidge, Hoyle, Narlikar and Wickramasinghe (1990) are very criti-
cal of the standard model as described in the previous chapters and as
believed by a great majority of cosmologists. Arp et al. cite various pieces
of evidence to support their contention that, ‘perhaps, there never was a
Big Bang’. They also claim that the large red-shifts discovered so far, or at
least substantial portions thereof, are in fact a result of intrinsic properties
of the sources so that they do not lie at large cosmological distances, but
are much closer, at distances that would follow from the Hubble Law for
red-shifts z+0.1. One of the reasons for this view is the discovery by Arp et
al. of cases of galaxies of very different red-shifts which are found very
close together on the photographic plate. Opponents of this view contend
that these are purely chance alignments of galaxies which are in reality very
far from each other. Arp et al. are aware of this criticism but they insist that
their findings are statistically significant. Arp et al. discuss at length the
various other reasons for their lack of belief in the standard model. For
example, they claim that the cosmic background radiation is not a relic of
the primordial big bang, but is a result of the thermalization (that is,
attainment of black-body spectrum) of the radiation given off after galaxy
formation, and they suggest mechanisms through which thermalization
could have occurred. They admit that they have no clear alternative for the
standard model, but they suggest that a variation of the steady state model
(see Section 8.3), which can be considered as one of the forms of the scale-
invariant conformal theory of gravitation put forward by Hoyle and
Narlikar (see, e.g., Hoyle and Narlikar, 1974), fits the current observations,
as interpreted by them, better. Various points Arp et al. discuss are of
intrinsic interest, whether or not their overall view is correct. Although this
is a minority and an unpopular view, we believe such criticism is healthy for
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the subject of cosmology, for no theory or model should turn into a set of
dogmas (Oldershaw, 1990). The onus is on the adherents of the standard
model to provide adequate answers to these criticisms. Presumably some
adherents would claim that adequate answers have already been given, but
one can expect more answers to appear in the near future.

Hoyle, Burbidge and Narlikar have explained in detail this critique of
the standard model in an interesting book (Hoyle, Burbidge and Narlikar,
2000), which is of considerable importance to cosmologists, even if they
don’t agree with the critical point of view. Chapters such as those entitled
‘The observational trail 1931–56, the determination of H0 and the age
dilemma’, ‘The extension of the redshift-apparent magnitude diagram to
faint galaxies 1956–95’, ‘The cosmic microwave background – an histori-
cal account’, ‘The origin of the light elements’, and others, by three experi-
enced cosmologists, are extremely valuable for students of cosmology of
all opinions. One can hope that the publication of this book will stimulate
critical examination of various aspects of cosmology and lead to genuine
progress.

A4. An accelerating universe?

Since the last two years or so evidence appears to be accumulating for the
existence of a positive cosmological constant, which would imply an accel-
erating universe. There is some support for the latter possibility from a
detailed study of the spectrum of the cosmic background radiation
(Perlmutter et al., 1998; Krauss, 1998, 1999). This circumstance, which
some regard as a revolution in observational cosmology, has arisen mainly
due to major improvement in techniques for observing supernovae explo-
sions in distant galaxies, which had not been hitherto possible. The
method involves surveying the sky with powerful optical telescopes at
intervals of a few days and making a detailed comparison to see if any gal-
axies display brightening. In this manner it is possible to detect numerous
Type Ia (SNe Ia) supernovae, whose absolute luminosities are known to
within a reasonable range. The red-shift can be measured and so an analy-
sis can be carried out which can provide information about the evolution
of the universe in earlier epochs, some billions of years ago. This pro-
gramme has, of course, been carried out for decades, but never before has
anything like the present accuracy been attained in the measurement of
light which left the objects concerned at an earlier time which is a
significant fraction of the age of the universe. (See also Branch, 1998;
Hogan, Kirshner and Suntzeff, 1999.)
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If the new observations are valid and confirmed, the implications for cos-
mology, needless to say, are very important. The observations will doubtless
be repeated many times in the next few years, and the results of these obser-
vations will be eagerly awaited by all cosmologists. At the same time, on the
theoretical front, the causes for a positive cosmological constant, if indeed
there is one, will have to be assiduously searched. Various reasons have been
given, such as vacuum fluctuations (by Zel’dovich; see Weinberg, 1989), but
these arguments are tentative and there are difficulties with each. Doubtless
Einstein would have been intrigued by these developments!

A5. Particle physics and quantum field theory

In the last few years, an intimate connection has developed between cos-
mological studies and the theory of elementary particles, especially with
regard to the early, very early universe and the origin of the universe. A
relatively non-technical account of this connection has been given in the
chapters on the early and very early universe. A somewhat more techni-
cal account of an aspect of this connection has been presented in the
chapter on quantum cosmology. There are many good books containing
the technical material required on various aspects of quantum field
theory – quantum electrodynamics, and gauge theories such as the
Glashow–Weinberg–Salam electro-weak theory and quantum chromody-
namics. The older approach of canonical quantization is described in
standard books by Schweber (1961) and by Bjorken and Drell (1965)
among others, while path integral quantization, more suitable for gauge
theories, is discussed in books by Ryder (1996) and Itzykson and Zuber
(1980). The preliminary account of path integrals and of the Schrödinger
functional equation given here may be useful in this context, in a small
measure. Relatively non-technical but useful accounts of these and related
topics are contained in reviews by Salam (1989), Taylor (1989) and others.

In this section we shall describe briefly an important ingredient that
forms a part of these considerations, namely, Feynman diagrams; these
have been mentioned in Chapter 8. Feynman diagrams can be derived
either from the canonical quantization of fields, or from the path integral
formalism. We mention the result, as described on pp. 229–232 of the
book by Ryder (1996). The two second-order diagrams (with two vertices)
displayed in Fig. A2 contribute to pion-nucleon scattering (these are to be
read from left to right, unlike the diagrams of Fig. 8.2 which go from the
bottom to the top). These involve interaction of a (pseudo-)scalar particle
(pion) with a spinor particle (nucleon). For example, in ��p scattering, the
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diagram of Fig. A2(b) could be represented by those of Fig. A3; Fig.
A3(a) displays the particles and Fig. A3(b) the four-momenta of the same
particles. For a scalar or a pseudoscalar particle interacting with a spinor
particle, the following rules apply for constructing the nth-order Feynman
diagram (with n vertices) (the spinors u(p), etc., are defined below):

(1) The amplitude for a particular process, with specified ingoing and
outgoing particles, for a particular order is obtained by adding the
amplitudes for all topologically inequivalent connected diagrams;
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cated to distinguish it from the four-momentum p; n is the neutron.
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Fig. A2 gives two for the second order, Fig. A4 displays some
fourth-order diagrams. Scalar lines are dotted, spinor lines contin-
uous.

(2) Each incoming spinor particle corresponds to a factor u( p) (v( p)
for its antiparticle), and each outgoing spinor particle to a factor
u( p).

(3) With each vertex goes a factor ig (for scalar interaction) or ig�5

(for pseudescalar), with g as the suitable coupling constant (occur-
ring in the Lagrangian); and a factor (2�)4�4 (incoming momenta).

(4) For each internal continuous line, i.e., a spinor propagator of
momentum p, insert the factor:

d4p; �p���p
�
. (A1)

(5) For each (pseudo-)scalar propagator, include the factor:

d4p. (A2)

(6) Integrate over internal momenta.

Following these rules, the contribution to ��p scattering from the diagram
of Fig. A3 can be written as follows (this is Ryder’s Eq. (6.173)) (the
indices s�, s on u and u take values 1, 2 and refer to different spinors; see
Ryder’s Eq. (2.139)):

sfi��2i�4(Pf�Pi)g
2(2�)4u s�( p�) �5 �5u

s( p), (A3)
�.( p � k�) � M
( p � k�)2 �M 2

i
( p2 � m2)

1
(2�) 4

1
(2�)4

i
(�p � M)
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Fig. A4. Some fourth-order diagrams for scalar/pseudoscalar-spinor
(e.g. pion-nucleon) scattering. The last diagram is disconnected and is
not counted (from Ryder, 1996, p. 231).
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where Pi, Pf are respectively the total initial and final four-momentum; the
delta-function implies conservation: Pi�p�k�Pf�p��k�. The spinors
u( p), etc., are Fourier transforms of the spinors  , in configuration space,
which are solutions of the Dirac equation:

(i���
�

�m) (x)�0, (A4)

�� being the Dirac matrices (�0, �1, �2, �3), with �5�i�0�1�2�3. The u,  ̄

are conjugate spinors defined in terms of the complex conjugate of the
components of u,  . The details of these functions, and the manner in
which actual cross sections can be derived from the functions represented
by the diagrams, can be found in the lucid book by Ryder (1996), which
explains many aspects of particle physics and quantum field theory.

We indicate briefly how Feynman diagrams can be derived from the
path integral formalism, for self-interacting scalar fields. The path integral
over coordinates defined by (10.73) and over the metric as in (10.76) can be
generalized to an integral (more appropriately called a ‘functional inte-
gral’) over, say, a scalar field interacting with itself through a Lagrangian
such as that used in (10.17) (or (10.24)), as follows:

W[J ]� ��exp{i d4x[��J(x)�(x)]}, (A5)

where a ‘source’ term J(x)�(x) has been added to � so that the functional
integral becomes a functional of J(x). If one now takes repeated func-
tional derivatives of W [J ] with respect to J(x1), J(x2), . . . for different
space-time points x1, x2, . . . and sets J�0, one obtains the usual Green’s
functions of quantum field theory. The Fourier transforms of these func-
tions then yield the familiar Feynman diagrams when expanded in a suit-
able power series. Some problems arise about making the integral (A5)
well defined. These may be dealt with by going over to Euclidean space
with imaginary time: (�,x), ��ix0, or by adding to the integrand in the
exponent an imaginary term quadratic in �(x): [��(1/2)i8�2�J(x)�(x)]
with 8 a small positive constant.

A6. Cosmic background radiation

One of the important observations relevant to cosmology was that carried
out by the Cosmic Background Explorer (COBE) satellite (Lindley, 1990a;
see also Carr, 1988; Hogan, 1990). This satellite carried an instrument
which was especially designed to measure the departure in the cosmic
background radiation from a smooth ‘reference’ black body. As indicated
earlier, any deviation from a smooth background, that is, any ‘graininess’

��
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that is found, and its magnitude, can give useful information about pri-
mordial galaxy formation or other similar characteristics of the early uni-
verse. The range of wavelengths over which measurements were taken by
the satellite was from 100 �m to 1 cm. It was found that departures from
a black-body spectrum, if any, are less than 1%. The observations by
COBE, the results of which were presented at the April 1992 meeting
of the American Physical Society in Washington DC (see News and
Views, Nature, Lond. 356, 741 (30 April 1992)), reveal slight departures
from uniformity, the variation in temperature �T being given by
�T/T�(5%1.5)	10�6, over angles up to 90°. This is an extremely impor-
tant observation which is likely to have a significant effect on theories of
galaxy formation.

A7. Quasar astronomy

A significant advance in quasar astronomy (see Section 5.3) has been the
observation of the optical spectra of the quasar Q1158�4635 (red-shift
z�4.73) and ten other quasars, with red-shifts z�4 carried out by
Schneider, Schmidt and Gunn (1989). Detailed statistical analysis remains
to be done; these analyses are likely to provide clues to the physical condi-
tions obtaining in the intergalactic medium in the very early evolution of
the universe. An analysis of the fine structure in the absorption spectrum
of a strong distant source such as a quasar can give useful information on
types and concentrations of the intervening mass. This could possibly
provide some clue to the problem of ‘missing’ or ‘dark’ matter.

A8. Galactic distribution

Broadhurst et al. (1990) (see also Davis, 1990) have studied large-scale dis-
tribution of galaxies at the galactic poles, both north and south. They find
indications that galaxies are not distributed randomly but are clustered on
scales of 5h�1 Mpc, where h is a constant denoting the uncertainty in the
value of H0; H0�100h km s�1 Mpc�1, with a likely value in 0.5+h+1. For
this survey, data are taken from four different surveys at the north and
south galactic poles. They find indications of periodic oscillations of
density and evidence of structure at the largest scale studied by them. They
emphasize the tentative nature of these observations, which need to be
confirmed. If confirmed, these observations may have implications for the-
ories of galaxy formation and for inflationary models.
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A9. Value of H0 using planetary nebulae

There has been an estimate of the value of H0 by Jacoby, Ciardullo and
Ford (1990) (see also Fukugita and Hogan, 1990) which seems to be of
considerable interest. As is clear from the earlier chapters, a correct obser-
vational determination of the value of H0 is one of the most important
problems in cosmology. As indicated earlier, the main difficulty here is to
determine accurately the distance of galaxies which are relatively far; this
is usually done by comparing their luminosity with that of standard
candles such as Cepheid variables and Type Ia supernovae. The former
exist only for nearby galaxies, while the latter are rare events. Jacoby et al.
have been able to determine the distance to several galaxies in the Virgo
cluster more accurately than before with the use of another type of stan-
dard candle, namely, planetary nebulae. The latter are clouds of radiating
gas to which a star usually transforms towards the end of its life, when its
hydrogen fuel is exhausted and it is burning only helium. The interesting
thing is that there seems to be a maximum intrinsic brightness associated
with planetary nebulae, the theoretical reason for which is not entirely
clear; this could be to do with the maximum mass of the core of a star
nearing its end – one which does not become a neutron star or a black hole
– the so-called Chandrasekhar mass (around 1.4 solar masses) (see Section
11.2). Another advantage of the technique used by Jacoby et al. seems to
be that planetary nebulae seem to emit most of their energy in a narrow
spectral band. This results in ease of detection and necessity of observing
at a single epoch, unlike Cepheids. Hitherto the value of H0 has been
uncertain by a factor of about 2. Jacoby et al. claim to have calculated H0

to within 15% in the range 75–100 km s�1 Mpc�1, which is in the higher
range of the previous uncertainty of 50–100 km s�1 Mpc�1. This would
have serious implications for cosmology, if confirmed. For example, this
would imply that the universe is somewhat younger than previously
believed. (See (4.4), (4.25) and Section 4.2).

A10. Cosmic book of phenomena

Peebles and Silk (1990) have compiled an interesting ‘Cosmic book of phe-
nomena’ comparing five general theories for the origin of galaxies and
large-scale structure in the universe by studying how well these theories are
able to explain 38 different observational phenomena. This follows their
earlier ‘book’ (1988) which dealt exclusively with large-scale structure. As
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mentioned in Chapter 4, estimates of the value of 
, the density param-
eter (see below (4.9)) based on observations and on the dynamics of
systems of galaxies, yield a value somewhat less than unity, around 0.1.
Theorists prefer a value close to unity, for reasons given in Section 9.1
((9.1a), (9.1b)). The two points of view here are therefore, roughly speak-
ing, firstly, that 
�0.1 with the mass density consisting mainly of ordi-
nary (baryonic) matter and, secondly, that the universe is dominated by
some exotic non-baryonic matter which interacts weakly so that it is not
readily detected (dark matter). Peebles and Silk examine the following five
general theories which purport to explain the above scenarios, by seeing
how well they deal with 38 different observational constraints. The first is
the cold dark matter (CDM) theory (Frenk et al, 1988, 1990) in which the
universe is Einstein–de Sitter (see Section 4.2), dominated by matter with
negligible initial pressure (cold matter) that interacts weakly, and galactic
structure emerges through suitable primeval density fluctuations. The hot
dark matter (HDM) model (Zel’dovich, Einasto and Shandarin, 1982) has
particles of dark matter with primeval velocity typical of neutrinos of
mass about 30 eV; the remnant neutrinos make 
�1 (see Section 8.8). In
the string theories (STR) structure is formed by seeds of primeval non-
linear perturbations; we shall come back to these theories. Weinberg,
Ostriker and Dekel (1989) attempt to explain the origin of structure in
what Peebles and Silk call the explosion (XPL) picture, in which locally
inserted energy, which could be from early supernovae, creates ridges of
baryons which subsequently disintegrate to form new star clusters. In the
baryonic dark matter (BDM) theory, unlike in the CDM theory, most of
the galaxy masses were assembled at red-shifts z210. Peebles and Silk
define a ‘quality rating’ parameter r, as follows

r� (1�2wp�w), (A.6)

where p is the probability for the theory and w is the weight for the phe-
nomenon that is being explained. The parameter r has the character of a
probability. If the weight w for the phenomenon is high, w�1, then the
rating r is nearly the same as p, the probability that the theory explains the
phenomenon. If the weight is very low, w�0, then r�0.5, independent of
p. Other cases fall in between these extreme cases. Peebles and Silk
combine the ri for 38 phenomena and compute the product 9ri, which is
then used to determine the overall rating. An improbable theory would
have a significant number of small ri, whereas a ‘good’ theory would have
more ri near unity. Peebles and Silk find no clear winners but the CDM
and BDM theories seem to them to be slightly ahead of the rest. As exam-

1
2
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ples, we consider two of the phenomena in the list and give the weights w
and the ratings r. The first one is that the isotropy of the cosmic back-
ground radiation is given by �T/T�2	10�5 at around 30 arcmin. The
weight w and the rating r for the five theories CDM, HDM, STR, XPL
and BDM are respectively 1.0, 0.95, 0.05, 0.70, 0.70, 0.70. The second one
is that, for the phenomenon that there are clusters of galaxies as massive as
the Coma cluster at z�1, these quantities have the values 0.8, 0.14, 0.42,
0.86, 0.86, 0.86, respectively. These two phenomena are taken at random
from the list; there are 38 such phenomena in the list, as mentioned earlier.

A11. Cosmic strings

As mentioned earlier (see Section 9.5), among the possible relics of the
phase transition of the very early universe are cosmic strings, which can be
considered as thin lines of concentrated energy. If cosmic strings exist,
they could be important for the formation of galaxies and large-scale
structure of the universe. The evidence for cosmic strings is hard to find;
this could come, for example, from gravitational radiation, which is notori-
ously difficult to detect. To be important for galaxy formation the mass per
unit length of the strings should be in the region of 1022 g cm�1, which is
roughly the magnitude predicted by GUT. Such densities would produce
certain potentially detectable observational effects, such as double images
of distant galaxies and quasars due to gravitational lensing, certain dis-
continuities in the microwave background radiation, in addition to effects
on gravitational radiation mentioned. The theoretical discussion of
cosmic strings is difficult and interesting; they form a tangled web per-
meating the entire universe, with closed loops or extending to infinity
without ends. Their evolution is believed to be scale-invariant; statistically
the network is the same at all times. This implies that at any time t, the dis-
tance between nearby long strings is of the order of the horizon �ct and
typical loop size is a certain fraction of this distance. Simulations (Bennett
and Bouchet, 1989; Allen and Shellard, 1990; see also Vilenkin, 1990)
show that long strings have a significant fine structure on a scale somewhat
smaller than the horizon, contrary to what was believed earlier. A major
portion of the structure is in the sharp angles, ‘kinks’, at points where
strings are reconnected. The typical loop size l is also smaller than
expected: l��ct. The new findings have interesting consequences for
galaxy formation. There are two ways cosmic strings are believed to assist
galaxy formation: gravitational attraction of loops, and formation of wakes
behind fast-moving long strings; these were thought to be comparable.
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The new studies indicate, since loop sizes may be much smaller, that the
second process may dominate. Further studies are needed to clarify
various aspects of this interesting point.

A12. Topological structures

Turok (1989) (see also Friedman and Morris, 1990) has considered topo-
logical structures in the very early universe. As has been noted earlier, the
astonishing uniformity of the cosmic background radiation is difficult to
reconcile with the clumping of matter into galaxies and clusters. In
Chapter 8 we saw that the background radiation is composed of radiation
that left matter about 100 000 years after the big bang. As this radiation is
isotropic to 1 part in 104 or so, the density variation around the period the
radiation left matter could not have been significantly more than this frac-
tion. It is difficult to evolve galaxies with such small variations unless one
has exotic forms of matter. (In fact Arp et al., 1990, quoted earlier, cite this
as a reason why galaxies should have been formed before the background
radiation, although it is not clear if they can explain the extraordinary
smoothness of the radiation.) Turok (1989) suggests that topological
structures related to strings could provide ingredients for the formation of
galaxies. It was mentioned in Chapter 9 that the symmetry of the four
forces, namely, gravitation, electromagnetic, weak and the strong forces,
presumably was broken successively through phase transitions in the very
early universe. In addition to the example of freezing water cited in
Chapter 9, one can consider the breaking of symmetry when a ferromag-
net is cooled below 1043 K; this results in alignment of the randomly ori-
ented spins, which form distinct domains, as in Fig. A5. As mentioned in
Chapter 9, a similar breaking of symmetry may have occurred in the very
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early universe, which may be considered as being due to the appearance of
Higgs fields. A topological structure may be associated with a Higgs field,
which can be understood by considering a vector field pervading the uni-
verse, represented by an arrow of unit length at every point of the universe.
Two configurations have different topologies if they cannot be deformed
into each other by continuous changes. For example, if we consider a one-
dimensional ‘universe’ (e.g., a circle), then the two configurations (a) and
(b) of Fig. A6 cannot be continuously deformed into each other. These
two configurations have different ‘winding numbers’. (A typical element U
of a groups such as SU(2) can be regarded as a mapping from S 3, the
three-dimensional surface of a sphere in four-dimensional Euclidean
space, onto the group manifold of SU(2), that is, the space of parameters
characterizing the group SU(2), which is topologically the same as S 3. The
winding number of a particular class of mappings is the number of times
the spatial S3 is covered by the group manifold S 3. Gauge transformations
belonging to a group G, which can be any SU(N ), can be split up into
homotopy classes, each of which is characterized by a distinct winding
number). Essentially what may happen is that as a universe with a certain
topological structure evolves, because this structure is preserved (cannot
be made to ‘go away’) one may eventually get small regions of high energy
density (called ‘knots’), which may provide seeds for galaxy formation.

A13. Extended inflation

In Chapter 9 we saw that one of the properties of the observed universe
the inflationary models attempt to explain is the fact that 
, the density
parameter (see (9.1a), (9.1b)) is so close to unity. As mentioned earlier,
the essential idea is that the universe spends a very short period in its
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very early history in a supercooled state, when a large constant and posi-
tive vacuum energy dominates its density of energy. The subsequent
exponential expansion causes 
 to evolve towards unity. Also, inflation
expands a causally connected region that is small into one that is much
larger than the observable universe, thus solving the ‘horizon’ problem.
In the ‘old inflation’ of Guth, there were ‘bubbles’ of the true vacuum in
the supercooled state which could not merge and complete the phase
transition. In the ‘new inflation’ this problem could perhaps be solved,
but this required such ‘fine tuning’ of the parameters that it was not clear
that such fine tuning could be achieved. Steinhardt (1990), proposes a
model that he calls ‘extended inflation’ (see also Lindley, 1990b), which,
it is claimed, does not have the defects of earlier models in that there
exist ranges of parameters which allow a set of initial conditions that
lead to 
+0.5, so that consistency with observation is obtained. As in
‘old inflation’, in ‘extended inflation’ the barrier between the false and
true vacuum is finite, but the new feature here is that the strength of
gravitation varies with time, and this variation is related in a certain
sense to the expansion of the universe. Steinhardt also shows that in the
earlier ‘new inflation’ the fine tuning looked for could not have been
achieved.

A14. Quantum cosmology

In Chapter 10 on quantum cosmology it was stated that the expression
(10.37) for the amplitude has hidden in it many complexities, one of these
being similar to that encountered in Yang–Mills theories which was dealt
with by Faddeev and Popov (1967). In fact, because of the indefinite
metric and the nature of the space of geometries over which the path inte-
gral is taken, other complications arise of a different nature from that
encountered in Yang–Mills theories. A satisfactory and precise formula-
tion and definition of (10.37) (see also (10.55), (10.56)) still remains an
important problem in quantum cosmology (see Halliwell and Hartle,
1990; Halliwell and Louko, 1989a,b). An important aspect of the problem
of quantum cosmology is that of ‘decoherence’, that is, the nature of the
interference between different histories of the universe and the manner in
which these effects eventually disappear to leave the universe to evolve
classically subsequently (Gell-Mann and Hartle, 1990; see also Calzetta
and Mazzitelli, 1990).

We make some additional remarks about the Wheeler–De Witt equa-
tion; some of the earlier steps may be repeated, for convenience. As before,
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we set 3�c�1 and introduce coordinates so that the space-like hypersur-
faces are t�constant and the metric is written as follows (10.63):

ds 2�(N 2�NiN
i)dt2�2Nidxidt�hijdxidx j, i, j�1, 2, 3. (A7)

The three-vector Ni is a contravaniant three-vector with respect to purely
spatial transformations of (x1, x2, x3) and Ni is the corresponding covari-
ant three-vector derived with the use of the three-metric hij; N is a function
defined below. Again, Kij is the extrinsic curvature of the three-surface
t�constant, given by (10.64), where n� is the unit normal to the hypersur-
face t�constant, nj being the spatial part of the covariant components of
this vector. The quantities Kij can be evaluated in terms of N, Ni and hij as
follows (see, e.g., Misner, Thorne and Wheeler, 1973, p. 513). Note first
that the contravariant components of the metric ��� corresponding to �

��

given by (A7) can be written as follows (we first write �
��

):

�00�N 2�NiN
i, �0i��Ni, � ij��hij, (A8a)

�00�1/N 2, �0i��Ni/N 2, � ij�(�hij�NiNj/N 2), (A8b)

where hij is the inverse of hij and, as mentioned, Ni, Ni are related through
hij, that is,

hikhkj�� i
j, Ni�hijN

j. (A8c)

We leave it as an exercise for the reader to verify, that the ��� given by
(A8b) is the inverse of (A8a).

Next we show that the unit normal n� can be taken as follows:

n��(1/N,�Ni/N), (A9a)

with

n
�

�(N, 0, 0, 0), (A9b)

as can be verified with the use of (A8a–c). A vector within the surface
t�constant can be taken as m��(0, �x1, �x2, �x3)�(0, �xi). It is then
readily verified, with the use of (A8a–c) and (A9a,b), that

�
��

n�n��1, �
��

n�m��0, (A10)

verifying both that n� is normal to the surface t�constant and that it is of
unit length. To go back to (10.64), we define the second-rank tensor K


�
as

follows:

K

�

��n
�;
. (A11)
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With the use of (A8a,b), (A11) and (A9a,b), we find

Kij��nj;i��nj,i�n
�
��

ji

Kij�n0�
0
ji� N�0�(�

�j,i��
�i, j�� ij,�)

Kij� N�00(�0j,i��0i, j�� ij,0)

Kij� N�0k(�kj,i��ki, j�� ij,k)

Kij� (�Nj,i�Ni, j� )

Kij� (hkj,i�hki, j�hij,k)
Nk

2N

�hij

�t
1

2N

1
2

1
2

1
2
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Kij� (�Nj,i�Ni, j�hij)� �ij�
�

Kij� (�Nj /i�Ni /j�hij). (A12)

Here �ij�
� denotes the Christoffel symbol derived from the metric hij and a

vertical stroke denotes covariant differentiation defined with the use of �ij�
l,

denoted by �j in Section 10.7
The three-metric hij incorporates the intrinsic geometry of the surfaces

t�constant, while the extrinsic curvature Kij determines how these sur-
faces are embedded in the four-dimensional space-time manifold. A simple
example may help to clarify this situation. The ordinary three-dimensional
Euclidean space may be ‘sliced’ into two-dimensional sections by the
planes z�constant (see Fig. A7(a), for which the unit normal n is con-
stant, being the vector k�(0, 0, 1)). Different ‘slicings’ are, however, pos-
sible, such as the one indicated in Fig. A7(b), where the intrinsic geometry
of the two-dimensional sections remains the same as that of the plane, but
the normal n� is now a function of position. The extrinsic geometry (deter-
mined by quantities corresponding to Kij) is different in the two cases, and
determines the manner in which the sections are embedded in the three-
dimensional space. However, for the spatially closed universes considered
here, these considerations do not apply directly, for it is difficult to define
an intrinsic measure that locates the space-like hypersurface, apart from its
intrinsic or extrinsic geometry (Hartle and Hawking, 1983).

Various aspects of quantum cosmology are described in an interesting
book by D’Eath (1996).

1
2N

Nl

N
1

2N
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